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Abstract
Context: Applying vulnerability detection techniques is one of many tasks using the limited
resources of a software project.

Objective: The goal of this research is to assist managers and other decision-makers in mak-
ing informed choices about the use of software vulnerability detection techniques through
an empirical study of the efficiency and effectiveness of four techniques on a Java-based
web application.

Method: We apply four different categories of vulnerability detection techniques – system-
atic manual penetration testing (SMPT), exploratory manual penetration testing (EMPT),
dynamic application security testing (DAST), and static application security testing (SAST)
– to an open-source medical records system.

Results: We found the most vulnerabilities using SAST. However, EMPT found more
severe vulnerabilities. With each technique, we found unique vulnerabilities not found using
the other techniques. The efficiency of manual techniques (EMPT, SMPT) was compara-
ble to or better than the efficiency of automated techniques (DAST, SAST) in terms of
Vulnerabilities per Hour (VpH).

Conclusions: The vulnerability detection technique practitioners should select may vary
based on the goals and available resources of the project. If the goal of an organization
is to find “all” vulnerabilities in a project, they need to use as many techniques as their
resources allow.
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1 Introduction

Detecting software vulnerabilities efficiently and effectively is necessary to reduce the risk
that hackers will exploit vulnerabilities before developers can find and patch them. However,
as noted by Alomar et al. (Alomar et al. 2020), security teams often struggle to justify the
costs of vulnerability detection and other vulnerability management activities. The need
to improve vulnerability detection efforts while not expending unnecessary resources is
highlighted in Section 7 of U.S. Presidential Executive Order 14028, which begins “The
Federal Government shall employ all appropriate resources and authorities to maximize
the early detection of cybersecurity vulnerabilities...” (Executive Order 14028 2021). The
executive order also emphasizes the need for improved evaluation of security practices,
including vulnerability detection.

The goal of this research is to assist managers and other decision-makers in making
informed choices about the use of software vulnerability detection techniques through an
empirical study of the efficiency and effectiveness of four techniques on a Java-based web
application. We perform a theoretical replication1 of work done by Austin et al. (Austin
and Williams 2011; Austin et al. 2013). Since the original Austin et al. work in 2011, the
vulnerability detection landscape has changed - from the applications being tested to the
vulnerabilities found (OpenWeb Application Security Project (OWASP) Foundation 2021a;
2017; 2013b; 2013a). For example, the number of vulnerabilities in the United States
National Vulnerability Database assigned to Cross-Site Scripting (XSS) has increased faster
than the prevalence of other vulnerability types such as Code Injection (NVD 2021a). Our
methodology and findings may also be useful to future evaluations of new vulnerability
detection techniques.

We examined the 4 vulnerability detection techniques from Austin et al. (Austin and
Williams 2011; Austin et al. 2013).

– Systematic Manual Penetration Testing (SMPT): the analyst manually and systemat-
ically develops, documents, then executes test cases which verify the security objectives
of the System Under Test (SUT) (Smith and Williams 2011; Austin and Williams 2011;
Smith and Williams 2012; Austin et al. 2013)

– Exploratory Manual Penetration Testing (EMPT): the analyst “spontaneously
designs and executes tests” (ISO/IEC/IEEE 2013), searching for vulnerabilities.

– Dynamic Application Security Testing (DAST): automatic tools generate and run
tests based on security principles, without access to source code(Scanlon 2018).

– Static Application Security Testing (SAST): automatic tools scan source code for pat-
terns that indicate vulnerabilities (Cruzes et al. 2017; Hafiz and Fang 2016; Scandariato
et al. 2013).

These four techniques can be applied during and after software implementation. Apply-
ing vulnerability detection during and after software implementation is more common in
many industry settings (Cruzes et al. 2017) compared to techniques which focus on earlier

1A theoretical replication seeks to investigate the scope of the underlying theory, e.g. by redesigning the
study for a different target population, or by testing a variant of the original hypothesis (Lung et al. 2008)
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phases of software development such as requirements and design. We used an industry
standard, the Open Web Application Security Project’s Application Security Verification
Standard (OWASP ASVS), to systematically develop test cases for SMPT. The two DAST
tools and three SAST tools are currently used in industry settings. Two of these tools, the
OWASP Zed Attack Proxy (OWASP ZAP)2 DAST tool and the Sonarqube3 SAST tool, are
open source. The other tools, which we will refer to as DAST-2, SAST-2, and SAST-3 are
proprietary.

We applied each technique to OpenMRS (https://openmrs.org/), a large open-source
medical records system used in medical research and clinical settings throughout the world.
OpenMRS is a web application written in Java and JavaScript, containing 3,985,596 lines
of code4. We consider our work to be a case study since we only examine a single System
Under Test (SUT).

Although OpenMRS is comparable in size to other industry systems (US Dept of Vet-
erans Affairs 2021; Epic Systems Corporation 2020) we know of no other study applying
multiple different vulnerability detection techniques to a system this large. The only previ-
ous work comparing as many different types of vulnerability detection techniques that we
are aware of is the original study by Austin et al. (Austin and Williams 2011; Austin et al.
2013). The systems in Austin et al.’s work were less than 500,000 lines of code. Collecting
data for our current study on a system with millions of lines of code required a team of four
graduate students a combined eleven months of full-time work and twenty months of part-
time work; four months part-time work from an undergraduate student; and the results of
assignments from a large graduate-level software security course. Our experiences in struc-
turing the software security course have been reported previously in Elder et al.(Elder et al.
2021).

We answer the following research questions:

– RQ1:What is the effectiveness, in terms of number and type of vulnerabilities, for each
technique?

– RQ2: How does the reported efficiency in terms of vulnerabilities per hour differ across
techniques?

As part of the software security course, students were asked to discuss and compare the four
techniques. Two researchers performed qualitative analysis on the answers, addressing the
following research question:

– RQ3: What other factors should we consider when comparing techniques?

Our research makes the following contributions:

– Analysis from our comparison of the efficiency and effectiveness of the four vulnera-
bility detection techniques.

– A detailed description of the methodology and related findings, which may be useful
for future comparisons of vulnerability detection techniques

We are releasing our vulnerability dataset once the vulnerabilities are safely mitigated
at https://github.com/RealsearchGroup/vulnerability-detection-20. We are working with

2https://owasp.org/www-project-zap/
3https://www.sonarqube.org/
4 as measured by CLOC v1.74 (https://github.com/AlDanial/cloc)
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OpenMRS to minimize the risk of disclosing information about vulnerabilities that would
endanger OpenMRS users, since medical systems are popular targets for malicious actors.

The rest of this paper is structured as follows. In Section 4, we provide explanations for
key concepts used throughout this paper. In Section 2 we provide a brief overview of the
previous work. We discuss other related work in Section 3. In Section 5 we describe the
vulnerability detection techniques used in this paper. In Section 6 we discuss the SUT used
in our Case Study, OpenMRS. In Section 7 we discuss the sources of data for the Case
Study. In Sections 8, 9, and 10 we outline our research methodology for RQ1, RQ2, and
RQ3. We discuss the equipment used in Section 11. We report our results in Section 12. We
discuss our findings in Section 14. We discuss limitations of our study in Section 13. We
discuss the findings in Section 14 and conclude with Section 15.

2 PreviousWork by Austin et al.

Our study is a theoretical replication5 of previous work done by Austin et al. (Austin and
Williams 2011; Austin et al. 2013). The goals of the previous work are “to improve vulner-
ability detection by comparing the effectiveness of vulnerability discovery techniques and
to provide specific recommendations to improve vulnerability discovery with these tech-
niques”(Austin and Williams 2011). In their first study (Austin and Williams 2011) Austin
et al. applied SMPT, EMPT, DAST, and SAST to two electronic medical records systems,
Tolven Electronic Clinician Health Record (eCHR), a Java-based application with 466,538
lines of code, and OpenEMR, a PHP-based application with 277,702 lines of code. The sec-
ond publication (Austin et al. 2013) added another SUT, PatientOS, a Java-based mobile
application with 487,437 lines of code. In both studies, the authors used one tool for each
automated technique. The DAST tool used by Austin et al. was only applicable to web
applications. Consequently, they only applied SMPT, EMPT, and SAST to PatientOS.

For each SUT, Austin et al. compare the number and types of vulnerabilities found by
each technique, as well as the rate of vulnerabilities per hour for each technique. In the
current study, we examine these same metrics, referring to the number and types of vulner-
abilities as “effectiveness” and the vulnerabilities per hour as “efficiency”. We discuss the
results of Austin et al in comparison with our study for effectiveness in Section 12.1.5, and
for efficiency in Section 12.2.2.

3 RelatedWork

Many studies have focused on a single category of techniques, such as comparisons of
DAST tools or comparisons of SAST tools(Amankwah et al. 2020; Bau et al. 2012). We
highlight three notable examples. In 2010, Doupé et al. (Doupé et al. 2010) compared
eleven “point and click” DAST tools. The authors found that while some types of vulner-
abilities could be found reliably, other types of vulnerabilities could not. More recently,
Klees et al. (Klees et al. 2018) examined 32 papers on fuzz testing and performed an
experiment comparing two tools against five benchmark applications. Klees et al identi-
fied several best practices for comparing DAST tools, particularly fuzzers, such as avoiding

5A theoretical replication seeks to investigate the scope of the underlying theory,for example by redesigning
the study for a different target population, or by testing a variant of the original hypothesis of the work (Lung
et al. 2008)
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arbitrary timeouts and carefully selecting the sample inputs to the tool. The U.S. National
Institute of Standards and Technology (NIST) Software Assurance Metrics and Tool Eval-
uation (SAMATE) program has performed a series of Static Analysis Tool Expositions
(SATE) (Delaitre et al. 2018; Okun et al. 2013; 2011; Okun et al. 2009). On a regular basis,
the SAMATE program establishes a set of trials. Participants in each trial, which include
multiple organizations from industry, are required to run their tools against one or more
benchmarks. The results are reviewed by SAMATE organizers. These studies, particularly
the experiments run by Klees et al. and the SAMATE program, inform our methodology
for SAST and DAST techniques, but do not compare across techniques and do not examine
manual techniques.

Another common comparison between vulnerability detection techniques is between
static techniques that primarily analyze source code, and dynamic techniques that run tests
against an active software system. Scandariato et al. (Scandariato et al. 2013) conducted an
experiment in which nine participants performed vulnerability detection tasks. The authors
examine the user experience for SAST and DAST tools, and analyze the efficiency of using
SAST and DAST. Scandariato et al. found that although participants found DAST tools
more “fun” to use, the participants were more efficient with SAST tools and considered
SAST tools a better starting point for new security teams. Similar to our study, Antunes
and Viera (Antunes and Vieira 2009) found that different tools within the same technique
found different vulnerabilities, and that SAST found more vulnerabilities than DAST. In
contrast to Scandariato et al. and Antunes and Viera, we further subdivide dynamic analy-
ses into SMPT, EMPT, and DAST, exploring each of these techniques separately and noting
differences between manual and automated techniques.

Many surveys and comparisons focus on a single type of vulnerability. For example,
Chaim et al. perform a survey of Buffer Overflow Detection techniques. They note that
existing vulnerability detection techniques are impractical or produce too many false posi-
tives, but that emerging hybrid techniques are “promising”. Liu et al. (Liu et al. 2019) survey
automated, state-of-the-art techniques for finding and exploiting Cross-Site-Scripting (XSS)
vulnerabilities, categorizing them as “static”, “dynamic”, or “hybrid”. They note that the
increasing size of web applications may hinder the effectiveness of these automated tech-
niques, but do not perform an empirical analysis. Fonseca et al. perform an empirical
comparison of the effectiveness of different DAST tools (Fonseca et al. 2007) for find-
ing XSS vulnerabilities. Practitioners may prioritize some types of vulnerabilities over
others and these studies assist practitioners in understanding how vulnerability detection
techniques compare for a single type of vulnerability. However, applications are rarely
threatened by a single type of vulnerability. Our study, which examines the effectiveness of
techniques across a range of vulnerability types; gains insight from and provides additional
insight into results from studies which focus on a single type of vulnerability.

An additional area of related work is the development and application of benchmarks
for security testing tools, such as the 2010 work by Antunes and Viera (Antunes and
Vieira 2010) on developing a benchmark for SAST and DAST tools. As noted in the SATE
V report, benchmark studies have an important role in evaluating security testing tech-
niques (Delaitre et al. 2018). However, the use of vulnerability detection techniques in
benchmark studies may differ from how security vulnerability detection techniques would
be applied in practice. For example, the three web infrastructure performance benchmark
systems used by Antunes and Viera(Antunes and Vieira 2010) to develop security bench-
marks contained a combined 2,654 lines of code which could be manually reviewed by
security experts in a reasonable amount of time. The results of our study on OpenMRS,
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which has over 3,000,000 lines of code, may not generalize to smaller systems such as those
examined by Antunes and Viera.

4 Key Concepts

In this section, we discuss key concepts necessary to understand our work.

Vulnerability: We use the definition of vulnerability from the U.S. National Vulnerability
Database.6 A vulnerability is “A weakness in the computational logic (e.g., code) found in
software and hardware components that, when exploited, results in a negative impact to
confidentiality, integrity, or availability.’ (NVD 2021d).

CommonWeakness Enumeration (CWE): Per the CWE website, “CWE is a community-
developed list of software and hardware weakness types.”(MITRE 2021b). Many security
tools, such as the OWASP Application Security Verification Standard (ASVS) and most
vulnerability detection tools, use CWEs to identify the types of vulnerabilities relevant to a
security requirement, test case, or tool alert. We use the CWE list in this paper to standardize
and compare the vulnerability types found by different vulnerability detection techniques.

OWASP Top Ten: The OWASP Top Ten is a regularly updated list of “the most criti-
cal security risks to web applications.”(Open Web Application Security Project (OWASP)
Foundation 2021b). The OWASP Top Ten categories and ranking are developed by secu-
rity experts based on the incidence and severity of vulnerabilities associated with different
CWEs. A mapping (MITRE 2021c) from CWE to OWASP Top Ten allows vulnerabilities
to be mapped to the OWASP Top Ten categories via CWEs. We use the OWASP Top Ten
in this paper to summarize the types of vulnerability found and to understand the relative
severity of the vulnerabilities found. The latest (2021) Top Ten, which were used in our
analysis, are: A01 - Broken Access Control, A02 - Cryptographic Failures, A03 - Injection,
A04 - Insecure Design, A05 - Security Miscofiguration, A06 - Vulnerable and Outdated
Components, A07 - Identification and Authentication Failures, A08 - Software and Data
Integrity Failures, A09 - Security Logging and Monitoring Failures, and A10 - Server-Side
Request Forgery (SSRF). Additional information on the OWASP Top Ten may be found at
https://owasp.org/Top10/.

OWASP Application Security Verification Standard (ASVS): OWASP ASVS is an open
standard for web application security verification. ASVS provides a high-level set of
“requirements or tests that can be used by architects, developers, testers, security profes-
sionals, tool vendors, and consumers to define, build, test and verify secure applications”
(van der Stock et al. 2019). In ASVS, each requirement or test is referred to as a “control”
which is not specific to a particular SUT. Each ASVS control is mapped to a CWE type. We
used OWASP ASVS version 4.0.1 released in March 2019,7 which was the current version
when we began collecting data in Spring 2020. ASVS has three levels of requirements. If a
requirement falls within a level, it also falls within higher levels. ASVS describes Level 1
as “the bare minimum that any application should strive for” (van der Stock et al. 2019).

6https://nvd.nist.gov/vuln
7https://github.com/OWASP/ASVS/tree/v4.0.1
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Hypertext Transfer Protocol (HTTP): HTTP is the set of rules used to communicate with
web applications, such as the SUT for our case study. When a user interacts with the web
application through a browser HTTP messages are created by the web browser (Mozilla
2021) and sent to the application. Each HTTP message requests that some action be applied
to a particular resource in the application (Fielding and Reschke 2014). Resources are iden-
tified through a Uniform Resource Identifier (URI). The action and URI are indicated in the
header of an HTTP message. The HTTP request in Fig. 1 is a message sent to the OpenMRS
application to log into the application. In Fig. 1, the browser is requesting that the informa-
tion in the message be POSTed to the URI http://127.0.0.1:8080/openmrs/login.htm. The
remainder of the HTTP message contains a representation (Fielding and Reschke 2014) of
the requested resource. The application server software then responds to the request with an
HTTP message.

As an example of how HTTP messages are passed between the browser and the applica-
tion server is shown in Fig. 2. In this example, the user logs into the system. The user begins
by opening a browser and enters the application login URL http://127.0.0.1:8080/openmrs/
login.htm. The browser creates and sends an HTTP GET request for the initial login screen
(shown in line 01 in Fig. 2). The server’s response to the GET request contains information
about the application page (the description and size of the response are also indicated in line
01). In a simple application, the entire web page may be included in the first response. In a
more complex web application, the response may indicate that the browser needs to request
additional resources, and the browser will use more GET requests to obtain the additional
resources (lines 02-14 in Fig. 2). Once all the resources have been received and the login
page rendered, the user enters required information such as the username and password and
submits the information to the browser. The browser then creates and sends a POST request
(line 15 in Fig. 2), sending the login information to the server. The server’s response to the
POST request tells the browser where to start accessing resources based on whether the
login was successful, and the browser creates one or more GET requests (lines 16-17 in
Fig. 2) to obtain the necessary resources. Although the user has only performed two actions
- entering the URL and submitting login information, this series of interactions with the
OpenMRS application results in 17 different requests being sent from the browser to the
server. The technical details of HTTP messages are most applicable for DAST tools, which
we cover further in Section 5.2.2.

5 Vulnerability Detection Techniques

We begin this section by explaining common classifications of the analysis types used by
vulnerability detection techniques. We then describe the specific vulnerability detection

Fig. 1 Example HTTP message
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Fig. 2 Example HTTP Sequence

techniques from our case study. We distinguish between the analysis type and the vulnera-
bility detection technique since confusion may arise due to common names for vulnerability
detection techniques which are derived from their analysis types. For example, Dynamic
Application Security Testing (DAST), Exploratory Manual Penetration Testing (EMPT),
and Systematic Manual Penetration Testing (SMPT) all use dynamic analysis, even though
only DAST has “dynamic” in the name.

5.1 Analysis Types

In this section, we explain four common classifications of analysis types: automated vs
manual analysis, systematic vs exploratory analysis, dynamic vs static analysis, and finally
source code analysis.

Automated vs Manual analysis: Some techniques are based on automated analysis per-
formed by a tool. Manual effort may be required to use vulnerability detection tools.
However, for the purpose of this study we reserve the phrase manual analysis to describe
techniques where no automated tool is needed.

Systematic vs Exploratory analysis: Systematic analysis is performed in a very prescrip-
tive, methodical manner; in contrast with exploratory analysis which is less formally
planned. For example, ISO 29119 (ISO/IEC/IEEE 2013) defines exploratory testing, a
form of exploratory analysis, as “experience-based testing in which the [analyst] sponta-
neously designs and executes tests based on the [analyst]’s existing relevant knowledge,
prior exploration of the test item ..., and heuristic ‘rules of thumb’ regarding common
software behaviours and types of failure”. The concepts of systematic and exploratory anal-
ysis primarily apply to manual analysis. Whether an automated tool has knowledge and
experience is outside the scope of this paper.

Dynamic vs Static analysis: Dynamic analysis is performed against actively running soft-
ware (ISO/IEC/IEEE 2013). Static analysis is performed on static artifacts such as source
code or binaries, where the software is not actively running (ISO/IEC/IEEE 2013).

Source code analysis: Source code analysis is any form of analysis that reviews the source
code of the SUT. While source code analysis is sometimes used as a synonym of static
analysis (McGraw 2006; Austin et al. 2013), static analysis can include analyzing binaries
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and other artifacts that are not source code. Analysis that does not have access to source
code is sometimes referred to as “black box” analysis.

5.2 Case Study Techniques

In this section, we provide greater detail on the four categories of vulnerability detection
techniques we examine in our case study.

5.2.1 Manual Techniques

Both manual techniques examined in this study are dynamic techniques that do not require
access to source code. Manually examining the entire source code for system as large as
OpenMRS is infeasible. A high-level overview of how manual dynamic testing techniques,
particularly systematic techniques, are applied is shown in Fig. 3. This figure is based on
the process for dynamic techniques presented in ISO/IEC/IEEE 29119-1 (ISO/IEC/IEEE
2013).

Systematic Manual Penetration Testing (SMPT) Specifically, SMPT is a form of scripted
testing defined by ISO 29119-1 (ISO/IEC/IEEE 2013) as “dynamic testing in which the
[analyst]’s actions are prescribed by written instructions in a test case”. SMPT involves
dynamic, manual, and systematic analysis. SMPT does not require access to source code. In
SMPT, the analyst begins by writing a set of test cases and planning how the test suite will
be run for a particular test execution in what ISO 29119-1 refers to as the in the Test Design
& Implementation stage, as shown in Fig. 3. The tests are then executed. In the final stage,
the test results are documented and reported.

Figure 4 shows an example SMPT test case from our case study. As can be seen in
Fig. 4, the steps recorded in an SMPT test case are the actions a person would take when
interacting with the system. SMPT test cases can be developed in a variety of ways (Smith
and Williams 2012). As we will discuss further in the methodology under Section 8.1.2, for
our case study we used the the OWASP Application Security Verification Standard (ASVS)
as the basis for our test cases. ASVS provides a set of security controls which can be tailored
to develop specific test cases for a software system. The test case in Fig. 4, is based on
ASVS Control 2.1.7 - Verify that passwords submitted during account registration, login,
and password change are checked against a set of breached passwords either locally (such
as the top 1,000 or 10,000 most common passwords which match the system’s password
policy) or using an external API. In the test case, the administrator attempts to create a user
with the common password “Passw0rd”.

Exploratory Manual Penetration Testing (EMPT) Exploratory Manual Penetration Test-
ing is a manual, unscripted, exploratory, dynamic technique that does not require access to

Fig. 3 Applying Manual Test Techniques (based on ISO/IEC/IEEE 29119-1)
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Fig. 4 Example SMPT Test Case

source code. Previous studies of functional exploratory testing have suggested that knowl-
edge and experience may play a significant role in exploratory testing (Itkonen et al. 2013;
Pfahl et al. 2014).

The process for EMPT is similar to the process shown in Fig. 3. As found by Votipka
et al. (Votipka et al. 2018), security analysts who perform exploratory testing spend time
learning about the system prior to beginning exploration. The analyst then moves on to
activities such as “exploration” and “vulnerability recognition” (Votipka et al. 2018). The
analyst also still documents and reports all vulnerabilities found. However, the process is
less formal and more iterative for EMPT as compared with SMPT.

5.2.2 Automated Techniques

We examine two categories of automated vulnerability detection techniques, Dynamic
Application Security Testing (DAST) and Static Application Security Testing (SAST).
Figure 5 provides an overview of how automated, i.e. automatic tool-based, techniques are
applied. The tools must first be setup, which includes installing, configuring, and customiz-
ing the tool. The analyst then runs the tool. Once the automated portion of the analysis
is complete, the analyst must review the tool output to remove false positives and prepare
the report.

Dynamic Application Security Testing (DAST) DAST uses automated tools to perform
dynamic analysis. We only include techniques that do not have access to source code in the
DAST category. DAST is sometimes referred to as Automated Penetration Testing (Antunes
and Vieira 2010; Austin andWilliams 2011; Austin et al. 2013), Black-BoxWeb Vulnerabil-
ity Scanning (Doupé et al. 2010), Fuzzing (Klees et al. 2018), or Dynamic Analysis (Cruzes
et al. 2017). In our case study, we examined two general-purpose DAST tools. One tool, the
Open Web Application Security Project’s Zed Attack Proxy version 2.8.1 (OWASP ZAP,
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Fig. 5 Applying Tool-Based Techniques

further abbreviated as ZAP in tables),8 is a free, open-source, dynamic analysis tool which
describes itself as “the world’s most widely used web app scanner”(Open Web Application
Security Project (OWASP) Foundation 2021c). The second DAST tool, which we will refer
to as DAST-2 (further abbreviated as DA-2 in tables), is a proprietary tool.

DAST tools automatically generate a set of malformed inputs to the SUT based on sam-
ple inputs provided by the analyst. For web applications, the sample inputs provided by the
analyst and the malformed inputs generated by the DAST tool are represented as a sequence
of HTTP messages such as the one shown in Fig. 2. Background on HTTP is provided in
Section 4. Some DAST tools, such as OWASP ZAP, provide built-in ways to record HTTP
messages. Other DAST tools require a standard file format such as HTTP Archive (.har)9

which can be generated by most web browsers.
Some DAST tools for web applications, including OWASP ZAP but not DAST-2, incor-

porate a web crawler (OWASP ZAP Dev Team 2021b; Doupé et al. 2010; Scandariato et al.
2013), also referred to as a spider. Analysts can use the web crawler to automatically find
additional resources that may not have been included in the original sample inputs. For
example, if the analyst does not know that a particular resource exists or is accessible, the
resource is unlikely to be included in the sample input the analyst provides.

Using the sample inputs and any additional information that may have been found using
a web crawler, the DAST tool applies a set of security rules to create a new set of malformed
inputs. If we consider the example HTTP message in Fig. 1 as a potential message from
a sample input, Fig. 6 shows an HTTP message that could be created by DAST tools as
part of a malformed input. In this example, the sessionLocation parameter is changed
from a number, 0, to a script designed to find Cross-Site Scripting (XSS) vulnerabilities,
<script>alert(1);</script>. The same XSS-focused rule could be applied to the
username parameter instead of the sessionLocation parameter to generate a differ-
ent malformed input. A different rule could ignore parameters entirely and search the http
header for sensitive information or could re-order the HTTP messages in the sequence.

The rules used to generate different malformed inputs are typically associated with one
or more CWEs. The CWEs covered by the rules in the tools we used are discussed in
Appendix A. ZAP rules were associated with 33 CWEs while DAST-2 covered 44 CWEs
for a combined 68 CWEs covered by DAST. ZAP covered 6 of the OWASP Top Ten
while DAST-2 also covered 6 of the OWASP Top Ten. Five (5) of the Top Ten categories
were covered by both tools for a combined 7 of the Top Ten covered between the two
DAST tools.

8https://www.zaproxy.org/
9e.g. https://docs.rapid7.com/insightappsec/scan-scope/; https://www.netsparker.com/support/scanning-restful-
api-web-service/; https://docs.gitlab.com/ee/user/application security/api fuzzing/create har files.html
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Fig. 6 Message from a Malformed Input (Test Case) Produced by a DAST Tool

With many combinations of rules and ways to apply them, DAST tools can create and run
hundreds or thousands of malformed inputs. The malformed inputs generated by a DAST
tool are sometimes referred to as test cases. DAST tools execute the “test cases” (malformed
inputs) automatically, suggesting that DAST tools may be able to perform more testing in
less time compared with manual techniques such as SMPT (Ackerman 2019). One of the
motivations of our study is to understand whether this promise of “more” inputs executed
“faster” by automated techniques produces equivalent or better results.

Static Application Security Testing (SAST) We use the term SAST to refer to techniques
that use automated tools to perform static, source code analysis. SAST tools are a common
way to comprehensively apply source code analysis, as manual source code analysis can be
tedious and time-consuming (McGraw 2006; Johnson et al. 2013; Scandariato et al. 2013;
Smith et al. 2015; Cruzes et al. 2017). In practice, SAST tools are less likely to be applied
by security analysts (Cruzes et al. 2017; Hafiz and Fang 2016; Votipka et al. 2018) and more
likely to be applied by the developers themselves (Cruzes et al. 2017). In this study, we
used three SAST tools from industry. First, we used the open-source community edition of
Sonarqube version 8.2, which we refer to as Sonarqube (abbreviated as Sonar in tables). The
two other tools examined, SAST-2 and SAST-3 (abbreviated as SA-2 and SA-3 in tables) are
proprietary tools and cannot be named due to license restrictions. Sonarqube and SAST-2
were used to answer RQ1, while SAST-2 and SAST-3 were used to answer RQ2.

All SAST tools used in this study perform static analysis by first parsing the source code
to build a tree representation of the code, known as a syntax tree. The tool then applies a
set of rules to the syntax tree, where each rule describes a pattern within the syntax tree that
may indicate a vulnerability (McGraw 2006). Since the original work by Austin et al (Austin
and Williams 2011; Austin et al. 2013), SAST tools have evolved to include additional
features. For example, Sonarqube uses symbolic execution, as well as more traditional tech-
niques such as parsing the code using regular expressions, to identify vulnerabilities (Mallet
2016). Similarly, both SAST tools used in this study employ taint analysis (Campbell 2020),
although it is not clear whether taint analysis is available in the free / open-source version
of Sonarqube used in this study.

6 SystemUnder Test - OpenMRS

The SUT for our case study was OpenMRS, an open-source medical records system. Open-
MRS is a “Java-based web application capable of running on laptops in small clinics or
large servers for nation-wide use”(OpenMRS 2020).
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6.1 Why OpenMRS?

We selected OpenMRS as the SUT because OpenMRS is a “real” system that is actively
used and actively under development. The 2018 U.S. National Institute of Standards and
Technology (NIST) Static Analysis Tool Exposition (SATE) report (Delaitre et al. 2018),
provides the following criterion for “real, existing software”: “their development should fol-
low industry practices. Their size should align with similar software. Their programming
language should be widely used for their purpose.” . OpenMRS follows common develop-
ment practices for open-source systems, as discussed in their Developer Guide(OpenMRS
2020). With over 3 million lines of code, OpenMRS is comparable to other modern medical
records systems, such as the VistA system used by the USDepartment of Veteran Affairs(US
Dept of Veterans Affairs 2021) and Epic(Epic Systems Corporation 2020), which involve
millions of lines of code. The languages and frameworks used by OpenMRS including
Java, Javascript, Node.js, and SQL, consistently appear on lists of the most commonly used
software technologies (StackOverflow 2021; Github 2021; Cass 2021; Cass et al. 2021).
Furthermore, as of July 2021(OpenMRSAtlas 2021), OpenMRS is actively used many con-
texts including clinics, hospitals, and health networks in Mexico, Haiti, Tanzania, Pakistan,
and Bangladesh.

Additionally, we selected OpenMRS due to its domain. The three SUT examined by
Austin et al (Austin and Williams 2011; Austin et al. 2013) were medical records systems.
Hence the SUT for the current study should also come from the medical domain. Although
OpenMRS was not examined by Austin et al., OpenMRS has also been used in other
research on software testing and security analysis(Tøndel et al. 2019; Purkayastha et al.
2020). The security of medical records systems is, if anything, a more important issue in
2021 than in 2011, with healthcare systems an increasingly popular target for hackers (Radio
New Zealand (RNZ) 2021; U.S. Cybersecurity and Infrastructure Security Agency (CISA)
2021; Condon and Miller 2021; Bannister 2021).

6.2 Technical Description

OpenMRS contains 3,985,596 lines of code as measured by CLOC v1.7410 including
476,139 coding lines, i.e. not comments, of Java as well as 1,884,233 coding lines of
Javascript. The OpenMRS architecture is modular. In this study, we examined the 43 mod-
ules that compose the basic reference application for OpenMRS Version 2.9. The source
code for each module is available on github.11 We compiled and ran OpenMRS usingMaven
and Jetty as described in the Developer’s Manual(OpenMRS 2020).

6.3 Security Practices at OpenMRS

OpenMRS is open-source software. The OpenMRS team has received vulnerability reports
from both volunteers and independent researchers in the past, based on SAST and other
vulnerability detection techniques. When we reached out to OpenMRS with our results, our
understanding was that SAST and DAST tools were not being used at the organizational

10https://github.com/AlDanial/cloc
11https://github.com/openmrs
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level. Since then, OpenMRS’s security posture has continued to mature, including more
vulnerability detection efforts.

7 Data Sources

The data for the case study came from two sources: 1) a team of five (5) researchers and 2)
sixty-three (63) students from a graduate-level security course. In this section, we provide
background on these two data sources.

7.1 Researcher Data

Three Ph.D. student researchers, one Master’s student researcher, and one undergradu-
ate student researcher applied SMPT, DAST, and SAST; and reviewed the alerts or other
failures output by all four techniques as part of data collection for RQ1. The researchers
also reviewed all student information used in this study to remove incorrect answers. All
graduate-level researchers had participated in a graduate-level software security course. The
undergraduate student researcher had taken two security-related undergraduate courses.

7.2 Student Data

Sixty-three (63) of 70 students in a graduate level software security course gave signed con-
sent for their data to be used for this study. Student data was collected following North
Carolina State University (NCSU) Institutional Review Board Protocol 20569. Students
worked in teams of 3-4 students, for a total of 19 teams. Where data could only be col-
lected at the team level, we used data from the 13 teams in which all team members
consented to the use of their data. Where data is available at the student level, we used data
from all 63 students who consented. Student EMPT and SMPT data was used as part of
data collection for RQ1. Researchers then analyzed students’ reported efficiency scores to
answer RQ2.

7.2.1 Students’ Prior Experience

Students were asked to fill out a survey about their relevant experience including industry
experience and related coursework. The full survey is available in Appendix B. First, the
survey asked students about the amount of time they worked in industry. Second, the survey
asked students to note how much of their time in industry involved cybersecurity on a scale
from 1 (none) to 5 (fully). Seven (7) of the 55 students had no industry experience. The
distribution of security experience for the 48 students with industry experience is shown in
Fig. 7. Fifty-five (55) of the 63 students whose data was used in this study provided valid
survey responses. The x-axis of Fig. 7 indicates students who had up to 2 years of industry
experience as compared with more than 2 years of industry experience. The y-axis indicates
the number of students. The shading within the bar chart indicates security experience.
Darker shades indicate more security experience.

Students had a range of industry experience, but most students had little experience in
cybersecurity at the start of the course. At the lower end were 7 students with no experi-
ence, while the maximum experience was approximately 10 years. The median and average

154   Page 14 of 78 Empir Software Eng (2022) 27: 154



Fig. 7 Industry Security
Experience of Students

industry experience of students, including students with no experience, was 1 year and 1
year 8 months, respectively. In addition to industry experience, 7 students had previously
taken a course in security or privacy. Eight (8) students were currently taking a course in
security or privacy in addition to the course from which we collected data.

7.2.2 Course Assignments

The data used in this study that comes from student assignment responses is taken from
the Course Project. The course project had four parts which were distributed over the
semester. The verbatim text from the course project assignments is provided in Appendix C.
A summary of the assignments relevant to our study is as follows:

– SMPT Assignments: In Project Part 1, students were required to write and execute a
set of 15 systematic manual penetration test cases. Each test case mapped to at least
one ASVS control. In Project Part 3, students were required to write and execute ten
additional test cases for logging, and five additional test cases to increase the ASVS
coverage of their test suite. Correct, unique test cases and their results were used as
part of Data Collection for RQ1 (Effectiveness). The test cases were re-run and supple-
mented with additional test cases by researchers, as we will discuss in Section 8.1.2.
Student performance and experience with SMPT as part of these assignments also
informed their response to the Comparison Assignment listed below, which was used
to collect data for RQ2 (Efficiency) and RQ3 (Other Factors).
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– EMPT Assignment: In Project Part 4, students spent three hours individually per-
forming exploratory penetration testing. EMPT was assigned at the end of the course
when students were familiar with the SUT and with many security concepts. Students
produced a video recording of their three-hour session, speaking out loud about any
vulnerabilities found; and created black-box test cases to enable replication of each vul-
nerability found. The vulnerabilities found by students were used as part of the Data
Collection for RQ1 (Effectiveness). Student performance and experience with EMPT
informed their responses to the Comparison Assignment, which were used as part of
Data Collection for RQ2 (Efficiency) and RQ3 (Other Factors).

– DAST Assignment: In Project Part 2 students used two DAST tools (OWASP ZAP and
DAST-2), using 5 test cases from their SMPT assignments to provide the sample inputs
for the DAST tool. Students reported the number of true positive vulnerabilities and the
amount of time spent reviewing the output. Students’ performance and experience with
the DAST assignment contributed to their response to the Comparison Assignment,
which was used as part of the Data Collection for RQ2 (Efficiency) and RQ3 (Other
Factors).

– SAST Assignment: In Project Part 1, each student team ran two SAST tools (SAST-2
and SAST-3) on a subset of the SUT. Due to the length of SAST reports, students were
only required to review at least 10 of the alerts from each tool to determine whether the
alerts were true or false positives. Students had to identify at least 5 false positives even
if it required reviewing more than 10 alerts to ensure that students were not incentivized
to focus on trivial false positives. The students reported the number of true positive
vulnerabilities found, as well as the amount of time spent reviewing the alerts. The
SAST assignment contributed to the students’ response to the Comparison Assignment,
which in turn was used as part of the Data Collection for RQ2 (Efficiency) and RQ3
(Other Factors).

– Comparison Assignment: At the end of the course in Part 3 and Part 4 of the project,
each team created a table showing the number of vulnerabilities found by each activity,
the amount of time it took to discover these vulnerabilities, and the resulting VpH.
The students reflected on their experience with the different vulnerability detection
techniques in a free-response format. The numeric responses in the table were used to
answer RQ2. Two researchers applied qualitative analysis to the students’ free-response
answers for RQ3.

7.3 Overview of Data Sources Per Research Question (RQ)

Table 1 provides an overview of the data sources used in Data Collection for each research
question. All data analysis was performed by researchers and is therefore not included in the
table. In Table 1, student data is indicated with an S. Researcher data is indicated with an R.
As can be seen in the table, RQ1 relied primarily on researcher efforts, although student data
was used with SMPT and EMPT. Student data was used more extensively in RQ2, and was
the source of the documents used in qualitative analysis for RQ3. The detailed methodology
for each Research Question will be further explained in Sections 8, 9, and 10.

8 Methodology for RQ1 - Effectiveness

Our first research question is:What is the effectiveness, in terms of number and type of vulner-
abilities, for each technique? To answer RQ1, we need a comparable set of vulnerabilities
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Table 1 Data Sources R = Researchers; S = Students

Technique

SMPT EMPT DAST SAST

RQ1 Applying Technique Sa & R Sb R R

Review Failures R R R R

RQ2 Recorded Efficiency S S Sc Sc

Data Cleaning R R R R

RQ3 Document Source S S S S

Qualitative Coding R R R R

aStudent SMPT results for RQ1 were reviewed and replicated by researchers
bStudent EMPT results for RQ1 were reviewed by researchers
cFor empirical comparison of human performance in RQ2, we use data from Students for all techniques

found by each technique. Ensuring the vulnerability counts were comparable required an
extensive Data Collection process described in Section 8.1 which is split into two phases.
In the first phase, Applying the Technique we applied each vulnerability detection tech-
nique described in Section 8.1.2 to our SUT. The initial outputs of each technique, which
we will refer to as the list of failures, are not comparable. For example, an analyst per-
forming EMPT might document a single vulnerability where a malicious input script such
as <script>alert(123)</script> is saved in one part of the application due to an
input validation vulnerability and executed by the application due to lack of output sanitiza-
tion. A SAST tool, on the other hand, may scan for input validation and output sanitization
using different rules, resulting in two alerts for the same issue documented using EMPT. To
reduce possible biases introduced by different vulnerability counting approaches or differ-
ent vulnerability type classification approaches, we review the failures from each technique
in the second phase of Data Collection described in Section 8.1.3. Once the data has been
collected, we analyze the results as described in Section 8.2.

8.1 Data Collection

Figure 8 provides an overview of the Data Collection process. As seen previously in Table 1,
we subdivide our Data Collection process for RQ1 into two phases - Applying the Technique
and Reviewing the List of Failures output by each technique. In the first phase, we collect
a list of true positive failures. The first phase varies widely by technique. For the second
phase, to enable empirical analysis, the list of failures is further reviewed to ensure the
vulnerability count, type, and severity are comparable across the techniques. We begin this
section with a set of guidelines used across techniques. We then go into the details of how
data collection was performed for each phase for each technique.

8.1.1 General Guidelines

This section provides key guidelines for the Data Collection process which we will refer
to for the remainder of Section 8.1. True / False Positive Classification guidelines are used
when applying automated techniques (DAST and SAST). As described in Section 8.1.3,
the list of failures from each technique was assessed to ensure that the vulnerability count,
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Fig. 8 Data Collection for RQ1

type, and severity are consistently evaluated using the guidelines provided in Sections 8.1.1,
8.1.1, and 8.1.1

True/False Positive Classification Guidelines A true positive alert or vulnerability is one
that meets the definition of a vulnerability from Section 4. We follow a conservative
policy towards true and false positive classification based on the principle of Defense-in-
Depth (Joint Task Force Transformation Initiative 2013). We considered an alert or other
finding to be a vulnerability if it could potentially lead to a security breach. For example,
an alert is raised due to a particular malicious input. Upon review, we note that the input
is stored in the database without encoding or other protection. We would classify the alert
as a true positive even if we have not yet found another vulnerability where the malicious
input is executed, e.g. by the application as part of an XSS attack. There may be vulnerabil-
ities yet to be found, and changes to the code could make the input validation vulnerability
more exploitable in the future. We also consider an alert to be a “true positive” even if the
vulnerability found does not have the same CWE type as the original failure. CWE type is
reviewed separately using the Vulnerability Type Guidelines in Section 8.1.1.

Counting Guidelines The CVE program, which is the source for vulnerabilities in the
NVD (NVD 2021c), also provides a set of guidelines(MITRE 2016) for CVE Numbering
Authorities (CNAs) to help CNAs identify and remove false positives, as well as consolidate
duplicate vulnerability reports. We based our counting process for determining the num-
ber of vulnerabilities identified using each technique on the CVE Counting Rules(MITRE
2016).12 The counting rules used in our analysis were:

– True/False Positive: The failure report must provide evidence of negative impact or that
the security policy of the system is violated; and

– Independence: Each unique vulnerability must be independently fixable.

We applied these counting rules to the list of failures output by each technique. For
example, we applied the counting rules to the alerts produced by a tool. When one alert
pointed to the same vulnerability as another alert, we marked one of the alerts to be a
“duplicate” of the other.

Where we were unsure of the independent fixability of different failures, we assumed
that the initial count was correct and the failures represented independent vulnerabilities.
For example, a vulnerability detection tool could raise two alerts for the same type of vul-
nerability, where each alert was triggered by a different checkbox in the same form. We
counted each alert as a distinct vulnerability unless we knew that the checkboxes relied on
the same server-side code.

12The CVE Counting rules have been updated since our original study. In future work, the authors may follow
the updated rules: https://cve.mitre.org/cve/cna/rules.html
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Vulnerability Type Guidelines The vulnerability types assigned to each vulnerability are
based on two systems - CWE and OWASP Top Ten - which are described in Section 4.
How each vulnerability was initially assigned a CWE varied by technique. the initial CWE
was assigned in SMPT based on the test case; in EMPT, by the student who found the
vulnerability; and in DAST and SAST by the tool.

Researchers reviewed the CWE type assigned to each vulnerability and corrected the
CWE assignment when the CWE was missing, inaccurate, or inconsistent with other vul-
nerabilities in our dataset. For example, a DAST tool creates a malformed input (test
case) designed to trigger XSS as described in Section 5.2.2. When the malformed input
is executed against the SUT, it triggers an error message revealing sensitive information
(CWE-209.13) The error message is unexpected behavior which may result in an alert being
flagged by the DAST tool. However, the alert will be assigned CWE-79 (XSS14) since that
was the rule used to create the test case. In our study, we would consider this alert to be “true
positive” since the alert points to a vulnerability. However, the CWE type would need to be
reclassified - i.e. we would consider the error message containing sensitive information to
be a CWE-209 vulnerability even though the alert indicates CWE-79. When a classification
is incorrect, if there are already similar vulnerabilities in our dataset we reclassify the alert
to the same CWE as the similar vulnerabilities. In the previous example of an alert reclassi-
fied as CWE-209, there were many CWE-209 vulnerabilities flagged by SMPT and EMPT
prior to running the DAST tool. Otherwise, the analyst may need to perform a keyword
search of the CWE database (MITRE 2021b) to find an appropriate CWE. The CWE map-
ping to the OWASP Top Ten (MITRE 2021c) as well as more general guidelines such as the
list of “Weaknesses for Simplified Mapping of Published Vulnerabilities”(MITRE 2022)
and relationships between CWEs provided by the CWE system (MITRE 2021a) were also
used to identify the most appropriate CWE. When multiple CWEs were equally applicable,
multiple CWEs could be assigned to the same vulnerability. Fifty-six (56) CWE types were
found in our experiment.

We mapped the vulnerabilities found to the OWASP Top Ten through their assigned
CWE values using the mapping provided by CWE(MITRE 2021c). The OWASP Top Ten
provides a more readable summary of the types of vulnerabilities found, requiring 10 cate-
gories instead of 56. The OWASP Top Ten, as described in Section 4, categorizes and ranks
vulnerability types based on their severity and how frequently they are seen in software
systems, providing additional insight into the vulnerabilities found.

Severity Guidelines We examine two different perspectives for the severity of the vulnera-
bilities found. Our first perspective on severity is through the lens of the OWASP Top Ten.
The OWASP Top Ten are ranked in a “risk-based order” suggesting that the first category of
the OWASP Top Ten, A01 - Broken Access control, is considered highest risk and therefore
more severe than vulnerabilities associated with lower-ranked categories.

We also examine severity based on severity classifications provided by tools, supple-
mented by analysis of high-frequency vulnerability types and discussions with OpenMRS.
As discussed in Section 8.1.2, we excluded alerts that were labeled insignificant or incon-
sequential by the tools themselves. We then further split the vulnerabilities between those
that are “less severe” and those that are “more severe”. Different tools have different labels
for the different levels. We consider the lowest severity level for each tool to be “‘Low”.

13https://cwe.mitre.org/data/definitions/209.html
14https://cwe.mitre.org/data/definitions/79.html
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Vulnerabilities classified as “less severe” include all vulnerabilities where at least one tool
indicated the vulnerability was of “Low” severity. Once vulnerabilities were detected, we
reviewed “more severe” vulnerabilities where more than 20 vulnerabilities associated with
the same CWE were found by the same tool or technique. In our experience, if a tool
or technique flags large numbers of vulnerabilities associated with the same vulnerability
type, it is unlikely that those vulnerabilities are more severe. Additionally, large quantities
of incorrectly classified vulnerabilities may skew the results. Finally, we adjusted sever-
ity level based on discussions with OpenMRS. Since the tool-based severity was adjusted
depending on the results, we discuss the vulnerability types where severity was updated in
Section 12.1.3.

8.1.2 Applying the Technique

The process of applying of each technique is slightly different, as described in Section 5.
We discuss details of how each technique was applied for our Case Study for SMPT in
Section 8.1.2, for EMPT in Section 8.1.2, for DAST in Section 8.1.2, and for SAST in
Section 8.1.2.

SMPT To apply SMPT as part of RQ1, 131 test cases were manually written and executed
by a combination of students (S) and researchers (R), as shown in Table 1. The test cases
were based on the OWASP Application Security Verification Standard (ASVS) (van der
Stock et al. 2019). As described in Section 4, ASVS has three levels of controls. However,
“Level 1 is the only level that is completely penetration testable using humans” (van der
Stock et al. 2019). In addition to the ASVS Level 1 controls, students and researchers used
knowledge of OpenMRS and documentation available on the OpenMRS wiki15 to develop
test cases specific to OpenMRS. We excluded 44 controls that were not applicable to the
application. For example, ASVS control 5.2.3 (van der Stock et al. 2019) states “Verify that
the application sanitizes user input before passing to mail systems to protect against SMTP
or IMAP injection” and is not applicable since the SUT did not include a mail server.

The 131 test cases in the test suite covered 63 of the remaining 87 controls. We used
86 test cases developed by students, as well as 45 test cases developed by researchers to
increase ASVS coverage. Students originally wrote over 390 test cases as part of their course
assignments described in Section 7.2.2. However, many of the students’ test cases were
duplicates of each other since the 13 teams worked independently and generally wrote test
cases for easier security concepts. Additionally, test cases were removed due to quality
concerns with the test case or the results recorded.

Each test case was executed by two independent analysts to reduce bias and inaccuracy
due to subjectivity and human error. For the 86 test cases developed by students, the first test
case execution was performed by the students and the second execution was performed by
researchers. For the 45 test cases developed by researchers, two different researchers each
executed the test case. When the two executions of the test case produced different results,
an additional researcher executed the test case and the result (pass or fail) given by two of
the three test case executions was recorded as the actual result.

EMPT As shown in Table 1, for RQ1, EMPT was applied by students (S), according to
the assignment outlined in Section 7.2.2. Data from 62 students was used as part of data

15https://wiki.openmrs.org/
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collection for EMPT in RQ1, since 1 of the 63 students in the study did not complete the
EMPT assignment. Students were required to spend three hours performing EMPT and
record the results via video. Students documented their results as test cases to enable ver-
ification of the results. Extensive review of the student results was needed, which we will
discuss in Section 8.1.3. We therefore distinguish between Student Reported Vulnerabili-
ties (SRVs) from the first phase of data collection, and the final set of vulnerabilities from
EMPT used to answer RQ1.

An important factor in exploratory testing is ensuring that individuals have sufficient
knowledge and experience (Itkonen et al. 2013; Itkonen and Mäntylä 2014; Votipka et al.
2018) because EMPT is based on knowledge and experience. The students had limited secu-
rity experience at the start of the course, as discussed in Section 7.2. However, our results
suggest that the students had sufficient experience by the time of the EMPT assignment to
be effective.

DAST As shown in Table 1, researchers (R) applied DAST for RQ1. As shown in Fig. 5,
individuals applying DAST tools must first setup and run the tools, then review the output
for false positives. We include the review of the tool output to remove false positives in the
first phase since it is an integral part of applying automated techniques.

Setting Up and Running the DAST Tools: As discussed in Section 5.2.2, DAST tools
require a set of sample inputs to the application, to which the DAST tool applies a set of
rules to create a set of malformed inputs. The DAST tool runs the malformed inputs against
the SUT and determines whether a security alert should be raised based on how the SUT
responds. To better understand whether DAST tools would find the same vulnerabilities as
SMPT and other techniques, the researchers based the sample inputs on 6 test cases from
the SMPT suite. The test cases were selected to maximize coverage of the SUT. Due to the
complexity and resources required by the DAST-2 tool, we were unable to run additional
test cases, a limitation discussed further in Section 13. Based on the sample inputs based
on the SMPT test cases, each tool generated and tested a set of malformed inputs against
the system using the default set of rules. The CWEs covered by each ruleset are shown in
Table 10 of Appendix A.

Two researchers performed multiple trials of each tool in different configurations to
determine how different choices would impact the alerts produced. For example, DAST-2
by default only used a randomized subset of the test cases. We trialed DAST-2 with both the
full set of test cases and a randomized subset. Due to the repetitive nature of the test cases
generated by DAST-2, the alerts produced by the random subset were similar to the alerts
produced by the full set, and the alerts produced by the full set did not seem to point to any
additional vulnerabilities. Once we were satisfied with our configuration, we performed a
final run. We used the list of failures produced by the final run. Tool-specific details for the
final configuration and run of each DAST tool are as follows:

OWASP ZAP Final Configuration and Run: For OWASP ZAP, we used the proxy
included in the tool to record our interactions. We then ran the spider before running the
security scan. Since OWASP ZAP was run after DAST-2, we limited the OWASP ZAP
input to the 6 SMPT test cases used for DAST-2. With OWASP ZAP we were able to
cover all 6 test cases in a single run of the tool, which took less than 2 hours to execute.

DAST-2 Final Configuration and Run: DAST-2 was more resource-intensive and
required more configuration by design. For DAST-2, we recorded the interactions for
each of the 6 SMPT test cases in an HTTP Archive (.har) file and uploaded it to the tool
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as described in Section 5.2.2. As shown previously in Fig. 2 and discussed in Section 4,
for every explicit interaction with the application there could be 10 or more messages
sent between the browser and the application server. In longer test cases such as the 11-
step example in Fig. 4, hundreds of http messages could be exchanged. Unfortunately,
on our equipment the DAST-2 tool would crash due to memory constraints if more than
approximately 6 HTTP messages were included in the initial sample. Hence each test
case had to be recorded and run as a separate model within the DAST tool. For each
model we removed all HTTP messages from the input sequence other than the messages
that were key to the test case. For example, to apply DAST-2 based on the test case in
Fig. 4, we would include the HTTP messages for the GET request that loaded the login
page in step 01, the POST request which performed the login at step 04 using the login
details from steps 02-03, the GET request for the “Add New Account” page in Step 06,
and the POST request for saving the user at step 11 containing the account information
from steps 07-10. We would remove all other non-essential HTTP messages from the
sequence, such the requests for the “System Administration” and “Manage Accounts”
pages in step 05, and GET requests for Cascading Style Sheets (CSS). For the final run
of DAST-2, 7 separate models were setup to cover the 6 test cases selected from SMPT.
Based on our trial runs we used a randomized subset of malformed inputs to further
reduce load. The final run required between 2 hours and 3 days for each of the 7 models.

Reviewing DAST Tool Output for False Positives: We reviewed the alerts output by the
tools for true and false positives using the guidelines in Section 8.1.1. Unless otherwise
noted, when we refer to the alerts from a DAST tool we exclude alerts marked as insignifi-
cant or inconsequential by the tools themselves. For example, with OWASP ZAPwe exclude
alerts where the severity level was “Informational” (OWASP ZAP Dev Team 2021a). With
OWASP ZAP, two reviewers independently examined all alerts. DAST-2 produced over
one thousand alerts, and two researchers reviewing all alerts would be inefficient. For
each model for DAST-2, if the model produced less than 40 alerts, two researchers each
reviewed every alert. For models that produced more than 40 alerts, both reviewed at least
40 alerts to compare their agreement and determine whether continued review by two inde-
pendent researchers was necessary for consistency. If their classification was consistent, the
remaining alerts were divided between the researchers for review.

For both tools, the researchers calculated their inter-rater reliability using Cohen’s Kappa
using R to determine if they were consistently classifying the results as true or false positive.
For DAST-2 if the inter-rater reliability was at least 0.70 (Lombard et al. 2002; Votipka
et al. 2018) for the initial subset of alerts, the reviewers split the remaining alerts such that
each reviewer only examined half of the remaining alerts. The inter-rater reliability for the
classification of DAST alerts as true or false positive and the precision of the tools based on
the final set of True/False Positives is reported in Section 12.1.1.

SAST As seen in Table 1, applying SAST began with researchers (R) running the SAST
tools on the SUT using the default security rules. As shown in Fig. 5 and described in
Section 5.2.2, SAST tools were first setup and run by the analyst. The tool output was then
reviewed to remove false positives, producing the list of true positive failures needed for the
next phase of data collection.

Setting Up and Running the SAST Tools: For each SAST tool, one researcher initiated
automated scans for each of the 43 modules in the OpenMRS Reference Application, using
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the default security ruleset. The CWEs covered by each tool’s ruleset are shown in Table 10
in Appendix A. No other configuration was needed.

Reviewing SAST Tool Output for False Positives: None of the SAST tools produced over
1000 results; therefore all alerts were reviewed by two researchers to identify and remove
false positives using the guidelines in Section 8.1.1. We computed Cohen’s Kappa(Cohen
1960) to determine whether the true / false positive classification process was consistent and
reproducible. A third researcher resolved disagreements. Similar to DAST results, unless
otherwise noted, when we refer to the alerts from a SAST tool we exclude alerts marked as
insignificant or inconsequential by the tools themselves. For example, we exclude Sonar-
qube’s “Security Hotspots” which were for “security protections that have no direct impact
on the overall application’s security”(SonarSource 2019).

8.1.3 Reviewing the List of Failures

Each technique produces different outputs, which we refer to as “failures”. For example,
systematic, dynamic techniques such as SMPT and DAST produce a set of failing test cases.
In contrast, SAST finds specific weaknesses in the codebase that should be changed to
improve the security of the system. Multiple failing test cases may be due to the same weak-
ness in the codebase, or a single failing test case may be due to multiple weaknesses in the
codebase. Consequently, the raw count of failures may be higher or lower for one technique
even though it is no more effective than another technique. To resolve these potential count-
ing differences, we take the list of failures from each technique and apply the Counting
Rules described in Section 8.1.1 to determine the number of vulnerabilities found by each
technique. While most of the failures are already assigned a CWE type by the tool or by the
ASVS control, the CWE type may not be correctly assigned. We also reviewed the CWE
assignments as part of reviewing the technique output. As shown in Table 1, researchers (R)
reviewed the list of failures for all techniques.

SMPT Two researchers (R) independently reviewed all failing test cases from SMPT
to determine how many vulnerabilities were found using the counting rules outlined in
Section 8.1.1. The researchers discussed their differences with a third researcher, as needed,
to determine the final vulnerability count. The researchers also reviewed the CWE assigned
to the vulnerabilities, as described in Section 8.1.1. Each test case was linked to an ASVS
control, which was associated with a CWE. However, a test case failure may have been due
to a violation of a different security principle than the original CWE associated with the
test case and require correction. Finally, after discussing the final set of vulnerabilities with
OpenMRS, we separated “less severe” vulnerabilities from more critical vulnerabilities as
discussed in Section 8.1.1.

EMPT For EMPT, one researcher (R) reviewed each Student Reported Vulnerability (SRV)
while a second researcher audited 100 randomly sampled SRV as well as 2 additional SRV
at the request of the first reviewer. A third researcher performed additional auditing. The
first reviewer examined each of the 484 SRV to determine if the SRV was reproducible. The
researcher removed SRV if the researcher could not understand the students’ documentation,
if the researcher was unable to observe the result reported, or if the report was clearly a
duplicate of another report. The researcher determined if the SRV was correct using the
True/False Positive guidelines described in Section 8. Researchers used the counting rules
specified in Section 8.1.1 to remove duplicate SRV that had already been reported by other
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students and to split SRV into multiple vulnerabilities when students had incorrectly applied
the counting rules. The researchers reviewed the CWE values assigned to each vulnerability,
as described in Section 8.1.1, removing inaccuracies due to typos and other errors. Finally,
after discussing the final set of vulnerabilities with OpenMRS, we distinguished less severe
vulnerabilities from more severe vulnerabilities following the guidelines in Section 8.1.1.

After reporting our results to OpenMRS, feedback from the OpenMRS team resulted in
the removal of five additional EMPT vulnerabilities that were determined to be not repro-
ducible or not applicable. A team of Master’s and Undergraduate students at NCSU working
with OpenMRS to assist in fixing the vulnerabilities also provided feedback, which resulted
in consolidating three EMPT vulnerabilities which had been found on three different pages
of the application but were due to an error in shared search functionality.

DAST , Once the true and false positive alerts were determined for each DAST tool two
researchers (R) determined how many unique vulnerabilities were indicated by the alerts
using the counting rules from Section 8.1.1. Researchers marked alerts that were trig-
gered by the same vulnerability as “duplicates” of each other. If the researchers could
not determine whether alerts were duplicates based on experience and analysis, the alerts
were assumed to be unique unless the alerts shared the same CWE type, URL, and tar-
geted parameter; in which case the alerts were assumed to be duplicate. It is unlikely, for
example, that the “sessionLocation” parameter for the “/openmrs/login.htm” URL shown in
Fig. 6 would contain two distinct XSS vulnerabilities. Discussions of duplication and de-
duplication continued in subsequent steps of the review if new information was uncovered
by the analysis.

The CWE value of each vulnerability found by DAST was based on the CWE value
assigned by the DAST tool to the alerts associated with the vulnerability. Researchers
reviewed the CWE values using the guidelines in Section 8.1.1. The severity measures pro-
vided by the DAST tools were then used to distinguish less severe vulnerabilities from more
severe vulnerabilities as described in Section 8.1.1.

SAST Researchers (R) determined the number of distinct vulnerabilities indicated by the
SAST alerts using the counting rules from Section 8.1.1. The researchers reviewed the vul-
nerability CWE assignments provided by the SAST tools to ensure their accuracy following
the guidelines from Section 8.1.1. Additionally, severity measures provided by the SAST
tools were used to distinguish less severe vulnerabilities from more severe vulnerabilities as
described in Section 8.1.1.

8.2 Data Analysis

Once we had a comparable set of vulnerabilities, we calculated the number of vulnerabilities
found by each technique for each type of vulnerability, using the CWE numbers and asso-
ciated OWASP Top Ten categories. Vulnerability count is commonly used in both academia
and industry as a measure of security risk (Morrison et al. 2018). We used vulnerability
counts and types to answer RQ1.

9 Methodology for RQ2 - Efficiency

For RQ2, we address the question How does the reported efficiency in terms of vulnera-
bilities per hour differ across techniques?. To reduce the bias that could be introduced by
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a high-performing or low-performing participant, we cannot rely on results from a single
individual or team (Kirk 2013). Using data from a graduate level security course worked
well for three reasons. First, we have a wide participant pool. Second, the students are all
required to perform exactly the same tasks, reducing external factors that could influence
our results. Third, graduate students can be assumed to have some existing knowledge in
computer science.

9.1 Data Collection

We collected efficiency information recorded by students (S), which we discuss in
Section 9.1.1. Researchers (R) then performed data cleaning, as we discuss in Section 9.1.2
before the data could be analyzed (Fig. 9).

9.1.1 Recorded Efficiency

To quantify efficiency, we started with information provided by the students (S) as shown in
Table 1. As discussed in Section 7.2, the students worked in Teams of 3-4 to apply SMPT,
EMPT, DAST, and SAST to OpenMRS as part of their course project. The students were
given the assignments described in Section 7.2.2 which appear verbatim in Appendix C. We
do not have efficiency information at the student level for SMPT, DAST, and SAST since
these assignments were only reported at the team level. However, students were allowed
to work independently for EMPT. H ence we use the average VpH across all participating
members of each team for EMPT. For RQ2 we exclude data from students whose team
members did not participate in the study as as discussed in Section 7.2.

9.1.2 Data Cleaning

Once we have collected efficiency data, as shown in Table 1 the researchers (R) performed
data cleaning as needed. We formally identified outliers for each technique using the median
absolute deviation and median (MADN)(Wilcox and Keselman 2003; Kitchenham et al.
2017), applying MADN to the VpH scores for each technique. We removed outliers where
the MADN was higher than 2.24, the threshold recommended in the literature(Wilcox and
Keselman 2003; Kitchenham et al. 2015). This data cleaning was needed to systematically
identify and remove cases where students did not correctly follow the assignment to the
extent that it impacted our analysis. For example, one team reported spending only 32 min-
utes on the SAST assignment described in Section 7.2.2 in contrast with the second-fastest
team who spent 7.5 hours on the assignment. We detected and removed only four outliers,
one in each technique.

Fig. 9 Data Collection for RQ2

Page 25 of 78    154Empir Software Eng (2022) 27: 154



9.2 Data Analysis

With outliers removed, we retained 12 efficiency scores for each technique. We performed a
statistical comparison to determine if the average efficiency across the groups for each tech-
nique was higher or lower than the average efficiency for other techniques. We first applied
the Shapiro-Wilk test (Razali et al. 2011) to the data for each technique to assess normal-
ity. Based on the output of the Shapiro-Wilk test, we used Bartlett’s test for homogeneity of
variance (Bartlett 1937). Our case study data was normal, but the variance differed across
techniques. Based on the results of the normality and homogeneity of variance tests, we
chose to apply the Games-Howell test (Games and Howell 1976; Kirk 2013) to perform
pairwise comparison across the different vulnerability detection techniques and determine
which techniques were different. The Games-Howell test adjusts the p-value for multiple
comparisons.

10 Methodology for RQ3 - Other Factors

Once the students had experience with the four vulnerability detection techniques, the stu-
dents (S) were asked to reflect on their experiences with each technique and to compare
the techniques as part of the “comparison assignment” described in Section 7.2.2. Students
were instructed to discuss tradeoffs between the techniques, and “Based upon your expe-
rience with these techniques, compare their ability to efficiently and effectively detect a
wide range of types of exploitable vulnerabilities” as shown in Appendix C. The student
responses to the comparison assignment were the source documents for RQ3 as shown in
Table 1. The comparison assignment was answered at the team-level, and so the data used
for RQ3 excludes students whose teammates did not agree to participate in the study.

Two researchers (R) performed qualitative analysis on the student responses to under-
stand what other factors may distinguish the different techniques. One researcher segmented
the text by sentence, but left the sentences in order, to retain key contextual informa-
tion. Both researchers independently coded each segment using “open coding”(Corbin and
Strauss 2008). The researchers found that more than one code could apply to the same
sentence. The researchers then compared and discussed their results. One researcher fur-
ther standardized the codes and determined which codes were mentioned by more than one
response. The resulting information was used to understand the results of RQ1 and RQ2,
and may be informative for future work.

11 Equipment

We faced several equipment constraints. OpenMRS could be run with relatively low
resources such as CPU, memory, and disk space. However, the tools used for SAST and
DAST were more resource intensive. Additionally, for the course from which we col-
lected student data, all 70 students needed independent access to the SUT as part of their
coursework. Student access further needed to be setup such that students could not acci-
dentally interfere with each others’ systems as they attempted to hack into the SUT. We
used the Virtual Computing Lab16 (VCL) at our university, North Carolina State University

16https://vcl.apache.org
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Table 2 Results Summary

SMPT EMPT DAST SAST

Effectiveness: # vulnerabilities: more severe (total)d 32 (37) 165 (185) 17 (23) 142 (823)

Effectiveness: # OWASP Top Ten Coverede 9 7 7 7

Efficiency: Average VpH 0.69f 2.22 0.55f 1.17

dThe total vulnerability count includes both “more severe” and “less severe” vulnerabilities as described in
Section 8.1.1
eOne category within the OWASP Top Ten is outside the scope of this study. Maximum possible coverage is 9.
fThe difference in efficiency between SMPT and DAST is not statistically significant.

(NCSU).17 VCL provided virtual machine (VM) instances. Researchers created a system
image including the SUT (OpenMRS) as well as SAST and DAST tools. An instance of the
image could be checked out by students or researchers and accessed remotely. Any data col-
lected from students, e.g. all data for RQ2 and RQ3, leveraged the VCL images. Additional
resources were needed when answering RQ1 to improve system coverage, including larger
VCL instances, Virtualbox VMs based on the VCL images, and a large desktop machine
with 24 CPUs, 32G RAM, and 500G disk space. Additional information on the systems is
in Appendix D.

12 Results

In this section, we describe our results. Table 2 provides a high-level summary of the
numeric results for RQ1 - What is the effectiveness, in terms of number and type of vul-
nerabilities, for each technique? and RQ2 - How does the reported efficiency in terms of
vulnerabilities per hour differ across techniques?. Detailed results for RQ1 and RQ2 are
provided in Sections 12.1 and 12.2 respectively. We provide our qualitative results for RQ3
- What other factors should we consider when comparing techniques? in Section 12.3.

12.1 RQ1 - Technique Effectiveness

In this section, we discuss the results for our question What is the effectiveness, in terms
of number and type of vulnerabilities, for each technique?. First, we go over information
specific to automated, i.e. tool-based, techniques: the agreement of researchers reviewing
the output of vulnerability detection tools for true and false positives, and the number of
false positives for each tool. We then provide the number of vulnerabilities discovered by
each technique, and the types of vulnerabilities identified by each technique based on the
CWE and OWASP Top Ten. We also include the severity of the vulnerabilities found.

12.1.1 True and False Positive Tool Alerts

We examined two tool-based techniques in this study, SAST and DAST, for which we could
calculate the precision of the tools. As noted in Section 8.1.2, for tool-based techniques, two
researchers classified the alerts produced by the tool as true or false positive. We calculated

17https://vcl.ncsu.edu
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their inter-rater reliability and present the results in Section 12.1.1. The reviewers discussed
the results with a third reviewer, who assisted in resolving disagreements, to create a final
set of true and false positive counts which could be used to determine the tool precision as
presented in Section 12.1.1 and shown in Table 3.

Reviewer Agreement We calculated the inter-rater reliability of the reviewers for SAST
and DAST using Cohen’s Kappa (Cohen 1960). Cohen’s Kappa measures the extent to
which reviewers agree beyond whatever agreement would be expected due to chance.

In a classification of two ratings such as true and false positive, if one of the ratings
applies to an extremely high percentage of cases (e.g. 98%) and the other rating applies to an
extremely small percentage of cases (e.g. 2%), the probability of agreement due to chance
is estimated to be very high. The high estimated probability of agreement can lead to a
paradox where reviewers who have high observed agreement, in other words - they apply the
same rating to most of the objects being rated, but have low inter-rater reliability (Feinstein
and Cicchetti 1990; Cicchetti and Feinstein 1990; Feng 2013). We observe this paradox
of high observed agreement but low inter-rater reliability for both SAST tools (Sonarqube
and SAST-2). Of the 698 alerts for Sonarqube, we calculated Cohen’s Kappa on 693 alerts
that were independently reviewed. One of the two reviewers found 12 of the 693 reports
to be false positives, while the other reviewer did not consider any of the reports to be
false positives. A third researcher reviewed the results and resolved disagreements for a
final set of 4 false positives and 694 true positives out of the original 698 alerts. Based
on the true/false positive classifications of the first two reviewers, the expected agreement,
as estimated when calculating Cohen’s Kappa, is 98.3% which is identical to the observed
agreement of 98.3% with a resulting Cohen’s Kappa of 0 (95% confidence interval ±0).
Similarly, Cohen’s Kappa for SAST-2 is 0.22 (95% confidence interval ±0.40), in spite of
a high observed agreement of 93.1%. For SAST-2, the two reviewers met to discuss and
resolve disagreements, while the third researcher participated in the discussion with a final
false positive count of 16 out of 264 total alerts. These Kappa scores are low. However,
given that our final false positive count for Sonarqube was only 4 of 698 total alerts and our
final false positive count for SAST-2 was 16 of 264 alerts, even with dozens of reviewers,
we may not be able to increase the inter-rater reliability statistics to the point where the
observed agreement is statistically higher than 98.3%.

Another way to consider these results is that the reviewers agreed with the tool as fre-
quently as they agreed with each other. While the reviewers had low inter-rater agreement
as analyzed using the Cohen’s Kappa statistic, they had high agreement in terms of the per-
centage of alerts on which the two reviewers agreed upon the classification, with 98.3%
inter-rater agreement for Sonarqube and 93.1% for SAST-2. In both cases, the reviewer’s
observed agreement with the tool was as high with their agreement with each other, with
observed agreement for each of the Sonarqube reviewers and the tool at 98.3% and 100%.
Observed agreement between the SAST-2 reviewers and the tool was 94.3% and 96.6% for
each of the two reviewers, respectively.

The inter-rater reliability for DAST tools was much higher. The inter-rater reliability for
OWASP ZAP alerts was 0.97 (95% confidence interval ±0.28). The inter-rater reliability
for the 288 DAST-2 alerts reviewed by two individuals was 0.78 (95% confidence interval
±0.16), which was above the recommended minimum cutoff of 0.70 (Lombard et al. 2002;
Votipka et al. 2018). Therefore the remaining alerts were divided between the researchers to
review as described in Section 8.1.2. The list of failures from OWASP ZAP was reviewed
after the list of failures from DAST-2, and the researchers may have been more familiar with
the process which may explain the higher reliability score for OWASP ZAP.
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True / False Positives and Precision Table 3 shows the Total Alerts (Tot. Alrt.), False Posi-
tives (FP), and Precision (Prec.) for automated, i.e. tool-based, techniques. Table 3 includes
information from the current study with OpenMRS (M) which we will discuss in this
section, as well as results from Austin et al. (Austin and Williams 2011; Austin et al. 2013)
which we will compare with our results in Section 12.1.1.

On the left, subtable 3.a provides the Tot. Alrt., FP, and Prec. for DAST. On the right,
subtable 3.b provides the Tot. Alrt., FP, and Prec. for SAST provides the Tot. Alrt., FP, and
Prec. for SAST. In the columns for the current study, the Total (M) column for Tot. Alrt.
and FP is the sum of the alerts and false positives, respectively, from both tools in each
category. The Prec. row of the Total (M) column is the precision calculated based on the Tot.
Alrt. and FP in the previous rows. The precision of Sonarqube and SAST-2 was 0.99 and
0.94, respectively, and the precision across the combined alerts for Sonarqube and SAST-
2 at 0.98. The precision of OWASP ZAP was also high at 0.95. However, the precision of
DAST-2 was 0.09, resulting in 0.23 precision across all DAST alerts.

We examined possible reasons for the low precision of DAST-2. Table 4 shows the DAST
alert counts for each CWE type originally assigned by the tool based on the test case or
check that triggered the alert. In Table 4 we use the abbreviation Tot. Alrt. for total alerts,
TP Alrt. for true positive alerts, FP Alrt. for false positive alerts, and # Vuln. for number of
vulnerabilities.

When an alert correctly provided an indicator of a vulnerability, but CWE provided by the
tool did not match the type of vulnerability found, we classified the alert as True Positive and
reassigned the CWE type as described in Section 8.1.1. The Tool-Assigned CWE, shown
in the first column of Table 4 is the CWE value provided by the tool. The final CWE types
of the vulnerabilities found, reviewed and reassigned if necessary, are listed in the “Final
CWE” column. For example, DAST-2 produced 2 TP alerts originally assigned to CWE-89
SQL Injection18. The alerts revealed an http message where sensitive patient information
was visible in the URL. However, the researchers could not perform SQL injection based
on the information in the alerts. Consequently, the vulnerability was reassigned CWE-598
Use of GET Request Method With Sensitive Query Strings.

More than one alert can point to the same vulnerability as discussed in Section 8.1.3.
Using the same example of the 2 true positive alerts (TP Alrt.) found by DAST-2 with Tool-
Assigned CWE-89; one of the alerts was a “duplicate” of the other, pointing to the same
vulnerability, resulting in a vulnerability count of 1 in the # Vuln column. An alert could
also be a duplicate of another alert with a different Tool-Assigned CWE. For example, for
DAST-2 both of the of the true positive Tool-Assigned CWE-352 alerts were duplicates of
vulnerabilities with different Tool-Assigned CWEs, therefore # Vuln column in Table 4 is
0. For rows where there were no true positive alerts, we leave the # Vuln. column blank,
consistent with other tables.

The Tool-Assigned CWEs were based on the rules used for each alert as discussed in
Section 5.2.2, and false positives tended to be associated with specific rules. As we can see
in Table 4, for OWASP ZAP, the alerts that had been assigned a given CWE were either
all true positive or all false positive, except for CWE-79. Of the Tool-Assigned CWEs for
OWASP ZAP, only CWE-16 and CWE-79 were associated with more than one rule; and
within CWE-79, the 4 true positive alerts were all associated with one rule, while the 3 False
Positive alerts were associated with another rule.

While DAST-2 has more variance, some rules seem to produce more false positive alerts
than others. For DAST-2 we can see that the most frequently occurring Tool-Assigned CWE

18https://cwe.mitre.org/data/definitions/89.html
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type, and therefore rules, is CWE-35 Path Traversalwhich accounted for 2537 of all DAST-
2 alerts. 2484 of the Path Traversal alerts are false positives, and the remaining 53 alerts
were all reclassified as other CWE types. If we exclude alerts for CWE-35, the precision
of DAST-2 goes from 0.09 to 0.69. The improved precision without Tool-Assigned CWE-
35 alerts suggests that further customization such as updating or removing rules that do not
accurately model the SUT may be able to improve the performance of DAST-2.

Tool False Positives and Precision Comparison with Austin et al. Table 3 also shows the
tool precision reported by Austin et al. (Austin and Williams 2011; Austin et al. 2013) for
comparison with the current study. As described in Section 2, the SUT examined by Austin
et al. were OpenEMR (E), Tolven eCHR (T), and PatientOS (P). Austin et al. used a single
tool for each technique. PatientOS is not included in the DAST results, since the DAST tool
used by Austin et al. was not applicable to PatientOS.

As seen in Table 3, the SAST tool used by Austin et al. had much lower precision than
the tools examined in the current study. The highest precision in the previous study for
SAST was 0.26, as compared with the lowest precision of 0.94 in the current study. The
high precision we observed may be part of greater trends in SAST tools as seen in the recent
NIST SAMATE project’s regular Static Analysis Tool Expositions (SATE) (Delaitre et al.
2018) where the precision and recall of SAST tools for Java was far higher than the precision
and recall reported in previous work (Austin and Williams 2011; Austin et al. 2013).

Austin et al. had similar results to our current study using DAST. When applied to Open-
EMR, Austin et al.’s DAST tool had a precision of 0.97. When applied to Tolven eCHR, the
DAST tool only had a precision of 0.59. Austin et al. (Austin and Williams 2011; Austin
et al. 2013) also found that entire categories of alerts could be labeled true or false positive,
similar to the results shown in Table 4. The impact of not customizing tool rules on perfor-
mance measures such as precision may be more apparent as tools become more advanced
and precise.

In the current section (12.1.1) we have compared our work to Austin et al. on tool-based
measures. Comparison with Austin et al. on effectiveness measures applicable to all four
techniques may be found in Section 12.1.5. Comparison with Austin et al. on efficiency
measures may be found in Section 12.2.2.

12.1.2 Number of Vulnerabilities

Overall, SAST found the most vulnerabilities, at 823 vulnerabilities. EMPT found the sec-
ond most vulnerabilities, with 185 vulnerabilities. We provide further information on the
number of vulnerabilities found using each technique and tool in Table 5. The main results
for each technique are shaded gray, white-shaded columns indicate the results for each of
the DAST and SAST tools.

In the first row of Table 5, we provide the number of “True Positive (TP) Failures”.
For SMPT, these are failing test cases, while for DAST and SAST these are true positive
alerts. We do not have a true positive failure count for EMPT comparable to the failing
test cases from SMPT or true positive alerts from DAST and SAST. Unlike SMPT where
failing test cases could be assumed to be true positive since poorly written test cases had
been removed, EMPT results required additional quality review. We mark the number of
true positive failures for EMPT to be Not Applicable (N/A). The “Total” column of Table 5
for DAST and SAST “True Positive Failures” is the sum of all true positive alerts for the
technique.
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Table 5 Vulnerability Counts

SMPT EMPT DAST
(Total)

ZAP DA-2 SAST
(Total)

Sonar SA-2

True Positive (TP) Failures 60 N/A 787 522 265 948 694 254

Total Vulnerabilities 37 185 23 12 13 823 598 235

Ratio: T P Failures
T otalV ulnerabilities

1.58 N/A 34.22 43.50 20.38 1.12 1.16 1.05

Vuln. Unique to Tech./Tool 11 157 13 8 4 822 588 225

The second row of Table 5 shows the total number of vulnerabilities indicated by the
failures. The vulnerability counts are determined by applying our counting rules described
in Section 8.1.1. The same vulnerability could be found by both SAST tools or both DAST
tools. The “Total” column for SAST and DAST vulnerabilities accounts for the overlap-
ping vulnerabilities and is the number of vulnerabilities from the technique, not the sum
of the vulnerabilities from the tools. We found the most vulnerabilities using SAST with
823 total vulnerabilities, followed by EMPT with 185 total vulnerabilities. We found 37
vulnerabilities using SMPT, and 23 vulnerabilities using DAST.

The third row of Table 5 is the ratio between the number of TP Failures (row 1) and the
total number of vulnerabilities (row 2). The ratio of TP Failures to Vulnerabilities is higher
for DAST (32.08) than for SMPT (1.58) and SAST (1.12). We discuss the implications of
this ratio in Section 14.

The fourth row of of Table 5, labeled “Vuln. Unique to Tech./Tool”, shows the num-
ber of vulnerabilities that were only found by each technique or tool. It may be helpful to
consider the “Vuln. Unique to Technique/Tool” as the number of vulnerabilities we would
have missed if we had not used the technique or tool. Similar to the Total Vulnerabilities for
SAST and DAST in row 2, the Total columns for SAST and DAST in row 3 indicate the
count of vulnerabilities found only by the technique. One (1) vulnerability was found by all
techniques, including both DAST tools and one of the two SAST tools. Specifically, the fact
that our instance of OpenMRS was configured such that the default server errors, e.g. 500
errors, revealed sensitive information about the system, which was associated with CWE-7
J2EE Misconfiguration: Missing Custom Error Page. 19Ten (10) vulnerabilities were found
by both of the SAST tools, but by no other technique. The 10 vulnerabilities are included in
the 822 Vuln. Unique for SAST (Total), but not in the Vuln Unique to Sonarqube or SAST-
2. Similarly, 1 vulnerability was found by both DAST tools but not by other techniques.
Each technique and tool found vulnerabilities that were not found using other techniques
and tools.

12.1.3 Vulnerability Severity

As discussed in Section 8.1.1, we reviewed vulnerabilities where the same tool or technique
found more than 20 vulnerabilities associated with the same CWE, and the vulnerabilities
were not already labeled as “Low” severity by the tool, i.e. they would otherwise be labeled
“more severe”. We also adjusted severity for certain vulnerabilities based on feedback from
OpenMRS based on our results. In this section, we describe the results-dependent severity
analysis and adjustments.

19https://cwe.mitre.org/data/definitions/7.html
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Frequently-Occurring Vulnerabilities Three groups of vulnerabilities were analyzed due
to being both frequently-occurring and not otherwise noted as “less severe”. First, 233
vulnerabilities were found using SAST and associated with CWE-52 Cross-Site Request
Forgery.20 The 233 vulnerabilities were all functions which mapped to HTTP Requests
where input parameters were not sufficiently restricted. For example, 220 of these functions
used an @RequestParametermapping but did not specify which methods (POST, GET,
etc) could be used to call the function. Not specifying which types of requests can be used
can result in access being granted unintentionally; and the lack of a method parameter can
be particularly problematic if the application is using CSRF protection mechanisms.21 The
base OpenMRS application did not employ CSRF protection. Although the OpenMRS team
is working to employ better CSRF protection which might raise the severity, the “High” or
higher severity assigned by SAST tools contrasts with the single vulnerability associated by
the DAST tools with CWE-352 Cross-Site Request Forgery22 which was a similar vulnera-
bility but was labeled as “Low” severity by the DAST tool. Therefore, we classified the 233
CSRF vulnerabilities found by the SAST tools as “less severe”.

Second, 100 vulnerabilities found using EMPT associated with CWE-79 Cross-Site
Scripting.23 An example XSS vulnerability would be if a field in a patient intake form
accepts and saves the value <script>alert(1);</script>, then the script is executed
when the user navigates to a page where information from the intake form is displayed. The
XSS vulnerabilities found via EMPT were all found within a short period of time by stu-
dents. We therefore consider the risk of exploitability to be high and leave the classification
of the vulnerabilities associated with CWE-79 as “more severe”.

Third, SAST-2 found 56 vulnerabilities associated with CWE-404 Improper Resource
Shutdown or Release.24 Of these 56 vulnerabilities, 39 were considered higher severity by
the tools while 17 were considered “Low” severity by the tools. All 56 vulnerabilities were
instances where a database connection or other resource could potentially be left open for
certain executions of the code. The 17 issues the tool considered “Low” severity were on
an “exceptional” execution path the tool considered less likely to be identified, e.g. if an
secondary failure happened on an unusual path within nested try-catch-finally blocks. The
39 more severe vulnerabilities were considered more likely to be executed system, e.g., if a
connection was not inside a try-catch block at all in a function where an error is explicitly
thrown under certain conditions. Given the distinctions indicated by the tools themselves
that the higher severity vulnerabilities may be easier to exploit, we did not adjust the severity
classification.

Feedback from OpenMRS After discussion with OpenMRS, we determined that some
types of vulnerabilities were low priority for their organization in the context of the appli-
cation. Specifically, a number of vulnerabilities involved errors which revealed potentially
sensitive information about application source code. Since the tool is open-source, the threat
posed by these vulnerabilities is minimal. Vulnerabilities associated with error messages
that reveal too much information about the system are also classified as “less severe”.

20https://cwe.mitre.org/data/definitions/52.html
21https://docs.spring.io/spring-security/site/docs/5.0.x/reference/html/csrf.html
22https://cwe.mitre.org/data/definitions/352.html
23https://cwe.mitre.org/data/definitions/79.html
24https://cwe.mitre.org/data/definitions/404.html
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12.1.4 Vulnerability Type (OWASP Top Ten)

Table 6 shows the distribution of the vulnerabilities found by each technique according
to the OWASP Top Ten 2021 categories. The Top Ten category assignments are based
on the CWEs of the vulnerabilities, using the mapping to the OWASP Top Ten provided
by CWE (MITRE 2021c), as discussed in Section 8.1.1. The vulnerability counts for the
specific CWE types within each Top Ten category are available in Appendix E.

The leftmost column of Table 6 indicates the OWASP Top Ten category. Columns two
through five indicate the vulnerabilities that were found for each technique. Column six
of Table 6 shows the total vulnerabilities found within each Top Ten category across all
techniques. Within each cell, the first value indicates the number of more severe vulnerabil-
ities that were found in the OWASP Top Ten Category. The second value (in parentheses)
indicates the total number of vulnerabilities, including both more severe and less severe
vulnerabilities.

This study is an evaluation of techniques to find vulnerabilities which occur due to errors
in software code. Tools for finding vulnerabilities in third-party components, such as Soft-
ware Composition Analysis (SCA) tools, were excluded from our study. As can be seen in
Table 6 of the tools examined found vulnerabilities in the OWASP Top Ten Category for
Vulnerable and Outdated Components (A06), further suggesting that different techniques
and categories of techniques are useful for finding different types of vulnerabilities.

Table 6 More Severe Vulnerability Count based on OWASP Top Ten (2021) (Total count, including both
more and less severe vulnerabilities)

OWASP Top Ten (2021) Category SMPT EMPT DAST SAST Total Found

A01:2021 - Broken Access Control 2g(2) 15 (15) (1) 28 (261) 58g(292)

A02:2021 - Cryptographic Failures 1(1) 1(1) 1(1) 2(4) 3(6)

A03:2021 - Injection 5(5) 119 (119) 11 (11) 24 (58) 150 (184)

A04:2021 - Insecure Design 5g(7) 8(26) 1(2) 8(36) 27g (73)

A05:2021 - Security Misconfiguration 2(5) 2(4) 2(6) 14i (15) 19i (23)

A06:2021 - Vulnerable and Outdated
Components

A07:2021 - Identification and Authenti-
cation Failures

13 (13) 10 (10) 1(1) 2(2) 17 (17)

A08:2021 - Software and Data Integrity Failures 1h(1) (1) 10 (11) 11h(13)

A09:2021 - Security Logging and Mon-
itoring Failures

3(3) 9(9) 12 (12)

A10:2021 - Server-Side Request Forgery (SSRF) 1h(1) 1h(1)

No Mapping to OWASP Top Ten 1(1) 1(1) 54h(436) 56h(438)

Total for Technique 32 (37) 165 (185) 17 (23) 142 (823) 329 (1033)

gOne more severe vulnerability found using SMPT mapped to both A01 and A04 through two different CWEs.
hOne more severe vulnerability found using SMPT mapped to both A08 and A10 through two different CWEs.
i14 more severe vulnerabilities found using SAST were associated with two CWEs, one of which mapped
to A05 while the other CWE was not mapped to the OWASP Top Ten. We only include these vulnerabilities
under A05 since they are not “No Mapping”
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SMPT was more effective with finding more Identification and Authentication (A07)
failures than any other vulnerability type. We found as many Identification and Authenti-
cation failures with SMPT as with EMPT. While SMPT found fewer vulnerabilities than
EMPT or SAST, most of the vulnerabilities found were more severe. SMPT identified at
least one vulnerability in every Top Ten category within scope of the tools in this study,
providing better coverage of the Top Ten than other techniques.

EMPT was one of the most effective techniques for severe vulnerabilities, particularly
in the Broken Access Control (A01), Injection (A03), Insecure Design (A04), Identifi-
cation and Authentication Failures (A07), and Security Logging and Monitoring Failures
(A09) categories. Notably, with EMPT we found 119 of the 150 more severe Injection
vulnerabilities detected in this study.

DAST was most effective at finding Injection (A03) vulnerabilities relative to other cat-
egories of vulnerability. However, DAST found fewer injection vulnerabilities than EMPT
and SAST, finding the least number of vulnerabilities overall.

SAST was the most effective technique for finding vulnerabilities associated with Secu-
rity Misconfiguration (A05). Only one vulnerability found by other techniques was found
by SAST in the entire dataset. Hence SAST should not be seen as something that can sub-
stitute for other techniques, or be substituted for by other techniques. While many of the
SAST vulnerabilities were marked as “less severe”, all of the less severe SAST vulnerabili-
ties except the CSRF vulnerabilities were marked as low severity by the tools. Between the
two SAST tools there were also differences in the types vulnerabilities found. As can be
seen in Appendix E, all 58 Injection vulnerabilities found using SAST, 24 of which were
more severe, were found by SAST-2. Sonarqube did not find any Injection vulnerabilities.

12.1.5 Effectiveness Comparison with Austin et. al.

A comparison with the previous study by Austin et al. (Austin and Williams 2011; Austin
et al. 2013) of vulnerability counts for each vulnerability type is shown in Table 7. The first
column of Table 7 indicates the technique (Tech.), the second column of Table 7 indicates
whether the data is from the current study or Austin et al. The third column indicates the
SUT. As with previous tables, M indicates OpenMRS, the SUT from the current study. E
indicates OpenEMR, T indicates Tolven, and P indicates PatientOS; the three SUT from
Austin et al. The total vulnerability count calculated for each row is provided in the final
TOTAL (TOT) column. The remaining columns indicate the vulnerability counts for each of
the OWASP Top Ten categories. In Table 7, the row for the current study is shaded in the
darkest gray, the total row from the Austin et al. study is in the medium gray color, and the
rows for the individual SUT from Austin et al. are in the lightest gray color. For the current
study, the total is equivalent to the results from OpenMRS. For Austin et al., the total is the
sum of the vulnerabilities found across all three SUT. Austin et al. did not specify whether
severity was evaluated in their study, and vulnerabilities such as error messages containing
sensitive information about the system (CWE-209) which would have been classified as
“less severe” in our current study were included in their vulnerability counts. We therefore
assume that the Austin et al. counts reported(Austin and Williams 2011; Austin et al. 2013)
include less severe vulnerabilities; and the vulnerability counts from the current study in
Table 7 also include those that are less severe.

Our effectiveness with SMPT in the current study was similar to Austin et al.(Austin
and Williams 2011; Austin et al. 2013). Austin et al. found more vulnerabilities in Open-
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Table 7 Vulnerability type comparison with Austin study

M indicates OpenMRS, E indicates OpenEMR, T indicates Tolven, and P indicates PatientOS

EMR using SMPT compared to the current study, but a similar number of vulnerabilities
in Tolven and PatientOS. The distribution of the vulnerabilities across the OWASP Top Ten
categories differs between studies. One possible explanation is differences in the test suite.
We are using the 2021 Top Ten and the first study by Austin et al. was published in 2011.
Some vulnerability types were less prevalent and some vulnerability types may have been
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considered less severe in 2011, and therefore less well-covered by vulnerability detection
techniques of the time. For example, Security Misconfiguration (A05) which had no vul-
nerabilities found by Austin et al., but five vulnerabilities found by the current study, was
not included in the OWASP Top Ten until 2013. Similarly, in the Austin et al. test suite, 58
of the 137 test cases (i.e. 42% of the test suite) were targeted towards logging and audit-
ing security controls. The ASVS standard around which our test suite was built only has
2 level 1 controls relating to logging, and only 5 test cases out of 131 (i.e. 4% of the test
suite) were related to auditing and logging. The higher number of logging related test cases
used by Austin et al. may help explain why Austin et al. were more effective at finding
vulnerabilities associated with Security Logging and Monitoring Failures (A09).

Comparing our results against Austin et al.(Austin et al. 2013; Austin andWilliams 2011)
for EMPT is more complicated for methodological reasons. For DAST and SAST the analy-
sis for RQ1 was done by a small team of researchers in both the current study and Austin et
al.’s work. For SMPT, the procedure was also comparable as indicated by the size of the test
suite: 131 test cases in the current study, compared with 137 per SUT for Austin et al.(Austin
et al. 2013; Austin and Williams 2011). The procedure for EMPT differed between studies
to take full advantage of the data generated by students. As we note in Section 8.1, the 229
vulnerabilities in Table 5 for EMPT are the result of efforts by 62 students, with additional
effort for researcher review. Large numbers of individuals involved in EMPT is not uncom-
mon, for example with bug bounty programs (Finifter et al. 2013). However, the use of
smaller, internal teams such the 6-person team used to apply EMPT to OpenEMR in Austin
et al. (Austin et al. 2013; Austin and Williams 2011), or even individual hackers working
alone on EMPT as was done for Tolven and PatientOS is also not uncommon (Alomar et al.
2020; Votipka et al. 2018). The high number of students who applied EMPT for RQ1 in the
current study should not impact the distribution of vulnerabilities across types. However,
more participants may have increased the number of vulnerabilities found and to enable
comparison between the studies we analyze individual effectiveness for EMPT.

Our results suggest that even at the individual level, the average individual applying
EMPT found more vulnerabilities in the current study as compared with Austin et al. (Austin
et al. 2013; Austin and Williams 2011). In Austin et al. for OpenEMR a team of 6 individu-
als spent a combined 30 hours performing EMPT. The team found 8 vulnerabilities in total
for a per-person average of 1.33 vulnerabilities. For both Tolven and PatientOS, a single
individual applied EMPT for 15 and 14 hours, respectively. Austin et al. found no vulnera-
bilities using EMPT against Tolven and only 1 vulnerability using EMPT against PatientOS,
as shown in Table 7 for per-person averages of 0 and 1, respectively. In the current study,
EMPT was applied by 62 students and reviewed by 3 researchers, for a total of 65 peo-
ple involved in collecting EMPT data. We found 185 unique vulnerabilities, of which 165
were more severe. Even including researchers, the average vulnerabilities per-person was
2.85 for all vulnerabilities and 2.54 for more-severe vulnerabilities in the current study. The
higher number and per-person average vulnerabilities with EMPT in the current study, as
compared to Austin et al., may partially explain the differences in efficiency we will discuss
in Section 12.2.2.

Austin et al. were more effective with DAST, particularly against OpenEMR, when com-
pared with the current study. Austin et al. found 710 vulnerabilities using DAST against
OpenEMR and 22 vulnerabilities in Tolven, as compared with 23 vulnerabilities found in
OpenMRS in the current study. We suspect that this difference may be due to differences in
how counting rules are applied. The number of true positive alerts appears to be the same
or close to the total number of vulnerabilities reported by Austin et al. (Austin et al. 2013;
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Austin andWilliams 2011) and the terms “alert” and “vulnerability” appear to be used inter-
changeably in the prior work. While SAST would also be impacted by any differences in
counting rules, as reported in Table 5, in the current study the ratio of alerts to vulnera-
bilities for DAST tools was 34.26 to 1. In contrast, the ratio of alerts to vulnerabilities for
SAST tools is 1.12 to 1. The lower ratio for SAST may help explain why the effectiveness
of SAST in Austin et al.’s work is more similar to the effectiveness of SAST in the current
study, as compared with the DAST results from each study. Austin et al. do not provide their
counting rules, and so our hypotheses that counting rules may contribute to the differences
between the studies cannot be confirmed. We provide our current counting rules as well as
references to how they were derived to assist in future evaluations of vulnerability detection
techniques.

RQ1 - What is the effectiveness, in terms of number and type of vulnerabilities, for
each technique?

Answer: SAST found the largest number of vulnerabilities overall. However, over
half of the vulnerabilities identified by SAST were of low severity. EMPT found
the highest number of “more severe” vulnerabilities. Furthermore, if any particular
tool or technique had been excluded from the analysis, at least 4 and up to 588
vulnerabilities would have been missed.

12.2 RQ2 - Efficiency

In this section, we discuss the results for our question How does the reported efficiency
in terms of vulnerabilities per hour differ across techniques? The data was collected from
students, as described in Section 9.

12.2.1 Efficiency Results

Boxplots for each technique’s efficiency in terms of Vulnerabilities per Hour (VpH) are
shown in Figure 10. EMPT had the highest efficiency (median 2.43 VpH, average 2.22
VpH). SAST had the second highest efficiency (median 1.18 VpH, average 1.17 VpH).
SMPT (median 0.63 VpH, average 0.69 VpH) and DAST (median 0.53 VpH, average 0.55
VpH) were least efficient.

Table 8 shows the Games-Howell test results for comparing each pair of techniques. As
can be seen in the table, EMPT is significantly more efficient than every other technique
(p < 0.05 for all comparisons). SAST is the second-most-efficient technique (p < 0.05
when compared against both SMPT and DAST). We observed no statistically significant
difference in the efficiency of SMPT compared to the efficiency of DAST. In Table 8, we
round the p-values to the thousandths position. The p-value for the comparisons between
DAST and EMPT and between EMPT and SMPT was less than one thousandth.

12.2.2 Efficiency Comparison with Austin et al.

Table 9 compares the efficiency in the current study with the efficiency reported by Austin
et al. Austin et al.reported the time it took their group of researchers, on average, to find
each vulnerability. To present similar values for our study, Table 9 indicates the median and
average (avg) across the groups performing the task.
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Fig. 10 Vulnerability Detection Technique Efficiency

The differences in efficiency are not only due to differences between student perfor-
mance and researcher performance. When applying SAST for RQ1 in the current study,
researchers’ efficiency was estimated at 18-32 VpH, comparable to Austin et al. However,
researcher efficiency with ZAP, the more efficient of the two DAST tools, was 1.8 VpH -
far below the minimum VpH (22.00) reported in Austin et al. One possible cause of the dis-
crepancy, particularly with DAST efficiency, could be our focus in unique vulnerabilities as
defined by our counting rules in Section 8.1.1 compared with alerts or true positive failures.
As shown previously in Table 5, DAST had the highest ratio of true positive failures. Sim-
ilarly, the differences in efficiency for EMPT may be driven more by vulnerability count
than the length of time to apply the technique.

RQ2 - How does the reported efficiency in terms of vulnerabilities per hour differ
across techniques?

Answer: EMPT was the most efficient (2.22 VpH), followed by SAST (1.17 VpH).
SMPT (0.69 VpH) and DAST (0.55 VpH) were least efficient.

12.3 RQ3 - Other Factors to Consider when Comparing Tools

We performed qualitative analysis on students’ free-form responses to answer our research
questionWhat other factors should we consider when comparing techniques?. We discarded

Table 8 Games-Howell t-test of
Efficiency Scores Techniques t-value p-value

DAST–SMPT 0.15 (±0.29) 0.499

DAST–SAST 0.63 (±0.46) 0.006∗

DAST–EMPT 1.68 (±0.76) < 0.001∗

SAST–SMPT −0.48 (±0.45) 0.034∗

EMPT–SAST −1.05 (±0.81) 0.009∗

EMPT–SMPT −1.53 (±0.75) < 0.001∗∗ Statistically significant
(p < 0.05)
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Table 9 VpH Compared to Austin et al.

Study SUT SMPT EMPT DAST SAST

Current OpenMRS 0.63 (median) 2.43 (median) 0.53 (median) 1.18 (median)

0.69 (avg) 2.22 (avg) 0.55 (avg) 1.17 (avg)

Austin et al. OpenEMR 0.55 0.40 71.00 32.40

Tolven 0.94 0.00 22.00 2.78

PatientOS 0.55 0.07 N/A 11.15

the response from 1 of the 13 teams where both reviewers considered the text to be confusing
and self-contradictory. The results below are from the responses of the remaining 12 teams.
We use “at least” to emphasize that our counts are conservative; we did not include instances
where the author’s intent was unclear. Some teams discussed “automated” and “manual”
categories of techniques rather than the further subdivision used in the rest of this paper
(i.e., EMPT and SMPT are “manual” techniques, while SAST and DAST are “automated”
techniques). We discuss our results for RQ3 in terms of automated and manual techniques
when those terms are used by one or more teams. Most teams included some discussion of
efficiency and effectiveness, which we do not include here; focusing, instead, on concepts
that were not covered previously.

12.3.1 Effort

Summary: Effort was one of the most discussed topics by students. People do not like to do
any more work than necessary. Effort was seen as a disadvantage with manual techniques,
discussions of effort for automated techniques were mixed.

Every response mentioned human effort beyond VpH. Effort was perceived as a disad-
vantage for manual techniques (SMPT and EMPT) more than automated ones (SAST and
DAST). Automation itself is seen as an advantage by at least two teams, one of which
explicitly stated “Dynamic application security testing is better than manual blackbox test-
ing because you can automate the tests”. Eight (8) teams mentioned effort as a disadvantage
of one or both of the manual techniques, while 0 teams mentioned advantages relating to
effort for either of the manual techniques. In contrast, for one or both automated techniques,
4 teams mentioned effort as a disadvantage, 3 teams mentioned effort as an advantage, and
2 teams mentioned both advantages and disadvantages.

12.3.2 Time

Summary: Although the amount of time spent on an activity was a component of our effi-
ciency metric (VpH), time was discussed separately from efficiency. Manual techniques
were seen as requiring more time. For automated techniques, some teams considered time
an advantage while others considered time a disadvantage. Additionally, students conjec-
tured that the efficiency of each technique may change if the techniques were applied over
a longer timeframe.

Similarly to effort, time was frequently seen as a disadvantage for manual techniques,
particularly SMPT. At least 10 of the 12 teams mentioned time in some way. Eight (8) teams
explicitly mentioned time spent on manual tasks, while 5 of those teams also explicitly
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discussed the time for tools to run, even though tool running time is not active time for the
analyst. Additionally, 8 teams mentioned time as a disadvantage for manual techniques, with
4 teams specifically mentioning time as a disadvantage for SMPT and 3 teams mentioning
time as a disadvantage for EMPT. One of the teams who considered time a disadvantage for
SMPT considered time an advantage for EMPT. No other team noted time as an advantage
for any manual technique. Responses for automated techniques were more mixed, with time
seen as an advantage for SAST by 4 teams and for DAST by 1 of the 4. However, 2 teams
considered time a disadvantage for SAST and 3 teams considered time a disadvantage for
DAST.

At least 3 teams also noted that they anticipated that a technique’s effectiveness and
efficiency would change if the techniques were applied over a longer period of time. For
example, one team noted that for SMPT “our guess is with time it will get even more difficult
to come up with black box test cases manually thus giving lower efficiency eventually”. In
contrast, one team claimed that with DAST “... if time and memory are not an issue you can
run a local instance of the application and fuzz it for years”.

12.3.3 Expertise

Summary: Many types of expertise are needed to apply vulnerability detection techniques,
particularly EMPT. Similar to findings from other works (Itkonen et al. 2013; Itkonen and
Mäntylä 2014; Votipka et al. 2018), students noted that EMPT in particular requires dif-
ferent types of expertise including technical expertise, security expertise, and expertise with
the SUT.

Overall, at least 8 teams commented on the role of expertise. Of the 8 teams who men-
tioned expertise, only 3 mentioned expertise in the context of tool-based techniques, while
6 mentioned expertise when discussing EMPT, and one team mentioned expertise when
discussing SMPT and manual techniques generally. Expertise was not clearly an advantage
or disadvantage, with only 3 of the 8 teams who mentioned expertise suggesting that the
expertise required to use a technique was a disadvantage, with the remaining 5 teams not
clearly noting expertise as an advantage or disadvantage. Several specific types of exper-
tise were discussed, three of which, technical, security, and SUT expertise, are similar to
the types of expertise highlighted in related work (Itkonen et al. 2013; Itkonen and Mäntylä
2014; Votipka et al. 2018). At least 1 team commented on the role of technical expertise in
applying EMPT, 1 team commented on security expertise required for EMPT, 4 teams com-
mented on the role of SUT expertise for EMPT, and 1 team commented on the role of SUT
expertise for SMPT.

RQ3 - What other factors should we consider when comparing techniques?

Answer: The three most frequently discussed factors (other than Effectiveness and
Efficiency) were Effort, Time, and Expertise. Effort and time were seen as a disad-
vantage of manual techniques. Some teams considering effort or time an advantage
of automated techniques, while others considered them a disadvantage. Expertise
was associated with manual techniques, particularly EMPT, more than automated
techniques.
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13 Limitations

We discuss the limitations to our approach in this Section. We group these limitations as
threats to Conclusion Validity, External Validity, Internal Validity, and Construct Validity
(Cook and Campbell 1979; Feldt and Magazinius 2010; Wohlin et al. 2012). Threats to
validity frequently involve the treatments and outcome measures used in the study as well
as the higher level constructs the treatments and outcomes represent (Cook and Campbell
1979; Wohlin et al. 2012; Ralph and Tempero 2018). In our study, the two primary out-
come constructs we intended to observe were effectiveness (RQ1) and efficiency (RQ2).
The specific proxy measures we use determine the outcome are the number and type of vul-
nerabilities (RQ1) and Vulnerabilities per Hour (RQ2). The cause construct (independent
variable) is the vulnerability detection technique being used. Our treatments to represent
this cause construct are the four categories of vulnerability detection techniques. These out-
comes and treatments were previously used by Austin et al. (Austin and Williams 2011;
Austin et al. 2013).

13.1 Conclusion Validity

Conclusion Validity is about whether conclusions are based on statistical evidence (Cook
and Campbell 1979; Wohlin et al. 2012). While we have empirical results for RQ1, a single
case study is insufficient to draw statistically significant conclusions for effectiveness. The
measures used to evaluate effectiveness in RQ1 are based on the number of vulnerabilities
found by applying each technique thoroughly and systematically. Measuring effectiveness
with statistical significance would require the application of all four techniques to at least
10-20 additional applications (Kirk 2013). Applying all techniques to 10-20 similarly-sized
SUT is impractical given the effort required to apply these techniques to a single application.
To mitigate this threat to validity, we performed extensive review of the vulnerability counts,
using the guidelines in Section 8.1.1, and at least two individuals were involved in the
review process for each technique to verify the accuracy of the results. For efficiency (RQ2)
the measure used, VpH, was evaluated by having more individuals apply the technique to a
subset of the application, enabling us to evaluate the results with statistical significance.

13.2 Construct Validity

Construct Validity concerns the extent to which the treatments and outcome measures used
in the study reflect the higher level constructs we wish to examine (Cook and Campbell
1979; Wohlin et al. 2012; Ralph and Tempero 2018). Our measures for RQ1, the number
and type of vulnerabilities, are commonly used measures of (in)security in academia and
industry (Klees et al. 2018; Delaitre et al. 2018; Okun et al. 2013; 2011; 2010; Okun et al.
2009), including by the U.S. National Institute of Standards and Technology (NIST) Soft-
ware Assurance Metrics and Tool Evaluation (SAMATE) program discussed in Section 3.
Raw vulnerability counts do not fully capture the construct of effectiveness, since some vul-
nerabilities may be considered more important than others. As mentioned in Section 8.1.2,
we excluded tool alerts which were marked as insignificant or inconsequential, assuming
that these alerts would not be of interest to practitioners. Additionally, we use the OWASP
Top Ten categorization to summarize our data, and indicate the severity of vulnerabilities
found as described in Section 8.1.1.

Efficiency was measured in terms of vulnerabilities per hour. This measure allowed
us to run a controlled experiment in which teams of students performed each technique
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on a subset of the application, and we could determine whether differences in efficiency
were statistically significant. As discussed in Section 12.3.2, factors such as the length of
time required to apply a technique may also be helpful in understanding efficiency. Apply-
ing SAST and DAST more comprehensively as part of RQ1 required over 20 hours per
tool for both SAST tools as well as DAST-2. In a class where vulnerability detection was
only part of the curriculum, it was not reasonable to expect students to spend 20 hours on
each technique. Adding RQ3, which was not included in Austin et al.’s work (Austin and
Williams 2011; Austin et al. 2013), allowed us to better understand how other factors such
as time spent applying a technique were perceived by students, helping to mitigate this threat
to validity.

13.3 Internal Validity

Internal Validity concerns whether the observed outcomes are due to the treatment applied,
or whether other factors may have influenced the outcome (Cook and Campbell 1979; Feldt
and Magazinius 2010). Running DAST based on more test cases may have found more vul-
nerabilities. However, the resources available to our team were not significantly less than
other small organizations, suggesting that resource limitations may be a factor to consider
when using DAST. Additionally, with OWASP ZAP we leveraged the tool’s spider capa-
bility to expand on the 6 inputs, which helped mitigate this threat to validity by increasing
system coverage. Other comparisons of vulnerability detection techniques have also used a
spider (Doupé et al. 2010; Scandariato et al. 2013).

Another threat to internal validity for this study is that the student data used for RQ2 is
self-reported. The student data aligns with the experiences of the research team, but self-
reported estimates of the time to complete a task are not necessarily representative of the
actual time to complete a task. However, perceived time to complete a task must also be
considered when making decisions on which vulnerability detection techniques are used.
Additionally, as shown by RQ3, students’ reported numeric efficiency was not necessarily
indicative of the time and effort the students perceived was required for each technique.

Another limitation with RQ2 is posed by equipment constraints for the graduate level
class. Additional equipment was used to mitigate this risk for RQ1. To mitigate the risk
that memory-related processing issues would negatively impact student efficiency (RQ2),
the first author performed a SAST scan of all modules in advance and directed students
to modules which would not be impacted by equipment constraints. Furthermore, students
were instructed to only report time spent reviewing results, not time spent trying to get the
scan to run.

The researchers performing qualitative analysis for RQ3 may have had biases which
present threats to internal validity. Researcher biases may also have impacted the vulnerabil-
ity review processes, and analysis of true and false positives from the results of vulnerability
detection tools for RQ1. For this reason, two individuals jointly performed the qualitative
analysis, and the vulnerability review was either performed by two independent individuals
or performed by one individual and audited by a second individual depending on technique.

Finally, although both DAST tools examined in RQ1 and RQ2 were the same, we did
not use the Sonarqube SAST tool for RQ2, using a proprietary tool (SAST-3) that had been
used in the course previously. Sonarqube may have been more or less efficient or effective
as compared with SAST-3, which would influence our results. Student data was reported
in aggregate and we only have the average efficiency of SAST-2 and SAST-3 combined.
However, estimated researcher efficiency using Sonarqube was 22 VpH while estimated
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researcher efficiency using SAST-2 was 18 VpH, suggesting that tool differences may play
less of a role in SAST compared with other factors such as expertise. In RQ2 we control for
expertise by comparing efficiency scores from the same group of individuals.

13.4 External Validity

External Validity concerns the generalizability of our results (Cook and Campbell 1979;
Feldt and Magazinius 2010; Wohlin et al. 2012). Our results may not generalize to software
that is not similar to the SUT and the results may not generalize to other systems. For exam-
ple, we know that a strongly-typed, memory-safe language such as Java, by design is likely
to have fewer memory-allocation vulnerabilities, such as buffer overflow, when compared
with code in a non-memory-safe language such as C(Cowan et al. 2000; Nagarakatte et al.
2009). As discussed in Section 6.1, OpenMRS is built with commonly-used languages (e.g.
Java, Javascript) and frameworks (e.g. Spring) and comparable in terms of size and develop-
ment practices to other systems in its domain. Additionally, many of our results are similar
to other studies. For example, in recent SATE comparisons (Delaitre et al. 2018), the high-
est precision rates for SAST tools were 78-94% in tests against Java applications, similar
to those for the study and higher than we expected based on other prior work as we will
discuss in Section 14.3.2.

The tools used in this study may also not be representative of DAST and SAST tools
generally. Our results as well as those of the SATE reports(Delaitre et al. 2018; Okun et al.
2013; 2011) suggest that the effectiveness of SAST tools may vary. As noted both in our
own experience and by students, the two DAST tools were very different in terms of ease of
use. We used two tools that are in prevalent use in industry when performing each technique
to mitigate and understand possible biases introduced by tool selection.

A related threat to external validity is that we are performing a scientific experiment
in an academic setting, rather than in industry. We do not think the differences between
our experiment and industry would impact our results and have worked to minimize dif-
ferences. For example, the assignments were designed to mitigate the risk that differences
from industry practice would impact the efficiency scores. When applying SAST tools in
industry, once alerts are classified as true or false positive, practitioners are more concerned
with resolving the true positive alerts than with handling false positive alerts, as supported
by studies such as Imtiaz et al (Imtiaz et al. 2019). However, true positive vulnerabilities
require more analysis since the alert must be resolved, while false positives can be ignored.
In the SAST assignment25, students were required to analyze at least 10 alerts. To avoid
incentivizing students to reduce their workload by classifying alerts as false positives, stu-
dents were instructed “If you have more than 5 false positives, keep choosing alerts until
you have 5 true positives while still reporting the false positives”. Similarly, in our expe-
rience26, a cursory review of test cases developed by less experienced testers is necessary
in some industry contexts to ensure the resulting test suite can be run efficiently and effec-
tively. While our review of student test cases described in Section 8.1.2 was more extensive,
reviewing the test cases for RQ1 was intended to ensure a more accurate test process and
resulting vulnerability count. Since time was not considered in RQ1, the additional time
spent on reviewing test cases for RQ1 would not impact the results.

25the full text of the assignment is available under Project Part 1 in Appendix C
26the first author has over 2 years of industry testing experience
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14 Discussion

Section 14.1 and Section 14.2 should be considered together. In Section 14.1, we provide
examples of how our results may help inform practitioners’ decisions based on their objec-
tives, particularly for projects in a similar domain to OpenMRS. In Section 14.2 we discuss
how the availability or limitation of resources, specifically Expertise, Time, and Equipment,
may also impact which technique should be used. There may be tradeoffs between tech-
niques when practitioners focus on one objective over another. Amanager may want to avoid
manual techniques in order to reduce the perceived effort for their team (Section 14.1.4).
However, in our context automated techniques were less effective in terms of the coverage
of different vulnerability types and the severity of vulnerabilities found (Section 14.1.3).
There may also be tradeoffs between objectives and resources For example, as we note in
Section 14.1, we found EMPT to be very effective at finding Injection vulnerabilities. How-
ever, if an organization does not have enough individuals with sufficient expertise to apply
EMPT effectively as described in Section 14.2, practitioners may need to look to other
techniques.

In Section 14.3 we go over findings that have additional implications relevant to research
and other evaluations of vulnerability detection techniques. We would encourage any
researcher comparing vulnerability detection techniques to also be aware of our findings in
Sections 14.1 and 14.2.

14.1 Organizational Objectives

We provide four examples of how our results might inform practitioner decisions on which
vulnerability detection techniques to use.

14.1.1 Specific Vulnerability Types (Effectiveness)

Practitioners may be more concerned about a certain type or class of vulnerabilities. For
example, as seen in Table 6, EMPT would be a good choice for someone working on an
open-source Java-based medical application such as OpenMRS where Injection vulnerabil-
ities such as XSS are a concern. As noted by other comparisons of vulnerability detection
tools(Delaitre et al. 2018; Bau et al. 2012), which tool is most effective may vary across
domains. Practitioners should look to vulnerability detection technique evaluations in their
domain.

If an organization is trying to target a specific type of vulnerability, they should focus
their vulnerability detection efforts on techniques that are effective at finding that
type of vulnerability in systems from their domain. For example, a project similar to
OpenMRS looking to find Injection (A03) vulnerabilities may benefit from EMPT as
seen in Table 6.

14.1.2 Coverage (Effectiveness)

While EMPT performed particularly well in our context, SMPT provided higher coverage
across the OWASP Top Ten 2021 categories, as shown in Table 6. On the other hand, as seen
in the comparison with the prior work by Austin et al. (Austin and Williams 2011) shown
in Table 7, if the goal of the practitioner is to thoroughly cover Logging and Monitoring
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concerns, a test suite based on Level 1 of the ASVS may not be preferable since the first
level of the ASVS only contains 2 controls for logging.

Our results suggest that if a practitioner needs a vulnerability detection technique that
effectively covers important types of vulnerabilities, a more systematic technique,
such as SMPT, may be more effective.

14.1.3 Automation (Efficiency)

When considering automated tools, practitioners should note that automated techniques may
not inherently be more efficient than manual techniques. An organization may choose to
use automated tools for other reasons such as the need to integrate automated tools with
continuous deployment pipelines (Rahman et al. 2015). Our results suggest that manual
techniques are comparable to or better than automated techniques in terms of efficiency.

Our results suggest that manual techniques are comparable or better than automated
techniques in terms of efficiency. If an organization is considering whether to use an
automated technique over a manual one, they should not assume that the automated
technique will be more efficient.

14.1.4 Percieved Effort and Ease of Use (Other Factors)

Two of the most-frequently-mentioned concepts in the students’ free-form responses, effort
and expertise, are associated with the broader concept of Perceived Ease of Use (Davis
1989). In the same assignment where students reported spending more time to find fewer
vulnerabilities with SAST and DAST as compared with EMPT and, to a lesser extent,
SMPT; students also claimed they considered time and effort to be a disadvantage of man-
ual techniques. As we discuss in Section 12.3, time and effort was predominantly seen as
negative for manual techniques but views of time and effort were mixed for automated
techniques. Similarly, expertise was associated with manual techniques (SMPT and EMPT)
more than automated techniques (DAST and SAST). The actual times recorded for manual
techniques were, on average, no longer than the times recorded for automated techniques.
Hence our findings suggest that time was perceived as a disadvantage of manual techniques
even if they actually required no more time than automated techniques. Pfahl et al’s (Pfahl
et al. 2014) interviews of practitioners also found that exploratory testing was perceived
as being less easy-to-use and requiring more skill. However, studies of SAST tools have
also found Ease-of-Use concerns with SAST (Smith et al. 2020). As noted by Gonçales et
al.(Gonçales et al. 2021), there is insufficient empirical research on the cognitive load of
review-related tasks such as software testing. While we cannot make universal claims about
all automated tools, practitioners looking for the “easiest” solution may wish to minimize
their use of manual techniques.

Our results suggest that if an organization is looking for a technique that will be
perceived as requiring less effort, they may want to avoid manual techniques (SMPT
and EMPT), regardless of actual efficiency.
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14.2 Resources to Consider

The resources below represent factors that should be considered when selecting a vulnera-
bility detection technique for a system such as OpenMRS. Two of the three resources were
highlighted by student responses in RQ3, while the third resource provided a much more
severe limitation on our experiment than anticipated.

14.2.1 Expertise

As noted by the students in RQ3 and supported by prior work (Itkonen et al. 2013; Itkonen
and Mäntylä 2014), expertise plays a role in vulnerability detection, particularly EMPT.
The effectiveness of the students as shown in Table 6; as well as their efficiency shown in
Fig. 10 is promising. Students with an introductory knowledge of Security were efficient
and effective with EMPT. Anecdotally based on our experience with RQ1 as well as in
student responses in RQ3, experience may also impact the efficiency and effectiveness of
automated techniques more than we expected.

Our findings support related work suggesting that the availability of analysts with
security expertise should be considered when selecting a technique. EMPT is
particularly known to be influenced by analyst expertise.

14.2.2 Time

As noted by the students in RQ3, the amount of time an analyst has available to apply a
technique may influence the efficiency and effectiveness of the technique. While EMPT
requires more expertise, little or no preparation is needed. SMPT, EMPT, and DAST take
more time to setup. As noted by the students, as discussed in Section 12.3.2, some tech-
niques such as DAST may perform better if practitioners have an extended timeframe in
which to apply the technique. In contrast, as discussed in our comparison with Austin et al.
in Section 12.1.5, a single individual performing EMPT for a longer period of time did not
find more vulnerabilities than were found in a shorter timeframe.

The amount of time available to apply a technique should be considered when
selecting the technique. DAST, in particular, may benefit from a longer timeframe.

14.2.3 Equipment

We found that evaluation of a “large-scale” system required more computing resources than
expected for both SAST and DAST. As discussed in Section 13.3, students were only able
to run SAST on smaller modules of OpenMRS when using the base VMs allocated for
the class. Equipment constraints also played a role in determining how researchers could
run DAST-2 systematically for RQ1. Austin et al., as well as other studies of industry
tools (Amankwah et al. 2020; Scandariato et al. 2013; Bau et al. 2012) do not mention equip-
ment constraints. Where the equipment used in the experiment is mentioned (Amankwah
et al. 2020), it is implied that the tools were able to be run on machines similar to the VMs
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used by students of the graduate class. While OpenMRS is “large” for an evaluation of
vulnerability detection techniques, OpenMRS is less than 4 million lines of code - smaller
than many industry software systems (Desjardins 2017; Anderson 2020). Equipment
constraints should be considered by practitioners when considering DAST and SAST.

Equipment constraints may influence the effectiveness and efficiency of DAST and
SAST on realistic systems. In some cases, applying DAST and SAST may not even
be feasible due to equipment constraints.

14.3 Implications for Evaluating Vulnerability Detection Techniques

The resource concerns highlighted in Section 14.2 should be considered not only by
practitioners but by researchers evaluating vulnerability detection techniques. Our results
also have several implications specific to future evaluations of vulnerability detection
techniques

14.3.1 True Positive Failure Count vs Vulnerability Count (Ratio)

We start with an observation that is not discussed in much of the related work, but which
may impact the results of any study comparing vulnerability detection techniques. The ratio
between the number of tool alerts or failing test cases, i.e. “true positive failures”, and the
number of vulnerabilities varies across tools and techniques. As can be seen in Table 5, par-
ticularly for DAST tools, the number of alerts was many times the number of vulnerabilities
found. The high ratio of alerts to vulnerabilities is consistent with the finding from Klees
et al.’s (Klees et al. 2018) work with fuzzers that “ ‘unique crashes’ massively overcount[s]
the number of true bugs”. SMPT and SAST, on the other hand, had a much lower ratio of
True Positive Failures to Vulnerabilities when compared with DAST.

More research is needed to fully understand the impact of having a higher or lower num-
ber of failures per vulnerability. Similarly, for a developer using a SAST tool built into
their IDE while writing code, the actual vulnerability count and consequently the difference
between the SAST alert count and final vulnerability count may not have much impact at
all. If additional alerts or other failures present more information about the vulnerability
itself, having more failures per vulnerability may be helpful in triaging and fixing the vul-
nerability. However, reviewing and analyzing additional failures takes time and may reduce
efficiency. In another example, if a practitioner is using the overall alert count or vulner-
ability count to determine the cybersecurity risk of an application, such as for insurance
estimates (Dambra et al. 2020), the difference between alert count and vulnerability count
may have a significant impact. Researchers should also be cautious when using alerts, fail-
ing test cases, or similar true positive failures as a proxy for the number of vulnerabilities
found in a system.

A consistent set of counting rules should be used when comparing the effectiveness
of different tools or techniques. It should not be assumed that tools or techniques use
the same counting rules.
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14.3.2 SAST tools had fewer False Positives than expected.

High False Positive counts have historically been considered a drawback of SAST
tools(Imtiaz et al. 2019; Johnson et al. 2013; Scandariato et al. 2013; Smith et al. 2015;
Hafiz and Fang 2016). Our results suggest that, at least for our context, SAST produced few
false positives. The high precision of SAST tools for this study is similar to results from
recent SATE events (Delaitre et al. 2018). More research is needed to better understand the
circumstances under which a lower false positive count may generalize and the relationship
between the perception that SAST tools produce large numbers of false positives and the
actual false positives produced by tools.

Our research supports other evaluations that indicate some SAST tools have low false
positive counts when applied to Java applications. The lower false positive count
opens up new questions about why the percentage of false positives is perceived as
a problem for SAST techniques, and whether false positive counts have improved in
other contexts.

15 Conclusions and FutureWork

The motivation for this paper came from practitioner questions about which vulnerabil-
ity detection techniques they should use and whether vulnerability detection could be fully
automated. After ten years, with a changing vulnerability landscape, and many improve-
ments in vulnerability detection techniques such as the more common use of symbolic
execution and taint tracing in SAST tools(Mallet 2016; Campbell 2020) results from
previous work by Austin et al. were no longer assured to hold true. We replicated the pre-
vious work, this time examining at least two tools for each category of technique. The
main finding of Austin et al. still holds - each approach to vulnerability detection found
vulnerabilities NOT found by the other techniques. If the goal of an organization is to
find “all” vulnerabilities in their system, they need to use as many techniques as their
resources allow.

We hope to leverage the lessons learned from this experience in future work. In an
empirical comparison of vulnerability detection techniques on a large-scale application, we
found that even simple measures, such as vulnerability count, are not entirely objective
and require strict guidelines for the count to be consistent and replicable. More research
is needed to understand how vulnerability detection techniques compare in terms of other
measures, such as exploitability, as well as how to apply those measures in the context of
large-scale web applications. Additionally, an emerging class of automated vulnerability
detection techniques, sometimes referred to as “hybrid” techniques, combines static analy-
sis with aspects of dynamic analysis (Chaim et al. 2018; Liu et al. 2019) and is considered
“promising”(Chaim et al. 2018). While out of scope for the replication study, we look for-
ward to expanding our comparison of vulnerability detection techniques to include these
and other tools and techniques.

Appendix A: Automated Technique CWEs
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Appendix B: Student Experience Questionnaire

At the beginning of the course, students were asked to fill out a survey about their experience
relevant to the course. The four questions asked to students were as follows:

1. How much time have you spent working at a professional software organization –
including internships – in terms of the # of years and the # of months?

2. On a scale from 1 (none) to 5 (fully), how much of the time has your work at a
professional software organization involved cybersecurity?

3. Which of the follow classes have you already completed?
4. Which of the following classes are you currently taking?

Q1 was short answer. For Q2, students selected a single number between 1 and 5. For Q3,
the students could check any number of checkboxes corresponding to a list of the security
and privacy courses offered at the institution. For Q4, the students selected from the subset
of classes from question 4 that were being offered the semester in which the survey was
given.

Fifty-nine of the sixty-three students who agreed to let their data be used for the study
responded to the survey. Of these 59 responses, four students responses to Q1 provided
a numeric value, e.g. “3”, but did not specify whether the numeric value indicated years
or months. We considered this invalid and summarize experience from the remaining 55
participants in Section 7.2

Appendix C: Student Assignments

The following are the verbatim assignments for the Course Project that guided the tasks
performed by students. We have removed sections of the assignment that are not relevant to
this project. Additionally, information that is specific to the tools used, such as UI locations,
has also been removed. Text that has been removed is indicated by square brackets [ ].

C.1 Project Part 1

Throughout the course of this semester, you will perform and document a technical security
review of OpenMRS (http://openmrs.org). This open-source systems provides electronic
health care functionality for “resource-constrained environments”. While the system has not
been designed for deployment within the United States, security and privacy concerns are
still a paramount security concern for any patient.

Software:

OpenMRS 2.9.0. There is no need to install OpenMRS. You will use the VCL image
CSC515 SoftwareSecurity Ubuntu.

Deliverables:

Submit a PDF with all deliverables in Gradescope. Only one submission should be per-
formed per team. Do not include your names/IDs/team name on the report to facilitate the
peer evaluation of your assignment (see Part 3 of this assignment).

Page 59 of 78    154Empir Software Eng (2022) 27: 154

http://openmrs.org


1. Security test planning and execution (45 points)

a. Record how much total time (hours and minutes) your team spends to com-
plete this activity (test planning and test execution). Compute a metric of how
many true positive defects you found per hour of total effort.

b. Test planning. Create 15 black box test cases to start a repeatable black box
test plan for the OpenMSR (Version 2.9). You may find the OWASP Testing
Guide and OWASP Proactive Controls helpful references in addition to the
references provided throughout the ASVS document.

For each test case, you must specify:

– A unique test case id that maps to the ASVS, sticking to Level 1
and Level 2. Provide the name/description of the ASVS control.
Only one unique identifier is needed (as opposed to the example
in the lecture slides). The ASVS number should be part of the one
unique identifier.

– Detailed and repeatable (the same steps could be done by anyone
who reads the instructions) instructions for how to execute the test
case

– Expected results when running the test case. A passing test case
would indicate a secure system.

– Actual results of running the test case.
– Indicate the CWE (number and name) for the vulnerability you are

testing for.

In choosing your test cases, we are looking for you to demon-
strate your understanding of the vulnerability and what it
would take to stress the system to see if the vulnerability exists.
You may have only one test case per ASVS control.

c. Extra credit (up to 5 points): Create a black box test case that will reveal the
vulnerability reported by the static analysis tool (Part 2 of this assignment)
for up to 5 vulnerabilities (1 point per vulnerability). Provide the tool output
(screen shot of the alert) from each tool.

2. Static analysis (45 points)

a. Record how much total time (hours and minutes) your team spends to com-
plete this activity (test planning and test execution). Compute a metric of how
many defects you found per hour of total effort.

b. For each of the three tools (below), review the security reports. Based upon
these reports:

– References:

• Troubleshooting VCL
• Opening OpenMRS on VCL

– Randomly choose 10 security alerts and provide a cross-reference
back to the originating report(s) where the alert was documented.
Explore the code to determine if the alert is a false positive or a true
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positive. The alerts analyzed MUST be security alerts even though
the tools will report “regular quality” alerts – you need to choose
security alerts.

– If the alert is a false positive, explain why. If you have more than 5
false positives, keep choosing alerts until you have 5 true positives
while still reporting the false positives (which may make you go
above a total of 10).

– If the alert is a true positive, (1) explain how to fix the vulnerability;
(2) map the vulnerability to a CWE; (3) map the vulnerability to
the ASVS control.

– Find the instructions for getting [SAST-3] going on OpenMRS
here[hyperlink removed]. [Tool-specific instructions]

– Find the instructions for getting [SAST-2] going on OpenMRS
here[hyperlink removed]. [Tool-specific instructions]

c. Extra credit (up to 5 points): Find 5 instances (1 point per instance) of a
potential vulnerability being reported by multiple tools. Provide the tool out-
put (screen shot of the alert) from each tool. Explore the code to determine
if the alert is a false positive or a true positive. If the alert is a false positive,
explain why. If the alert is a true positive, explain how to fix the vulnerability.

3. Peer evaluation (10 points)
Perform a peer evaluation on another team. Produce a complete report of feedback

for the other team using this rubric [to be supplied].Note: For any part of this course-
long project, you may not directly copy materials from other sources. You need
to adapt and make unique to OpenMRS. You should provide references to your
sources. Copying materials without attribution is plagiarism and will be treated
as an academic integrity violation.

C.2 Project Part 2

The fuzzing should be performed on the VCL Class Image (“CSC 515 Software Security
Ubuntu”).

0. Black Box Test Cases
Parts 1 (OWASP ZAP) and 2 ([DAST-2]) ask for you to write a black box test case.

We use the same format as was used in Project Part. For each test case, you must
specify:

– A unique test case id that maps to the ASVS, sticking to Level 1 and Level 2.
Provide the name/description of the ASVS control. Only one unique identifier
is needed (as opposed to the example in the lecture slides). The ASVS number
should be part of the one unique identifier.

– Detailed and repeatable (the same steps could be done by anyone who reads
the instructions) instructions for how to execute the test case

– Expected results when running the test case. A passing test case would
indicate a secure system.
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– Actual results of running the test case.
– Indicate the CWE (number and name) for the vulnerability you are testing for.

1. OWASP ZAP (30 points, 3 points for each of the 5 test cases in the two parts)
Client-side bypassing

– Record how much total time (hours and minutes) your team spends to
complete this activity. Provide:

• Total time to plan and run the 5 black box test cases.
• Total number of vulnerabilities found.

– Plan 5 black box test cases (using format provided in Part 0 above) in which
you stop user input in OpenMRS with OWASP ZAP and change the input
string to an attack. (Consider using the strings that can be found in the ZAP
rulesets, such as jbrofuzz) Use these instructions as a guide.

– In your test case, be sure to document the page URL, the input field, the initial
user input, and the malicious input. Describe what “filler” information is used
for the rest of the fields on the page (if necessary).

– Run the test case and document the results.

Fuzzing

– Record how much total time (hours and minutes) your team spends to
complete this activity.

– Do not include time to run ZAP
– Provide:

• Total time to work with the ZAP output to identify the 5
vulnerabilities.

• Total time to plan and run the 5 black box test cases.

– Use the 5 client-side bypassing testcases (above) for this exercise.
– Use the jbrofuzz rulesets to perform a fuzzing exercise on OpenMRS with

the following vulnerability types: Injection, Buffer Overflow, XSS, and SQL
Injection.

– Take a screen shot of ZAP information on the five test cases.
– Report the fuzzers you chose for each vulnerability type along with the

results, and what you believe the team would need to do to fix any vulnera-
bilities you find. If you don’t find any vulnerabilities, provide your reasoning
as to why that was the case, and describe and what mitigations the team must
have in place such that there are no vulnerabilities.

2. DAST-2 (25 points)
[DAST-2] FAQ [hyperlink removed] and [DAST-2] Troubleshooting [hyperlink

removed]

– Record how much total time (hours and minutes) your team spends to
complete this activity.

– Do not include time to run [DAST-2].
– Provide:
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• Total time to work with the [DAST-2] output to identify
the 5 vulnerabilities.

• Total time to plan and run the 5 black box test cases.

– Run [DAST-2] on OpenMRS. Run any 5 of your test cases from Project Part
1 to seed the [DAST-2] run. Run [DAST-2] long enough that you feel you
have captured enough true positive vulnerabilities that you can complete five
test case plans. Note: [DAST-2] will like run out of memory if you run all 5
together. It is best to run each one separately. Also, make sure you capture
only the steps for your test cases, not other unnecessary steps.

– Export your results.
– Take a screen shot of [DAST-2] information on the five vulnerabilities you

will explore further. Write five black box test plans (using format provided in
Part 0 above) to expose five vulnerabilities detected by [DAST-2] (which may
use a proxy). Hint: Your expected results should be different from the actual
results since these test cases should be failing test cases.

3. Vulnerable Dependencies (35 points)
[Assignment Section not Relevant]

4. Peer evaluation (10 points)
Perform a peer evaluation on another team. Produce a complete report of feedback

for the other team using this rubric (to be supplied).

C.3 Project Part 3

The project can be done on the VCL Class Image (“CSC 515 Software Security Ubuntu”).

0. Black Box Test Cases
Parts 1 (Logging), 2 ([Interactive Testing]), and 3 (Test coverage) ask for you to

write black box test cases. We use the same format as was used in Project Part 1. For
each test case, you must specify:

– A unique test case id that maps to the ASVS, sticking to Level 1 and Level 2.
Provide the name/description of the ASVS control. Only one unique identifier
is needed (as opposed to the example in the lecture slides). The ASVS number
should be part of the one unique identifier.

– Detailed and repeatable (the same steps could be done by anyone who reads
the instructions) instructions for how to execute the test case

– Expected results when running the test case. A passing test case would
indicate a secure system.

– Actual results of running the test case.
– Indicate the CWE (number and name) for the vulnerability you are testing for.

1. Logging (25 points)
Where are the Log files? Check out the OpenMRS FAQ

– Record how much total time (hours and minutes) your team spends to com-
plete this activity (test planning and test execution). Compute a metric of how
many true positive defects you found per hour of total effort.
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– Write 10 black box test cases for ASVS V7 Levels 1 and 2. You can have mul-
tiple test cases for the same control testing for logging in multiple areas of the
application. What should be logged to support non-repudiation/accountability
should be in your expected results.

– Run the test. Find and document the location of OpenMRS’s transaction logs.
– Write what is logged in the actual results column. The test case should fail

if non-repudiation/accountability is not supported (see the 6 Ws on page 3 of
the lecture notes).

– Comment on the adequacy of OpenMRS’s logging overall based upon these
10 test cases.

2. Interactive Application Security Testing (25 points)
[Assignment Section not Relevant]

3. Test Coverage (25 points)
This test coverage relates to all work you have done in Project Parts 1, 2, and 3.

1. Compute your black box test coverage for each section of the ASVS (i.e. V1, V2,
etc.) which includes the black box tests you write for Part 2 (Seeker) for Level 1
and Level 2 controls. You get credit for a control (e.g. V1.1) if you have a test case
for it. If you have more than one test case for a control, you do not get extra credit
–coverage is binary. Coverage is computed as # of test cases / # of requirements.

2. (15 points, 3 points each) Write 5 more black box tests to increase your coverage
of controls you did not have a test case for.

3. (5 points) Recompute your test coverage. Report as below. Record how much total
time (hours and minutes) your team spends to complete this activity (test planning
and test execution). Compute a metric of howmany true positive defects you found
per hour of total effort.

4. (5 points) Reflect on the controls you have lower coverage for. Are these controls
particularly hard to test, we didn’t cover in class, you just didn’t get to it, etc.

Control # of test cases # of L1 and L2 controls Coverage

V1.1: Secure development lifecycle ? 7 ?/7

...

Total

4. Vulnerability Discovery Comparison (15 points)

1. (5 points) Compare the five vulnerability detection techniques you have used this
semester by first completing the table below.

– A: total number # of true positives for this detection type for all activities
(Project Parts 1-3)

– B: total time spent on all for all activities (Project Parts 1-3)
– Efficiency is A/B
– Exploitability: give a relative rating of the ability for this technique to find

exploitable vulnerabilities
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– Provide the CWE number for all the true positive vulnerabilities detected by
this technique. (This information will help you address the “wide range of
vulnerability types” question below.)

Technique # of true
positive vul-
nerabilities
discovered

Total time
(hours)

Efficiency: #
vulnerabilities /
total time

Detecting
Exploitable
vulnerabilities?
(High/Med/Low)

Unique
CWE
numbers

Manual black box

Static analysis

Dynamic analysis

Interactive testing

2. (10 points) Use this data to re-answer the question that was on the midterm (that
people generally didn’t do too well on). Being able to understand the tradeoffs
between the techniques is a major learning objective of the class.

As efficiently and effectively as possible, companies want to detect a wide range
of exploitable vulnerabilities (both implementation bugs and design flaws). Based
upon your experience with these techniques, compare their ability to efficiently
and effectively detect a wide range of types of exploitable vulnerabilities.

5. Peer evaluation (10 points)
Perform a peer evaluation on another team. Produce a complete report of feedback

for the other team using this rubric [to be supplied].

C.4 Project Part 4

1. Protection Poker (20 points)
[Assignment Section not Relevant]

2. Vulnerability Fixes (35 points)
[Assignment Section not Relevant]

3. Exploratory Penetration Testing (35 points)
Each teammember is to perform 3 hours of exploratory penetration testing on Open-

MRS. This testing is to be done opportunistically, based upon your general knowledge
of OpenMRS but without a test plan, as is done by professional penetration testers.
DO NOT USE YOUR OLD BLACK BOX TESTS FROM PRIOR MODULES. Use
a screen video/voice screen recorder to record your penetration testing actions. Speak
aloud as you work to describe your actions, such as, “I see the input field for logging
in. I’m going to see if 1=1 works for a password.” or “I see a parameter in the URL,
I’m going to see what happens if I change the URL.” You should be speaking around
once/minute to narrate what you are attempting. You don’t have to do all 3 hours
in one session, but you should have 3 hours of annotated video to document your pen-
etration testing. There’s lots of screen recorders available – if you know of a free one
and can suggest it to your classmates, please post on Piazza.
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Pause the recording every time you have a true positive vulnerability. Note how long
you have been working so a log of your work and the time between vulnerability dis-
covery is created (For example, Vulnerability #1 was found at 1 hour and 12 minutes,
Vulnerability #2 was found at 1 hour and 30 minutes, etc.) If you work in multiple ses-
sions, the elapsed time will pick up where you left off the prior session – like if you
do one session for 1 hour 15 minutes, the second session begins at 1 hour 16 minutes.
Take a screen shot and number each true positive vulnerability . Record your actions
such that this vulnerability could be replicated by someone else via a black box test
case. Record the CWE for your true positive vulnerability. Record your work as in the
following table. The reference info for video traceability is to aid a reviewer in watch-
ing you find the vulnerability. If you have one video, the “time” should aid in finding
the appropriate part of the video. If you have multiple videos, please specify which
video and what time on that video.

Vulnerability # Elapsed Time Ref Info for Video Traceability CWE Commentary

Replication instructions via a black box test and the screenshots for each true posi-
tive vulnerability should appear below the table, labeled with the vulnerability number.
Since you are not recording all your steps, the replication instructions may not work
completely since you may change the state of the software somewhere along the line
– document what you can via a black box test and say the actual results don’t match
your screenshot.

After you are complete, compute an efficiency metric (true positive vulnerabil-
ity/hour) metric for each student. Submit a table:

# vuln Time Efficiency

Name 1

Name 2

Name 3

Name 4

Total

Copy the efficiency table you turned in for Project Part 3 #4. Add an additional line
for Penetration testing. Compare and comment on this efficiency rate with the other
vulnerability discovery techniques in the table you input in #4 of Project Part 3.

– Each person on the team should submit one or more videos by uploading
it/them to your own google drive and providing a link to the video(s), sharing
the video with anyone who has the link and an NCSU login (which will allow
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peer evaluation and grading). The video(s) should be approximately 3 hours
in length.

– A person who does not submit a video can not be awarded the points for this
part of the project while the rest of the team can.

– It is possible to work for 3 hours and find 0 vulnerabilities – real penetration
tests constantly work more than 3 hours without finding anything. That’s part
of the reason for documenting your work via video.

– For those team members who do submit videos, the grade will be an overall
team grade.

Submission: The team submits one file with the links to the team member’s files.
4. Peer Evaluation (10 points)

Perform a peer evaluation on another team. Produce a complete report of feedback
for the other team using this rubric [to be supplied].

Appendix D: Equipment Specifications

In this appendix we provide additional details of the equipment used in our case study. As
noted in Section 11, a key resource used in this project was the school’s Virtual Computing
Lab27 (VCL), which provided virtual machine (VM) instances. Researchers used VCLwhen
applying EMPT, SMPT, and DAST as part of data collection for RQ1. All student tasks were
performed using VCL for RQ1 and RQ2. Researchers created a system image including the
SUT (OpenMRS) as well as SAST and DAST tools. The base image was assigned 4-cores,
8G RAM, and 40G disk space. An instance of this image could be checked out by students
and researchers and accessed remotely through a terminal using ssh or graphically using
Remote Desktop Protocol (RDP). Researchers also used two expanded instances of the base
image with 16 CPUs, 32GB RAM, and 80G disk space. For client-server tools, a server
was setup in a separate VCL instance by researchers with assistance from the teaching staff
of the course. The server UI was accessible from VCL instances of the base image, while
the server instance itself was only accessible to researchers and teaching staff. The server
instance had 4 cores, 8G RAM, and 60G disk space disk space, and contained the server
software for SAST-1 used to answer RQ2. All VCL instances in this study used the Ubuntu
operating system.

The VCL alone was used for data collection for RQ2. However, the base VCL images
were small, and the remote connection to VCL could lag. Researchers used two used addi-
tional resources as needed for RQ1 data collection. First, we created a VM in VirtualBox
using the same operating system (Ubuntu 18.04 LTS) and OpenMRS version (Version 2.9)
as the VCL images. This VM was used by researchers for SMPT and EMPT data collection,
particularly when reviewing the output of each technique where instances of the SUT were
needed on an ad hoc basis. The VM was assigned 2 CPUs, 4GB RAM, and 32G disk space
and could be copied and shared amongst researchers to run locally. Researchers increased

27https://vcl.apache.org/
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the size of the VM as needed, up to 8 CPUs and 16GB RAM when the host system could
support the VM size. A second VM was created in VirtualBox with the same specifica-
tions and operating system, but with the server software for Sonarqube installed. We also
used a desktop machine with 24 CPUs, 32G RAM, and 500G disk space. The desktop was
running the Ubuntu operating system. This machine was accessible through the terminal
via ssh and graphically using x2go28. For RQ1 data collection we ran the SAST-1 server
software directly on this machine. The desktop was also used to run VirtualBox VMs for
resource-intensive activity such as running Sonarqube and DAST-2.

While equipment constraints impacted both SAST and DAST, available equipment and
intended use also impacts how SAST tools are setup. SAST tools can be setup and config-
ured according to different architectures. The SAST tools used in this study could be setup
as client-server tools where the SUT code is scanned on the “client” machine, and informa-
tion is sent to a “server”. The analyst then reviews the results through the server. For some
tools, the automated analysis and rules are applied on the client, while for other tools the
automated analysis and rules are applied on the server. The SAST tools used in this study
also included an optional plugin for Integrated Development Environments (IDEs) such as
Eclipse29. The plugin allows developers to initialize SAST analysis and in some cases view
alerts from the tool within the IDE itself. Some tools can be run without a server using
only IDE plugins. Other tools require a server. Similar to the previous work by Austin et
al. (Austin and Williams 2011; Austin et al. 2013), we found that the server GUI was easier
to use when aggregating and analyzing all system vulnerabilities for RQ1. Consequently, a
client-server configuration was used with SAST-2 and Sonarqube to answer RQ1. SAST-2
and SAST-3 were more easily configured to use locally within an IDE, as was done in for
the class with RQ2 and RQ3.

Appendix E: All CWEs Table

Table 11 shows the CWE for high and medium severity vulnerabilities found. Table 12 pro-
vides the same information for low severity vulnerabilities. The first column of the table
indicates the CWE number. The CWEs are organized based on the OWASP Top Ten Cate-
gories. The second column of the table indicates which, if any, of the OWASP Top Ten the
vulnerability maps to. Columns three and four of the table are the number of vulnerabili-
ties found by the techniques SMPT and EMPT. Columns five through eight break down the
vulnerabilities found by DAST and SAST by tool (ZAP, DA-2, Sonar, and SA-2). Column
nine of Table 11 shows the total number of vulnerabilities found of each CWE type. The
Total column is not the same as the sum of the previous six columns. Some vulnerabilities
were found using more than one technique. Similarly, 20 Vulnerabilities were associated
with more than one CWE; therefore the total vulnerabilities for each technique as shown in
Table5 may be lower than the sum of each column in Table 11.

28https://wiki.x2go.org/doku.php
29https://www.eclipse.org/ide/
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