PROPAGATION OF CHAOS FOR THE CUCKER-SMALE SYSTEMS UNDER
HEAVY TAIL COMMUNICATION

VINH NGUYEN AND ROMAN SHVYDKOY

ABSTRACT. In this work we study propagation of chaos for solutions of the Liouville equation
derived from the classical discrete Cucker-Smale system. Assuming that the communication kernel
satisfies the heavy tail condition — known to be necessary to induce exponential alignment — we
obtain a linear in time convergence rate of the k-th marginals f(k) to the product of k solutions
of the corresponding Vlasov-Alignment equation, f®*. Specifically, the following estimate holds in
terms of Wasserstein-2 metric

(1) Wa(f, 1&%) < C\/Emin{l, \/t—ﬁ}

For systems with the Rayleigh-type friction and self-propulsion force, we obtain a similar result
for sectorial solutions. Such solutions are known to align exponentially fast via the method of
Grassmannian reduction, [10]. We recast the method in the kinetic setting and show that the
bound (1) persists but with the quadratic dependence on time.

In both the forceless and forced cases, the result represents an improvement over the exponential
bounds established earlier in the work of Natalini and Paul, [12], although those bounds hold
for general kernels. The main message of our work is that flocking dynamics improves the rate
considerably.

1. BACKGROUND AND MAIN RESULTS

One of the fundamental questions of the mathematical theory of large systems of particles is a
derivation and formal justification of the corresponding kinetic models. Among the many systems
describing collective phenomena this question has been successfully settled for the Cucker-Smale
model describing the basic mechanism of alignment [3, 4]:

T; = vj, z;(0) = 29 e R™,

(2) 1
v = NZ D —v), vi(0) =) e R™

Here ¢ is a non-negative non-increasing smooth communication kernel. The corresponding Vlasov-
Alignment equation is given by

3) Of +v-Vaof + Vo (fF(f) =0, [f(0) = fo:R™ >Ry,
where
F(P).v) = | ofa —)(w — ) f(y..1) dydw.

A formal derivation of (3) via the BBJKY hierarchy was performed in Ha and Tadmor [9], and
rigorously via the mean-field limit in Ha and Liu [8].
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The hierarchy approach is based upon the classical idea of propagation of chaos, which postulates
that the particles (z1,v1, ..., 2N, vy) whose joint probability distribution f N is given by the solution
to the Liouville transport equation

N N
(4) fN + D v Va fN + )V, - (FVEY) =0,

i=1 i=1

would gradually decorrelate as N — oo if initially so

(5) RO =fEN, for R >Ry,
and their individual distributions would evolve according to (3). In other words,
k
(6) N o1®.. @@L @1y — [ [(f.e5),  peCy(R™M™).
j=1

The mean-field limit on the other hand, is based on the weak convergence of a sequence of
empirical measures built from solutions to (2),

1 N
NZ zz C@(SvI f

In fact, a more detailed analysis done in [7, 13] establishes Lipschitz continuity of measure-valued
solutions to (3) with respect to the Wasserstein metric,

Wz, 1) < C(E)Wp(po, 1o)-

It is well-known, however, that propagation of chaos and the mean-field limit (in a somewhat
more specific sense) are equivalent, see Sznitman [14]. In fact, (6) holds if and only if for any
¢ € Lip(R?") one has

N 2

(7) E@(t)=f p(xi(t), vi(t) — (fr0)| [N dXodVp — 0,

where Xo, Vj are the initial conditions for the characteristic flow {z;(t), v;(t)} ;. Note that initially
E,(0) — 0 by a direct verification. Technically, since not every initial ensemble Xy, V{ in the support
of ngN forms an empirical measure weakly close to fp, the limit (7) does not directly follow from
[7, 8, 13]. However, one can restore it using similar estimates on the deformation of the flow-map
of (2) and coupling with the characteristics of (3).

In any case, Snitzman’s general principle seems to provide little quantitative information on the
rate of propagation in (6) as it avoids using any specificity of the system at hand. For stochastically
forced systems, the work of Bolley, Canizo and Carrillo [1] establishes such a quantitative estimate
on the Wasserstein-2 distance:

k
(8) m%#%?hgaﬂwﬁgﬁ VE< T

Recently, Natalini and Paul addressed the deterministic case in [12] and with additional chemotaxis
forces in [11]. For the forceless system, the estimate carries exponential dependence in time,

9 Wa, £ < cely |

The estimates (8), (9) are finite-time bounds in spirit, in the sense that they do not take into
account any flocking long-time behavior of the system. In this present work we raise the question:
can one improve upon the time dependence in the deterministic case (9) when the system is known
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to flock exponentially fast? It is the result that goes back to Cucker and Smale [3] and improved
and extended in [2, 8, 9] that the system (2) with a heavy tail radial communication,

(10) j o(r

aligns with an exponential rate. Let us give a quantitative summary of this result for future
reference, see also [13] for details.

Proposition 1.1. Suppose ¢ satisfies (10). For any solution to (2) with initial data in (Xo, Vo) in
a compact domain Q < R>™V the following flocking estimates hold:
11 i —xi| =D < o — | < Age t(P)
. L C el S A
where Ag is the initial velocity fluctuation and D depends only on the initial diameter of the flock
and ¢.

Similarly, for any solution f to (3) with initial compact support one has

(12) sup diam supp f; = D < o0, max v — 0" < Age 1P,

t>0 (x’,v’),(az”,v”)Esupp ft
With the use of this additional flocking information we will improve the estimate (9) to being
linear in time.

Theorem 1.2. Suppose ¢ satisfies (10), and let fo € CH(R®) be an initial distribution with a
compact support. Let fN be the solution to (4)-(5), while f be the solution to (3). Then there exists
a constant C' which depends only on diam(supp fo) and ¢ such that for all N € N, k < N, and
t =0 one has

t
(13) Wa( £V, £8%) < C\/Emin{17\/ﬁ}.

Our general methodology relies on the same classical coupling method, which compares charac-
teristic flow of the original system (2) to N copies of the flow-map of the kinetic transport (3), but
it differs from [12] in two aspects. First, we run the entire argument from the Lagrangian point
of view, which gives a direct access to characteristics and the flocking estimates. This is closer in
spirit to the original mean-field approach of [8] or [1] in stochastic settings. Second, we rely on
the flocking information of Proposition 1.1 to extract a crucial stabilizing exponential factor in the
estimation of kinetic energy, see (24). The linear time dependence here comes primarily from the
growth of the potential energy, and it seems not to be removable within the given framework.

Next, we consider the same problem in the context of systems forced with self-propulsion and
Rayleigh-type friction force with variable characteristic parameters 6:

iti = Vi,
1 N 9
S . P
(14) Ui = ];1 d(xi — x5)(vj — vi) + ovg( [vi|P) (25,01,01) € R” x R" x R,
) w N
0; = N Z ¢(xl l'j)(ej 91)>

where k > 0 is a coupling coefficient and p > 0. This model is relevant in the study of systems of
agents with a tendency to adhere to their preferred characteristic speeds 6;, see [6, 10]. The recent
study [10] introduced a general method of Grassmannian reduction that allows to prove flocking
for solutions with velocities confined to a sector > of opening < 7, so-called sectorial solutions, see
Proposition 3.1 below. We give an extension of this method to the corresponding kinetic Vlasov
equation in Proposition 3.3 and use it to prove propagation of chaos for the forced system (14).
Specifically, we prove the following theorem:
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Theorem 1.3. Suppose the kernel ¢ satisfies (26). Let fo € CL(Q) be a sectorial initial distribution,
and N, f be the sectorial solutions to the system (61) and (29), respectively. Then there exists a
constant C which depends only on diam(supp fo) and ¢ such that for all Ne N, k < N, andt >0
one has

(15) W (), 1) < Cx/%min{l,\%}.

To achieve this bound we employ monotonicity of the force to control the adverse self-propulsion
component. The ultimate effect of its presence, however, is reflected in the quadratic dependence
on time in (15).

In the case k = 0 our analysis gives no additional improvement over (9). The derived kinetic
equation, however, can present an interesting model of opinion dynamics for a large population
which takes into account fixed conviction values 6. See Remark 3.12 for more discussion.

2. PROPAGATION OF CHAOS FOR THE FORCELESS SYSTEM

In this section we focus on establishing propagation of chaos for the pure Cucker-Smale system
(2). So, to fix the notation let us consider a solution fV to the full Liouville equation (4) with the
product initial condition (5) on the configuration space (X, V) € R?*Y. We can assume without loss
of generality that fj is a probability distribution. The forces F¥’s are given by the Cucker-Smale
system

FN(X,V) = 1§¢(g;i—x-)(v-—vi).
1 ’ Nj ] J J

Due to the symmetries of the forces, the solution will remain symmetric with respect to permuta-
tions of pairs (x;,v;) for all time.
We define the k-th marginal as usual by

k
(16) ft( )(‘,rl)vl7"'7xk7vk):J‘ ft]v(ifl,’l}]_,...,$N,’UN)d$k+1...d’UN.
R2n(N—F)
Let us introduce various characteristic maps that will be used in the proof. We denote by

o) = (21(t),v1(8), ..., an(t), vn(t)) : RN — RN

the flow-map of the Liouville equation (4), in other words these are solutions to the agent-based
System

Sb' = Uy,
(17) o1
i*ﬁz (vj — ;).

Then, fY at any time ¢ > 0 is a push-forward of the initial distribution by ®},

(18) i = e
Now, denote by B
®; = (z(t),v(t)) : R? — R*"

the flow-map of the Vlasov equation (3), i.e.

(19) . . _
v = QS(J" - y)(w - v)f(y, w, t) dy dw,

and by
SN — (Z1(1),51(0), ..., ZNn (1), TN (1)) : RZW — R2WN
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the direct product of N copies of ®;’s. Thus,
(20) fo=2dfo, SOV = PN
The proof of Theorem 1.2 can be reduced to establishing the following estimate
(21) f 1 (X0, Vo) — PN (X0, Vo) |2 fEN (X0, Vo) dXo dVp < C'min{N, t?}.
R2nN
Indeed, let us recall that the Wasserstein-2 distance between two probability measures j, i on R*"*
can be defined in probabilistic sense as
WE(1, i) = inf E[|1Z — Z]],

where the infimum is taken over R?**-valued random variables Z, Z defined on any probability space

with distributions given by u and ji, respectively. To measure the distance between ft(k) and ft®k
R2"N with measure fé@N (Xo, Vo) dX( dVp, and random variables
given by any selection of k coordinates of ® and @?N , respectively, because their probability

we can pick the probability space

distributions relative to the chosen base space are exactly ft(k) and f& according to (18) and (20).
So, let us denote by Eﬂ"v is the set of all ordered subsets of [1,..., N] of size k. Clearly, its
cardinality is (]IX) Then, for any o € 2%,

k
k _
W2( ( ) t < J;RQH Z Lo (i) a('L ( Lo( i)?va(i))‘Qf()®N(X07‘/0) dXodVp.

Summing up over all o € E’fv, we obtain

k
N
<I{2>W2 fRQnN Z Z |(xo(i)7vo(i)) ( Lo (i)s a(z )’ fo (XO)‘/O) dXodVp.

oexk, i=1

Observe that in the double sum inside the integral each coordinate will be repeated (]1:;[—_11) times.
So,

N . N-—1 N
Wi ey < () f (s, v5) — (@1, 9) 2 f (Xo, Vo) dXo dVa.

Simplifying and using (21), we obtain
2
WRG. 174 < Comin {1 3},

as desired. Let us note that an alternative argument, relating a distance between k-th marginals to
a particular realization (21) appeared in [5], where the authors use the original joint-distribution
definition of Ws.

To establish (21) let us break the expression under the integral into potential and kinetic part,

1 _ 1 _
(22) P = 2f2 N X — Xy fEN dXo dVa, K= 2f2 N Vi — Va2 N d X, dVs.
R=27 n

Here, X;,V; and Xy, V; denote the corresponding components of <I>£V and @?N , respectively. By the
Holder inequality, we have

(23) %P < 2PV2KC12,
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Let us now write out the equation for the kinetic part,

N ) 1 N B B
S YCEE (N D ol =)0y = 0) = [ ol =) =0 wnt)dy dw>

x fON AX,dVy

=A+B+C,
where
r N 1 N
A= JRM Z N 2[¢(x, ;) — ¢(Ti — ;)] (vk — i) 0®N dXodVp,
= -
r N 1 JN N
B=| D= m) - Y6~ )l — ) — (o — 5] SV dXo b,
i=1 i=1
r N 1] N
€= e 220 (N > ol = )0~ o)~ [ | o~ g)(w - w) (gt dy dw)
~ =

x fON AX, dVp.

Let us start with C. Apply the Holder inequality first

N
02 < (J Z |U'i *I_)i|2f89NdX0 d‘/o>
R2nN i—1

N N 2
1
x JRM 2 N D@ — ) (v —v) — fRQ” &(z; — y)(w — ;) f(y, w, t) dy dw| fEV dXodVp
=117 j=1
N N 2
=2K N Z (@ — ) (v — ;) — f o(z; — y)(w — ;) f(y, w, t) dy dw| fEV dXodVp.
R2nN 1 j:1 R2n

Switching back to the Eulerian coordinates, whereby Z;, ¥; become dummy variables, we get

2
fENAX AV,

(#; — ;) (v; — ;) — o O — y)(w = ) f(y, w, t) dy dw

R2nN i=1

All these terms, due to symmetry are independent of i. According to [12, Lemma 3.3], and our
flocking estimate (12), each can be estimated by

C
sup ’¢(§7’ _ j;”)(@/ N 17//)’2 < —6_&.
(&/,0'),(a" 0" )esupp fi N

2| -

Thus,

C < ce OKY2,
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Turning back to A, we use the smoothness of the kernel and exponential flocking estimates (11),

N, X 2 12
IA] < ce VK J SUE S (i — 1] + g —35]) | £EN dXodV
R2nN i—1 _‘Z\]’]:1
N T LN 1/2
—dt = |2 = |2 QN
< ce K j T, — xi|° + — T — T [ dXodV
<R2"N;_| | N;|J j] 0 0 0)
N 1/2
< ce WK <2J [Z |2z — xi\2] FEN dX, dV0>
R2nN i=1
= ce WKVP.
Finally, one can see that B contributes a negative term,
N LN 1 XN
Z(Ui*f}i)'ﬁ D ¢@i—2)[(v; =) — (v —v;)] = N D 0@ —x5)(vi =) - (v = 0)) = v — i)
i=1 j=1 ij=1

and symmetrizing,

Collecting all of the above we obtain

(24) %IC < ceTH(ICY2 4 V2P,

Denoting p = 1 + P2, k = K'/2 we obtain the system
(25) p<k, po=1; k< ce%p, ko =0.

Claim 2.1. Any non-negative solution to (25) obeys an estimate p < 1+ Ct, k < C'min{l1, ¢}, where
C =C(c)9).
To see that let us fix an € > 0 to be determined later and compute
d
—(ep® + k%) < 2pk(e + ce™%) < Ve(ep? + k?) + ie_‘%(ep2 + k).

dt NG
Thus,
1
2, 1.2
ep”+ k" <¢ et + .
R
Setting ¢ = 2, we can see that the growth rate of p does not exceed §/2, p < /2. Plugging

this into k-equation we obtain k< e 02,

p<1+Ct
Going back to the energies, we obtain

K < Cmin{1,#*}, P <Ct.
Due to the global bound on the support of the flock (11), (12), we also have P < CN. Thus,
P < Cmin{N, t*}.

This proves the bound on k, and then solving for p,
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Consequently, we obtain the required
K 4+ P < Cmin{N, *}.

3. PROPAGATION OF CHAOS FOR FORCED SYSTEM

Using the basic energy estimates obtained in the previous section, we will now extend the result
to the system with friction forces (14) and x > 0. It is well-known that the flocking behavior of
solutions to (14), even with constant 6; = 1 does not always hold even for global kernels ¢ > ¢o >
0. The example exhibited in [6] shows misalignment dynamics when the initial configuration is
symmetric 1 = —z5 and velocities are aimed in the opposite directions v; = —vy. The work [10]
proved that this is, in a sense, the only situation when no flocking occurs. As long as the initial
condition is sectorial, meaning that all v;(0) € ¥, where ¥ is an open conical sector of opening less
than 7, then the solutions align exponentially fast.

Proposition 3.1 ([10]). Suppose that
A
(26) o(r) = 1+ 2y’

For any sectorial solution to (14) there exists vy, € R™ and 0, > 0 with |ve|P = 04, such that one
has

A>0, g<1.

(27) max (Jo; = veo| + |6 — o) < Ce %,
i=1,...,

(28) sup max |z; — x| =D < o0.
>0 1.j=1,....N

It is within the context of sectorial solutions that we will cast the propagation of chaos result.
But first we establish a similar flocking estimates for solutions of the corresponding kinetic model.

3.1. Grassmannian reduction for Vlasov-alignment equation. Let us denote 2 = R"” x R" x
R4. The Vlasov equation corresponding to (14) is given by

(29) atf+vvwf+vv(fF(f)>+vv(fR)+v€(f®<f)):O7 (37,1),9)69, t>07
subject to the initial condition
(3()) f(.’L',U,e,O) :f()(x:va)v

where

217’09 J le'_ U)f(yawan’t)dZdwdnv
R(z,v,0) =ov(@ —|v|P), >0, p>0,

O(f)(x,v,0) = & jﬁ oz — 3)(n — 0) (w7, ¢) dz dw .

In this section, we will prove a similar flocking result for the sectorial solutions of (29). Let us
define what they are in the kinetic context.

Definition 3.2. A solution f to (29) is called sectorial if there exists a conical region ¥ lying on
one side of a hyperplane, i.e. with conical opening less than 7 such that v € ¥ for any v in the
velocity support of f, (z,v,0) € supp f for some z, 6.

Since the equation (29) is rotationally invariant, it will be convenient to assume that our solution
belong the upper-half space: there exists € > 0 such that

(31) vp = elv], V(x,v,0) € supp f,

By the weak maximum principle discussed below in Remark 3.6, it follows that if f is sectorial
initially, then it will remain so for all time and the velocity support will lie in the same sector .
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Let us state our main result now.

Proposition 3.3. Suppose the kernel satisfies (26). For any sectorial solution f to (29) with initial
compact support one has

(32) sup diam supp f; < o0,
t>0

and there exist v, € R", 04 € Ry, with |ve|P = Oy such that

(33) max (|0 — O] + |v — vo]) < e

(z,v,0)esupp fi

As in the discrete case the proof is based on examination of kinetic characteristics of the equation
given by

T =, z(0) = xo,
(34) U= JQ d(x —y)(w —v) f(y,w,n,t) dy dwdn + ov(d — [v|?), ©v(0) = vo,

0 = “L oz —y)(n—0)f(y,w,n,t)dydwdn, 6(0) = bo.

Let us denote

D(t) = max |z — 2|,
(x,v,@),(x’,v’,e/)esupp ft

A(t) = max lv — '],
(z,v,0),(z' W' ,0")ESupp [t

Q(t) max CEAR

B (z,v,G),(I’,v’,@’)Esupp ft

1
M = J f(l‘,’l),@,t) dz d’UdQ, 000 = J Hf(iv,'l),e,t) dl‘dvd@,
Q M Jo

0.(t) = max 6, 0_(t) = min 0.
+(0) (x,v,0)esupp ft 0 (x,v,0)€supp ft
Then we have
d
5 —D < A.
(35) gD <A

Indeed, at time ¢, let £ € (RY)*, (| = 1, (z,v,0), (2,2, 0") € supp f; such that D(t) = {(x — z'). By
Rademacher’s lemma and the first equation in the system (34) we have

%D i) = Lo — ) < A

For Q, we have

(36) %Q < —k¢(D)Q.

To prove that, at time ¢ we choose ¢ € R* |[{| = 1,(z,v,0),(2',v',0") € supp f; which satisfy
Q(t) = £(0 — ¢'). By Rademacher’s lemma and the third equation in the system (34) we get

G2 x| o= - 0)fwwn ) dydwdn x| o'~ y)elr— ) (v, 1) dyduwdy
Q Q
— | ola =)t =) = €0 = 0w 0) dy

e fﬂ b2’ — y)[(0 — 1) — 10 — 0)]F (g w, 1, 1) dy du iy,
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Since £(n—6) —£(0 —0") < 0 and £(0 —n) — £(0 — 0") < 0, the right hand side of the above equality
is nonpositive. Note that ¢(x — y) = ¢(D) for all z,y € supp f;. Therefore,

%Q < —H(Z)('D)J 00 —0)f(y,w,n,t)dydwdn < —kp(D)Q.
Q

Similarly, using the third equation in (34) and Rademacker’s lemma, it is not hard to see that 6
is decreasing and 6_ is increasing. Thus,
(37) 0.(t) <6* 60_(t) =0, Yt=0,

where 0* = 6,(0) and 6, = 6_(0).
Before we proceed further let us discuss the boundedness of the velocity support of f and the
weak maximum principle.

Lemma 3.4 (boundedness). There exists a constant C' which depends on the initial data such that
for any (z,v,0) € supp f;, one has

(38) ()| <C, V>0,

Proof. Let

t) = .
wel®) =, ohax [0l

At time ¢, let £ € (R?)*,|¢| = 1, (x, v,0) € supp f; such that v, | = £(v). Then, by Rademacher’s
Lemma,

Gl = [ 60— 2) et = 0)fow..) dz dwdy + 0t(0)0 ~ o]
Q
< oo |(0% = o4 |P).
Hence, if 0* < |v4|P then
v [(t) < [v4[(0) V¢ > 0.

Otherwise, we have

&’14 [P < oplog [P(0F — [vif?).
Solving the above ODI gives

/g eot

(C + ecrp@*t)l/p

(39) e |(t) < = {6+ O(e "),

where c¢ is a positive constant depending on initial data. Thus, |v4|(f) is bounded for all t > 0. O

Lemma 3.5 (weak maximum principle). If for a given functional £ € (R™)*, all velocity vectors vg
that lie in the support of the initial flock, (o, vo,0p) € supp fo, satisfy

K(UO) = 07
then at any positive time
L(v) =0, vVt >0, (z,v,0) € supp f;.

Proof. At time t, let
l(v) = min  {(w).
(z,w,m)esupp f
By Rademacher’s Lemma,

%K(v) = fﬂ o —2)l(w—v)f(z,w,n,t) dzdwdn + ol(v)(0 — |v|P) = ol(v)(0x — |v|P).

Then by Lemma 3.4 we get

d
aﬁ(v) > cl(v),
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where ¢ is constant. Solving this ODI we obtain the desired conclusion,
{(v) = L(vg)e® =0, Vt>O0.
0

Remark 3.6. By the weak maximum principle we note that if the support of fy in v lies in the
convex sector defined by

Yr= ﬂ{UER”:E(v) > 0},
leF
where F is an arbitrary set of linear functionals on R", then the velocity support of f; will be
confined to that sector for all time. Since the system (34) is invariant under rotations, without loss
of generality we can assume that the support of fy in v lies above the hyperplane II,, = {v, = 0},
where v, is the n-th coordinate of vector v.

Lemma 3.7. For any sectorial solution f to (29) there exists a positive constant ¢y depending on
the initial data such that

(40) lv| = co, V(z,v,0) € supp fi.

Proof. At time t, let (z,v,0) be a minimizer for min V. Then
(m,v,@)esupp ff

(41) %vn = JQ d(z — 2)(wyp — vp) f(z,w,n,t) dzdwdn + ov, (0 — |v|P) = ov, (0, — e Pob).
If 6, < e Pvh then

|v| = ei/0s.
B e/e*eUe*t

(c -+ epae*t)l/p’
where c is a positive constant which depends on the initial data. Then the lemma follows. O

Otherwise, solving (41) we get

n =

Remark 3.8. Lemma 3.7 tells us that for a sectorial solution f, supp f(z, -, 0) stays away from the
origin. Then, by Lemma 3.4, it implies that supp f(z, -, 0) is contained in a sector. Lemma 3.7 also
implies that for any sectorial solution f one has

(42) lv_|(t) = co, Vt>0,
where |v_|(t) = min v(t)|.
-l = min (o)

Proof of Proposition 3.3. From now on we consider a sectorial solution f to the system (29). De-
r

noting 7 = m for any vector r € R™. One has
(43) d—@—i <Id—v®v>i}— M<Z>(:1U—z)(Id—f}@f))ﬂ)f(z w,n,t)dzdwdn
di ol ol o] a |vl o '

Here, we used (Id =0 ® 0)v = 0.

Denoting by (v,u) the angle between two vectors v and wu, then cos(v,u) = © - @. Thus, if
(x,v,8), (y,u, () are the solutions to (34) with respect to the initial conditions (xg, vo, 60), (Yo, o, (o),
respectively, then

d cos (m) = Juo] (z — z)[cos (u, w) — cos (m) oS M]f(z, w,n,t)dzdwdn
(44) de a vl

+ j M (y — z)[cos m — oS (m) cos (u, w)]f(z,w,n,t) dz dwdn.
a vl
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Note that if v, u, and w are three vectors lying in the same two dimenstional plane and

—_—

(45) (v,u) = (v,w) + (w,u) <7 —43 for some § > 0,
then the followings hold:

e —_ (/\ —_ —_ L —_—

cos (u, w) — cos (v, u) cos (v, w) = cos

cos (u, w) + cos (v, w) = cos 5 cos 5

— — (ﬁ) W_m><cosﬂ_5)2-

Therefore, if the support of f in v is on a two dimensional plane and (45) is satisfied, then by
Lemma 3.4 , Lemma 3.7 and (44), one has

d —_— —_— —_—
14 = D ) ) - ) s Wolly dzdwd
3 €% (v,u) = cd( )JQ (Cos (u,w) + cos (v w)) <1 cos (v u)) f(z,w,n,t)dzdwdn

= cop(D) (1 — Cos (ﬂ)) .

Equivalently,

(46) % (1 — cos (ﬂ)) < —co(D) (1 — cos (ﬁ)) .

Now let IT be a fixed two dimensional plane which contains the v,-axis. Denoting by v the
projection of any v € supp f onto II. Projecting the second equation in (34) onto II we have the
following equation:

(47) o = f o(z — 2)(w — o) f(z,w,n,t) dzdwdn + oo™ (6 — |v|P)
Q
Therefore, we can write the equation for cos (v, u'l) as follows:
(48)
d T 11 jw!| T I T 11 Tl
&COS(U ,ull) = . |UH’¢)(:L'—Z)[COS(’LL ,wi) — cos (v ull) cos (v, w)] f(z,w,n,t) dzdwdn
i
+ “1:17“¢>(y — 2)[cos (v, w) — cos (v, u!l) cos (u, w)] f(z,w,n,t) dz dw dn.
Q

Let us denote G(1,n — 1) the space of all two dimensional subspaces of R which contain v,-axis.
Since G(1,n — 1) can be identified with 1-Grassmannian manifold of R"~! which is compact, we
can define
49 D ma; vl 7).
(49) g pelix )

(x7v79)7(y7u7<)esuppf

We note that

v*P < 7w —4§  for some § > 0.
Since the n-th coordinate of any v € supp f does not change when it is projected onto IT, [v']
is still bounded above and below by positive constants. Therefore, choosing a maximizing triple

II,u,v for (vm), from (48) we deduce that

(50) %(1 — cos7?P) < —ep(D)((1 — cosy?P).
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Denoting

= max u,v).
Claim 3.9. We have v < v?P.

Proof of Claim 3.9. For any (z,v,0), (y,u,() € supp f, consider the two dimensional subspace II =
span{e,, @ — ¥} where e, = (0,...,0,1). We have IT € G(1,n — 1) and @ — o = @7 — 9'!. By the
law of cosines, we get

2(1 = cos (u,v)) = i = 5 = [ = 5" = 2[a"[2(1 = cos (uT, ™))

< 2(1 — cos (ull, v11)).

It implies that for any (z,v,0), (y,u,() € supp f there exists I € G(1,n — 1) such that (u,v) <
(u' v, Therefore, the claim is followed. O

Remark 3.10. Claim 3.9 and the inequality (50) imply that if D(t) < D < oo then
1—cosy<1—cosy?P < e D),

Now we set
[o]?
max T
(2,0.6),(y:u,Q)esupp f |u]
Suppose that (z,v,0), (y, u, () maximize R at time ¢, we have

TR = P U o — [o) £ (2, w,m,t) dz dw dip + olo]*(6 - |v|”>]
2o ) .
Tt [Jﬂ Oy —2)(u-w—|u*)f(z,w,n,t)dzdwdn + olu|*({ — |u| )]
(51) = |2, j (@ — 2)(v - w — [v]) (2w, m, ) dz dw dy
| 2P

]u\4 J oy — 2)(|[u)® —u - w)f(z,w,n,t)dzdwdn + 20R(0 — ¢ + |[ulP — |v|P).

Since u, v maximize R, we have v - w — |v|* < |v|(Jw| — |v]) < 0 for all w € supp f. Hence, the first
term on the right hand side of (51) is nonpositve. For the second term, we have

| 2

[ul* —u-w = |ul* — |ul|w| cosm < 1—cosy.
Note that R is bounded from above and below, hence,
20R

|ul?

Therefore, there exist positive constants c1, co, c3 such that

20R(0 — ¢ + |ul? — |v|?) = 20R(6 — ¢) + (1-RPY?)<Q+(1-R).

(52) %(R—l) < —c1(R—=1) + c2(1 — cosy) + c39.
Firstly, we see that the flock diameter grows at most linearly in time,
(53) D(t) <t
since
(54) D(1) < A()
dt

and |v| is bounded for all (z,v, ) € supp f. It is not hard to see the relation
(55) A < (R—1)+ (1 —cos?y).
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Thus, to prove an exponential alignment it suffices to show that both (R —1) and (1 —cos~y) decay
exponentially fast.

We now consider two cases for 3:
Case I: < 1. Our assumption on the kernel and (53) imply that

1
(56) ¢(D) 2 m

Plugging it into (50) and applying the Gronwall’s Lemma we get
(57) 1 —cosy<1—cosy?’ < e D7

Plugging (56) into (36) and solving for Q we also have

(58) Q<e
Combining these inequalities with (52) and solving for R — 1 we obtain
(59) R—1<e 07,
From (54), (55), (57) and (59), we have
d D < o—eUA)2
de ~ ’

Solving this ODI gives
(60) D(t) < D < o0.
Thus, (36) implies that

Q(t) < Q(0)e 7).
Hence, 0(t) aligns to 0, exponentially fast for all (x,v,6) € supp f. Due to finite flock diameter
(60) and Remark 3.10, we have

1—cosy < e~ (D)t
Putting the estimates for Q and (1 — cos+y) into (52) and solving for R — 1 where we use the
Gronwall’s Lemma, we obtain the exponential decay for R — 1 as well. Therefore, we arrive at an
alignment with an exponential rate.

Denoting by E any quantity which decays exponentially fast. So far we have |0 —04| = E(t), |[v—

u| = E(t) for any 0, v,u € supp f. By (42) and Lemma 3.4, |vy|(t) are bounded, hence, the following
equations hold for |v4[P(t) — O:

%(h’i‘p_@w) = (oplv+ [P (0 = [v") + B)  ~  (=(Jv£|’ = 0) + E).

It follows that |vi|P(t) converges to 4 exponentially fast. Therefore, from the characteristic
equation for v € supp f in (34) we deduce that

%v =FE, VYvg € supp fo.

The existence of vy, is followed then.
Case II: g = 1. In this case, we have ¢(D) 2

hence,

1
V1412
1—cosy<1—cosy?P < {7, and

Q <y~ for some a > 0.

Therefore,

%(R 1)< —(R— 1)+ (B
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Solving this ODI we yield

R—-1< )y~
Here we used the fact that e= % ()~ ~ (¢)~*. It implies that
A7,
and hence,
D < (2,
Thus,

1 -
o(D) Z ¢ $Hl-a/2 > ————— for some 3 < 1.
()2 90" 2 o
Now we can argue exactly as in the case 8 < 1 replacing 8 by B to reach the conclusions of the
theorem. 0

3.2. Propagation of Chaos. Using Proposition 3.3 as a key ingredient we now prove our main
result for the Rayleigh-forced system, Theorem 1.3. So, let us we consider the full Liouville equation
for a probability density f on QV:

(61)  ofN + szj Vi Va, N + i Vo, - (FNEY) + i Vo, - (FYRY) + i Vo, - (fNO}) =0,
i=1 i=1 i=1 i=1
subject to the initial condition
(62) Y 0) = £,
where fy: Q — Ry and for (X,V,0) = (z1,...,2N,01,...,0N,01,...,0N),
N I
F7(X,V,0) = k; ¢(xi — zx)(vk — i),

z|
1=

0 (X,V,0) = ¢(xi — ) (Ok — 0i),

>
Il
-

RZN(X, V, @) = (T’Ui(gi — ‘Ui|p).
We introduce a similar notation for the flow-maps. Denote by
ON = (21(1),v1(t), 01 () ..., en(t),on(t), 0N (1)) : QN — QN

the flow-map of the discrete system (14) which is also the characteristic flow of (61). Then, as
before, fV is the push forward of ngN under @}V,

= @
Let also
D, = (Z(t),v(t),0(t)) : 2 —> Q
be the characteristic map of (29), which consists of solutions to (34). The direct product of N
copies will be denoted @?N . Then we have

(63) f=0ufo, fEN =PNEON.

By the same logic as before the theorem reduces to establishing the bound

(64) J . 1D (Xo, Vo) — ®PN (X0, Vo) |? fEV (X0, Vo) dXo dVp < Cmin{N, t*}.
R n
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We split the integrand into three components:

1 _
P= QJ N | X+ (Xo, Vo, ©0) — Xe(Xo, Vo, @0)|2 féaN(XO, Vo, ©9) d X, dVj dOy,
Q
1 _
(65) K= QJ  Vi(Xo, Vo, ©0) = Vi(Xo, Vo, 00)|2 fEN (Xo, Vo, Op) dXo dVy dOy,
Q
1 _
C= 2f _ 181(X0, Vo, ©0) = ©,(Xo, Vo, ©0)|* 57 (X0, Vo, ©0) dXo AV dOp.
Q

For the potential energy we will use the same inequality as before, (23). For K, we obtain

d
EIC S1 + 8o,

where S7 is the exact same alignment term that we handled before, but now with the use of
Proposition 3.1 and Proposition 3.3,

(66) Sp < ce K2 (1 4+ P2,

And S, is given by
Sy = J — ;) - (le(e — |v|P) — 0w (0; — |vz|p)) (XO,VU, ©p) dXdVpdOy.
Qn
Let us write Sy as follows

N
S=0 f S (w; = 05) - (800 — 0,05) FEN (Xo, Vo, ©g) dXo dVp dOy
QN “

N
— Jj Z:(Uz — 'l_}i) . (’l)i"l}i‘p) — ?_)Z'|1_)i’p) 0®N(X0, Vo, @0) dXodVydOg
oNi3
= Jl — JQ.

Since

(’Ui — @i) . (011}1 — 0_1@1) = %(91 + 9_1)|Uz — ﬁ@"Q + %(Uz — 57;) . [(Qz — éz)(% + Z_Ji)],

one has
JNZ 9 +9)|’U1—’UZ| +( —1_11')- [(Gz—éz)(vl—kﬁz)]) fg@N(XQ,‘/o,@o)dXod‘/od@o.
Q

For Js, since

1
+ 5 (il = o) (Joal” = [o:]P),

1
(vi = i) - (vilvil” = 05[0sl") = 5 ([oal” + [0 ]) v — vl 5

and
1 _ _
§(|vz‘|2 — [wil*)(Jvil? — |w:?) = 0,

we get
N

g
~J < 5 LN D@l + o) o — vi* fN (Xo, Vo, ©0) dXo dVy dBg.
=1
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Therefore,
Sy = Jy - f Z 6; — [osl? + 8 — [P — w2 FEN (Xo, Vi, Oo) dXo AV Ay
(67) LN — ;) - (0; — 0;) (0; + v3) fN (X0, Vo, ©9) d X dVp dO.
i=1
Because |0; — |v5]P| < ce™% and |0; — |5;|P| < ce™®, the first integral on the right hand side of (67)

is less than or equal to ce % /C. Then, we apply the Holder inequality and the boundedness of ||
and |v;| to the second integral to obtain

(68) Sy < (e + K213,

Combining (66) and (68) we get

(69) %/c <ce VAR 414 PYR) 4+ VA2,
Let us now turn to the characteristic parameters term C:

fQNZQ_Q ( Z¢ i —x) (0 — 6; J¢ 0;) f (y, w, n,)dydwdn)

x fEN d X, dVy deyg

=11+ Ir + I3,
where
N B 1 N
=200 5 Yol — ) — olmi — 26 — 09 £V dXo Ve,
QN k=1
N B 1 N
I, = JQN Z(ez - 01) : N Z ¢($z - xk)[(gk - Hk) (‘9 —0; )] (?N dXo dVp dOo,

-
I
—
B
Il
—_

&
Il
2 ?
2
D=
=
|
Sl
N
2]~
=
SN
§|
|
I
=

J (T 0:) f(y, w,t) dy dw dn)

x fON AXodVy dOy.

S
Il
—_

We have I, < 0 because

N
1 = —
b= | 5 D 6lm =m0~ 8- (0= B) — 6= ) £ XV ey
i,k=1
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For I, we obtain, using Proposition 3.1,

N 2

|L[* <2C LN > N D (@i — wx) — (@i — 2)](0k — 0:)|  f& dXo V) dOp
=1 k=1
N /| N 2
< 2 = _ (5. _ _ 0. QN
<2Vel5C LN; ( ¥ k; (i = k) — (71 — 78 |6 mr) JE dXodVo ey
N /N 2
<ce®C| M (N i — &i] + |y, — xkl)) N dXo dVy dOy
Qv k=1
N
<ce ?C| ) <|mz e — Z |z, — mk]2> fEN AX, dVy dOy
v i=1
ce”20tep
Thus,
(70) 11| < ce®CM2P12,
For I3, we have
2
L < Z¢ (— a0 —0) - | ol 0,1 (y, w1, 1) dy duw dy
x fEN(Xo, Vo, ©9) dXo dVp dOg
1 Y ?
=2 Zﬁg T; — Tk ) (O — 0; JQS 0:)f (y,w,n,t) dy dwdn
x fON(X,V,0,t)dX dV d©
1 & ?
=2N| Iy > o(@1 — Tk) (0 — 1) — J o(Z1 —y)(n — 01) f (y, w,n,t) dy dw dn
O Ay | @
x fEN(X,V,0,t)dX dV d©
<Nt sup 16(Z — )0 — 02 < cCe 2.
N (%,9,0),(&' v ,0")esupp fi

Here in the penultimate step we used again [12, Lemma 3.3]. Therefore,
(71) |I3] < ce™%CV/2,

Combining the three estimates for Iy, Is, I3, we obtain

d
(72) dtc —(5t(1 + PI/Q)CI/Q.

Setting p = 1+ PY2, k = KY2 ¢ = CY2. By (23), (69) and (72) we obtain the system of ODIs:
p<k, po=1,

(73) k<ce(p+k)+cqg, ko=0,
G<ce %, qo=0.

Claim 3.11. For any nonnegative solution (p, k,q) to (73), there exists a constant C' depending on
¢, such that

(74) p<1+4+Ct*, k<Ct z<Cmin{l,t}.
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Proof of the Claim 3.11. Fix e,7 > 0 to be chosen later. We have

d

3 (6P%) < 2ephy < Ve(ep” + 47,

d 1 c

7]{2 < —0t Ik 2k'2 2k < —ot |~ 2 k2 2k2 (2 2
i ce” " (2pk + 2k*) 4+ 2ckq < ce \/g(ep—i— )+ —i—ﬁ(p + 7q%),
d _ cr/Te 0t

a(ﬂf) < 27ce%pg < \/:/g(spQ +7¢%).

It implies that

d
&(EPQ + k2 +7¢%) < c(r,e)e % (ep? + K2 + 1¢%) + <\/§ +

Applying Gronwall’s lemma we get

ep? + k2 +7¢° <eexp <<\/E+ %>t+ M(1 e“”)) < ecexp <<\/€+ C) t+ C(EC;T)> .

C) (ap2 + k2 4+ 7¢%).

T

) T
Now choosing € = 62/4, T = 4c?/62, we obtain
p< 2,

Plugging it into the third equation in (73) and solving for ¢ we have
¢
q< cf e79/2ds < C'min{1,t}.
0

Substituting p, ¢ into the second equation in (73) we have

d
ak < ce %k 4 ce™? + C'min(1, t).
It implies that
k < Ct.
Hence, by the first equation in (73) we get
p<1+Ct.

The Claim 3.11 follows that
P<Ctt, K<Ct, C<Cmin{l,t*}.

On the other hand, in view of the global estimates on the support of the flock, P < CN. Due to
the alignment we also have K < CN. Therefore,

P+ K +C < Cmin{N, t},
as desired. N

Remark 3.12. Our final remark concerns the case k = 0. This represents the system with ”frozen”
characteristic parameters 6. In opinion dynamics such system can be interpreted as a non-cooperative
game where "players” come with their fixed convictions #’s but may change their opinions v’s to
achieve a consensus. In the discrete case this situation was examined in detail in [10] where the
consensus was identified as a Nash equilibrium. The equilibrium is unique, stable, and is also a
global attractor for the system. While the kinetic version of such result would be highly desirable
to achieve — this could be interpreted as a dynamics of infinitely many players — we leave this
question to a future research. At this point we note that in the case k = 0 no alignment dynamics
is possible, however the maximum principle obtained in Lemma 3.4 and Lemma 3.5 still holds.
The Grassmannian reduction still works also to show that the support of any sectorial solution f;
narrows down to a kinetic ray R vy, for some vy, € S* L. It is therefore an essentially unidirectional
flow.
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Since no global flocking information is available in this case applying our analysis gives the same
exponential rate as in Natalini and Paul’s estimate (9).
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