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ABSTRACT: Metal halide perovskite (MHP) derivatives, a promis-
ing class of optoelectronic materials, have been synthesized with a
range of dimensionalities that govern their optoelectronic properties
and determine their applications. We demonstrate a data-driven
approach combining active learning and high-throughput experimen-
tation to discover, control, and understand the formation of phases
with different dimensionalities in the morpholinium (morph) lead
iodide system. Using a robot-assisted workflow, we synthesized and
characterized two novel MHP derivatives that have distinct optical
properties: a one-dimensional (1D) morphPbl; phase ([C,H;,NO]-
[Pbl;]) and a two-dimensional (2D) (morph),Pbl, phase
([C4H,(NOJ,[PbL,]). To efficiently acquire the data needed to
construct a machine learning (ML) model of the reaction conditions
where the 1D and 2D phases are formed, data acquisition was guided
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by a diverse-mini-batch-sampling active learning algorithm, using prediction confidence as a stopping criterion. Querying the ML
model uncovered the reaction parameters that have the most significant effects on dimensionality control. Based on these insights,
we discuss possible reaction schemes that may selectively promote the formation of morph-Pb-I phases with different
dimensionalities. The data-driven approach presented here, including the use of additives to manipulate dimensionality, will be

valuable for controlling the crystallization of a range of materials over large reaction-composition spaces.

1. INTRODUCTION

Metal halide perovskite (MHP) derivatives are emerging
optoelectronic materials with tunable physical properties' ™
and applications in photovoltaic™® and ferroelectric devices,”
light-emitting diodes,®’ and lasers.”'® MHP derivatives have
been synthesized with diverse crystal structures, with their
metal halide frameworks exhibiting connectivities across one,"!
two,'* or three dimensions."> MHP dimensionality (1D, 2D,
and 3D) is a critical material parameter because it governs
physical properties such as optical absorption, luminescence
wavelength, charge transport, and stability.*~"¢

One strategy for controlling the dimensionality of MHP
derivatives is tuning the inorganic or organoammonium A-
cations that lie between metal halide [BX,]*™ octahedra in the
canonical ABX; perovskite unit cell. When A-cations are small,
with effective radii of 1.7-2.6 A (e.g, methylammonium),"”
three-dimensional (3D) MHP derivatives form. In contrast,
larger cations (>2.6 A) often give rise to lower-dimensional
MHP derivatives.'®'? When the cross-sectional area of the
cations is larger than 40 A%, MHP derivatives almost
exclusively exhibit zero-dimensional (0D) or one-dimensional
(1D) connectivities rather than two-dimensional (2D), owing
to steric hindrance.”® For example, heterocyclic organo-
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ammonium cations with six or fewer ring members are able
to form 2D MHP derivatives with lead iodide, while seven-
member and larger rings rarely form in 2D.*°~** Despite this
limited ability to predict the dimensionalities of heterocyclic
organoammonium lead halides, controlling dimensionalities for
MHP derivatives incorporating a wide range of cations is still a
major challenge.

One factor that complicates the prediction of MHP
dimensionality is that different phases in an A—B—X reaction
system (e.g., the 3D FAPbBr; and 2D FA,PbBr,,** where FA =
formamidinium) may form under different reaction conditions
(FA:Pb ratio), given a reaction of A-cations, metal (B>*)
cations, and halide anions (X™). Controlling dimensionality is a
practical challenge for device applications—mixed phases** in
MHP thin films can lead to low device performance.”®
Developing design rules for synthesizing MHPs with control-
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Figure 1. (a) Optical micrograph of a large crystal of the 1D “yellow” phase (scale bar: 1 mm). (b) Packing of [Pblg/,]™ chain structures in
morphPbl, (1D yellow phase). (c) Optical micrograph of a large crystal of the 2D “red” phase (scale bar: 1 mm). (d) Packing of [Pbl,,,1,/,]*" layer
structures in (morph),Pbl, (2D red phase). For (b) and (d), dark gray polyhedra represent [Pbly] octahedra, while purple, light gray, red, and blue
atoms correspond to iodine, carbon, oxygen, and nitrogen. Hydrogen atoms have been removed for clarity. (e) Diffuse reflectance spectra of ground
powders of morphPbl, and (morph),Pbl, in Tauc plots and absorbance units (in the inset). (f) PL spectrum of (morph),Pbl, (1., = 470 nm).

lable dimensionalities will drive increases in the performance of
real-world MHP devices. Furthermore, understanding the
kinetic and thermodynamic factors that influence dimension-
ality in a single cation-metal-halide (CMH) system will allow
us to design functional materials and their reaction pathways.
Nevertheless, it is still unclear how to control the
dimensionalities of MHP derivatives by tuning the reaction
parameters in a single CMH system. Multiple crystalline
phases in a single CMH system are typically discovered
through trial and error. This time- and resource-intensive
approach is particularly inefficient for crystallizing new MHP
phases because it can require simultaneous optimization of a
large number of experimental variables in high-dimensional
experimental parameter space. Insufficient sampling of reaction
spaces risks missing rare MHP phases and precludes a
comprehensive understanding of the formation of different
phases.

Machine learning (ML) and high-throughput experimenta-
tion (HTE) have been recently leveraged to accelerate material

discovery and design,”**” inspiring our efforts to apply these
tools to the crystallization of MHP derivatives.”® However,
even with HTE, it can be impractical to perform the large
number of experiments needed to train common ML models.
To overcome this challenge, researchers have utilized active
learning (AL),”**° a sequential learning method in which an
ML model is iteratively refined over repeated cycles of
experimentation through an algorithm that selects new
experiments based on the performance of the most recent
model. An efficient AL sampling algorithm increases the
learning speed of ML models and reduces the number of
experiments needed. This efficiency is beneficial for construct-
ing material phase diagrams;’' ™ AL has been used to
accelerate the acquisition of phase and composition diagrams
of multicomponent materials, including ferroelectric ce-
ramics,”* piezoelectric materials,”® phase-change materials,*®
catalysts,”” and MHP thin films.*® In these workflows, samples
have been typically labeled using data acquired from

https://doi.org/10.1021/acs.chemmater.1c03564
Chem. Mater. XXXX, XXX, XXX—=XXX


https://pubs.acs.org/doi/10.1021/acs.chemmater.1c03564?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.1c03564?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.1c03564?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.1c03564?fig=fig1&ref=pdf
pubs.acs.org/cm?ref=pdf
https://doi.org/10.1021/acs.chemmater.1c03564?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Chemistry of Materials

pubs.acs.org/cm

21733 existing datasets,’’ or high-throughput

36—-38
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characterization of existing material libraries.

Controlling the dimensionality of MHP derivatives requires
the analogous task of mapping the reaction conditions that
produce specific phases in different regions of synthetic
composition space. We hypothesized that an approach
combining AL and HTE would be advantageous for building
ML models that, given reaction conditions as inputs, predict
the phase and dimensionality of MHP products. Solution-
phase crystallization of materials presents a stringent test for
AL because each reaction tends to be more costly than a
simulation or measurement and can involve large numbers of
reaction parameters, reagents, and additives. These syntheses
are often governed by complex reaction networks® and
stochastic processes (e.g., nucleation) that can lead to noisier
and less predictable outcomes than observed with simulation
and characterization. These problems are particularly acute
when mapping phases across more than three dimensions.
When exploring such high-dimensional space, determining
when to stop AL experimentation is challenging®’ (and an
ongoing subject of research*') because one cannot determine
the actual accuracy of a model without synthesizing a large test
set that is representative of the entire experimental space. To
realize the potential of AL-guided material synthesis, there is a
strong need for robust AL workflows with clear stopping
criteria and tolerance for noisy, high-dimensional data.

In this work, we used AL + HTE to discover, control, and
understand the formation of MHP derivatives with different
dimensionalities in the morpholinium lead iodide (morph-Pb-
I) system. We focused on this reaction system because morph*
is a six-membered heterocyclic organoammonium that should
theoretically form a 2D MHP derivative with PbL,.”’"*
However, only 1D structures have been observed when morph
is combined with different metal cations (e.g., Pb**, Sb*") and
halides.**™* Using HTE, we successfully synthesized the 2D
MHP derivative in the morph-Pb-I system. We adopted and
modified an AL method to train ML classification models to
predict the dimensionalities of phases formed in this chemical
system. We established and validated a stopping criterion,
based on the model prediction confidence, for terminating
experimentation when the ML model was not improving
significantly. We used a predictive ML model to uncover the
reaction parameters that have the most significant effects on
dimensionality control. These insights, combined with density
functional theory calculations, allowed us to formulate a
plausible reaction scheme that rationalized the formation of
MHP derivatives with different dimensionalities in the morph-
Pb-I system.

2. RESULTS AND DISCUSSION

2.1. Benchtop Synthesis of Morpholinium Lead
lodide. MHP derivative crystals are grown using a range of
synthetic methods including seeded crystal growth,™ slow
evaporation,”' and inverse temperature crystallization.”” In this
work, to synthesize morpholinium lead iodide (morph-Pb-I)
structures across a range of dimensionalities, we used
antisolvent vapor-assisted crystallization (ASVC), a straightfor-
ward, room-temperature approach known to produce high-
quality MHP crystals suitable for structure determination using
single-crystal X-ray diffraction (sXRD).”> In initial experi-
ments, we manually performed ASVC reactions by exposing a
solution of morpholinium iodide and lead iodide (1:1
morph:Pb mole ratio) in dimethylformamide (DMF) to

saturated vapor of dichloromethane (DCM), the antisolvent
(scheme illustrated in Figure S1). These benchtop syntheses
yielded yellow crystals (Figure la). Structural determination
based on sXRD confirmed a new MHP derivative—
morphPbl;, crystallizing in the orthorhombic space group
P2,22; (No. 19). Full crystallographic details of this new
phase are given in Table S1; bond length and angles are listed
in Tables S2a and S2b, respectively. In morphPbl,, [PbI]*~
units are arranged in 1D chains of face-sharing octahedra
(Figure 1b). The powder XRD (pXRD) pattern of morphPbl,
matches the pXRD pattern simulated for the sXRD-derived
crystal structure (Figure S2a). Tauc analysis of the absorption
spectrum of the ground powder of morphPbl; indicates a
direct band gap of 2.69 eV (Figure le). No photoluminescence
(PL) is detected for this compound. Despite the large band
gap and the absence of PL, the 1D yellow phase could have
possible applications in second-order nonlinear optics®* and
piezoelectric devices™ owing to its noncentrosymmetric space
group (only ~18% of inorganic crystal structures reported are
noncentrosymmetric).’

2.2. Robot-Accelerated ASVC Perovskite Workflow.
Although we only observed a single 1D morph-Pb-I structure
with our isolated benchtop syntheses, 2D derivatives have been
predicted theoretically.”” To more comprehensively search for
morph-Pb-1 phases of different dimensionalities (especially
2D), we developed a robot-accelerated perovskite workflow
based on high-throughput (HT) ASVC to explore a much
larger reaction-composition space (see Figure S3 for the
workflow). Similar to our previous robot-assisted perovskite
investigation and discovery workflow,”® our HT-ASVC work-
flow utilizes a liquid-handling robot to dispense perovskite
precursor solutions into reaction vials. We designed a custom,
multiwell ASVC microplate (see Figure S3; CAD file
available®”) that allowed our liquid-handling robot to prepare
24 parallel ASVC reactions on the 500 pL scale. Additional
details for the HT-ASVC process are described in the
Supporting Information. After crystallization, we photographed
the reaction vials and recorded the morphologies and colors of
the solid products. Then, we characterized the solid products
using HT optical microscopy, absorption and PL spectroscopy,
and pXRD (HT characterization workflow illustrated in Figure
S4). Representative optical micrographs, absorption/PL
spectra, and pXRD patterns are shown in Figures S5—S8.

2.3. Primary Screening of 3D Reaction-Composition
Space. Using our robotic workflow, we performed primary
screening of the reaction-composition space of Pbl, concen-
tration ([Pb]), morphl concentration ([morph]), and formic
acid concentration ([FAH]). We chose this reaction space
because our previous HTE work has demonstrated that tuning
the analogous concentrations in different ammonium lead
halide systems resulted in the successful synthesis of 19 MHP
derivatives from 45 A-cation candidates.”® We used the
Kennard-Stone (KS) algorithm®*? to uniformly sample 48
primary reactions from grid points generated in the allowed
reaction-composition space (concentration constraints shown
in Table S4). KS and grid-point generation algorithms are
implemented in the ESCALATE software pipeline we
developed to manage HT experiments and capture data.’’

Unlike benchtop syntheses, primary HT-ASVC screening
produced both yellow solids and red solids with an unknown
structure. Structural determination based on sXRD confirmed
that the red crystals (Figure 1c) are a new MHP derivative
with formula (morph),Pbl, in the monoclinic space group C2/
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¢ (No. 15, see Tables S1, S3a and S3b for details). In this
crystal structure, [Pblg]*” octahedral units are corner-
connected to form 2D layers (Figure 1d). Therefore, we
successfully demonstrated the efficacy of the robotic workflow
in the discovery of a new 2D phase in the morph-Pb-I system.
This 2D phase was not found during our benchtop syntheses
nor has it been experimentally reported in the literature. The
2D red phase has optical properties distinct from the 1D
yellow phase. The absorption spectrum of the 2D phase
indicates a direct band gap of 2.15 eV, which is 0.54 eV lower
than that of the 1D phase (Figure le). Under 470 nm
excitation, the 2D phase exhibits a broad emission peak at 588
nm (Figure 1f), which could be utilized in the application of
light-emitting diodes.”’ Unlike the 1D phase, the 2D phase has
a centrosymmetric crystal structure.

Visualizing the distribution of reaction outcomes across the
[morph]—[Pb]—[FAH] composition space (Figure 2) illus-

@ Clear solution
@ Red phase
Yellow phase

Experimental convex hull

16
=
T8
<
=
03 1 2
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[morph]/;w 0 O \9‘0\\\1\

Figure 2. Convex hull of the allowed reaction-composition space
(black lines) and the primary screening experiments (colored circles)
contained within it, as a function of [Pb], [morph], and [FAH]. The
blue circles indicate a clear solution with no crystals. The red and
yellow circles indicate reaction outcomes of 2D (red) and 1D
(yellow) phases, respectively.

trates how reaction conditions determine the crystallization of
the 1D and 2D (red and yellow) phases. For each HT-AVSC
experiment in this space, we assigned a reaction outcome from
one of the three classes: (1) clear solution, (2) red phase, and
(3) yellow phase (see “Product Scoring Rubric Based on
Human Inspection” in the Supporting Information). For
mixtures of yellow and red products, we labeled the reaction
outcomes based on the major product. In general, clear
solutions (no solids) were observed below 6 M FAH. Above 6
M FAH, the yellow phase formed at lower morph:Pb ratios
(~1), while the red phase was more likely to form at higher
morph:Pb. This dependence on the morph-to-Pb ratio is due
to the different chemical stoichiometries of the two phases
(morph:Pb = 1 in the yellow phase and 2 in the red phase).
Tuning the reactant ratio per target-compound stoichiometry
has been utilized previously in several CMH systems, such as
FA-Pb-Br**. Therefore, not only did primary HT-ASVC
screening of the morph-Pb-I system identify a 2D phase, but
the resulting dataset also provided guidance for controlling the
dimensionality of morph-Pb-I in 3D reaction-composition
space.

2.4. Modified Workflow To Screen Additives in Six-
Dimensional Reaction-Composition Space. A prevailing

trend in the fabrication of MHP devices is to use mixed
solvents and additives to modify the crystallinity and
morphology of MHP thin films, which can improve device
performance.”” However, the effect of these solvents and
additives on the dimensionality of MHP products is still
unclear. To understand such effects, we simultaneously
incorporated four additional solvents and additives into our
HT-ASVC reactions. These included three common solvents
for MHP syntheses: DMF, dimethyl sulfoxide (DMSO), and y-
butyrolactone (GBL). These solvents were selected because of
their distinct physical properties, such as their polarity®® and
their affinity for coordinating metal ions®” and for accepting
hydrogen bonds.”* We also included water as an additive
because our previous study demonstrated that water content in
perovskite precursor solutions affects the crystallinity of MHP
single crystals and thin films.”® Unlike DMSO or DMF, water
and formic acid are both hydrogen bond donors and
acceptors.”> When coexisting in solution, DMSO (or DMF)
and water (or formic acid) are likely to form hydrogen bonds.
Our new reaction-composition space was thus composed of six
reaction parameters: [morph]; [Pb]; the volume fraction of
DMSO, Vipuso; the volume fraction of GBL, Vigpy; [FAHJ;
and the concentration of water, [H,0]. A seventh parameter,
Vipmes Was not included in this reaction space because it is
calculated as 1 — Vipyso — Viger- The modified robotic-
synthesis procedure is described in the Supporting Informa-
tion, and the constraints of all six parameters are given in Table
SS. In the constrained six-dimensional (6D) space, we
generated a pool of 469,326 possible reaction compositions
located on a fixed grid.

To rapidly characterize the outcomes of reactions performed
in this extended 6D space, we acquired absorption spectra on
products with a multifunction plate reader. Automated scripts
classified reaction products with absorption edges >2.3 eV as
the “yellow phase” and the reactions with absorption edges
<2.15 eV as the “red phase” (see Figure S6a). If no solids
formed, we labeled the reaction as a “clear solution.”
Representative pXRD patterns (Figures S7 and S8) verified
that the diffraction peaks of reaction products correspond to
the phases predicted using absorption edges.

2.5. Exploring the Role of MHP Additives Using AL.
To understand how combinations of additives contribute to
the dimensionality of crystals in the morph-Pb-I system, we
sought to train an ML model to predict the phase and
dimensionality (i.e., 1D yellow phase or 2D red phase) for each
combination of reagents in our 6D reaction pool. To train such
a model efficiently in such high-dimensional space, we
developed an uncertainty-based AL method to perform
repeated cycles of HT-ASVC microplate reactions that
iteratively refine the ML model. For each cycle in our method,
an AL algorithm selects the next batch of reactions to perform
by identifying the regions of the 6D reaction-composition
space, where the ML model has the highest prediction
uncertainty.29’67

To initiate AL, we performed a uniform sampling of 48
reactions using the KS algorithm. Because visualizing 6D data
graphically is difficult, we projected reaction outcomes onto a
lower-dimensional space using t-distributed stochastic neigh-

borhood embedding (t-SNE)®® (Step 0 in Figure 3). In this
initial sampling, we observed all three classes of reaction
outcomes. We tested Random Forest (RF) models and
Pearson VII universal function kernel-based support-vector
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Figure 3. Illustration of the diverse-mini-batch-sampling AL loop. Uniformly sampled seed reactions (Step 1) are used to train an RF model (2),
which is then used to calculate prediction uncertainties (3) for the entire pool of potential reactions previously generated in 6D experimental space.
In subsequent cycles of AL, reactions are selected using a diverse-mini-batch-sampling algorithm that prioritizes reaction conditions where model
predictions have high uncertainty (4). These reactions are performed using a synthesis robot (5), and the data are used to retrain the model and
perform additional cycles of active learning (2—5). All AL-sampled reactions (colored scattered circles) and prediction uncertainty distributions
(colored maps) are projected onto 2D space using t-distributed stochastic neighborhood embedding (t-SNE).

machine (SVM_PUFK) models, optimizing their hyper-
parameters on the initial dataset using fivefold cross-validation
(CV). We selected the RF model as the basis for our AL
algorithm because it exhibited the highest CV accuracy of 0.80
+ 0.09 (Table S6). The RF model, trained by the initial dataset
in Step 9’ is used to predict reaction outcomes (yellow, red,
or no crystals) and calculate the prediction probabilities P for
each member of the reaction pool. P is defined as the
probability of the reaction outcome predicted to have the
highest likelihood of forming (e.g, P = 0.6 if prediction
likelihoods are 0.2 for the clear solution, 0.6 for the red phase,
and 0.2 for the yellow phase). Then, the prediction uncertainty
(U) for each point is calculated as 1 — P (Step 9 in Figure
3). The distribution of U shows that the regions with high
uncertainty (U > 0.5) are found where multiple compounds
form under similar conditions.

Our AL algorithm is designed to generate the next batch of
24 robot reactions based on the points in reaction-composition
space with highest U. Simply selecting the 24 reactions with

the highest U, however, would result in reactions with very
similar conditions. To avoid such over-sampling in a small
region, we implemented the diverse-mini-batch-sampling
algorithm,69 which divides high-uncertainty reactions (U >
0.5) into 24 mini batches using k-mean clustering,70 weighted
by U. Then, the centers of mass of the 24 mini batches are
selected as the set of reactions to perform in the next AL cycle.
As shown in Step o in Figure 3, the selected reactions have

diverse reaction conditions and are located in regions of high
U. After this batch of reactions is performed and characterized
in Step e, the reaction outcomes are collected and added to
the dataset. The updated dataset is then used to retrain the RF
model, at which point, the next AL cycle (@—e)
commences.

A critical outstanding question in AL-guided materials
synthesis is when to terminate the AL loop. In principle, the
RF model performance should be evaluated during AL to
terminate the AL process when the model ceases to improve,
but such evaluation is practically challenging because a large
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test set is not available to evaluate the RF model. To determine
the stopping point for our AL runs, we monitored the average
uncertainty (AU) and prediction confidence (PC) of the RF
model after each AL iteration.”" AU and PC are defined in eqs
1 and 2, respectively:

AU = 2 Y
N (1)
PC = Zszl (Pk - Pli)
N ()

Here, N = 469,326 is the number of potential reactions in
the reaction pool ; Uy is the prediction uncertainty for the kth
reaction in the reaction pool; P, and Py are the prediction
probabilities of the most likely class and second most likely
class for the kth reaction. A rising PC (decreasing AU) over AL
cycles indicates that AL is still improving the RF model. A
decreasing PC (increasing AU) suggests that the RF model has
ceased to improve, and AL should be stopped. Heuristically,
PC usually increases at the beginning of AL and then decreases,
which indicates that ML models were often improved by AL in
the first several cycles and then remained little changed.”"”* In
general, adding new data to the training set does not reduce
model performance, so decreasing PC implies a lack of
improvement rather than a reduction in prediction quality.

After the first AL iteration of 24 reactions, the PC of our RF
model increased from 0.41 to 0.45 and AU decreased from
0.34 to 0.32 (Figure 4a), which indicates an improvement of
the RF model. Surprisingly, the second AL iteration reduced
PC and increased AU, suggesting that experimentation should
stop, as the model is no longer improving with the added data
points. To confirm the downward trend of PC (and upward
trend of AU), we performed three more AL iterations after the
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Figure 4. (a) Prediction confidence and average uncertainty of the RF
model in each iteration of AL. (b) CV accuracies of the Gaussian
process and RF models on the dataset collected after each iteration of
AL (error bars represent the standard deviation across fivefold CV).

second iteration. PC continued to decrease, so we ceased the
AL experiments after the fifth iteration (the practical stopping
point). The dataset from AL iterations 2—S5 (shown in Figure
S9) is included in the training set because expanding a training
set rarely reduces the prediction accuracy for the test set.

To justify the practical stopping point, one could, in
principle, calculate the prediction accuracy of the RF model
(trained by initial sampling +5 AL iterations) over a large test
set representative of the overall reaction pool. However, the
time and labor required to collect this test set defeat the
purpose of AL,”' which is to minimize the number of
experiments. Here, we performed three analyses to support
the conclusion that we have reached a reasonable stopping
point after five AL iterations.

A good ML model should show modest variance during the
last few AL iterations before the practical stopping point (from
the second to fifth iteration),” shown as small changes in its
CV accuracy when including the last few AL runs in the
training set. It is worth noting that because the training set has
been collected, we are not limited to using RF models in the
search for the best ML model. Our first analysis calculated the
CV accuracies of multiple ML models after different AL
iterations (Table S7 and Figure S10). After the Sth AL
iteration, the Gaussian process (GP) model shows the highest
CV accuracy of 0.78 + 0.04 (Figure 4b) and close to the
theoretical limit of 0.78 (calculated by overfitting the dataset
with deep neural networks, shown in Figure S11).”* The CV
accuracy is well above the random-classification (control)
accuracy of 0.34 and the majority-class vote accuracy of 0.41.
As the most accurate ML model, the GP model shows only a
slight variation in the CV accuracy from the second to the fifth
AL iteration, which indicates an insignificant variance in the
GP model and suggests that the AL experiments have reached
the stopping point.

If the most accurate model, the GP model (trained on the
dataset after the Sth AL iteration), can accurately predict
unseen reaction conditions, AL has likely reached its stopping
point. Therefore, in our second analysis, we performed 24
reactions located far from the tested reactions (initial sampling
+S5 AL runs) in the reaction-composition space (Figure S12a).
The 24 reactions were selected using the KS algorithm. The
GP model, trained on the tested reactions, shows a prediction
accuracy of 0.92 for the unseen 24 reactions (Figure S12b),
which leaves little room for improvement and indicates that AL
has reached its stopping point.

Testing the AL algorithm on a synthetic dataset (with labels)
allows us to monitor the model prediction accuracy for the
whole dataset and to investigate whether the stopping criterion
based on prediction confidence is reasonable. As the final
analysis, we ran the AL algorithm on a synthetic dataset with a
similar structure to our experimental dataset (see Figure S13
and the Supporting Information for details). After AL
commences, the RF model’s PC increases until the fourth
AL cycle, after which PC decreases (Figure S14a). Thus, the
fourth iteration is considered as the theoretical stopping point.
Like our AL experiment, the decreasing trend can be
confirmed with a few additional iterations. Meanwhile, the
prediction accuracy for the whole dataset rapidly increases
from 0.48 (after initial sampling) to 0.82 (after four AL
iterations) (Figure S14b). After the 4th cycle, the accuracy
plateaus, eventually stabilizing at 0.85 after 100 iterations.
Therefore, the model performance has only a 4% improvement
with additional 96 AL iterations after the theoretical stopping
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point, confirming that the stopping criterion based on
prediction confidence is reasonable. Clear stopping criteria,
such as that demonstrated here, will benefit AL-assisted
materials and chemistry research.

To summarize, we determined the AL stopping point based
on the changes in prediction confidence and performed three
tractable analyses to support the stopping point. Using diverse-
mini-batch AL and a stopping criterion based on prediction
confidence, we only needed to explore at most 0.035% of the
reaction pool to successfully build and confirm the stopping
point of ML models that accurately predict the formation of
the 1D and 2D MHP derivatives in the morph-Pb-I system.

2.6. Importance of Features and Their Effect on
Dimensionality. A predictive ML model can be used to
understand the physicochemical process of morpholinium lead
iodide crystallization. To uncover the reaction parameters that
have the most significant influence on morph-Pb-I dimension-
ality, we performed a permutation-feature-importance anal-
ysis”> (see details in the Supporting Information) on the RF
model trained by the portion of the dataset that includes only
yellow- and red-phase outcomes. Feature-importance analysis
revealed that [Pb], [morph], [FAH], and [H,O] are important
for controlling the formation of 1D and 2D phases (feature
importance > 0.1), while the compositions of solvents (i.e.,
Vipmso and Vigpy) are much less important (feature
importance < 0.05) and can be ignored (Figure Sa). To
validate the feature downselection, we retrained the RF model
with the yellow/red dataset and used only [Pb], [morph],
[FAH], and [H,0] as features. Similar CV accuracies were
observed compared to the model trained by the full set of
features (Figure Sb), suggesting that the feature selection is
effective. This analysis is corroborated by the visually
distinguishable boundary between yellow and red phases in
the parameter space of In([morph]/[Pb]), [FAH], and [H,O]
(Figure Sc).

To determine whether the important features have positive
or negative effects on the formation of the yellow and red
phases, we developed a data-driven approach that combines
logistic regression (LR) modeling and statistical hypothesis
testing. Using a “crystals only” dataset containing only
outcomes that produced solids, we performed LR using only
[Pb], [morph], [FAH], and [H,O] as inputs, and with the
outcomes labeled as “1” for the yellow phase and “0” for the
red phase. Because the LR model demonstrated a reasonable
CV accuracy of 0.81 + 0.07, the sign of the slope can be
treated as the direction of the correlation between the
corresponding feature and yellow phase formation. To test
the hypotheses with statistical significance, we used boot-
strapping’® to sample the “crystals only” dataset 1000 times.
We fit the 1000 samples into the LR model and obtained a
distribution of slopes for each important feature (Figure S16a).
The slopes of [morph], [Pb], [FAH], and [H,0] are —2.33 +
0.24, 2.37 + 0.16, 1.09 + 0.24, and 1.51 + 0.22, respectively.
Based on this LR analysis, we hypothesized that when solid is
formed, [morph] has a negative effect on yellow phase
formation while [Pb], [FAH], and [H,0] have positive effects.

To further validate the correlations between reagent
concentrations and crystal phases, we performed one-tailed
statistical hypothesis testing.”” We defined one null hypothesis
for each feature: for the yellow phase formation, [morph] is
hypothesized to have positive or no effect while [Pb], [FAH],
and [H,0] are hypothesized to have negative or no effect.
Given the mean values and standard errors of the slopes, we
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Figure 5. (a) Permutation-feature-importance of the RF model
trained by the yellow and red phase reactions. (b) CV accuracies of
the RF model on predicting yellow phase vs red phase, with all
features (black line) and only [morph], [Pb], [H,0], and [FAH] (red
line). (c) Outcomes of the yellow and red phase reactions as a
function of In([morph]/[Pb]), [FAH], and [H,0].

rejected all four null hypotheses with a confidence level of 99%.
Therefore, all four features have the hypothesized effects on
the yellow phase formation. Using the same approach, we
discovered that when solid is formed, [morph] has a positive
effect on red phase formation while [Pb], [FAH], and [H,0]
have negative effects.

2.7. Understanding the Underlying Physicochemical
Process of Dimensionality Control. The effects of [Pb] and
[morph] on the dimensionality of morph-Pb-I perovskite
derivatives can be largely explained by the chemical
stoichiometries of the red and yellow phases. The phys-
icochemical process through which additives (i.e., water and
formic acid) influence the dimensionality is still unclear. To
understand this physicochemical process, we studied both the
thermodynamics and kinetics of the ASVC reaction. First, we
investigated whether the reaction is under thermodynamic
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control. We calculated the total energy of the yellow phase and
red phase using density functional theory (DFT).”® DFT
calculations show that the yellow phase is slightly more stable
than the red phase. However, the formation energy difference
between these two phases is negligible (AEg,, = 6.8 kJ per
mole of Pb) and within the typical intrinsic error of DFT
(~0.1 eV or ~ 10 kJ/mole).” Thermogravimetric analysis
(TGA) shows that the thermal decomposition temperatures
for the yellow and red phases are close (240 and 200 °C,
respectively, shown in Figure S17), which agrees with DFT
results. DFT calculations also show that only a small amount of
energy (33.77 kJ/mol) is needed to convert the yellow phase
to the red phase in the solid state (Scheme 1). Theoretically,

Scheme 1. Solid-State Conversion of the Yellow Phase to
Red Phase

morphPbly + morphl ——————— (morph),Pbl,

AE = 33.77 kj / mol

this conversion can be achieved by mechanochemical grinding,
which provides an energy of 95—112 kJ/mol.** Ultraviolet—
visible (UV—vis) absorption spectra show that at room
temperature, the yellow phase can be converted to the red
phase in the solid state with one equivalent morphl and
manual grinding (Figure 6). The room-temperature synthesis
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Figure 6. UV—vis absorption spectra of the red phase, yellow phase,
and yellow phase ground with additional morphl. The inset
photographs are powders of the yellow phase (left) and the yellow
phase ground with morphl (right).

of ASVC and the small energy difference between the 1D and
2D phases suggest that the formation of morph-Pb-I phases
with varying dimensionalities is not under thermodynamic
control.

The small energetic difference between the 1D and 2D
phases provides the opportunity for additives such as H,O and
formic acid to exert influence on the dimensionality of the final
crystals. LR correlates the use of H,O and FA with the
formation of the 1D yellow phase, but further exploration of
the mechanistic origins of such phase selectivity is needed.
Experimental and computational investigations of perovskite
formation pathways have identified key prenucleation inter-
mediates in the form of 1D chains of Pbl, coordinated with
solvent and additive (e.g., H,0) molecules.*' ™** These 1D
Pbl, oligomers, shown in Scheme 2, may be converted into the
1D lead iodide frameworks in yellow-phase morphPbl; or may
stack into the 2D lead iodide frameworks of the red phase.

Scheme 2. Possible Reaction Scheme for the Formation of
the 1D Yellow Phase and 2D Red Phase
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Because intramolecular hydrogen bonding in proteins and
polymers has been observed to alter their coordination with
metal ions,** intrachain H-bonding induced by protic additives
may play a role in the phase selectivity imparted by additives in
perovskite crystallization. H-bonding between additive and
solvent molecules coordinated to adjacent Pb** ions on the
same 1D Pbl, chain could geometrically strain metal—ligand
bonds (Scheme 2), promoting the dissociation of H-bonded
ligand pairs.*” Faster dissociation of ligands on neighboring
sites could promote the formation of the 1D yellow phase by
allowing faster conversion of the 1D prenucleation complexes
to the 1D lead iodide frameworks of the morphPbl; phase.
Meanwhile, slower dissociation could make 1D Pbl,
intermediates more likely to pack with other 1D chains to
form the 2D lead iodide framework of the red (morph),Pbl,
phase. A more detailed mechanism following this reasoning is
provided in Scheme S1 in the Supporting Information. If
validated experimentally, the proposed scheme suggests that
H,O and FA additives selectively promote the formation of the
1D morphPbl; phase by modulating the reactivity of PbI,
intermediates via intrachain hydrogen bonding.

3. CONCLUSIONS

Using a robotic workflow based on ASVC, we synthesized two
novel MHP derivatives [1D morphPbl; and 2D
(morph),Pbl,] with distinct optical properties. Although the
existence (but not crystal structures) of 2D MHP derivatives
based on morpholinium has been postulated theoretically, the
synthesis and characterization of a 2D derivative has not been
reported until this work. We demonstrated the efficacy of the
KS sampling algorithm + robotic workflow in finding rare
MHP derivatives. Using the uncertainty-based AL method with
decreased prediction confidence as a stopping criterion, we
sampled only 0.035% of the reaction-composition space to
build a predictive ML model to classify the reaction conditions
where 1D and 2D phases are formed. By analyzing the feature
importance of the predictive ML model, we elucidated that
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[Pb], [morph], [FAH], and [H,0] have significant influence
on the dimensionality control in the morph-Pb-I system. Using
these data, along with DFT calculations, thermogravimetric
measurements, and mechanochemistry observations, we ex-
plored the mechanistic origins of the selective formation of the
1D and 2D phases. In one possible scheme, water and formic
acid may accelerate the formation of the 1D phase via
intrachain hydrogen bonding, which could be observed with
other A-cations and MHP systems. Our strategy of using
additives to control dimensionality has the potential to be
applied in many other CMH systems. With the AL stopping
criterion developed and tested in this work, the AL + HTE
approach will be valuable for any material research that
benefits from predicting and controlling different phases/
compounds in a vast reaction-composition space.

4. METHODS

4.1. Materials. Lead iodide (Pbl,) (99%), formic acid (FAH)
(>95%), dimethylformamide (DMF) (99.8%), dimethyl sulfoxide
(DMSO) (299.5%), and dichloromethane (DCM) (>99.8%) were
purchased from Sigma Aldrich Chemicals. y-Butyrolactone (GBL)
(>98%) was purchased from Spectrum Chemical. Morpholinium
iodide (morphl) (98%) was purchased from GreatCell Solar.

4.2. Robotic Workflow. Our HT-ASVC workflow utilizes a
Hamilton Microlab NIMBUS4 liquid-handling robot equipped with
four independent micropipettors. Stock solutions of PbI,-morphl
mixture solution and morphl solution were prepared based on
experimental data entry files generated by ESCALATE® using the
solubility data. After stock solution preparation, all reaction
components (i.e., the stock solutions, pure solvents, and additives)
were placed in programmatically designated locations on NIMBUS
operation deck. A synthetic flow chart describing stock solution
preparation and robotic procedures is shown in Figure S3 in the
Supporting Information. A customized robot-compatible crystalliza-
tion block, containing 24 pairs of wells, was placed on the Hamilton
Heater Shaker module. For one pair of wells in the block, perovskite
stock solution occupied one well, and the other well contained the
antisolvent (DCM). The 8 X 43 mm (diameter X height) glass
scintillation vials were used as reaction and antisolvent vessels. The
vials were maintained at 75 °C during the addition of the stock
solutions for dissolution. Formic acid was added to each reaction vial,
followed by 15 min of shaking to avoid premature precipitation of
Pbl,, morphl, or perovskite. After vortexing, the crystallization block
was cooled to room temperature before DCM was added to the
antisolvent wells in the crystallization block. After DCM addition, we
manually sealed the block with a metal cap and stored the block at 20
°C without disturbance for 16 h. Additional details are given in the
“Robotic Workflow” section in the Supporting Information.

4.3. Characterization. Powder XRD (pXRD) measurements
were performed on a Bruker AXS D8 Discover GADDS X-ray
diffractometer with a Vantec-500 area detector and operated at 35
kV/40 mA with a Co Ka source with 1.79 A wavelength. UV—vis
absorption spectra were collected using an Agilent Cary-5000 UV—
vis—near-infrared (NIR) spectrophotometer with an internal diffuse
reflectance accessory. PL spectra were measured using a Horiba Jobin
Yvon Fluorolog-3 spectrofluorometer and collected from 530 to 720
nm with 1 nm wavelength steps and 0.01 s integration time per step.
TGA was performed using TA Instruments Q5500 TGA-MS. The
sample weight change was measured from room temperature to 450
°C with a ramp rate of 10 °C/min under nitrogen. HT pXRD
measurements were performed on glass slides in a customized sample
holder on the same Bruker X-ray diffractometer. The sample locations
are programmatically defined in the Bruker GADDS software. HT
UV—vis—NIR absorption spectra were collected using a custom-built
reflection-mode UV—vis—NIR absorption spectrometer, which has a
motorized XY stage to enable automated measurement. The spectra
were measured from 350 to 2500 nm and averaged over 100
acquisitions (1 s/acquisition). HT PL spectra were collected using a

Biotek Synergy 4 UV—vis absorption/fluorescence microplate reader.
The PL spectra were measured from 540 to 720 nm with 450 nm
excitation. HT optical micrographs were acquired using a Biotek
CytationS Cell Imaging Multimode Reader with a 4X objective lens.

4.4, Reaction Outcome Scoring. All AL reactions from the
modified workflow were scored using the UV—vis spectra of the
products. The reactions from primary screening were scored by
human inspection, with outcomes categorized into three classes: (1)
Clear solution: no solid observed in the solutions. (2) Red phase: red
crystals or powder are the major solid products. (3) Yellow phase:
yellow crystals or powder are the major solid products.

4.5. Software and ML. Our custom-developed pipeline software,
ESCALATE,” was used to specify experimental parameters in robot
readable files, provide instructions for human operators, and capture
experiment results and observations. All algorithms in this work were
written in Python 3.6 in Jupyter notebooks using the following
libraries: Numpy 1.18.0, Pandas 0.22.0, Scipy 1.3.0, Matplotlib 3.1.0,
Scikit-learn 0.21.3, and modAL 0.3.5. We used a “Stratified Shuffle
Split” method from Scikit-learn to generate training/testing datasets
for CV of ML models. In the case of fivefold CV, there are five
different train/test splits on the dataset: in each split, 80% of the data
were used to train the ML model, while 20% of the data were reserved
for testing. The testing sets were randomly drawn from whole datasets
in a stratified style (ie., testing sets have the same percentage of
samples of each target class as the whole datasets). Before each
drawing, the datasets were shuffled, so the testing datasets are not
necessarily exclusive between splits. CV accuracies were calculated by
averaging the prediction accuracies of five different train/test splits
created by CV on the dataset. Our experimental results were
interpreted as either two-class or three-class classification problems. In
the two-class case, “yellow phase” outcome was considered as a
“positive” result while “red phase” outcome was considered as a
“negative” result. The “clear solution” outcomes were excluded. In the
three-class case, we calculated the overall prediction accuracy by
averaging the prediction accuracies from all possible one-vs-all
classifications [e.g, yellow phase (positive) vs nonyellow phase
(negative)].
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