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Data-driven techniques, such as machine learning (ML) 
and artificial intelligence (AI), are rapidly becoming 
indispensable tools for scientific research1 and have been 
the topic of national2 and international3 reports, recent 
review and perspective articles4,5 and tutorial guides6,7. 
With some exceptions8, most work has focused on ML 
approaches trained on synthetic datasets and used to 
accelerate computer simulations. However, emerging 
data-driven approaches for synthesis, spectroscopic 
interpretation and optimal experimental design now 
highlight the potential to advance experimental chem-
istry with data-driven methods9–12. For example, com-
bining such data analytical methods with automation 
or laboratory robotics could enable quasi-autonomous 
research with minimal human input13,14. Improved data 
analytics and data sharing and reuse in experimental 
chemistry offer the opportunity to increase the rate and 
lower the cost of scientific discovery, fostering growth in 
research productivity.

Parallel advances in data science and in experimen-
tal chemistry have rapidly expanded the opportunity to 
integrate these fields. Given the diversity of experimental 
methods, data acquisition techniques and approaches to 
their assembly into experimental workflows (defined as 
a sequence of physical tasks coupled to the analysis of 
results), the number of possible workflows and meth-
ods for designing experiments far exceeds those realized 

by human researchers so far. Data science methods are 
poised to aid workflow design and the active steering 
of experiments to broaden the reach of experimental 
chemistry and to increase the rate and efficacy with 
which chemists explore the often daunting parameter 
spaces of experiments and syntheses. Capitalizing on 
these opportunities will require fundamental advances 
in both chemistry and data science, as well as changes in  
how we conduct experiments, especially the develop-
ment of technologies to facilitate large-scale data collec-
tion, sharing and analysis. At the same time, validating 
the outcomes of data-science-based interpretation and 
prediction will be essential.

In this Expert Recommendation, we include key high-
lights from ‘At the tipping point: a future of fused chemi-
cal and data science’, a workshop held in September 2020, 
and sponsored by the Council on Chemical Sciences, 
Geosciences, and Biosciences (CSGB) Division, 
Office of Basic Energy Sciences, Office of Science, US 
Department of Energy. Participants from academia,  
industry and national laboratories assessed opportuni-
ties and key research needs for the use of data science 
in new experimental approaches in chemistry and bio-
chemistry, at experimental scales ranging from single-PI 
laboratories to large user facilities. With a focus on 
experimental chemistry, we discuss how data science 
is changing the way we conduct experiments, using 
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case studies to highlight important developments, and 
summarize what is required to take advantage of the 
advances in both fields.

A broad perspective of data science
Science has always been driven by the interplay of data 
and theory. Data, which can come from observations, 
simulations or experiment, aid in the development of 
hypotheses and theories. Theories codify understanding, 
offer predictions that can often enable extrapolation into 
experimentally unexplored domains and provide con-
ceptual frameworks for suggesting new experiments and 
regions of possible interest. This interplay is central to 
scientific understanding.

The challenges and opportunities offered by this 
interplay have been accelerated by technological 
advances in detectors, computation and algorithms, 
which have considerably increased data acquisition rates 
and widened the range of tools available to classify, ana-
lyse and interpret data. In some experiments, the acqui-
sition of many types of experimental data is no longer 
‘expensive’, and vast amounts can easily be accumulated. 
One example is high-throughput data collection at 
synchrotrons. Investments at these large facilities have 
reduced the experimental cost for single investigators 
and increased the size of data. In other areas, the equip-
ment and the experiments themselves are so expensive 
or over-subscribed that one must carefully choose which 
experiments to perform. The growing field of data sci-
ence offers myriad possibilities to combine advances 
in algorithms, hardware and high-throughput data 
acquisition modalities. Further advances in the chem-
ical sciences will require the systematic exploitation 
and development of these efforts, augmenting the tra-
ditional theoretical approaches to selectively guide new 
approaches that can handle both large amounts of data 
and the vast landscape of possibilities.

One important component of data-driven science is 
the perspective that data itself can provide insight into 
processes and mechanisms, without requiring accom-
panying theories and models. Analysing data without 
a theory-based roadmap is key to making sense of the 
ever-increasing influx of data. This sounds more rad-
ical than it really is: relying on observations to frame 
(and sometimes justify) expectations has often emerged 

before theories and models. Data science embraces the 
importance of classification and the identification of 
robust correlations in large, complex datasets that histor-
ically have been a pillar of theoretical advances, but now 
require new methods to deal with increasing quantities 
of data and accelerating data acquisition rates.

The need for advanced techniques that are able to 
interpret and categorize data is an increasingly crucial 
part of the scientific process. Advances in mathematical 
algorithms, broadly defined to include core mathemat-
ical ideas such as approximation theory, linear algebra 
and differential equations, as well as statistics, signal and 
image processing, and ML and AI, have been instru-
mental in extracting knowledge from data and acceler-
ating scientific progress in the data–experiment–theory 
interplay. As experiments become more complex, and 
instruments and detectors faster and more resolved, 
these needs will become increasingly prevalent. Two of 
the major areas requiring new AI and ML algorithms 
are, first, techniques to analyse and steer experiments 
as data are produced, and, second, post-processing of 
ever-larger datasets. In the first area, it might not be pos-
sible to conduct formal mathematical reconstructions  
and analyses fast enough under vastly increased spatial and  
temporal resolution, generated at faster and faster rates. 
In such cases, algorithms augmented by AI and ML will 
be needed to sort quickly through results to determine 
whether an experiment is headed in the right direction. 
In the second area, it might be possible to extract more 
understanding from collected data than previously 
thought, and this understanding, which may be buried 
in the data, could be revealed with these new techniques.

Whether data science interpretations will become an 
incremental step towards traditional model-based scien-
tific understanding or will ultimately stand on an equal 
footing with (and, in some arenas, surpass) model-based 
understanding remains unclear. Even in the absence of 
a data science revolution, data science will cause the 
ways we generate and interpret scientific data to evolve. 
The challenge is to have a reliable way of determining 
whether one has enough experiments, enough data or 
enough observations to justify making predictions with 
quantified uncertainty. Although there is no single route 
to estimating the uncertainty (error) in the outcome of 
AI and ML approaches, methods range from the simple 
(and transparent) to the sophisticated (and generally less 
transparent). Some of the best approaches rely on inde-
pendently known ‘ground truths’ to estimate the error 
in the outcome of data-driven analysis. Such estimates 
assess, in essence, the interpolation error. The assess-
ment of predictions outside the training range entails 
additional complexities. Ultimately, one extrapolates 
beyond the training domain at one’s own risk.

In the most radical interpretation, AI and ML tech-
niques suggest that one need not have a preconceived 
notion of what experiments to perform, what variables 
to observe and what weights to put on gathered infor-
mation. Of course, AI and ML algorithms rely on hidden 
assumptions and biases, including definitions of close-
ness, similarities and structures. Nonetheless, the idea 
and promise of these approaches are that the algorithms 
themselves will detect the important relationships, even 
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if these relationships are not revealed in the standard 
form of analytical models, communicable principles or 
foundational theories.

Although there are many challenges associated with 
ML (Box 1) and no clear path to simultaneously address 
them, the opportunities are hard to ignore: an increas-
ing amount of data is available, and better ways to use 
it will provide new insights. Three modalities by which 
data science could transform experimental chemistry 
are listed in Box 2. The hope and expectation are that 
data science methods can learn important relationships 
at previously unachieved speed and scale, and that 
those relationships can then be exploited to accelerate  
scientific progress.

In the following sections, we provide some case stud-
ies from the chemical sciences that highlight advances 
and the potential of the interaction between experi-
ments and data science, followed by a discussion of the  
challenges ahead.

Data science and chemical sciences
Proponents of ML techniques promise profound 
advances within chemical sciences in areas such as the 
extraction of collective coordinates, reaction paths, 
energy landscapes and dynamics from many heteroge-
neous observations. Broadly, data science methods are 
expected to bring at least three important objectives 
within reach (Box 2). In the chemical sciences, there have 
been remarkable steps towards meeting these objectives, 
and the potential is substantial8,15–18. At the same time,  
there are limitations and pitfalls, and in the follow-
ing, we give examples from multiple fields. Of course, 
these objectives fall on a continuum rather than a 
discrete spectrum of possibilities, but it is helpful to 
independently address each objective.

ML-guided discovery
Experiments are traditionally either steered by intuition or 
by schemes in which a measurement plan is selected and 
implemented in advance, independent of the measurement 

results. Neither is efficient: the intuitive approach demands 
constant attention by a highly trained expert, and the 
exhaustive approach wastes instrument time by collecting 
a large amount of possibly redundant data.

As experiments become more complex, these 
approaches become even more problematic. Rather than 
simply being a question of efficiency, the central issue is 
that the combinatorics of high-dimensional parameter 
spaces yield a set of possible configurations that is too large 
to systematically explore with pre-arranged strategies.

Goal: autonomous, self-guiding laboratories. Imagine a 
process by which a set of previously performed experi-
ments is used to suggest what to try next. These sugges-
tions might, for example, come from surrogate models, 
which represent lower-dimensional approximations to 
the landscape of collected data from sparsely sampled 
high-dimensional parameter space. Taking as input 
the available experimental data, both from the current 
experiment and available literature, as well as previously 
established scientific information, these models can 
suggest experiments to accomplish different or multiple 
goals. For example, new experiments could be aimed at 
underexplored parts of the high-dimensional parameter 
space. These experiments would configure the experi-
mental parameters to examine under-sampled possibil-
ities. The goal is to ensure that a full range of scientific 
results across the parameter space is efficiently collected. 
In another example, as experiments are performed and 
analysed, they could be focused on configurations that 
yield insight into particularly desirable results.

An important goal is to couple this autonomous 
steering to advanced simulations and feedback met-
rics to enable experiments to discover regions in 
high-dimensional configuration space that have optimal 
parameters, such as those required to achieve desired 
results. For further information on autonomous discov-
ery in the chemical sciences, we refer readers to refs19,20, 
as well as to targeted reviews on autonomous materials 
science21, organic synthesis planning and optimization11, 
medicinal chemistry12 and formulations22. Although 
autonomous experimentation is often caricatured as 
removing humans from the process, hybrid approaches 
offer a valuable path forward. For example, combined 
human–algorithm teams can more efficiently iden-
tify crystallization and self-assembly conditions for 
inorganic synthesis compared with human-only or 
algorithm-only approaches20.

What is needed. To take full advantage of these possibil-
ities requires multiple advances, including configuring 
the data as it is collected so that it can be easily inter-
preted, fast techniques for building representative sur-
rogate models on the fly as data are collected, examining 
these models to determine and suggest new experimen-
tal measurements, and laboratory automation soft-
ware and hardware that enable suggestions to become  
physical experiments (Fig. 1).

A pivotal role for ML and AI. Advances in ML and AI 
offer opportunities of achieving these goals. First, given  
the output of an experiment, these techniques can 

Box 1 | Challenges associated with mL and Ai

Machine learning (ML) has typically been applied to use-cases in which the price of 
being wrong is small. In science — as in other fields — this is not always the case. With 
this in mind, important questions to critically evaluate the suitability of ML methods for 
application in scientific or other domains include

•	What criteria should be used to trust the output of a ML or artificial intelligence (AI) 
analysis? That is, what level of verification is necessary and to what extent does that 
compromise the utility of the ML or AI approach?

•	What evidence underlies how these methods make predictions? When is it reasonable 
or necessary to ask this question?

•	Can AI and ML be used to predict, with quantifiable confidence, phenomena outside 
the domain used for constructing the algorithm? Currently, AI and ML approaches are 
inherently designed for interpolation — given a big enough library of inputs matched 
with outputs, these algorithms can take a new input and combine information at 
nearby inputs to predict a possible viable output. Scientific discovery, however, 
inherently involves investigation of new spaces (extrapolation or prediction), which 
contrasts with the primary focus of ML algorithm development to date.

•	An oft-stated virtue of these methods is the idea that they are transferable: predictive 
schemes in one field can be applied in other fields that appear to be unrelated. How 
can one know if and when predictions are transferable between fields?
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assess the collected data in the context of other exper-
iments and simulation results. As an example, suppose 
an experiment under a given set of input parameters 
yields a particular scattering pattern, spectrum meas-
urement or chemical signature. A robust and accurate 
ML algorithm can interpret these results in the con-
text of known available data, detecting similarities and 
patterns that can be used to evaluate the outcome. For 
example, models trained on crystallographic data can be 
used to predict crystallographic dimensionality and the 
space group from thin-film X-ray diffraction patterns23. 
Second, given the analysed output of an experiment, 
emerging data science techniques can be used to effi-
ciently build surrogate models. Suitably designed, these 
models can take the analysed output data and quickly 
estimate results that can be used to steer the experiment.

This ability to automatically evaluate data as it is 
collected, and then suggest new directions, has appli-
cations across experimental science. This approach can 

be used to query and steer multi-dimensional processes 
and to inform the placement of sensors and data col-
lection, determining which locations give the newest 
information. The construction of surrogate models is 
particularly efficient when information is collected 
across multiple modalities, such as through combin-
ing imaging with chemical and materials databases. 
Considerable information can be gleaned by query-
ing high-dimensional state space with different tech-
niques, such as tomography, mass spectrometry and 
high-resolution infrared imaging. Such approaches can 
be used at multiple scales, from the operation of single 
instruments to collections of instruments in individual 
laboratories and large-scale facilities. For example, suc-
cessful demonstrations to date span autonomous bench-
top chemical synthesis to the synchrotron experiment 
discussed in case study 2.

Case study 1: autonomous experiments in traditional 
laboratories. Within a single laboratory, autonomy 
can couple control and measurement, delivering 
purpose-built experiments. Examples include micro-
fluidic systems for the synthesis and characterization 
of colloidal nanoparticles coupled to ML-based opti-
mization of the optoelectronic properties24–26, and 
computer-controlled test stands for creating and elec-
trochemically characterizing arbitrary liquid electro-
lyte solutions coupled with online optimization27,28. 
Autonomous optimization of organic synthesis in 
flow-based reactors has been demonstrated for several 
systems29,30, and software has been developed that can 
autonomously steer commercially available equipment in 
performing such optimizations31. Even when commer-
cially available equipment does not exist, it is possible to 
combine existing equipment with only minimal modi-
fication. In one recent example, an autonomous system 
for optimizing Suzuki–Miyaura coupling reactions was 
created by combining commercial liquid-handling and 
high-performance liquid chromatography (HPLC) sys-
tems; the only hardware modification needed was to 
install an HPLC valve on the robot deck and to incor-
porate relay switches to trigger the chromatographic 
equipment32. A more wide-reaching approach exploits 
general-purpose robots that interact with existing lab-
oratory equipment33: in one configuration, a robot syn-
thesized 688 photocatalysts over 8 days using a Bayesian 
optimization scheme without human intervention, 
leading to a six-fold increase in the photocatalytic per-
formance compared with the initial compounds. Even 
with limitations on how existing knowledge, theory and 
physical models are implemented in the autonomous 
search, such examples illustrate the time-efficient and 
cost-effective use of available resources, shortening a 
project from months and years to a week. Ideally, future 
advances in knowledge, theory and models will enable 
the optimized synthesis of new compounds with tar-
geted properties. However, even the development of 
autonomous processes for individual analytical subtasks 
within a research project, such as solubility screening34 
and determining kinetic models by HPLC experiments35, 
can be useful both for accelerating research progress and 
as building blocks for future systems.

Box 2 | three modalities by which data science could transform experimental 
chemistry

extract more information from existing, imperfect experimental data
In the most straightforward settings, data conform to simple statistical expectations, 
with each snapshot representing an instance of noise added to a measurement of all 
relevant system variables. Such data rarely exist.

In reality, each snapshot represents an incomplete, noise-limited measurement of a 
subset of system variables. Real data are also often inhomogeneous, in the sense that 
each snapshot pertains to an unknown set of unintentionally changed system variables. 
In other words, real data are incomplete (not all relevant system parameters measured), 
inhomogeneous (the snapshots emanate from differing values of one or more often 
unknown variables) and noisy (such as non-Gaussian pixel noise and inaccurate times-
tamps). Standard approaches to data analysis often successively reject ‘outliers’ to obtain 
a sufficiently homogeneous dataset amenable to traditional analysis by averaging.

Machine learning approaches, by contrast, attempt to ‘learn’ the space spanned  
by the data, such as identifying reaction coordinates (‘collective variables’) at work 
during the experiment, and use the information content of the entire dataset to 
reconstruct the system at any point in the space of reaction coordinates8,15,17,18,45.  
This offers a noise-robust approach to extracting more information from the data  
than is possible with traditional methods.

Optimally design experiments and workflows
Complex experiments with many input parameters generate sample points in high- 
dimensional spaces, and the challenge of systematically navigating these spaces is rapidly 
outpacing human capabilities. Data-driven approaches can learn and exercise optimal 
control of experiments in real time, incorporating prior knowledge to efficiently find 
under-resolved regions and/or regions of interest. Such ‘on-the-fly’ data methods can 
help experiments to efficiently cover the landscapes in which the system of interest 
undergoes important, functionally relevant changes8,17.

Offer new experimental modalities
The new generation of high-throughput instruments combined with the algorithmic 
ability to rapidly analyse very large datasets offers new experimental modalities. As an 
example, chemical reaction events often occur via rarely sighted transition states. 
Until now, complex time-resolved experiments have been required in order to obtain 
snapshots of a system as it is driven over a transition state. In equilibrium, however,  
a collection of snapshots includes all states of the system, including those at high 
energies, albeit with exponentially diminishing probability8. A ‘sufficiently large’ 
dataset of snapshots will thus include high-energy conformations. For example, 
states at energies comparable with that released by ATP hydrolysis begin to appear 
in datasets comprising of the order of 109 single-particle snapshots from an equilibrium 
ensemble of molecules. Such large datasets offer the opportunity to investigate 
important chemical processes without having to track each process in time. The key is 
the ability to collect and analyse several billion single-particle snapshots, as dictated 
by the underlying statistical mechanics.
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Case study 2: autonomous steering at synchrotron light 
sources. One current example of autonomous steering 
is provided by the gpCAM mathematical, algorithmic 
and software framework36–38, which has been used for 
a wide variety of experiments across the USA and else-
where (Fig. 2). First, the measurements to take in an auto
nomous experiment are chosen on the basis of previous 
measurements. Next, surrogate model functions are 
computed by ML-based Gaussian process prediction, 
which can be constrained by domain knowledge. Hybrid 
optimization methods are then used to identify the next- 
best measurements to take. Finally, choices for the opti
mal measurements are determined as a function of  
the surrogate model, its uncertainty and the costs of a 
measurement. Using the gpCAM approach and soft-
ware framework, beam utilization was increased at 
Brookhaven National Laboratory’s Center for Functional 
Nanomaterials and the National Synchrotron Light 
Source II (USA) from 15% to more than 80%36–38 with a 
five-fold decrease in the number of experiments required 
to obtain the same information as from previous meth-
ods. At the Berkeley Synchrotron Infrared Structural 
Biology beamline at the Lawrence Berkeley Laboratory’s 
Advanced Light Source (USA), the required amount of 
biological spectroscopic data that needed to be collected 

was reduced by as much as 50-fold38. At neutron sources 
at the Institut Laue–Langevin (France), experiment 
durations have been reduced from days to one night38.

Harnessing complexity with data science
One well-travelled road in chemical experimental 
science is the optimization of control over the sample 
and the experimental apparatus. These efforts have 
emphasized the control of a limited set of critical 
parameters, which, in turn, imposes limits on the analysis 
by highlighting a few outputs with high signal-to- 
noise ratio to enhance interpretability. The analysis 
process constrains experimental methods to maximize 
control and homogeneity and to minimize noise, 
fluctuations and heterogeneity.

The scientific usefulness of the above framework 
derives directly from how successfully the critical prop-
erties of an experiment can be controlled. Although 
this traditional approach has generated many impres-
sive successes, the inevitable limitations in sample and 
experimental control present considerable limitations 
to experimental design. Data science approaches can 
augment and expand the scope of experimental sci-
ence both by accelerating the analysis and interpreta-
tion of experiments and by enabling experiments to be 
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performed successfully when control is impractical or 
risks undesirable alteration of the phenomena under 
study. For example, current data science techniques 
applied to structure and image reconstructions can 
extract information from measurements recorded 
with more noise and uncertainty than has previously 
been possible, greatly increasing the set of ‘viable’ and  
productive experiments.

Clear cases in which a data science approach would 
be valuable include, but are not limited to, experiments 
that use stochastic or noisy instrumentation, such 
as X-ray free-electron lasers (XFELs; see case study 4 
below), and field studies in which natural variations in 
the environment provide an alternative means of deter-
mining how chemical systems respond to changing envi-
ronmental conditions. In these examples, control of the 
relevant experimental parameter space cannot or should 
not be exercised; the parameter space must be fully 
measured and correlated with the relevant experimental 
observables. This approach to experimentation greatly 
increases both the data volume and the challenges in 
identifying correlations between the measured, rather 
than controlled, variables with the experimental observ-
ables. The payoff is that information can be extracted 
that would otherwise be lost to traditional techniques 
of averaging over uncontrolled fluctuations or left 
unexplored by an experimenter with full control of the  
sampling of parameter space.

Goal: relax requirements for experimental control and 
a priori design. The adoption of data science methods 
in experimental planning and analysis enables scien-
tists to reimagine the way that we design and perform 

experiments by shifting the focus away from control
ling the critical parameter to measuring fluctuations 
within the critical parameter space. Measuring, rather 
than controlling, the critical parameter space of the 
experiment shifts the emphasis of experimental design 
to data-intensive diagnostics that must be integrated 
into the experiment. This approach also requires 
changes in analysis, because the absence of control can 
generate much larger datasets with more complex cor-
relations between the chemical properties of the sample 
being measured in the experiment and the instrument 
sampling of the parameter space being measured with 
diagnostics. As an example, such approaches have 
been designed to mitigate the shot-to-shot variation 
of XFELs (Fig. 3), which affect the outcome of X-ray 
diffraction (Fig. 3b,d,e) and X-ray spectroscopy (Fig. 3c) 
measurements. Such an approach might be a prod-
uct of necessity for instruments with delicate stability 
regimes, but it also presents the opportunity to identify 
unexpected correlations, because natural fluctuations 
in the experimental apparatus might generate experi-
mental results that a scientist may be biased to avoid. 
By providing real-time sampling of a complex experi-
mental parameter space, pre-planned experiments are 
replaced with on-the-fly adaptive methods that reduce 
the time needed to acquire a signal and to reduce prob-
lems of data redundancy. Furthermore, instead of rely-
ing on a single high signal-to-noise output, alternative 
approaches might rely on many more weak (but easy to 
collect) signals to make chemical measurements39. The 
integration of fast ML-enabled and AI-enabled analy-
sis can lead to data-driven autonomous experimental 
workflows.

dd

Experiment Reconstruction

M-TIP

gpCAM

Self-driving experimentsp

x

E(x, p)

Fig. 2 | Artificial intelligence and machine learning deployed to accelerate, autonomously control and understand 
experiments, using state-of-the-art mathematics coupled to advances in data science. The Center for Advanced 
Mathematics for Energy Research Applications (CAMERA) has developed multi-tiered iterative projections (M-TIP) to 
accurately interpret scattering images from light-source experimental data, and Gaussian processes (gpCAM) to suggest 
and drive new experiments. Working together in an autonomous loop, they optimize the use of complex equipment. 
Image courtesy of J. Donatelli, M. Noack and J. A. Sethian.
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What is needed. The advances required to capitalize 
on the above possibilities include the development and 
implementation of diagnostics for measuring experi-
mental parameters that would have traditionally been 
controlled; integration of these diagnostic signals with 
the experimental observables; and fast analysis tech-
niques for correlating the data from the diagnostics 
with the experiment to enable real-time assessment  
of experimental progress and on-the-fly construction of  
representative surrogate models as data are collected.

A pivotal role for ML and AI. ML and AI techniques 
offer powerful opportunities to identify unexpected 
or hidden correlations revealed by the fluctuations in 
the experimental parameter space. Two examples are  
illustrated in case studies 3 and 4.

Case study 3: identifying natural experiments from 
laboratory metadata. Chemical reactions can be highly 
sensitive to environmental conditions, such as humidity. 
The typical experimental control strategy is to perform 

Position-sensitive
detector

Laser
pump

ΔtXFEL
probe

Dispersive
element 

Diagnostics
and beam
manipulation

Focusing

(Monochromator)

Position-sensitive
detector

Undulators

SASE
X-ray pulses

~  40 eV

~1 eV

Sample

X = Σ

Shot Shot

Shot
Emiss

ion

energ
y 

SASE
spectrum 

Predicted
absorption 

keV
7.08 7.12 7.16

keV
7.08 7.12 7.16 keV

7.08 7.12 7.16

Weighted
absorption 

a axis

92
.8

93
.0

93
.2

93
.5

92
.8

93
.0

93
.2

93
.5

13
0.

0

13
0.

4

13
0.

8

13
1.

2

b axis c axis

N
um

be
r o

f i
m

ag
es

In
ci

de
nt

 e
ne

rg
y 

(k
eV

)

X

Predicted
intensities

Experimental data

Intensity

Comparison

Final spectra
Kα

2

Kα
1

6.4000

6.4033

6.4070

St
oc

ha
st

ic
em

is
si

on
 (k

eV
)

0.000
0.005

0.011
0.016

Resonant X-ray emission spectrum

7.1129 7.1159 7.1202

Incident X-ray (keV)

a b  Identifying signal (photons) out of background

c Stochastic spectroscopy

Handling uncertainty and heterogeneity in
serial crystallography

Ghost imaging

d 

e 

Fig. 3 | Application of machine learning to conduct new types of 
experiments at XFeL facilities.  a  | Scheme showing an X-ray 
free-electron laser (XFEL) and the general experimental design for 
spectroscopy and diffraction and/or scattering experiments107. Coherent 
X-rays are generated using relativistic electrons from a linear accelerator 
propagating through an undulator. At saturation, the X-ray pulses emitted 
from this self-amplified spontaneous emission (SASE) process have a 
relative bandwidth of ~0.2% (for example, ~40 eV at 9 keV of X-ray energy), 
with a pulse duration of a few to several tens of femtoseconds. Δt is the 
time interval between the pump and the probe. b | Detection of a small 
number of photons (a weak signal) from a large instrument background in 
a single snapshot for imaging108. This ability is crucial for enabling X-ray 
single-particle imaging of sub-10-nm-sized biomolecules, for which very 
few photons from particle scattering are expected to be measured in a 
single snapshot, in comparison to the large instrument background signals. 
Machine learning (ML) methods are required to extract the weak signal 
from particles. c | Fe 1s2p resonant inelastic X-ray spectroscopy (RIXS) that 
uses the stochastic nature of the polychromatic XFEL SASE beam, taking 
advantage of the random spikes of each XFEL pulse as a unique fingerprint. 
These fingerprints are correlated with outgoing emission signals from the 

system under study to construct spectra42. In principle, a monochromator 
can be used to determine accurately (with an ~1-eV bandwidth) the 
energy of the incoming X-rays that interact with the sample, but at the cost 
of a loss of two orders of magnitude in the X-ray flux. Alternatively, 
measuring the spectrum on every shot and using ML approaches to 
correlate the experimental signal with these spectra on every shot enables 
the spectral fluctuations to be disentangled from the experimental 
observable without the need for an X-ray monochromator. d | An example 
of the heterogeneity in the unit cell distribution of thermolysin crystals, 
showing that there are different crystal isoforms109. This online analysis of 
data is used to provide immediate feedback to determine the subsequent 
sample preparation conditions for the best resolution110. e | Pump–probe 
ghost imaging. Similar to the method shown in part c, this approach  
uses the random spikes of XFEL pulses to study the interaction of the 
pulses with matter. This method can be used to map the full evolution of 
a system over time111. Part a adapted from ref.107, Springer Nature 
Limited. Part b reprinted from ref.108, CC-BY.4.0. Part c adapted from ref.42, 
CC BY 4.0. Part d reprinted with permission from ref.109, Computational 
Crystallography Newsletter. Part e, image courtesy of Greg Stewart, SLAC 
National Accelerator Laboratory.
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reactions in a glovebox, but this presents operational 
challenges. An alternative, demonstrated recently in 
the context of halide perovskite crystal growth, is to 
capture comprehensive electronic records of the labo-
ratory conditions associated with each experiment over 
an extended period of time40. Using a dataset of 8,470 
experiments captured over a 20-month period, it was 
possible to identify statistical anomalies in the reaction 
outcome that were correlated with laboratory humidity. 
The researchers confirmed this hypothesis by perform-
ing deliberate interventional experiments, and in the 
process, discovered systems in which water interfered 
with inverse temperature crystallization, contrary to  
previously hypothesized mechanisms.

Case study 4: X-ray free-electron lasers. XFELs have 
transformed X-ray science by producing extremely 
bright X-ray beams. The lasing process that generates 
these beams also leads to much larger fluctuations in key 
experimental parameters, particularly compared with 
synchrotron-based X-ray sources. Attempts to control 
key beam properties, such as pulse spectra, intensity and 
duration, have so far only been partially successful. As 
an alternative, one could instead measure large fluctua-
tions in pulse properties on every shot and then use data 
science methods to deconvolve the influence of pulse 
fluctuations on the observed experimental signal41,42. 
In addition to reducing the experimental requirements 
for XFEL performance, this approach has the benefit of 
using every photon and thus giving an automatic bright-
ness upgrade; for an XFEL this is a 100-fold improve-
ment. Furthermore, such an approach has the benefit of 
improving the temporal resolution.

The above opportunities come with challenges. The 
inability to control the experimental apparatus necessi-
tates the performance of two parallel measurements: one 
on the X-ray beam and the other on the sample being 
interrogated by the X-ray beam. Additionally, the success 
of the experiment requires high-fidelity diagnostics and 
analysis methods to ensure that X-ray beam fluctuations 
can be robustly differentiated from variations in the sam-
ple properties being investigated. Furthermore, adopting 
a supervised learning approach would initially require 
parallel experiments to be conducted using traditional 
apparatus so as to build an appropriate training set; as 
a result, cost savings would not be immediately real-
ized, but would come when this information is applied 
to future sites. The planning stages of this type of work 
would require deep involvement of data science and 
modelling experts to assure stakeholders that algorithms 
are able to perform this task robustly and reproducibly43.

XFELs have also advanced the application of X-ray 
science to chemical phenomena in the femtosecond 
time regime. Ever since the launch of ‘femtochemistry’ by  
Zewail and others, the ultrafast interactions initiated  
by the absorption of a photon have driven a quest to 
understand, and ultimately control, the ultrafast struc-
tural dynamics of photoactivated molecular systems 
(see, for example, ref.44). This quest has made it imper-
ative to deal with noisy, incomplete and fleeting signals 
recorded with substantial timing uncertainty. Although 
experimental attempts to deal with such signals will 

continue to advance, recent AI and ML approaches have 
brought the greatest rewards (see, for example, refs18,45).

Case study 5: theory for dynamics in chemistry. The 
measurement of dynamics is an important case in point, 
wherein AI and ML techniques can help alleviate long-
standing experimental problems. Since the celebrated 
work of Takens46 and Packard47, it has been recognized 
mathematically that the evolution of a wide range of 
dynamical systems is tightly constrained. As such, much 
less data is needed to recover dynamical information 
than had been thought necessary for proper experimen-
tal analysis48. Takens showed that a series of snapshots, 
each representing a subset of the system variables, is 
sufficient to determine the behaviour of dynamical sys-
tems, as if all system variables had been measured. The 
ML-based realizations of this remarkable possibility are 
now being applied to ultrafast chemistry data previously 
thought too noisy, too incomplete and too imprecise to 
be useful18. Extensions of this approach have been used 
to estimate the gestational age of fetuses with unprec-
edented accuracy49, indicating the generality of the  
algorithmic methods.

Another example includes a recent breakthrough, 
namely the deep-learning package DeePMD-kit50, 
which combines ab initio modelling, high-performance 
computing and ML to tackle ‘first-principles’ molecular 
dynamics simulations by approximating ab initio data 
with deep neural networks. This approach allows for 
calculations that can treat larger systems over longer 
timescales and offers a bridge between ML and physi-
cal modelling. Similar types of combinations of ab ini-
tio results with data science methods and autonomous 
experimentation have been used to accelerate chemical 
optimization tasks51. Building on established simulation 
methods and relating this to experimental chemistry 
data will increase the interpretability of data science 
models and enable their deployment with smaller  
datasets.

Data-driven experimental discovery
Not all important challenges in science conform to 
easily testable hypotheses. Research in chemistry often 
targets critical metrics, such as a specific photovoltaic 
energy conversion efficiency, or a specific selectivity for 
a catalytic reaction. These metrics require materials to 
achieve performance beyond what has been demon-
strated previously, so interpolation is not an effective 
strategy. Extrapolating from known materials and 
known phenomena may prove insufficient to hit a chal-
lenging performance target and motivate exploration off 
the beaten path. Hypothesis-driven research, which is 
generally derived from prior knowledge and relies on 
testing a postulated outcome, might restrict inquiry and 
exploration52.

Goal: automated serendipity. In the absence of a hypoth-
esis, trial and error becomes intractable as the search 
space increases. Efforts in laboratory automation can 
reduce the time needed for synthesis, characterization 
and data interpretation, thus increasing the rate at 
which new trials can be performed (this builds on the 
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laboratory automation efforts discussed above). More 
broadly, data science approaches can be used to auto-
mate the process of extracting new ‘ideas’ to try on the 
basis of collected datasets10,23,40. Comprehensive data 
management (discussed below) facilitates the process 
of identifying unexpected variations that can suggest 
directions for more deliberate inquiry. For this type of 
application, prediction accuracy is less crucial because it 
suffices to be wrong less often than an undirected search, 
so as to focus on a more tractable portion of the available 
parameter space for experimental validation.

What is needed. Enhancing metric-driven research 
requires efficient and unbiased search and analysis tools, 
or at least tools with a bias that is clearly delineated and 
transparent; implementation of ML methods to identify 
unexpected or hidden correlations revealed by the fluc-
tuations in the experimental parameter space; and an 
autonomous direction of search based on prior findings.

A pivotal role for ML and AI. Instead of performing a 
few experiments carefully selected by the chemist, this 
approach favours performing larger-scale combinatorial 
experiments to explore a broader and less biased search 
space. A short-term goal is simply to perform more 
experiments over the broadest possible search space, 
which is the goal of ‘classical’ high-throughput experi-
mentation or combinatorial chemistry53. More long-term 
goals use ML and AI to accelerate the characterization 
process and to optimize selection of new experiments. 
Finally, there is a need for ML interpretability and 
explainable AI (XAI) to inform humans; this may neces-
sitate chemistry-specific interpretable ML methods54. 
Some early realizations of this approach in experimen-
tal chemistry include the extraction of hypotheses about 
organic molecular-structure determinants of energy lev-
els and solubility55 and human–algorithm teaming for 
the synthesis of polyoxometalates56.

Case study 6: serendipity-driven reaction discovery. 
This type of non-selective ‘automated serendipity’ 
has been successful in the discovery of organic reac-
tions for photoredox catalysed C–H arylation57 and 
Pd-catalysed C–N cross coupling58,59. For a general 
review of high-throughput automation in chemistry, 
see ref.60. These applications have relied on experimen-
tal hardware developments to perform synthesis and 
characterization with greater parallelism and smaller 
quantities of reagents. Interpretation is accelerated by 
using data science methods to identify when a reaction 
has occurred. In its simplest form, this can entail look-
ing for differences in product and reactant spectra and 
using this information to prioritize subsequent experi-
mental rounds61, with the understanding that this can 
provide only a preliminary investigation and that sub-
sequent human reinvestigations may be necessary to 
confirm the spectral interpretations62. A more sophisti-
cated approach would use this data to construct empir-
ical relationships between the catalyst and substrate 
structures and the catalytic efficiency63; the resulting 
structure–property models can then serve to prioritize 
subsequent experimentation. Finally, a higher-level goal 

is to perform autonomous optimization of the design 
of the catalyst, substrate and reaction conditions using 
automated experimentation and planning algorithms64. 
In materials science, there has been a similar progression 
from high-throughput synthesis and characterization, 
to increasing automated interpretation and autonomy13; 
again, this progress is being enabled by increased 
adoption of ML methods throughout the discovery 
lifecycle7,65.

Data science approaches can help to facilitate this 
serendipitous discovery process by reducing the need 
to know what one is looking for ahead of time. An 
example is the development of rare-earth-free perma-
nent magnets66. A wide variety of Fe–Co–X (where X 
is a transition metal element such as Mo, W, Ta, Zr, Hf 
or V) alloys were synthesized combinatorially, resulting 
(in some cases) in one or more phases, many of which 
were unknown. Using non-negative matrix factorization 
methods, diffraction spectra were decomposed into esti-
mates of the pure material spectra (which had either not 
been previously observed or could be matched against 
known databases) and estimates of the relative concen-
trations of the different phases. The goal is to produce 
a phase diagram of different compositions; however, 
building a complete map over the compositions would 
require too much instrument time. Instead, a further 
improvement used active-learning approaches and 
Bayesian optimization methods to prioritize the (auto-
mated) acquisition of new experimental data points67. 
Reducing the number of diffraction measurements 
that must be acquired by several orders of magnitude 
decreases the amount of beamtime required or even ena-
bles the use of the types of diffractometers found in a 
typical single-PI laboratory instead of a beamline source.

Data management and networking
Realizing new experimental paradigms for chemistry 
requires human and AI researchers to access a broad range 
of chemical information. Optimally, such information 
would include a variety of process and characterization 
data, as well as the metadata that provide context for 
the experiments. We refer to this as a ‘data network’ to 
invoke the imagery of a network wherein nodes are data 
from chemistry experiments and connections between 
nodes encode how the data are related. Scientific knowl-
edge emerges from the relationships between material 
observations and interpretation, and data science can 
help to shed light on these relationships68,69. Data net-
works leverage the scale and variety of modern chem-
istry data to enhance the utility of data-driven methods 
in chemistry experiments. In this section, we describe 
some important experimental and data science efforts 
needed to enable key efforts such as building a repository 
of knowledge by networking data, encoding the current 
state of a scientific field and facilitating the adoption of 
data science methods in chemistry experiments.

Goal: repositories of knowledge. The primary goal of net-
working data is to share accumulated results to enable 
humans and machines to derive new knowledge from 
old data. Such an environment will allow scientists to 
directly explore and visualize the state of the field from 
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repositories and to obtain faster access to details essen-
tial to research projects (as a complement to traditional 
literature searches).

Traditionally, chemistry knowledge repositories are 
aggregated by a single organization and take the form 
of licensed datasets, reference volumes or reference 
websites; some widely used examples are the Powder 
Diffraction File70, the CRC Handbook of Chemistry 
and Physics, and the National Institute of Standards and 
Technology (NIST) Chemistry WebBook71. In one 
sense, these repositories contain highly refined chemi
cal knowledge. As an example, consider the trajectory 
of experimental data from the acquisition of raw data 
to contextualization, analysis, interpretation and val-
idation through additional experiments. Repositories 
have understandably focused on only the final outcome 
of this data funnel. Instead, managing and cataloguing 
data throughout these phases of knowledge refinement 
can help address issues of data scarcity that arise in the 
adoption of data science.

Given the volume of data now being generated by 
chemistry experiments, and the desire to accelerate the 
research workflow, there has been an increasing number 
of crowd-sourced efforts to build knowledge repositories 
at the same pace as research. One especially successful 
example is the Protein Data Bank (PDB), which is an 
archive of experimentally determined protein structures 
(and is highlighted in case study 7 below)72. Similar types 
of machine-readable experimental chemistry databases 
would be a watershed in the incorporation of data sci-
ence. To date, the most successful repositories of exper-
imental chemistry data are structural databases, such 
as the Cambridge Structural Database (CSD) and the 
Inorganic Crystal Structure Database (ICSD), and spec-
tral databases, such as NMRShiftDB73. An IUPAC project, 
‘Development of a standard for FAIR data management 
of spectroscopic data’ (FAIRSpec) was founded in 2019 
(ref.74), and progress is described in a recent report75. 

Most databases of organic synthesis (such as Reaxys) are 
proprietary and do not allow free contribution, although 
nascent efforts such as the Open Reaction Database76 
and Chemotion Repository have started to address 
this need, facilitated by integration with open-source 
electronic laboratory notebook (ELN) software such as 
ChemotionELN77. In parallel, there are several efforts 
aimed at developing schema for representing laboratory 
actions, such as XDL78, IBM RXN79, Autoprotocol and 
the ESCALATE (Experiment Specification, Capture 
and Laboratory Automation Technology) materials and 
action specification80. The advent of the US Department 
of Energy Office of Sciences’ PuRe Data Resources 
embodies an important step in this direction.

Once data networks are available, they can be used 
to accelerate the generation and testing of hypotheses 
through AI-driven encapsulation of existing knowl-
edge. For example, a network based on data from 
high-throughput density functional theory calcula-
tions can be explored by humans through web-based 
visualizations81 using MaterialNet (Fig. 4), while its 
network metrics can be used in a ML model to predict 
(or hypothesize) the synthesizability of new inorganic 
compounds82. This mode of hypothesis testing, which 
builds on the concepts discussed above in the section 
on data-driven experimental discovery, is markedly 
different from the cycle of first proposing a hypothesis 
and then designing and completing experiments before 
any validation takes place. Instead, with a network of 
data, one can identify existing knowledge that acceler-
ates hypothesis testing, adding value to data that were 
collected for a different purpose.

Data networks can also enhance the development of 
accurate predictive models to the benefit of the autono-
mous experimentation described above. Although a sin-
gle laboratory may possess insufficient data for training 
surrogate models, data networks might contain auxiliary 
data to augment the laboratory’s data. Of course, this 
has its own challenges: training models to use data from 
multiple sources is non-trivial, and developing tech-
niques for using and linking heterogeneous data from 
various sources is a major undertaking.

A final data science challenge that can be addressed 
with data networks relates to the frequent need for 
predictive models to extrapolate beyond the existing 
corpus of chemistry knowledge, as discussed above. 
True extrapolations may be wildly inaccurate, but data 
networks can be constructed with the appropriate con-
nections so that applications to new compounds and 
conditions will more often lie comfortably within the 
domain of validity of existing models. For example,  
a property of a given chemical may not have been meas-
ured by a certain technique, but previous experiments 
that share the same property, chemical or method may 
be used to infer missing values; this assumes a shared 
framework for expressing the relationships upon which 
data science methods can be built.

What is needed. Realizing data networks and their ben-
efits will require various cultural and technical advances. 
Many of the relationships between chemical experi-
ments lie in their metadata, which include details of the 

Fig. 4 | Visualizing a data network. MaterialNet is a web-based application that can  
be used to visually explore the relationships within a materials database such as the 
materials similarity network. The materials are represented by nodes and the links 
between them encode specific relationships, such as chemical similarity, demonstrating 
the many interrelationships that exist between materials and chemicals. Networks can 
capture more relationships than a human can comprehend, and data science tools  
can learn from these relationships81. Reprinted from ref.81, CC BY-4.0.
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instruments and their settings, and other knowledge 
required to reproduce the data. Agreeing on software for-
mats for recording experimental parameters, as opposed 
to manually setting multiple knobs whose data record is 
limited to written notes, will greatly facilitate consistent 
tracking of experimental metadata. Data management 
programmes such as ESCALATE80 and Event-Sourced 
Architecture for Materials Provenance Management 
and Application to Accelerated Materials Discovery 
(ESAMP)83 are examples of this approach to chemistry 
and materials data stewardship by making the data and 
metadata inseparable; examples of the rich types of inter-
active experiment reporting that this approach enables 
can be found in the supporting information of ref.84.

The chemical and analysis provenance of data is also 
crucial. From laboratory notes to publications, chemicals 
are often labelled according to what they are intended to 
be, and data annotations such as ‘background-subtracted’ 
are often aspirational. From a data science perspective, 
the chemical under investigation in an experiment is 
best defined by the sequence of prior processes and 
experiments that produced the chemical. Assessing 
this provenance from literature data is often difficult, 
if not impossible, and motivates a re-thinking of how  
experimental data should be recorded and tracked.

There are complementary challenges for data pro-
cessing and interpretation. Expert decisions during data 
analysis, such as identifying which portion of a spectrum 
to analyse or what data artefacts might be present, are 
informed by experience-based knowledge. Tracking the 
provenance of data analysis will facilitate the removal of 
human bias and uncover valuable information from raw 
data. By contrast, the application of expert prior knowl-
edge may be necessary to gain traction in data analysis, 
and encoding this knowledge in data science algorithms 
is a major, yet crucial, challenge. Ultimately, AI algo-
rithms will have their own experience-based chemical 
knowledge, but only if we can provide the same quan-
tity and quality of data, metadata and provenance that 
underlies the knowledge progression of expert scientists.

We note that there are numerous practical challenges 
related to the ingestion and management of metadata 
and data provenance, which are compounded by the 
imperfections of the data itself as well as hurdles intro-
duced by less technical considerations such as intellec-
tual property and incentivization schemes. We refer 
readers to a 2019 US Department of Energy report for 
recommendations on technical aspects of the data pipe-
line and network85 and ref.86 for a survey of motivations 
for building a data network.

A pivotal role for ML and AI. To establish data networks 
that enable scientists to aggregate and search relevant 
chemical knowledge, data science must be incorporated 
into data management to learn the relevance of metadata 
provenance and domain knowledge so that they can be 
appropriately modelled in data networks. Networking data 
should commence with models of relationships encoded 
in existing theories, as was recently demonstrated by pro-
pnet (a knowledge graph for materials properties)87, which 
is built on equations in which the variables are physical 
properties of materials. Using this network concept to 

express interrelationships of experimental data is a new 
paradigm in data management for chemical sciences.

Case study 7: structural chemistry. Deposition of 3D 
structural data into the Protein Databank (PDB) is a 
requirement for the publication of protein structures, 
resulting in research data estimated to be worth at least 
US$12 billion having been contributed to the database 
over the past 40 years. Moreover, this central repository 
results in an increase in research productivity worth 
US$2.5 billion annually (as of 2017)88. The accumulated 
data within the PDB has enabled the development of the 
recent AlphaFold89 and RoseTTAFold90 models for pre-
dicting the 3D structure of proteins solely on the basis of 
their amino acid sequences. Beyond data management, 
the biological and pharmaceutical fields have successfully 
created data networks and knowledge graphs that — when 
coupled with rapidly evolving graph learning methods — 
enable learning of, for example, new biological features 
and drug properties91.

Case study 8: X-ray absorption spectroscopy. X-ray 
absorption spectroscopy (XAS) is a widely used exper-
imental technique for characterizing the geometric and 
electronic structure of materials. Data science methods 
could facilitate faster data analysis and recognition of 
chemical features in measured elemental patterns. ML 
models have been developed that can predict chemical 
features from XAS patterns collected under the same con-
ditions as those of a relatively large training set, which 
has been demonstrated using computed XAS spectra92–95. 
Expanding the scope of these models to experimental 
spectra could be enabled by aggregating XAS data from 
dozens of beamlines worldwide that have collectively 
acquired many thousands or perhaps millions of spectra 
to date. However, variants of the technique rapidly com-
plicate the problem, ranging from fluorescence to electron 
detection modes, and from hard X-ray-open-atmosphere 
to soft X-ray-vacuum, as well as various in situ and oper-
ando measurements of chemicals or materials in chem-
ical reactors or other actively controlled conditions. As 
a result, beyond the challenge of aggregating the data 
itself, defining and representing the context of every 
XAS measurement is difficult and must begin with well 
tracked and machine-readable metadata. Nevertheless, 
recent progress has been made on this front96, which is a 
key step on the path to an XAS data network.

Recommendations
ML and AI are rapidly changing the meaning of exper-
imental knowledge. They provide rich information and 
analytical tools that should be part of every scientist’s 
toolbox. Of course, ML techniques must be used with 
care: some of the challenges include trying to under-
stand whether an algorithm trained on one dataset can 
be used to produce reliable answers about a different 
dataset; whether a particular algorithm is robust to 
noise or attempts to deceive it; what are the reasons for 
the answers an algorithm provides; and whether these 
answers are free of bias.

Nonetheless, even with these challenges, there are 
tremendous opportunities for ML and AI to transform 
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experimental chemistry. Capitalizing on these opportu-
nities will require active engagement of both the data 
science and chemistry communities in using existing 
tools, injecting domain-specific knowledge into their 
design, and customizing and targeting these techniques 
(Fig. 5). In the following, we outline several recommen-
dations that we hope will contribute to facilitating this 
engagement.

Develop data science methods for chemistry
Chemists are increasingly incorporating data science 
techniques into their research, and many early appli-
cations that used off-the-shelf methods have achieved 
notable advances. To move forward, it is crucial to 
understand the limitations of existing algorithms for 
chemical datasets and to develop specific ML tools 
for chemical problems that require new approaches. 
Methods are needed that incorporate relevant physical 
laws and other constraints to produce physically reason-
able solutions, provide internal consistency and capture 
experimental uncertainty. Ways to incorporate known 
physical laws might include representations that incor-
porate the appropriate symmetry behaviour of struc-
tures and physical interactions97 (such as invariance and 
equivariance98 and isometry99) and the periodic trends in 
the properties of elements100. Such methods can form the 
basis for new modes of experiment, including the relax-
ation of experimental control to enable the acquisition 
of larger information throughput.

Recommendation. Develop new ML and AI representa-
tions and techniques specific to chemistry by partnering 
with chemical and data scientists and train a complemen-
tary workforce of interdisciplinary experts that can lever-
age the methods in experimental design and analysis. This 
training could take various forms, including the incor-
poration of ML into existing undergraduate laboratory 
experiments101,102, workshops and bootcamps103; dedi-
cated courses for ML and AI in chemistry104; and graduate 
specializations. Datasets and software reproducibility are 
important. Journals should strongly encourage or require 
that data and software are deposited in repositories that 

adhere to FAIR (Findable, Accessible, Interoperable and 
Reusable) principles. Peer review of data and code may 
be necessary in addition to traditional content review-
ing. Data-centred journals, such as Scientific Data, Data 
in Brief and Chemical Data Collections, will also have an 
important role in disseminating citable datasets that have 
been created independently of typical hypothesis-driven 
research efforts.

Extend the reach and applicability of data-driven 
approaches in the chemical sciences
Data-driven approaches are by nature interpolative and 
typically obtain results by capitalizing on a library of 
dense, nearby and known solutions. With datasets that 
are large enough, this interpolative approach is often 
sufficient for solving many scientific problems. We note 
that purely interpolative methods typically fail when 
one needs to extend predictions into new and unex-
plored regions of the parameter space or when dramatic 
changes occur between sparse elements. Nevertheless, 
even within the scope of pure interpolation, the power of 
data science can be used to direct future research outside 
the bounds of current measurements and observations105.  
As illustrated above, research in this direction can  
potentially be applied to accelerate discovery.

Recommendation. Develop ML methods that work with 
sparse representations in high-dimensional param-
eter spaces, to provide guideposts for understanding 
the accuracy of interpolative measurements and the  
applicability of extrapolative methods.

Transform research workflows by integrating 
measurement and observation tools, robotics, data 
pipelines and computational resources
Data science methods can accelerate decision making. 
To exploit this possibility, we need integrated labora-
tory automation systems that enable algorithms and 
workflows to enact processes in the laboratory, moni-
tor the results and deposit the resulting data into shared 
repositories. Accelerating the experimental cycle is 
especially valuable in shared facilities (such as synchro-
trons) but is equally needed in single-PI laboratories. 
Together, these integrated systems have the potential 
to establish a virtuous cycle — experiments conducted 
by automated systems or robots that are ‘born digital’, 
which reduces barriers to data sharing and reuse, 
and facilitates the development of better data science 
methods — but there are considerable technical barri-
ers. Open-source hardware should be encouraged, with 
relevant computer-aided design (CAD) files and con-
trol code deposited into appropriate repositories, such as 
the Open Hardware Repository. Currently, this type of 
data often appears in supporting information, but could 
also be the primary topic of articles in journals such 
as Reviews of Scientific Instruments and HardwareX, 
which create citable records for equipment development.

Recommendation. Encourage a co-design approach 
to hardware, software and algorithm development. 
Interdisciplinary teams can often reimagine the entire 
range of experimental workflows to embrace an 
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algorithm and computing
 

Data
• Networked repository of knowledge
• Iterative experimental feedback

Experiment
• Optimal parameter selection
• Navigate complex spaces

New modes of
experimentation

Simulate
workflows

Exploration and
exploitation

Prediction
models

Design
from data

Fig. 5 | interplay of experiments, workflow and data. Experiments are performed in a 
workflow with decisions based on prior data, producing new data that characterize the 
experiment and workflow as well as the materials and chemicals under investigation. We 
illustrate modes of interactions for accelerating and amplifying scientific discovery, which 
requires the active engagement of data scientists, experimentalists and theoreticians.
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accelerated approach that integrates measurements, data, 
algorithms and computing. This approach is enabled by 
developing both modular and complete solutions, with 
an emphasis on interoperable and open hardware and 
software. For successful collaboration, experts in dif-
ferent disciplines need to be connected through strong 
scientific scope, shared personnel, and frequent commu-
nication and group discussions. The groups should thus 
share a feeling of project ownership.

Integrate diverse data sources
Chemical data are diverse, consisting of spectroscopic 
observations, structural information, process descrip-
tions, and many other types of measurement. Combining 
different types of data sources provides stronger evi-
dence than any single data type. Often, crucial details 
are present only in unpublished ‘failures’, calibrations 
or metadata. Although specific types of chemical data 
have been aggregated (such as crystallographic data), 
there are currently only limited automated mechanisms 

by which individual experiments that comprise diverse 
elements can contribute to a broader whole. Human 
researchers excel at placing a new piece of data in the 
context of the prior data and knowledge of their field, 
but their reasoning that underpins these assessments 
suffers from being slow, costly, biased and inconsistent. 
AI methods for contextualizing data should be devel-
oped, which requires the establishment of a foundation 
for automatic management of relationships in chemistry 
data, in order to achieve the goal of a network of data.

Recommendation. Develop better ways of representing 
networks of data that encode the relationships between 
evidence in a machine-readable way. Create funding, 
citation and other incentives for comprehensive data 
sharing and to reduce technical and social barriers 
to data deposition and access through the creation of 
shared repositories and other mechanisms.
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