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Abstract | The physical sciences community is increasingly taking advantage of the possibilities
offered by modern data science to solve problems in experimental chemistry and potentially

to change the way we design, conduct and understand results from experiments. Successfully
exploiting these opportunities involves considerable challenges. In this Expert Recommendation,
we focus on experimental co-design and its importance to experimental chemistry. We provide

Data-driven techniques, such as machine learning (ML)
and artificial intelligence (AI), are rapidly becoming
indispensable tools for scientific research' and have been
the topic of national® and international® reports, recent
review and perspective articles** and tutorial guides®’.
With some exceptions®, most work has focused on ML
approaches trained on synthetic datasets and used to
accelerate computer simulations. However, emerging
data-driven approaches for synthesis, spectroscopic
interpretation and optimal experimental design now
highlight the potential to advance experimental chem-
istry with data-driven methods’™". For example, com-
bining such data analytical methods with automation
or laboratory robotics could enable quasi-autonomous
research with minimal human input'***. Improved data
analytics and data sharing and reuse in experimental
chemistry offer the opportunity to increase the rate and
lower the cost of scientific discovery, fostering growth in
research productivity.

Parallel advances in data science and in experimen-
tal chemistry have rapidly expanded the opportunity to
integrate these fields. Given the diversity of experimental
methods, data acquisition techniques and approaches to
their assembly into experimental workflows (defined as
a sequence of physical tasks coupled to the analysis of
results), the number of possible workflows and meth-
ods for designing experiments far exceeds those realized

examples of how data science is changing the way we conduct experiments, and we outline
opportunities for further integration of data science and experimental chemistry to advance
these fields. Our recommendations include establishing stronger links between chemists and
data scientists; developing chemistry-specific data science methods; integrating algorithms,
software and hardware to ‘co-design’ chemistry experiments from inception; and combining
diverse and disparate data sources into a data network for chemistry research.

by human researchers so far. Data science methods are
poised to aid workflow design and the active steering
of experiments to broaden the reach of experimental
chemistry and to increase the rate and efficacy with
which chemists explore the often daunting parameter
spaces of experiments and syntheses. Capitalizing on
these opportunities will require fundamental advances
in both chemistry and data science, as well as changes in
how we conduct experiments, especially the develop-
ment of technologies to facilitate large-scale data collec-
tion, sharing and analysis. At the same time, validating
the outcomes of data-science-based interpretation and
prediction will be essential.

In this Expert Recommendation, we include key high-
lights from ‘At the tipping point: a future of fused chemi-
cal and data science, a workshop held in September 2020,
and sponsored by the Council on Chemical Sciences,
Geosciences, and Biosciences (CSGB) Division,
Office of Basic Energy Sciences, Office of Science, US
Department of Energy. Participants from academia,
industry and national laboratories assessed opportuni-
ties and key research needs for the use of data science
in new experimental approaches in chemistry and bio-
chemistry, at experimental scales ranging from single-PI
laboratories to large user facilities. With a focus on
experimental chemistry, we discuss how data science
is changing the way we conduct experiments, using
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case studies to highlight important developments, and
summarize what is required to take advantage of the
advances in both fields.

A broad perspective of data science

Science has always been driven by the interplay of data
and theory. Data, which can come from observations,
simulations or experiment, aid in the development of
hypotheses and theories. Theories codify understanding,
offer predictions that can often enable extrapolation into
experimentally unexplored domains and provide con-
ceptual frameworks for suggesting new experiments and
regions of possible interest. This interplay is central to
scientific understanding.

The challenges and opportunities offered by this
interplay have been accelerated by technological
advances in detectors, computation and algorithms,
which have considerably increased data acquisition rates
and widened the range of tools available to classify, ana-
lyse and interpret data. In some experiments, the acqui-
sition of many types of experimental data is no longer
‘expensive;, and vast amounts can easily be accumulated.
One example is high-throughput data collection at
synchrotrons. Investments at these large facilities have
reduced the experimental cost for single investigators
and increased the size of data. In other areas, the equip-
ment and the experiments themselves are so expensive
or over-subscribed that one must carefully choose which
experiments to perform. The growing field of data sci-
ence offers myriad possibilities to combine advances
in algorithms, hardware and high-throughput data
acquisition modalities. Further advances in the chem-
ical sciences will require the systematic exploitation
and development of these efforts, augmenting the tra-
ditional theoretical approaches to selectively guide new
approaches that can handle both large amounts of data
and the vast landscape of possibilities.

One important component of data-driven science is
the perspective that data itself can provide insight into
processes and mechanisms, without requiring accom-
panying theories and models. Analysing data without
a theory-based roadmap is key to making sense of the
ever-increasing influx of data. This sounds more rad-
ical than it really is: relying on observations to frame
(and sometimes justify) expectations has often emerged
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before theories and models. Data science embraces the
importance of classification and the identification of
robust correlations in large, complex datasets that histor-
ically have been a pillar of theoretical advances, but now
require new methods to deal with increasing quantities
of data and accelerating data acquisition rates.

The need for advanced techniques that are able to
interpret and categorize data is an increasingly crucial
part of the scientific process. Advances in mathematical
algorithms, broadly defined to include core mathemat-
ical ideas such as approximation theory, linear algebra
and differential equations, as well as statistics, signal and
image processing, and ML and Al, have been instru-
mental in extracting knowledge from data and acceler-
ating scientific progress in the data—experiment-theory
interplay. As experiments become more complex, and
instruments and detectors faster and more resolved,
these needs will become increasingly prevalent. Two of
the major areas requiring new AI and ML algorithms
are, first, techniques to analyse and steer experiments
as data are produced, and, second, post-processing of
ever-larger datasets. In the first area, it might not be pos-
sible to conduct formal mathematical reconstructions
and analyses fast enough under vastly increased spatial and
temporal resolution, generated at faster and faster rates.
In such cases, algorithms augmented by AI and ML will
be needed to sort quickly through results to determine
whether an experiment is headed in the right direction.
In the second area, it might be possible to extract more
understanding from collected data than previously
thought, and this understanding, which may be buried
in the data, could be revealed with these new techniques.

Whether data science interpretations will become an
incremental step towards traditional model-based scien-
tific understanding or will ultimately stand on an equal
footing with (and, in some arenas, surpass) model-based
understanding remains unclear. Even in the absence of
a data science revolution, data science will cause the
ways we generate and interpret scientific data to evolve.
The challenge is to have a reliable way of determining
whether one has enough experiments, enough data or
enough observations to justify making predictions with
quantified uncertainty. Although there is no single route
to estimating the uncertainty (error) in the outcome of
AT and ML approaches, methods range from the simple
(and transparent) to the sophisticated (and generally less
transparent). Some of the best approaches rely on inde-
pendently known ‘ground truths’ to estimate the error
in the outcome of data-driven analysis. Such estimates
assess, in essence, the interpolation error. The assess-
ment of predictions outside the training range entails
additional complexities. Ultimately, one extrapolates
beyond the training domain at one’s own risk.

In the most radical interpretation, Al and ML tech-
niques suggest that one need not have a preconceived
notion of what experiments to perform, what variables
to observe and what weights to put on gathered infor-
mation. Of course, Al and ML algorithms rely on hidden
assumptions and biases, including definitions of close-
ness, similarities and structures. Nonetheless, the idea
and promise of these approaches are that the algorithms
themselves will detect the important relationships, even
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Box 1| Challenges associated with ML and Al

Machine learning (ML) has typically been applied to use-cases in which the price of
being wrong is small. In science — as in other fields — this is not always the case. With
this in mind, important questions to critically evaluate the suitability of ML methods for
application in scientific or other domains include

* What criteria should be used to trust the output of a ML or artificial intelligence (Al)
analysis? That is, what level of verification is necessary and to what extent does that
compromise the utility of the ML or Al approach?

* What evidence underlies how these methods make predictions? When is it reasonable
or necessary to ask this question?

e Can Al and ML be used to predict, with quantifiable confidence, phenomena outside
the domain used for constructing the algorithm? Currently, Al and ML approaches are
inherently designed for interpolation — given a big enough library of inputs matched
with outputs, these algorithms can take a new input and combine information at
nearby inputs to predict a possible viable output. Scientific discovery, however,
inherently involves investigation of new spaces (extrapolation or prediction), which
contrasts with the primary focus of ML algorithm development to date.

* An oft-stated virtue of these methods is the idea that they are transferable: predictive
schemes in one field can be applied in other fields that appear to be unrelated. How
can one know if and when predictions are transferable between fields?

if these relationships are not revealed in the standard
form of analytical models, communicable principles or
foundational theories.

Although there are many challenges associated with
ML (BOX 1) and no clear path to simultaneously address
them, the opportunities are hard to ignore: an increas-
ing amount of data is available, and better ways to use
it will provide new insights. Three modalities by which
data science could transform experimental chemistry
are listed in BOX 2. The hope and expectation are that
data science methods can learn important relationships
at previously unachieved speed and scale, and that
those relationships can then be exploited to accelerate
scientific progress.

In the following sections, we provide some case stud-
ies from the chemical sciences that highlight advances
and the potential of the interaction between experi-
ments and data science, followed by a discussion of the
challenges ahead.

Data science and chemical sciences

Proponents of ML techniques promise profound
advances within chemical sciences in areas such as the
extraction of collective coordinates, reaction paths,
energy landscapes and dynamics from many heteroge-
neous observations. Broadly, data science methods are
expected to bring at least three important objectives
within reach (BOX 2). In the chemical sciences, there have
been remarkable steps towards meeting these objectives,
and the potential is substantial®'*-'*, At the same time,
there are limitations and pitfalls, and in the follow-
ing, we give examples from multiple fields. Of course,
these objectives fall on a continuum rather than a
discrete spectrum of possibilities, but it is helpful to
independently address each objective.

ML-guided discovery

Experiments are traditionally either steered by intuition or
by schemes in which a measurement plan is selected and
implemented in advance, independent of the measurement

results. Neither is efficient: the intuitive approach demands
constant attention by a highly trained expert, and the
exhaustive approach wastes instrument time by collecting
a large amount of possibly redundant data.

As experiments become more complex, these
approaches become even more problematic. Rather than
simply being a question of efficiency, the central issue is
that the combinatorics of high-dimensional parameter
spaces yield a set of possible configurations that is too large
to systematically explore with pre-arranged strategies.

Goal: autonomous, self-guiding laboratories. Imagine a
process by which a set of previously performed experi-
ments is used to suggest what to try next. These sugges-
tions might, for example, come from surrogate models,
which represent lower-dimensional approximations to
the landscape of collected data from sparsely sampled
high-dimensional parameter space. Taking as input
the available experimental data, both from the current
experiment and available literature, as well as previously
established scientific information, these models can
suggest experiments to accomplish different or multiple
goals. For example, new experiments could be aimed at
underexplored parts of the high-dimensional parameter
space. These experiments would configure the experi-
mental parameters to examine under-sampled possibil-
ities. The goal is to ensure that a full range of scientific
results across the parameter space is efficiently collected.
In another example, as experiments are performed and
analysed, they could be focused on configurations that
yield insight into particularly desirable results.

An important goal is to couple this autonomous
steering to advanced simulations and feedback met-
rics to enable experiments to discover regions in
high-dimensional configuration space that have optimal
parameters, such as those required to achieve desired
results. For further information on autonomous discov-
ery in the chemical sciences, we refer readers to REFS'**,
as well as to targeted reviews on autonomous materials
science?’, organic synthesis planning and optimization'’,
medicinal chemistry'? and formulations*. Although
autonomous experimentation is often caricatured as
removing humans from the process, hybrid approaches
offer a valuable path forward. For example, combined
human-algorithm teams can more efficiently iden-
tify crystallization and self-assembly conditions for
inorganic synthesis compared with human-only or
algorithm-only approaches®.

What is needed. To take full advantage of these possibil-
ities requires multiple advances, including configuring
the data as it is collected so that it can be easily inter-
preted, fast techniques for building representative sur-
rogate models on the fly as data are collected, examining
these models to determine and suggest new experimen-
tal measurements, and laboratory automation soft-
ware and hardware that enable suggestions to become
physical experiments (FIC. 1).

A pivotal role for ML and AI. Advances in ML and Al
offer opportunities of achieving these goals. First, given
the output of an experiment, these techniques can

NATURE REVIEWS | CHEMISTRY
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assess the collected data in the context of other exper-
iments and simulation results. As an example, suppose
an experiment under a given set of input parameters
yields a particular scattering pattern, spectrum meas-
urement or chemical signature. A robust and accurate
ML algorithm can interpret these results in the con-
text of known available data, detecting similarities and
patterns that can be used to evaluate the outcome. For
example, models trained on crystallographic data can be
used to predict crystallographic dimensionality and the
space group from thin-film X-ray diffraction patterns®.
Second, given the analysed output of an experiment,
emerging data science techniques can be used to effi-
ciently build surrogate models. Suitably designed, these
models can take the analysed output data and quickly
estimate results that can be used to steer the experiment.

This ability to automatically evaluate data as it is
collected, and then suggest new directions, has appli-
cations across experimental science. This approach can

Box 2 | Three modalities by which data science could transform experimental
chemistry

Extract more information from existing, imperfect experimental data

In the most straightforward settings, data conform to simple statistical expectations,
with each snapshot representing an instance of noise added to a measurement of all
relevant system variables. Such data rarely exist.

In reality, each snapshot represents an incomplete, noise-limited measurement of a
subset of system variables. Real data are also often inhomogeneous, in the sense that
each snapshot pertains to an unknown set of unintentionally changed system variables.
In other words, real data are incomplete (not all relevant system parameters measured),
inhomogeneous (the snapshots emanate from differing values of one or more often
unknown variables) and noisy (such as non-Gaussian pixel noise and inaccurate times-
tamps). Standard approaches to data analysis often successively reject ‘outliers’ to obtain
a sufficiently homogeneous dataset amenable to traditional analysis by averaging.

Machine learning approaches, by contrast, attempt to ‘learn’ the space spanned
by the data, such as identifying reaction coordinates (‘collective variables’) at work
during the experiment, and use the information content of the entire dataset to
reconstruct the system at any point in the space of reaction coordinates®'*!7154,
This offers a noise-robust approach to extracting more information from the data
than is possible with traditional methods.

Optimally design experiments and workflows

Complex experiments with many input parameters generate sample points in high-
dimensional spaces, and the challenge of systematically navigating these spaces is rapidly
outpacing human capabilities. Data-driven approaches can learn and exercise optimal
control of experiments in real time, incorporating prior knowledge to efficiently find
under-resolved regions and/or regions of interest. Such ‘on-the-fly’ data methods can
help experiments to efficiently cover the landscapes in which the system of interest
undergoes important, functionally relevant changes®'’.

Offer new experimental modalities

The new generation of high-throughput instruments combined with the algorithmic
ability to rapidly analyse very large datasets offers new experimental modalities. As an
example, chemical reaction events often occur via rarely sighted transition states.
Until now, complex time-resolved experiments have been required in order to obtain
snapshots of a system as it is driven over a transition state. In equilibrium, however,
a collection of snapshots includes all states of the system, including those at high
energies, albeit with exponentially diminishing probability®. A ‘sufficiently large’
dataset of snapshots will thus include high-energy conformations. For example,
states at energies comparable with that released by ATP hydrolysis begin to appear

in datasets comprising of the order of 10° single-particle snapshots from an equilibrium
ensemble of molecules. Such large datasets offer the opportunity to investigate
important chemical processes without having to track each process in time. The key is
the ability to collect and analyse several billion single-particle snapshots, as dictated
by the underlying statistical mechanics.

be used to query and steer multi-dimensional processes
and to inform the placement of sensors and data col-
lection, determining which locations give the newest
information. The construction of surrogate models is
particularly efficient when information is collected
across multiple modalities, such as through combin-
ing imaging with chemical and materials databases.
Considerable information can be gleaned by query-
ing high-dimensional state space with different tech-
niques, such as tomography, mass spectrometry and
high-resolution infrared imaging. Such approaches can
be used at multiple scales, from the operation of single
instruments to collections of instruments in individual
laboratories and large-scale facilities. For example, suc-
cessful demonstrations to date span autonomous bench-
top chemical synthesis to the synchrotron experiment
discussed in case study 2.

Case study 1: autonomous experiments in traditional
laboratories. Within a single laboratory, autonomy
can couple control and measurement, delivering
purpose-built experiments. Examples include micro-
fluidic systems for the synthesis and characterization
of colloidal nanoparticles coupled to ML-based opti-
mization of the optoelectronic properties®°, and
computer-controlled test stands for creating and elec-
trochemically characterizing arbitrary liquid electro-
lyte solutions coupled with online optimization®”.
Autonomous optimization of organic synthesis in
flow-based reactors has been demonstrated for several
systems”>*’, and software has been developed that can
autonomously steer commercially available equipment in
performing such optimizations’. Even when commer-
cially available equipment does not exist, it is possible to
combine existing equipment with only minimal modi-
fication. In one recent example, an autonomous system
for optimizing Suzuki-Miyaura coupling reactions was
created by combining commercial liquid-handling and
high-performance liquid chromatography (HPLC) sys-
tems; the only hardware modification needed was to
install an HPLC valve on the robot deck and to incor-
porate relay switches to trigger the chromatographic
equipment®. A more wide-reaching approach exploits
general-purpose robots that interact with existing lab-
oratory equipment™: in one configuration, a robot syn-
thesized 688 photocatalysts over 8 days using a Bayesian
optimization scheme without human intervention,
leading to a six-fold increase in the photocatalytic per-
formance compared with the initial compounds. Even
with limitations on how existing knowledge, theory and
physical models are implemented in the autonomous
search, such examples illustrate the time-efficient and
cost-effective use of available resources, shortening a
project from months and years to a week. Ideally, future
advances in knowledge, theory and models will enable
the optimized synthesis of new compounds with tar-
geted properties. However, even the development of
autonomous processes for individual analytical subtasks
within a research project, such as solubility screening™
and determining kinetic models by HPLC experiments®,
can be useful both for accelerating research progress and
as building blocks for future systems.

www.nature.com/natrevchem
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Fig. 1| Role of data science in experimental processes. Data science can have many roles in experimental processes,

such as in autonomous synthesis and characterization. a-d | To

accomplish the experimental tasks (grey arrows), several

technologies are required, necessitating data flows (red arrows) to and from repositories. Part a adapted with permission
from REF.*%, AAAS. Part b reprinted with permission from REF.!%, Royal Society of Chemistry. Part c reprinted from REF.*",

CCBY4.0.

Case study 2: autonomous steering at synchrotron light
sources. One current example of autonomous steering
is provided by the gpCAM mathematical, algorithmic
and software framework***, which has been used for
a wide variety of experiments across the USA and else-
where (FIC. 2). First, the measurements to take in an auto-
nomous experiment are chosen on the basis of previous
measurements. Next, surrogate model functions are
computed by ML-based Gaussian process prediction,
which can be constrained by domain knowledge. Hybrid
optimization methods are then used to identify the next-
best measurements to take. Finally, choices for the opti-
mal measurements are determined as a function of
the surrogate model, its uncertainty and the costs of a
measurement. Using the gpCAM approach and soft-
ware framework, beam utilization was increased at
Brookhaven National Laboratory’s Center for Functional
Nanomaterials and the National Synchrotron Light
Source II (USA) from 15% to more than 80%°~* with a
five-fold decrease in the number of experiments required
to obtain the same information as from previous meth-
ods. At the Berkeley Synchrotron Infrared Structural
Biology beamline at the Lawrence Berkeley Laboratory’s
Advanced Light Source (USA), the required amount of
biological spectroscopic data that needed to be collected

was reduced by as much as 50-fold*. At neutron sources
at the Institut Laue-Langevin (France), experiment
durations have been reduced from days to one night™.

Harnessing complexity with data science

One well-travelled road in chemical experimental
science is the optimization of control over the sample
and the experimental apparatus. These efforts have
emphasized the control of a limited set of critical
parameters, which, in turn, imposes limits on the analysis
by highlighting a few outputs with high signal-to-
noise ratio to enhance interpretability. The analysis
process constrains experimental methods to maximize
control and homogeneity and to minimize noise,
fluctuations and heterogeneity.

The scientific usefulness of the above framework
derives directly from how successfully the critical prop-
erties of an experiment can be controlled. Although
this traditional approach has generated many impres-
sive successes, the inevitable limitations in sample and
experimental control present considerable limitations
to experimental design. Data science approaches can
augment and expand the scope of experimental sci-
ence both by accelerating the analysis and interpreta-
tion of experiments and by enabling experiments to be

NATURE REVIEWS | CHEMISTRY
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and drive new experiments. Working together in an autonomous loop, they optimize the use of complex equipment.

Image courtesy of J. Donatelli, M. Noack and J. A. Sethian.

performed successfully when control is impractical or
risks undesirable alteration of the phenomena under
study. For example, current data science techniques
applied to structure and image reconstructions can
extract information from measurements recorded
with more noise and uncertainty than has previously
been possible, greatly increasing the set of ‘viable’ and
productive experiments.

Clear cases in which a data science approach would
be valuable include, but are not limited to, experiments
that use stochastic or noisy instrumentation, such
as X-ray free-electron lasers (XFELs; see case study 4
below), and field studies in which natural variations in
the environment provide an alternative means of deter-
mining how chemical systems respond to changing envi-
ronmental conditions. In these examples, control of the
relevant experimental parameter space cannot or should
not be exercised; the parameter space must be fully
measured and correlated with the relevant experimental
observables. This approach to experimentation greatly
increases both the data volume and the challenges in
identifying correlations between the measured, rather
than controlled, variables with the experimental observ-
ables. The payoff is that information can be extracted
that would otherwise be lost to traditional techniques
of averaging over uncontrolled fluctuations or left
unexplored by an experimenter with full control of the
sampling of parameter space.

Goal: relax requirements for experimental control and
a priori design. The adoption of data science methods
in experimental planning and analysis enables scien-
tists to reimagine the way that we design and perform

experiments by shifting the focus away from control-
ling the critical parameter to measuring fluctuations
within the critical parameter space. Measuring, rather
than controlling, the critical parameter space of the
experiment shifts the emphasis of experimental design
to data-intensive diagnostics that must be integrated
into the experiment. This approach also requires
changes in analysis, because the absence of control can
generate much larger datasets with more complex cor-
relations between the chemical properties of the sample
being measured in the experiment and the instrument
sampling of the parameter space being measured with
diagnostics. As an example, such approaches have
been designed to mitigate the shot-to-shot variation
of XFELs (FIC. 3), which affect the outcome of X-ray
diffraction (FIG. 3b,d,e) and X-ray spectroscopy (FIG. 3¢)
measurements. Such an approach might be a prod-
uct of necessity for instruments with delicate stability
regimes, but it also presents the opportunity to identify
unexpected correlations, because natural fluctuations
in the experimental apparatus might generate experi-
mental results that a scientist may be biased to avoid.
By providing real-time sampling of a complex experi-
mental parameter space, pre-planned experiments are
replaced with on-the-fly adaptive methods that reduce
the time needed to acquire a signal and to reduce prob-
lems of data redundancy. Furthermore, instead of rely-
ing on a single high signal-to-noise output, alternative
approaches might rely on many more weak (but easy to
collect) signals to make chemical measurements®. The
integration of fast ML-enabled and AlI-enabled analy-
sis can lead to data-driven autonomous experimental
workflows.

www.nature.com/natrevchem
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What is needed. The advances required to capitalize
on the above possibilities include the development and
implementation of diagnostics for measuring experi-
mental parameters that would have traditionally been
controlled; integration of these diagnostic signals with
the experimental observables; and fast analysis tech-
niques for correlating the data from the diagnostics
with the experiment to enable real-time assessment
of experimental progress and on-the-fly construction of
representative surrogate models as data are collected.
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A pivotal role for ML and AI. ML and Al techniques
offer powerful opportunities to identify unexpected
or hidden correlations revealed by the fluctuations in
the experimental parameter space. Two examples are
illustrated in case studies 3 and 4.

Case study 3: identifying natural experiments from
laboratory metadata. Chemical reactions can be highly
sensitive to environmental conditions, such as humidity.
The typical experimental control strategy is to perform
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Fig. 3 | Application of machine learning to conduct new types of
experiments at XFEL facilities. a | Scheme showing an X-ray
free-electron laser (XFEL) and the general experimental design for
spectroscopy and diffraction and/or scattering experiments'®’. Coherent
X-rays are generated using relativistic electrons from a linear accelerator
propagating through an undulator. At saturation, the X-ray pulses emitted
from this self-amplified spontaneous emission (SASE) process have a
relative bandwidth of ~0.2% (for example, ~40eV at 9keV of X-ray energy),
with a pulse duration of a few to several tens of femtoseconds. At is the
time interval between the pump and the probe. b | Detection of a small
number of photons (a weak signal) from a large instrument background in
a single snapshot for imaging'*. This ability is crucial for enabling X-ray
single-particle imaging of sub-10-nm-sized biomolecules, for which very
few photons from particle scattering are expected to be measured in a
single snapshot, in comparison to the large instrument background signals.
Machine learning (ML) methods are required to extract the weak signal
from particles. c | Fe 1s2p resonant inelastic X-ray spectroscopy (RIXS) that
uses the stochastic nature of the polychromatic XFEL SASE beam, taking
advantage of the random spikes of each XFEL pulse as a unique fingerprint.
These fingerprints are correlated with outgoing emission signals from the
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system under study to construct spectra®. In principle, a monochromator
can be used to determine accurately (with an ~1-eV bandwidth) the
energy of the incoming X-rays that interact with the sample, but at the cost
of a loss of two orders of magnitude in the X-ray flux. Alternatively,
measuring the spectrum on every shot and using ML approaches to
correlate the experimental signal with these spectra on every shot enables
the spectral fluctuations to be disentangled from the experimental
observable without the need for an X-ray monochromator. d | An example
of the heterogeneity in the unit cell distribution of thermolysin crystals,
showing that there are different crystal isoforms'®. This online analysis of
data is used to provide immediate feedback to determine the subsequent
sample preparation conditions for the best resolution''’. e | Pump—probe
ghost imaging. Similar to the method shown in part c, this approach
uses the random spikes of XFEL pulses to study the interaction of the
pulses with matter. This method can be used to map the full evolution of
a system over time''’. Part a adapted from REF.'"’, Springer Nature
Limited. Part b reprinted from REF.!%, CC-BY.4.0. Part c adapted from REF.*,
CC BY 4.0. Part d reprinted with permission from REF.'”, Computational
Crystallography Newsletter. Part e, image courtesy of Greg Stewart, SLAC
National Accelerator Laboratory.
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reactions in a glovebox, but this presents operational
challenges. An alternative, demonstrated recently in
the context of halide perovskite crystal growth, is to
capture comprehensive electronic records of the labo-
ratory conditions associated with each experiment over
an extended period of time™. Using a dataset of 8,470
experiments captured over a 20-month period, it was
possible to identify statistical anomalies in the reaction
outcome that were correlated with laboratory humidity.
The researchers confirmed this hypothesis by perform-
ing deliberate interventional experiments, and in the
process, discovered systems in which water interfered
with inverse temperature crystallization, contrary to
previously hypothesized mechanisms.

Case study 4: X-ray free-electron lasers. XFELs have
transformed X-ray science by producing extremely
bright X-ray beams. The lasing process that generates
these beams also leads to much larger fluctuations in key
experimental parameters, particularly compared with
synchrotron-based X-ray sources. Attempts to control
key beam properties, such as pulse spectra, intensity and
duration, have so far only been partially successful. As
an alternative, one could instead measure large fluctua-
tions in pulse properties on every shot and then use data
science methods to deconvolve the influence of pulse
fluctuations on the observed experimental signal*"*.
In addition to reducing the experimental requirements
for XFEL performance, this approach has the benefit of
using every photon and thus giving an automatic bright-
ness upgrade; for an XFEL this is a 100-fold improve-
ment. Furthermore, such an approach has the benefit of
improving the temporal resolution.

The above opportunities come with challenges. The
inability to control the experimental apparatus necessi-
tates the performance of two parallel measurements: one
on the X-ray beam and the other on the sample being
interrogated by the X-ray beam. Additionally, the success
of the experiment requires high-fidelity diagnostics and
analysis methods to ensure that X-ray beam fluctuations
can be robustly differentiated from variations in the sam-
ple properties being investigated. Furthermore, adopting
a supervised learning approach would initially require
parallel experiments to be conducted using traditional
apparatus so as to build an appropriate training set; as
a result, cost savings would not be immediately real-
ized, but would come when this information is applied
to future sites. The planning stages of this type of work
would require deep involvement of data science and
modelling experts to assure stakeholders that algorithms
are able to perform this task robustly and reproducibly®.

XFELs have also advanced the application of X-ray
science to chemical phenomena in the femtosecond
time regime. Ever since the launch of femtochemistry’ by
Zewail and others, the ultrafast interactions initiated
by the absorption of a photon have driven a quest to
understand, and ultimately control, the ultrafast struc-
tural dynamics of photoactivated molecular systems
(see, for example, REF.*!). This quest has made it imper-
ative to deal with noisy, incomplete and fleeting signals
recorded with substantial timing uncertainty. Although
experimental attempts to deal with such signals will

continue to advance, recent Al and ML approaches have
brought the greatest rewards (see, for example, REFS'®*).

Case study 5: theory for dynamics in chemistry. The
measurement of dynamics is an important case in point,
wherein AT and ML techniques can help alleviate long-
standing experimental problems. Since the celebrated
work of Takens*® and Packard”, it has been recognized
mathematically that the evolution of a wide range of
dynamical systems is tightly constrained. As such, much
less data is needed to recover dynamical information
than had been thought necessary for proper experimen-
tal analysis*. Takens showed that a series of snapshots,
each representing a subset of the system variables, is
sufficient to determine the behaviour of dynamical sys-
tems, as if all system variables had been measured. The
ML-based realizations of this remarkable possibility are
now being applied to ultrafast chemistry data previously
thought too noisy, too incomplete and too imprecise to
be useful'®. Extensions of this approach have been used
to estimate the gestational age of fetuses with unprec-
edented accuracy”, indicating the generality of the
algorithmic methods.

Another example includes a recent breakthrough,
namely the deep-learning package DeePMD-kit™,
which combines ab initio modelling, high-performance
computing and ML to tackle ‘first-principles’ molecular
dynamics simulations by approximating ab initio data
with deep neural networks. This approach allows for
calculations that can treat larger systems over longer
timescales and offers a bridge between ML and physi-
cal modelling. Similar types of combinations of ab ini-
tio results with data science methods and autonomous
experimentation have been used to accelerate chemical
optimization tasks’'. Building on established simulation
methods and relating this to experimental chemistry
data will increase the interpretability of data science
models and enable their deployment with smaller
datasets.

Data-driven experimental discovery

Not all important challenges in science conform to
easily testable hypotheses. Research in chemistry often
targets critical metrics, such as a specific photovoltaic
energy conversion efficiency, or a specific selectivity for
a catalytic reaction. These metrics require materials to
achieve performance beyond what has been demon-
strated previously, so interpolation is not an effective
strategy. Extrapolating from known materials and
known phenomena may prove insufficient to hit a chal-
lenging performance target and motivate exploration off
the beaten path. Hypothesis-driven research, which is
generally derived from prior knowledge and relies on
testing a postulated outcome, might restrict inquiry and
exploration™.

Goal: automated serendipity. In the absence of a hypoth-
esis, trial and error becomes intractable as the search
space increases. Efforts in laboratory automation can
reduce the time needed for synthesis, characterization
and data interpretation, thus increasing the rate at
which new trials can be performed (this builds on the
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laboratory automation efforts discussed above). More
broadly, data science approaches can be used to auto-
mate the process of extracting new ‘ideas’ to try on the
basis of collected datasets'*****. Comprehensive data
management (discussed below) facilitates the process
of identifying unexpected variations that can suggest
directions for more deliberate inquiry. For this type of
application, prediction accuracy is less crucial because it
suffices to be wrong less often than an undirected search,
s0 as to focus on a more tractable portion of the available
parameter space for experimental validation.

What is needed. Enhancing metric-driven research
requires efficient and unbiased search and analysis tools,
or at least tools with a bias that is clearly delineated and
transparent; implementation of ML methods to identify
unexpected or hidden correlations revealed by the fluc-
tuations in the experimental parameter space; and an
autonomous direction of search based on prior findings.

A pivotal role for ML and Al Instead of performing a
few experiments carefully selected by the chemist, this
approach favours performing larger-scale combinatorial
experiments to explore a broader and less biased search
space. A short-term goal is simply to perform more
experiments over the broadest possible search space,
which is the goal of ‘classical” high-throughput experi-
mentation or combinatorial chemistry*. More long-term
goals use ML and Al to accelerate the characterization
process and to optimize selection of new experiments.
Finally, there is a need for ML interpretability and
explainable AI (XAI) to inform humans; this may neces-
sitate chemistry-specific interpretable ML methods™.
Some early realizations of this approach in experimen-
tal chemistry include the extraction of hypotheses about
organic molecular-structure determinants of energy lev-
els and solubility’® and human-algorithm teaming for
the synthesis of polyoxometalates™.

Case study 6: serendipity-driven reaction discovery.
This type of non-selective ‘automated serendipity’
has been successful in the discovery of organic reac-
tions for photoredox catalysed C-H arylation®” and
Pd-catalysed C-N cross coupling®*. For a general
review of high-throughput automation in chemistry,
see REF. These applications have relied on experimen-
tal hardware developments to perform synthesis and
characterization with greater parallelism and smaller
quantities of reagents. Interpretation is accelerated by
using data science methods to identify when a reaction
has occurred. In its simplest form, this can entail look-
ing for differences in product and reactant spectra and
using this information to prioritize subsequent experi-
mental rounds®’, with the understanding that this can
provide only a preliminary investigation and that sub-
sequent human reinvestigations may be necessary to
confirm the spectral interpretations®. A more sophisti-
cated approach would use this data to construct empir-
ical relationships between the catalyst and substrate
structures and the catalytic efficiency®; the resulting
structure—property models can then serve to prioritize
subsequent experimentation. Finally, a higher-level goal

is to perform autonomous optimization of the design
of the catalyst, substrate and reaction conditions using
automated experimentation and planning algorithms®.
In materials science, there has been a similar progression
from high-throughput synthesis and characterization,
to increasing automated interpretation and autonomy"’;
again, this progress is being enabled by increased
adoption of ML methods throughout the discovery
lifecycle™®.

Data science approaches can help to facilitate this
serendipitous discovery process by reducing the need
to know what one is looking for ahead of time. An
example is the development of rare-earth-free perma-
nent magnets®. A wide variety of Fe—-Co-X (where X
is a transition metal element such as Mo, W, Ta, Zr, Hf
or V) alloys were synthesized combinatorially, resulting
(in some cases) in one or more phases, many of which
were unknown. Using non-negative matrix factorization
methods, diffraction spectra were decomposed into esti-
mates of the pure material spectra (which had either not
been previously observed or could be matched against
known databases) and estimates of the relative concen-
trations of the different phases. The goal is to produce
a phase diagram of different compositions; however,
building a complete map over the compositions would
require too much instrument time. Instead, a further
improvement used active-learning approaches and
Bayesian optimization methods to prioritize the (auto-
mated) acquisition of new experimental data points®’.
Reducing the number of diffraction measurements
that must be acquired by several orders of magnitude
decreases the amount of beamtime required or even ena-
bles the use of the types of diffractometers found in a
typical single-PI laboratory instead of a beamline source.

Data management and networking

Realizing new experimental paradigms for chemistry
requires human and Al researchers to access a broad range
of chemical information. Optimally, such information
would include a variety of process and characterization
data, as well as the metadata that provide context for
the experiments. We refer to this as a ‘data network’ to
invoke the imagery of a network wherein nodes are data
from chemistry experiments and connections between
nodes encode how the data are related. Scientific knowl-
edge emerges from the relationships between material
observations and interpretation, and data science can
help to shed light on these relationships®*®. Data net-
works leverage the scale and variety of modern chem-
istry data to enhance the utility of data-driven methods
in chemistry experiments. In this section, we describe
some important experimental and data science efforts
needed to enable key efforts such as building a repository
of knowledge by networking data, encoding the current
state of a scientific field and facilitating the adoption of
data science methods in chemistry experiments.

Goal: repositories of knowledge. The primary goal of net-
working data is to share accumulated results to enable
humans and machines to derive new knowledge from
old data. Such an environment will allow scientists to
directly explore and visualize the state of the field from
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Fig. 4 | Visualizing a data network. MaterialNet is a web-based application that can
be used to visually explore the relationships within a materials database such as the

materials similarity network. The materials are represented by nodes and the links
between them encode specific relationships, such as chemical similarity, demonstrating
the many interrelationships that exist between materials and chemicals. Networks can
capture more relationships than a human can comprehend, and data science tools
can learn from these relationships®. Reprinted from REF.®!, CC BY-4.0.

repositories and to obtain faster access to details essen-
tial to research projects (as a complement to traditional
literature searches).

Traditionally, chemistry knowledge repositories are
aggregated by a single organization and take the form
of licensed datasets, reference volumes or reference
websites; some widely used examples are the Powder
Diffraction File’’, the CRC Handbook of Chemistry
and Physics, and the National Institute of Standards and
Technology (NIST) Chemistry WebBook’'. In one
sense, these repositories contain highly refined chemi-
cal knowledge. As an example, consider the trajectory
of experimental data from the acquisition of raw data
to contextualization, analysis, interpretation and val-
idation through additional experiments. Repositories
have understandably focused on only the final outcome
of this data funnel. Instead, managing and cataloguing
data throughout these phases of knowledge refinement
can help address issues of data scarcity that arise in the
adoption of data science.

Given the volume of data now being generated by
chemistry experiments, and the desire to accelerate the
research workflow, there has been an increasing number
of crowd-sourced efforts to build knowledge repositories
at the same pace as research. One especially successful
example is the Protein Data Bank (PDB), which is an
archive of experimentally determined protein structures
(and is highlighted in case study 7 below)”. Similar types
of machine-readable experimental chemistry databases
would be a watershed in the incorporation of data sci-
ence. To date, the most successful repositories of exper-
imental chemistry data are structural databases, such
as the Cambridge Structural Database (CSD) and the
Inorganic Crystal Structure Database (ICSD), and spec-
tral databases, such as NMRShiftDB”. An TUPAC project,
‘Development of a standard for FAIR data management
of spectroscopic data’ (FAIRSpec) was founded in 2019
(REF.”Y, and progress is described in a recent report”.

Most databases of organic synthesis (such as Reaxys) are
proprietary and do not allow free contribution, although
nascent efforts such as the Open Reaction Database”
and Chemotion Repository have started to address
this need, facilitated by integration with open-source
electronic laboratory notebook (ELN) software such as
ChemotionELN"". In parallel, there are several efforts
aimed at developing schema for representing laboratory
actions, such as XDL’, IBM RXN", Autoprotocol and
the ESCALATE (Experiment Specification, Capture
and Laboratory Automation Technology) materials and
action specification®. The advent of the US Department
of Energy Office of Sciences’ PuRe Data Resources
embodies an important step in this direction.

Once data networks are available, they can be used
to accelerate the generation and testing of hypotheses
through AlI-driven encapsulation of existing knowl-
edge. For example, a network based on data from
high-throughput density functional theory calcula-
tions can be explored by humans through web-based
visualizations®' using MaterialNet (FIG. 4), while its
network metrics can be used in a ML model to predict
(or hypothesize) the synthesizability of new inorganic
compounds®. This mode of hypothesis testing, which
builds on the concepts discussed above in the section
on data-driven experimental discovery, is markedly
different from the cycle of first proposing a hypothesis
and then designing and completing experiments before
any validation takes place. Instead, with a network of
data, one can identify existing knowledge that acceler-
ates hypothesis testing, adding value to data that were
collected for a different purpose.

Data networks can also enhance the development of
accurate predictive models to the benefit of the autono-
mous experimentation described above. Although a sin-
gle laboratory may possess insufficient data for training
surrogate models, data networks might contain auxiliary
data to augment the laboratory’s data. Of course, this
has its own challenges: training models to use data from
multiple sources is non-trivial, and developing tech-
niques for using and linking heterogeneous data from
various sources is a major undertaking.

A final data science challenge that can be addressed
with data networks relates to the frequent need for
predictive models to extrapolate beyond the existing
corpus of chemistry knowledge, as discussed above.
True extrapolations may be wildly inaccurate, but data
networks can be constructed with the appropriate con-
nections so that applications to new compounds and
conditions will more often lie comfortably within the
domain of validity of existing models. For example,
a property of a given chemical may not have been meas-
ured by a certain technique, but previous experiments
that share the same property, chemical or method may
be used to infer missing values; this assumes a shared
framework for expressing the relationships upon which
data science methods can be built.

What is needed. Realizing data networks and their ben-
efits will require various cultural and technical advances.
Many of the relationships between chemical experi-
ments lie in their metadata, which include details of the
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instruments and their settings, and other knowledge
required to reproduce the data. Agreeing on software for-
mats for recording experimental parameters, as opposed
to manually setting multiple knobs whose data record is
limited to written notes, will greatly facilitate consistent
tracking of experimental metadata. Data management
programmes such as ESCALATE® and Event-Sourced
Architecture for Materials Provenance Management
and Application to Accelerated Materials Discovery
(ESAMP)® are examples of this approach to chemistry
and materials data stewardship by making the data and
metadata inseparable; examples of the rich types of inter-
active experiment reporting that this approach enables
can be found in the supporting information of REF*.

The chemical and analysis provenance of data is also
crucial. From laboratory notes to publications, chemicals
are often labelled according to what they are intended to
be, and data annotations such as ‘background-subtracted’
are often aspirational. From a data science perspective,
the chemical under investigation in an experiment is
best defined by the sequence of prior processes and
experiments that produced the chemical. Assessing
this provenance from literature data is often difficult,
if not impossible, and motivates a re-thinking of how
experimental data should be recorded and tracked.

There are complementary challenges for data pro-
cessing and interpretation. Expert decisions during data
analysis, such as identifying which portion of a spectrum
to analyse or what data artefacts might be present, are
informed by experience-based knowledge. Tracking the
provenance of data analysis will facilitate the removal of
human bias and uncover valuable information from raw
data. By contrast, the application of expert prior knowl-
edge may be necessary to gain traction in data analysis,
and encoding this knowledge in data science algorithms
is a major, yet crucial, challenge. Ultimately, AI algo-
rithms will have their own experience-based chemical
knowledge, but only if we can provide the same quan-
tity and quality of data, metadata and provenance that
underlies the knowledge progression of expert scientists.

We note that there are numerous practical challenges
related to the ingestion and management of metadata
and data provenance, which are compounded by the
imperfections of the data itself as well as hurdles intro-
duced by less technical considerations such as intellec-
tual property and incentivization schemes. We refer
readers to a 2019 US Department of Energy report for
recommendations on technical aspects of the data pipe-
line and network® and REF* for a survey of motivations
for building a data network.

A pivotal role for ML and Al To establish data networks
that enable scientists to aggregate and search relevant
chemical knowledge, data science must be incorporated
into data management to learn the relevance of metadata
provenance and domain knowledge so that they can be
appropriately modelled in data networks. Networking data
should commence with models of relationships encoded
in existing theories, as was recently demonstrated by pro-
pnet (a knowledge graph for materials properties)”, which
is built on equations in which the variables are physical
properties of materials. Using this network concept to

express interrelationships of experimental data is a new
paradigm in data management for chemical sciences.

Case study 7: structural chemistry. Deposition of 3D
structural data into the Protein Databank (PDB) is a
requirement for the publication of protein structures,
resulting in research data estimated to be worth at least
US$12billion having been contributed to the database
over the past 40 years. Moreover, this central repository
results in an increase in research productivity worth
US$2.5billion annually (as of 2017)%. The accumulated
data within the PDB has enabled the development of the
recent AlphaFold* and RoseT TAFold” models for pre-
dicting the 3D structure of proteins solely on the basis of
their amino acid sequences. Beyond data management,
the biological and pharmaceutical fields have successfully
created data networks and knowledge graphs that — when
coupled with rapidly evolving graph learning methods —
enable learning of, for example, new biological features
and drug properties”.

Case study 8: X-ray absorption spectroscopy. X-ray
absorption spectroscopy (XAS) is a widely used exper-
imental technique for characterizing the geometric and
electronic structure of materials. Data science methods
could facilitate faster data analysis and recognition of
chemical features in measured elemental patterns. ML
models have been developed that can predict chemical
features from XAS patterns collected under the same con-
ditions as those of a relatively large training set, which
has been demonstrated using computed XAS spectra®.
Expanding the scope of these models to experimental
spectra could be enabled by aggregating XAS data from
dozens of beamlines worldwide that have collectively
acquired many thousands or perhaps millions of spectra
to date. However, variants of the technique rapidly com-
plicate the problem, ranging from fluorescence to electron
detection modes, and from hard X-ray-open-atmosphere
to soft X-ray-vacuum, as well as various in situ and oper-
ando measurements of chemicals or materials in chem-
ical reactors or other actively controlled conditions. As
a result, beyond the challenge of aggregating the data
itself, defining and representing the context of every
XAS measurement is difficult and must begin with well
tracked and machine-readable metadata. Nevertheless,
recent progress has been made on this front™, which is a
key step on the path to an XAS data network.

Recommendations
ML and AI are rapidly changing the meaning of exper-
imental knowledge. They provide rich information and
analytical tools that should be part of every scientist’s
toolbox. Of course, ML techniques must be used with
care: some of the challenges include trying to under-
stand whether an algorithm trained on one dataset can
be used to produce reliable answers about a different
dataset; whether a particular algorithm is robust to
noise or attempts to deceive it; what are the reasons for
the answers an algorithm provides; and whether these
answers are free of bias.

Nonetheless, even with these challenges, there are
tremendous opportunities for ML and Al to transform
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experimental chemistry. Capitalizing on these opportu-
nities will require active engagement of both the data
science and chemistry communities in using existing
tools, injecting domain-specific knowledge into their
design, and customizing and targeting these techniques
(FIC. 5). In the following, we outline several recommen-
dations that we hope will contribute to facilitating this
engagement.

Develop data science methods for chemistry
Chemists are increasingly incorporating data science
techniques into their research, and many early appli-
cations that used off-the-shelf methods have achieved
notable advances. To move forward, it is crucial to
understand the limitations of existing algorithms for
chemical datasets and to develop specific ML tools
for chemical problems that require new approaches.
Methods are needed that incorporate relevant physical
laws and other constraints to produce physically reason-
able solutions, provide internal consistency and capture
experimental uncertainty. Ways to incorporate known
physical laws might include representations that incor-
porate the appropriate symmetry behaviour of struc-
tures and physical interactions” (such as invariance and
equivariance” and isometry”) and the periodic trends in
the properties of elements'”. Such methods can form the
basis for new modes of experiment, including the relax-
ation of experimental control to enable the acquisition
of larger information throughput.

Recommendation. Develop new ML and Al representa-
tions and techniques specific to chemistry by partnering
with chemical and data scientists and train a complemen-
tary workforce of interdisciplinary experts that can lever-
age the methods in experimental design and analysis. This
training could take various forms, including the incor-
poration of ML into existing undergraduate laboratory
experiments'”'??, workshops and bootcamps'®’; dedi-
cated courses for ML and Al in chemistry'®; and graduate
specializations. Datasets and software reproducibility are
important. Journals should strongly encourage or require
that data and software are deposited in repositories that

adhere to FAIR (Findable, Accessible, Interoperable and
Reusable) principles. Peer review of data and code may
be necessary in addition to traditional content review-
ing. Data-centred journals, such as Scientific Data, Data
in Brief and Chemical Data Collections, will also have an
important role in disseminating citable datasets that have
been created independently of typical hypothesis-driven
research efforts.

Extend the reach and applicability of data-driven
approaches in the chemical sciences

Data-driven approaches are by nature interpolative and
typically obtain results by capitalizing on a library of
dense, nearby and known solutions. With datasets that
are large enough, this interpolative approach is often
sufficient for solving many scientific problems. We note
that purely interpolative methods typically fail when
one needs to extend predictions into new and unex-
plored regions of the parameter space or when dramatic
changes occur between sparse elements. Nevertheless,
even within the scope of pure interpolation, the power of
data science can be used to direct future research outside
the bounds of current measurements and observations'®.
As illustrated above, research in this direction can
potentially be applied to accelerate discovery.

Recommendation. Develop ML methods that work with
sparse representations in high-dimensional param-
eter spaces, to provide guideposts for understanding
the accuracy of interpolative measurements and the
applicability of extrapolative methods.

Transform research workflows by integrating
measurement and observation tools, robotics, data
pipelines and computational resources

Data science methods can accelerate decision making.
To exploit this possibility, we need integrated labora-
tory automation systems that enable algorithms and
workflows to enact processes in the laboratory, moni-
tor the results and deposit the resulting data into shared
repositories. Accelerating the experimental cycle is
especially valuable in shared facilities (such as synchro-
trons) but is equally needed in single-PI laboratories.
Together, these integrated systems have the potential
to establish a virtuous cycle — experiments conducted
by automated systems or robots that are ‘born digital,
which reduces barriers to data sharing and reuse,
and facilitates the development of better data science
methods — but there are considerable technical barri-
ers. Open-source hardware should be encouraged, with
relevant computer-aided design (CAD) files and con-
trol code deposited into appropriate repositories, such as
the Open Hardware Repository. Currently, this type of
data often appears in supporting information, but could
also be the primary topic of articles in journals such
as Reviews of Scientific Instruments and HardwareX,
which create citable records for equipment development.

Recommendation. Encourage a co-design approach
to hardware, software and algorithm development.
Interdisciplinary teams can often reimagine the entire
range of experimental workflows to embrace an
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accelerated approach that integrates measurements, data,
algorithms and computing. This approach is enabled by
developing both modular and complete solutions, with
an emphasis on interoperable and open hardware and
software. For successful collaboration, experts in dif-
ferent disciplines need to be connected through strong
scientific scope, shared personnel, and frequent commu-
nication and group discussions. The groups should thus
share a feeling of project ownership.

Integrate diverse data sources

Chemical data are diverse, consisting of spectroscopic
observations, structural information, process descrip-
tions, and many other types of measurement. Combining
different types of data sources provides stronger evi-
dence than any single data type. Often, crucial details
are present only in unpublished ‘failures), calibrations
or metadata. Although specific types of chemical data
have been aggregated (such as crystallographic data),
there are currently only limited automated mechanisms

by which individual experiments that comprise diverse
elements can contribute to a broader whole. Human
researchers excel at placing a new piece of data in the
context of the prior data and knowledge of their field,
but their reasoning that underpins these assessments
suffers from being slow, costly, biased and inconsistent.
AT methods for contextualizing data should be devel-
oped, which requires the establishment of a foundation
for automatic management of relationships in chemistry
data, in order to achieve the goal of a network of data.

Recommendation. Develop better ways of representing
networks of data that encode the relationships between
evidence in a machine-readable way. Create funding,
citation and other incentives for comprehensive data
sharing and to reduce technical and social barriers
to data deposition and access through the creation of
shared repositories and other mechanisms.
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