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Abstract. In this work we study propagation of chaos for solutions of the Liouville equation
derived from the classical discrete Cucker-Smale system. Assuming that the communication kernel
satisfies the heavy tail condition – known to be necessary to induce exponential alignment – we
obtain a linear in time convergence rate of the k-th marginals f pkq to the product of k solutions
of the corresponding Vlasov-Alignment equation, fbk. Specifically, the following estimate holds in
terms of Wasserstein-2 metric

(1) W2pf pkq
t , fbk

t q § C
?
kmin

"
1,

t?
N

*
.

For systems with the Rayleigh-type friction and self-propulsion force, we obtain a similar result
for sectorial solutions. Such solutions are known to align exponentially fast via the method of
Grassmannian reduction, [10]. We recast the method in the kinetic setting and show that the
bound (1) persists but with the quadratic dependence on time.

In both the forceless and forced cases, the result represents an improvement over the exponential
bounds established earlier in the work of Natalini and Paul, [12], although those bounds hold
for general kernels. The main message of our work is that flocking dynamics improves the rate
considerably.

1. Background and main results

One of the fundamental questions of the mathematical theory of large systems of particles is a
derivation and formal justification of the corresponding kinetic models. Among the many systems
describing collective phenomena this question has been successfully settled for the Cucker-Smale
model describing the basic mechanism of alignment [3, 4]:

(2)

$
’’&

’’%

9xi “ vi, xip0q “ x0i P Rn,

9vi “ 1

N

Nÿ

j“1

�pxi ´ xjqpvj ´ viq, vip0q “ v0i P Rn.

Here � is a non-negative non-increasing smooth communication kernel. The corresponding Vlasov-
Alignment equation is given by

(3) Btf ` v ¨ rxf ` rv ¨ pfF pfqq “ 0, fp0q “ f0 : R2n Ñ R`,

where

F pfqpx, vq “
ª

R2n
�px ´ yqpw ´ vqfpy, w, tqdy dw.

A formal derivation of (3) via the BBJKY hierarchy was performed in Ha and Tadmor [9], and
rigorously via the mean-field limit in Ha and Liu [8].

Date: April 29, 2022.
2020 Mathematics Subject Classification. 92D25, 35Q35.
Key words and phrases. Collective behavior, Cucker-Smale, mean-field limit, propagation of chaos.
Acknowledgment. The work of RS was supported in part by NSF grants DMS-1813351 and DMS-2107956.

1



2 VINH NGUYEN AND ROMAN SHVYDKOY

The hierarchy approach is based upon the classical idea of propagation of chaos, which postulates
that the particles px1, v1, . . . , xN , vN q whose joint probability distribution fN is given by the solution
to the Liouville transport equation

(4) BtfN `
Nÿ

i“1

vi ¨ rxif
N `

Nÿ

i“1

rvi ¨ pfNFN
i q “ 0,

would gradually decorrelate as N Ñ 8 if initially so

(5) fN p0q “ fbN
0 , f0 : R2n Ñ R`,

and their individual distributions would evolve according to (3). In other words,

(6) xfN ,'1 b . . . b 'k b 1 b ¨ ¨ ¨ b 1y Ñ
kπ

j“1

xf,'jy, ' P CbpR2nkq.

The mean-field limit on the other hand, is based on the weak convergence of a sequence of
empirical measures built from solutions to (2),

µN “ 1

N

Nÿ

j“1

�xiptq b �viptq Ñ f.

In fact, a more detailed analysis done in [7, 13] establishes Lipschitz continuity of measure-valued
solutions to (3) with respect to the Wasserstein metric,

Wppµ1
t, µ

2
t q § CptqWppµ1

0, µ
2
0q.

It is well-known, however, that propagation of chaos and the mean-field limit (in a somewhat
more specific sense) are equivalent, see Sznitman [14]. In fact, (6) holds if and only if for any
' P LippR2nq one has

(7) E'ptq “
ª

R2nN

ˇ̌
ˇ̌
ˇ
1

N

Nÿ

j“1

'pxiptq, viptqq ´ xft,'y
ˇ̌
ˇ̌
ˇ

2

fbN
0 dX0 dV0 Ñ 0,

where X0, V0 are the initial conditions for the characteristic flow txiptq, viptquNi“1. Note that initially
E'p0q Ñ 0 by a direct verification. Technically, since not every initial ensembleX0, V0 in the support
of fbN

0 forms an empirical measure weakly close to f0, the limit (7) does not directly follow from
[7, 8, 13]. However, one can restore it using similar estimates on the deformation of the flow-map
of (2) and coupling with the characteristics of (3).

In any case, Snitzman’s general principle seems to provide little quantitative information on the
rate of propagation in (6) as it avoids using any specificity of the system at hand. For stochastically
forced systems, the work of Bolley, Cañizo and Carrillo [1] establishes such a quantitative estimate
on the Wasserstein-2 distance:

(8) W2pf pkq
t , fbk

t q § CpT q
c

k

N e´Ct , @t § T.

Recently, Natalini and Paul addressed the deterministic case in [12] and with additional chemotaxis
forces in [11]. For the forceless system, the estimate carries exponential dependence in time,

(9) W2pf pkq
t , fbk

t q § Ce�t
c

k

N
.

The estimates (8), (9) are finite-time bounds in spirit, in the sense that they do not take into
account any flocking long-time behavior of the system. In this present work we raise the question:
can one improve upon the time dependence in the deterministic case (9) when the system is known
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to flock exponentially fast? It is the result that goes back to Cucker and Smale [3] and improved
and extended in [2, 8, 9] that the system (2) with a heavy tail radial communication,

(10)

ª 8

0
�prqdr “ 8

aligns with an exponential rate. Let us give a quantitative summary of this result for future
reference, see also [13] for details.

Proposition 1.1. Suppose � satisfies (10). For any solution to (2) with initial data in pX0, V0q in
a compact domain ⌦ Ä R2nN the following flocking estimates hold:

(11) sup
t°0

max
i,j“1,...,N

|xi ´ xj | “ D † 8, max
i,j“1,...,N

|vi ´ vj | § A0e
´t�pDq,

where A0 is the initial velocity fluctuation and D depends only on the initial diameter of the flock
and �.

Similarly, for any solution f to (3) with initial compact support one has

(12) sup
t°0

diam supp ft “ D † 8, max
px1,v1q,px2,v2qPsupp ft

|v1 ´ v2| § A0e
´t�pDq.

With the use of this additional flocking information we will improve the estimate (9) to being
linear in time.

Theorem 1.2. Suppose � satisfies (10), and let f0 P C1
0 pR2nq be an initial distribution with a

compact support. Let fN be the solution to (4)-(5), while f be the solution to (3). Then there exists
a constant C which depends only on diampsupp f0q and � such that for all N P N, k § N , and
t • 0 one has

(13) W2pf pkq
t , fbk

t q § C
?
kmin

"
1,

t?
N

*
.

Our general methodology relies on the same classical coupling method, which compares charac-
teristic flow of the original system (2) to N copies of the flow-map of the kinetic transport (3), but
it di↵ers from [12] in two aspects. First, we run the entire argument from the Lagrangian point
of view, which gives a direct access to characteristics and the flocking estimates. This is closer in
spirit to the original mean-field approach of [8] or [1] in stochastic settings. Second, we rely on
the flocking information of Proposition 1.1 to extract a crucial stabilizing exponential factor in the
estimation of kinetic energy, see (24). The linear time dependence here comes primarily from the
growth of the potential energy, and it seems not to be removable within the given framework.

Next, we consider the same problem in the context of systems forced with self-propulsion and
Rayleigh-type friction force with variable characteristic parameters ✓:

(14)

$
’’’’’&

’’’’’%

9xi “ vi,

9vi “ 1

N

N∞
j“1

�pxi ´ xjqpvj ´ viq ` �vip✓i ´ |vi|pq,

9✓i “ 

N

N∞
j“1

�pxi ´ xjqp✓j ´ ✓iq,
pxi, vi, ✓iq P Rn ˆ Rn ˆ R`,

where  ° 0 is a coupling coe�cient and p ° 0. This model is relevant in the study of systems of
agents with a tendency to adhere to their preferred characteristic speeds ✓i, see [6, 10]. The recent
study [10] introduced a general method of Grassmannian reduction that allows to prove flocking
for solutions with velocities confined to a sector ⌃ of opening † ⇡, so-called sectorial solutions, see
Proposition 3.1 below. We give an extension of this method to the corresponding kinetic Vlasov
equation in Proposition 3.3 and use it to prove propagation of chaos for the forced system (14).
Specifically, we prove the following theorem:
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Theorem 1.3. Suppose the kernel � satisfies (26). Let f0 P C1
0 p⌦q be a sectorial initial distribution,

and fN , f be the sectorial solutions to the system (61) and (29), respectively. Then there exists a
constant C which depends only on diampsupp f0q and � such that for all N P N, k † N , and t • 0
one has

(15) W2pf pkq
t , fbk

t q § C
?
kmin

"
1,

t2?
N

*
.

To achieve this bound we employ monotonicity of the force to control the adverse self-propulsion
component. The ultimate e↵ect of its presence, however, is reflected in the quadratic dependence
on time in (15).

In the case  “ 0 our analysis gives no additional improvement over (9). The derived kinetic
equation, however, can present an interesting model of opinion dynamics for a large population
which takes into account fixed conviction values ✓. See Remark 3.12 for more discussion.

2. Propagation of chaos for the forceless system

In this section we focus on establishing propagation of chaos for the pure Cucker-Smale system
(2). So, to fix the notation let us consider a solution fN to the full Liouville equation (4) with the
product initial condition (5) on the configuration space pX,V q P R2nN . We can assume without loss
of generality that f0 is a probability distribution. The forces FN

i ’s are given by the Cucker-Smale
system

FN
i pX,V q “ 1

N

Nÿ

j“1

�pxi ´ xjqpvj ´ viq.

Due to the symmetries of the forces, the solution will remain symmetric with respect to permuta-
tions of pairs pxi, viq for all time.

We define the k-th marginal as usual by

(16) f pkq
t px1, v1, . . . , xk, vkq “

ª

R2npN´kq
fN
t px1, v1, . . . , xN , vN qdxk`1 . . . dvN .

Let us introduce various characteristic maps that will be used in the proof. We denote by

�N
t “ px1ptq, v1ptq, . . . , xN ptq, vN ptqq : R2nN Ñ R2nN

the flow-map of the Liouville equation (4), in other words these are solutions to the agent-based
system

(17)

$
’’&

’’%

9xi “ vi,

9vi “ 1

N

Nÿ

j“1

�pxi ´ xjqpvj ´ viq.

Then, fN
t at any time t ° 0 is a push-forward of the initial distribution by �N

t ,

(18) fN
t “ �N

t 7fbN
0 .

Now, denote by
s�t “ px̄ptq, v̄ptqq : R2n Ñ R2n

the flow-map of the Vlasov equation (3), i.e.

(19)

$
&

%

9̄x “ v̄,

9̄v “
ª

R2n
�px̄ ´ yqpw ´ v̄qfpy, w, tqdy dw,

and by
s�bN
t “ px̄1ptq, v̄1ptq, . . . , x̄N ptq, v̄N ptqq : R2nN Ñ R2nN
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the direct product of N copies of s�t’s. Thus,

(20) ft “ s�t7f0, fbN
t “ s�bN

t 7fbN
0 .

The proof of Theorem 1.2 can be reduced to establishing the following estimate

(21)

ª

R2nN
|�N

t pX0, V0q ´ s�bN
t pX0, V0q|2 fbN

0 pX0, V0qdX0 dV0 § CmintN, t2u.

Indeed, let us recall that the Wasserstein-2 distance between two probability measures µ, µ̄ on R2nk

can be defined in probabilistic sense as

W2
2 pµ, µ̄q “ inf Er|Z ´ sZ|2s,

where the infimum is taken over R2nk-valued random variables Z, sZ defined on any probability space

with distributions given by µ and µ̄, respectively. To measure the distance between f pkq
t and fbk

t

we can pick the probability space R2nN with measure fbN
0 pX0, V0qdX0 dV0, and random variables

given by any selection of k coordinates of �N
t and s�bN

t , respectively, because their probability

distributions relative to the chosen base space are exactly f pkq
t and fbk

t according to (18) and (20).
So, let us denote by ⌃k

N is the set of all ordered subsets of r1, . . . , N s of size k. Clearly, its

cardinality is
`N
k

˘
. Then, for any � P ⌃k

N ,

W2
2 pf pkq

t , fbk
t q §

ª

R2nN

kÿ

i“1

|px�piq, v�piqq ´ px̄�piq, v̄�piqq|2 fbN
0 pX0, V0qdX0 dV0.

Summing up over all � P ⌃k
N , we obtain

ˆ
N

k

˙
W2

2 pf pkq
t , fbk

t q §
ª

R2nN

ÿ

�P⌃k
N

kÿ

i“1

|px�piq, v�piqq ´ px̄�piq, v̄�piqq|2 fbN
0 pX0, V0qdX0 dV0.

Observe that in the double sum inside the integral each coordinate will be repeated
`N´1
k´1

˘
times.

So,
ˆ
N

k

˙
W2

2 pf pkq
t , fbk

t q §
ˆ
N ´ 1

k ´ 1

˙ ª

R2nN

Nÿ

i“1

|pxi, viq ´ px̄i, v̄iq|2 fbN
0 pX0, V0qdX0 dV0.

Simplifying and using (21), we obtain

W2
2 pf pkq

t , fbk
t q § Ckmin

"
1,

t2

N

*
,

as desired. Let us note that an alternative argument, relating a distance between k-th marginals to
a particular realization (21) appeared in [5], where the authors use the original joint-distribution
definition of W2.

To establish (21) let us break the expression under the integral into potential and kinetic part,

(22) P “ 1

2

ª

R2nN
|Xt ´ sXt|2 fbN

0 dX0 dV0, K “ 1

2

ª

R2nN
|Vt ´ sVt|2 fbN

0 dX0 dV0.

Here, Xt, Vt and sXt, sVt denote the corresponding components of �N
t and s�bN

t , respectively. By the
Hölder inequality, we have

(23)
d

dt
P § 2P1{2K1{2.



6 VINH NGUYEN AND ROMAN SHVYDKOY

Let us now write out the equation for the kinetic part,

d

dt
K “

ª

R2nN

Nÿ

i“1

pvi ´ v̄iq ¨
˜

1

N

Nÿ

j“1

�pxi ´ xjqpvj ´ viq ´
ª

R2n
�px̄i ´ yqpw ´ v̄iqfpy, w, tqdy dw

¸

ˆ fbN
0 dX0 dV0

“ A ` B ` C,

where

A “
ª

R2nN

Nÿ

i“1

pvi ´ v̄iq ¨ 1

N

Nÿ

j“1

r�pxi ´ xjq ´ �px̄i ´ x̄jqspvk ´ viq fbN
0 dX0 dV0,

B “
ª

R2nN

Nÿ

i“1

pvi ´ v̄iq ¨ 1

N

Nÿ

j“1

�px̄i ´ x̄jqrpvj ´ v̄jq ´ pvi ´ v̄iqs fbN
0 dX0 dV0,

C “
ª

R2nN

Nÿ

i“1

pvi ´ v̄iq ¨
˜

1

N

Nÿ

j“1

�px̄i ´ x̄jqpv̄j ´ v̄iq ´
ª

R2n
�px̄i ´ yqpw ´ v̄iqfpy, w, tqdy dw

¸

ˆ fbN
0 dX0 dV0.

Let us start with C. Apply the Hölder inequality first

C2 §
˜ª

R2nN

Nÿ

i“1

|vi ´ v̄i|2fbN
0 dX0 dV0

¸

ˆ
¨

˝
ª

R2nN

Nÿ

i“1

ˇ̌
ˇ̌
ˇ
1

N

Nÿ

j“1

�px̄i ´ x̄jqpv̄j ´ v̄iq ´
ª

R2n
�px̄i ´ yqpw ´ v̄iqfpy, w, tqdy dw

ˇ̌
ˇ̌
ˇ

2

fbN
0 dX0 dV0

˛

‚

“ 2K
ª

R2nN

Nÿ

i“1

ˇ̌
ˇ̌
ˇ
1

N

Nÿ

j“1

�px̄i ´ x̄jqpv̄j ´ v̄iq ´
ª

R2n
�px̄i ´ yqpw ´ v̄iqfpy, w, tqdy dw

ˇ̌
ˇ̌
ˇ

2

fbN
0 dX0 dV0.

Switching back to the Eulerian coordinates, whereby x̄i, v̄i become dummy variables, we get

C2 § 2K
ª

R2nN

Nÿ

i“1

ˇ̌
ˇ̌
ˇ
1

N

Nÿ

j“1

�px̄i ´ x̄jqpv̄j ´ v̄iq ´
ª

R2n
�px̄i ´ yqpw ´ v̄iqfpy, w, tqdy dw

ˇ̌
ˇ̌
ˇ

2

fbN
t d sX dsV .

All these terms, due to symmetry are independent of i. According to [12, Lemma 3.3], and our
flocking estimate (12), each can be estimated by

4

N
sup

px̄1,v̄1q,px̄2,v̄2qPsupp ft

|�px̄1 ´ x̄2qpv̄1 ´ v̄2q|2 § c

N
e´�t.

Thus,

C § ce´�tK1{2.
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Turning back to A, we use the smoothness of the kernel and exponential flocking estimates (11),

|A| § ce´�t
?
K

¨

˝
ª

R2nN

Nÿ

i“1

«
1

N

Nÿ

j“1

p|xi ´ x̄i| ` |xj ´ x̄j |q
�2

fbN
0 dX0 dV0

˛

‚
1{2

§ ce´�t
?
K

˜ª

R2nN

Nÿ

i“1

«
|xi ´ x̄i|2 ` 1

N

Nÿ

j“1

|xj ´ x̄j |2
�
fbN
0 dX0 dV0

¸1{2

§ ce´�t
?
K

˜
2

ª

R2nN

«
Nÿ

i“1

|xi ´ x̄i|2
�
fbN
0 dX0 dV0

¸1{2

“ ce´�t
?
K

?
P.

Finally, one can see that B contributes a negative term,

Nÿ

i“1

pvi ´ v̄iq ¨ 1

N

Nÿ

j“1

�px̄i ´ x̄jqrpvj ´ v̄jq ´ pvi ´ v̄iqs “ 1

N

Nÿ

i,j“1

�px̄i ´ x̄jqppvi ´ v̄iq ¨ pvj ´ v̄jq ´ |vi ´ v̄i|2q

and symmetrizing,

“ 1

2

1

N

Nÿ

i,j“1

�px̄i ´ x̄jqp´|vj ´ v̄j |2 ` 2pvi ´ v̄iq ¨ pvj ´ v̄jq ´ |vi ´ v̄i|2q

“ ´1

2

1

N

Nÿ

i,j“1

�px̄i ´ x̄jq|pvj ´ v̄jq ´ pvi ´ v̄iq|2 § 0.

Collecting all of the above we obtain

(24)
d

dt
K § ce´�tpK1{2 ` K1{2P1{2q.

Denoting p “ 1 ` P1{2, k “ K1{2 we obtain the system

(25) 9p § k, p0 “ 1; 9k § ce´�tp, k0 “ 0.

Claim 2.1. Any non-negative solution to (25) obeys an estimate p § 1`Ct, k § Cmint1, tu, where
C “ Cpc, �q.

To see that let us fix an " ° 0 to be determined later and compute

d

dt
p"p2 ` k2q § 2pkp" ` ce´�tq § ?

"p"p2 ` k2q ` c?
"
e´�tp"p2 ` k2q.

Thus,

"p2 ` k2 § " exp

"?
"t ` 1?

"�

*
.

Setting " “ �2, we can see that the growth rate of p does not exceed �{2, p À e�t{2. Plugging
this into k-equation we obtain 9k À e´�t{2. This proves the bound on k, and then solving for p,
p § 1 ` Ct.

Going back to the energies, we obtain

K § Cmint1, t2u, P § Ct2.

Due to the global bound on the support of the flock (11), (12), we also have P § CN . Thus,

P § CmintN, t2u.
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Consequently, we obtain the required

K ` P § CmintN, t2u.
3. Propagation of chaos for forced system

Using the basic energy estimates obtained in the previous section, we will now extend the result
to the system with friction forces (14) and  ° 0. It is well-known that the flocking behavior of
solutions to (14), even with constant ✓i “ 1 does not always hold even for global kernels � • c0 °
0. The example exhibited in [6] shows misalignment dynamics when the initial configuration is
symmetric x1 “ ´x2 and velocities are aimed in the opposite directions v1 “ ´v2. The work [10]
proved that this is, in a sense, the only situation when no flocking occurs. As long as the initial
condition is sectorial, meaning that all vip0q P ⌃, where ⌃ is an open conical sector of opening less
than ⇡, then the solutions align exponentially fast.

Proposition 3.1 ([10]). Suppose that

(26) �prq • �

p1 ` r2q�{2 , � ° 0, � § 1.

For any sectorial solution to (14) there exists v8 P Rn and ✓8 ° 0 with |v8|p “ ✓8, such that one
has

max
i“1,...,N

p|vi ´ v8| ` |✓i ´ ✓8|q § Ce´�t,(27)

sup
t°0

max
i,j“1,...,N

|xi ´ xj | “ D † 8.(28)

It is within the context of sectorial solutions that we will cast the propagation of chaos result.
But first we establish a similar flocking estimates for solutions of the corresponding kinetic model.

3.1. Grassmannian reduction for Vlasov-alignment equation. Let us denote ⌦ “ RnˆRnˆ
R`. The Vlasov equation corresponding to (14) is given by

(29) Btf ` v ¨ rxf ` rv ¨ pfF pfqq ` rv ¨ pfRq ` r✓ ¨ pf⇥pfqq “ 0, px, v, ✓q P ⌦, t ° 0,

subject to the initial condition

(30) fpx, v, ✓, 0q “ f0px, v, ✓q,
where

F pfqpx, v, ✓q “
ª

⌦
�px ´ yqpw ´ vqfpy, w, ⌘, tqdz dw d⌘,

Rpx, v, ✓q “ �vp✓ ´ |v|pq, � ° 0, p ° 0,

⇥pfqpx, v, ✓q “ 

ª

⌦
�px ´ yqp⌘ ´ ✓qfpy, w, ⌘, tqdz dw d⌘.

In this section, we will prove a similar flocking result for the sectorial solutions of (29). Let us
define what they are in the kinetic context.

Definition 3.2. A solution f to (29) is called sectorial if there exists a conical region ⌃ lying on
one side of a hyperplane, i.e. with conical opening less than ⇡ such that v P ⌃ for any v in the
velocity support of f , px, v, ✓q P supp f for some x, ✓.

Since the equation (29) is rotationally invariant, it will be convenient to assume that our solution
belong the upper-half space: there exists " ° 0 such that

(31) vn • "|v|, @px, v, ✓q P supp f,

By the weak maximum principle discussed below in Remark 3.6, it follows that if f is sectorial
initially, then it will remain so for all time and the velocity support will lie in the same sector ⌃.
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Let us state our main result now.

Proposition 3.3. Suppose the kernel satisfies (26). For any sectorial solution f to (29) with initial
compact support one has

sup
t°0

diam supp ft † 8,(32)

and there exist v8 P Rn, ✓8 P R`, with |v8|p “ ✓8 such that

max
px,v,✓qPsupp ft

p|✓ ´ ✓8| ` |v ´ v8|q § ce´�t.(33)

As in the discrete case the proof is based on examination of kinetic characteristics of the equation
given by

(34)

$
’’’’’&

’’’’’%

9x “ v, xp0q “ x0,

9v “
ª

⌦
�px ´ yqpw ´ vqfpy, w, ⌘, tqdy dw d⌘ ` �vp✓ ´ |v|pq, vp0q “ v0,

9✓ “ 

ª

⌦
�px ´ yqp⌘ ´ ✓qfpy, w, ⌘, tqdy dw d⌘, ✓p0q “ ✓0.

Let us denote

Dptq “ max
px,v,✓q,px1,v1,✓1qPsupp ft

|x ´ x1|,

Aptq “ max
px,v,✓q,px1,v1,✓1qPsupp ft

|v ´ v1|,

Qptq “ max
px,v,✓q,px1,v1,✓1qPsupp ft

|✓ ´ ✓1|,

M “
ª

⌦
fpx, v, ✓, tqdx dv d✓, ✓8 “ 1

M

ª

⌦
✓fpx, v, ✓, tqdx dv d✓,

✓`ptq “ max
px,v,✓qPsupp ft

✓, ✓´ptq “ min
px,v,✓qPsupp ft

✓.

Then we have

(35)
d

dt
D § A.

Indeed, at time t, let ` P pRdq˚, |`| “ 1, px, v, ✓q, px1, v1, ✓1q P supp ft such that Dptq “ `px ´ x1q. By
Rademacher’s lemma and the first equation in the system (34) we have

d

dt
D “ `p 9x ´ 9x1q “ `pv ´ v1q § A.

For Q, we have

(36)
d

dt
Q § ´�pDqQ.

To prove that, at time t we choose ` P R˚, |`| “ 1, px, v, ✓q, px1, v1, ✓1q P supp ft which satisfy
Qptq “ `p✓ ´ ✓1q. By Rademacher’s lemma and the third equation in the system (34) we get

d

dt
Q “ 

ª

⌦
�px ´ yq`p⌘ ´ ✓qfpy, w, ⌘, tqdy dw d⌘ ´ 

ª

⌦
�px1 ´ yq`p⌘ ´ ✓1qfpy, w, ⌘, tqdy dw d⌘

“ 

ª

⌦
�px ´ yqr`p⌘ ´ ✓1q ´ `p✓ ´ ✓1qsfpy, w, ⌘, tqdy dw d⌘

` 

ª

⌦
�px1 ´ yqr`p✓ ´ ⌘q ´ `p✓ ´ ✓1qsfpy, w, ⌘, tqdy dw d⌘.
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Since `p⌘ ´ ✓1q ´ `p✓ ´ ✓1q § 0 and `p✓ ´ ⌘q ´ `p✓ ´ ✓1q § 0, the right hand side of the above equality
is nonpositive. Note that �px ´ yq • �pDq for all x, y P supp ft. Therefore,

d

dt
Q § ´�pDq

ª

⌦
`p✓ ´ ✓1qfpy, w, ⌘, tqdy dw d⌘ § ´�pDqQ.

Similarly, using the third equation in (34) and Rademacker’s lemma, it is not hard to see that ✓`
is decreasing and ✓´ is increasing. Thus,

(37) ✓`ptq § ✓˚, ✓´ptq • ✓˚ @t • 0,

where ✓˚ “ ✓`p0q and ✓˚ “ ✓´p0q.
Before we proceed further let us discuss the boundedness of the velocity support of f and the

weak maximum principle.

Lemma 3.4 (boundedness). There exists a constant C which depends on the initial data such that
for any px, v, ✓q P supp ft, one has

(38) |vptq| § C, @t ° 0.

Proof. Let
|v`|ptq “ max

px,v,✓qPsupp ft
|v|.

At time t, let ` P pRdq˚, |`| “ 1, px, v, ✓q P supp ft such that |v`| “ `pvq. Then, by Rademacher’s
Lemma,

d

dt
|v`| “

ª

⌦
�px ´ zq `pw ´ vqfpz, w, ⌘, tq dz dw d⌘ ` �`pvqp✓ ´ |v|pq

§ �|v`|p✓˚ ´ |v`|pq.
Hence, if ✓˚ § |v`|p then

|v`|ptq § |v`|p0q @t ° 0.

Otherwise, we have
d

dt
|v`|p § �p|v`|pp✓˚ ´ |v`|pq.

Solving the above ODI gives

(39) |v`|ptq §
p
?
✓˚e�✓

˚t

pc ` e�p✓˚tq1{p “ p
?
✓˚ ` Ope´�✓˚tq,

where c is a positive constant depending on initial data. Thus, |v`|ptq is bounded for all t ° 0. ⇤
Lemma 3.5 (weak maximum principle). If for a given functional ` P pRnq˚, all velocity vectors v0
that lie in the support of the initial flock, px0, v0, ✓0q P supp f0, satisfy

`pv0q • 0,

then at any positive time

`pvq • 0, @t ° 0, px, v, ✓q P supp ft.

Proof. At time t, let
`pvq “ min

pz,w,⌘qPsupp f
`pwq.

By Rademacher’s Lemma,

d

dt
`pvq “

ª

⌦
�px ´ zq `pw ´ vqfpz, w, ⌘, tq dz dw d⌘ ` �`pvqp✓ ´ |v|pq • �`pvqp✓˚ ´ |v|pq.

Then by Lemma 3.4 we get
d

dt
`pvq • c `pvq,
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where c is constant. Solving this ODI we obtain the desired conclusion,

`pvq • `pv0qect • 0, @t ° 0.

⇤
Remark 3.6. By the weak maximum principle we note that if the support of f0 in v lies in the
convex sector defined by

⌃F “
£

`PF
tv P Rn : `pvq • 0u ,

where F is an arbitrary set of linear functionals on Rn, then the velocity support of ft will be
confined to that sector for all time. Since the system (34) is invariant under rotations, without loss
of generality we can assume that the support of f0 in v lies above the hyperplane ⇧n “ tvn “ 0u,
where vn is the n-th coordinate of vector v.

Lemma 3.7. For any sectorial solution f to (29) there exists a positive constant c0 depending on
the initial data such that

(40) |v| • c0, @px, v, ✓q P supp ft.

Proof. At time t, let px, v, ✓q be a minimizer for min
px,v,✓qPsupp ft

vn. Then

(41)
d

dt
vn “

ª

⌦
�px ´ zqpwn ´ vnqfpz, w, ⌘, tq dz dw d⌘ ` �vnp✓ ´ |v|pq • �vnp✓˚ ´ "´pvpnq.

If ✓˚ § "´pvpn then
|v| • " p

a
✓˚.

Otherwise, solving (41) we get

vn • " p
?
✓˚e�✓˚t

pc ` ep�✓˚tq1{p ,

where c is a positive constant which depends on the initial data. Then the lemma follows. ⇤
Remark 3.8. Lemma 3.7 tells us that for a sectorial solution f , supp fpx, ¨, ✓q stays away from the
origin. Then, by Lemma 3.4, it implies that supp fpx, ¨, ✓q is contained in a sector. Lemma 3.7 also
implies that for any sectorial solution f one has

(42) |v´|ptq • c0, @t ° 0,

where |v´|ptq “ min
px,v,✓qPsupp f

|vptq|.

Proof of Proposition 3.3. From now on we consider a sectorial solution f to the system (29). De-

noting r̃ “ r

|r| for any vector r P Rn. One has

d

dt
ṽ “ 1

|v|

ˆ
Id´ v

|v| b v

|v|

˙
9v “

ª

⌦

|w|
|v| �px ´ zqpId´ṽ b ṽqw̃ fpz, w, ⌘, tqdz dw d⌘.(43)

Here, we used pId´ṽ b ṽqv “ 0.

Denoting by zpv, uq the angle between two vectors v and u, then cos zpv, uq “ ṽ ¨ ũ. Thus, if
px, v, ✓q, py, u, ⇣q are the solutions to (34) with respect to the initial conditions px0, v0, ✓0q, py0, u0, ⇣0q,
respectively, then

d

dt
cos zpv, uq “

ª

⌦

|w|
|v| �px ´ zqrcos {pu,wq ´ cos zpv, uq cos {pv, wqsfpz, w, ⌘, tqdz dw d⌘

`
ª

⌦

|w|
|u| �py ´ zqrcos {pv, wq ´ cos zpv, uq cos {pu,wqsfpz, w, ⌘, tqdz dw d⌘.

(44)
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Note that if v, u, and w are three vectors lying in the same two dimenstional plane and

(45) zpv, uq “ {pv, wq ` {pw, uq † ⇡ ´ � for some � ° 0,

then the followings hold:

cos {pu,wq ´ cos zpv, uq cos {pv, wq “ cos
´

zpv, uq ´ {pv, wq
¯

´ cos zpv, uq cos {pv, wq

“ sin zpv, uq sin {pv, wq • 0,

cos {pv, wq ´ cos zpv, uq cos {pu,wq • 0,

cos {pu,wq ` cos {pv, wq “ cos
zpv, uq
2

cos
{pu,wq ´ {pv, wq

2
•

ˆ
cos

⇡ ´ �

2

˙2

.

Therefore, if the support of f in v is on a two dimensional plane and (45) is satisfied, then by
Lemma 3.4 , Lemma 3.7 and (44), one has

d

dt
cos zpv, uq • c�pDq

ª

⌦

´
cos {pu,wq ` cos {pv, wq

¯ ´
1 ´ cos zpv, uq

¯
fpz, w, ⌘, tqdz dw d⌘

• c�pDq
´
1 ´ cos zpv, uq

¯
.

Equivalently,

(46)
d

dt

´
1 ´ cos zpv, uq

¯
§ ´c�pDq

´
1 ´ cos zpv, uq

¯
.

Now let ⇧ be a fixed two dimensional plane which contains the vn-axis. Denoting by v⇧ the
projection of any v P supp f onto ⇧ . Projecting the second equation in (34) onto ⇧ we have the
following equation:

(47) 9v⇧ “
ª

⌦
�px ´ zqpw⇧ ´ v⇧ qfpz, w, ⌘, tqdz dw d⌘ ` �v⇧ p✓ ´ |v|pq

Therefore, we can write the equation for cos {pv⇧ , u⇧ q as follows:

d

dt
cos {pv⇧ , u⇧ q “

ª

⌦

|w⇧ |
|v⇧ | �px ´ zqrcos {pu⇧ , w⇧ q ´ cos {pv⇧ , u⇧ q cos {pv⇧ , w⇧ qsfpz, w, ⌘, tqdz dw d⌘

`
ª

⌦

|w⇧ |
|u⇧ | �py ´ zqrcos {pv⇧ , w⇧ q ´ cos {pv⇧ , u⇧ q cos {pu⇧ , w⇧ qsfpz, w, ⌘, tqdz dw d⌘.

(48)

Let us denote Gp1, n ´ 1q the space of all two dimensional subspaces of Rn which contain vn-axis.
Since Gp1, n ´ 1q can be identified with 1-Grassmannian manifold of Rn´1 which is compact, we
can define

(49) �2D “ max
⇧PGp1,n´1q

px,v,✓q,py,u,⇣q P supp f

{pv⇧ , u⇧ q.

We note that
�2D § ⇡ ´ � for some � ° 0.

Since the n-th coordinate of any v P supp f does not change when it is projected onto ⇧ , |v⇧ |
is still bounded above and below by positive constants. Therefore, choosing a maximizing triple

⇧ , u, v for {pv⇧ , u⇧ q, from (48) we deduce that

(50)
d

dt
p1 ´ cos �2Dq § ´c�pDqpp1 ´ cos �2Dq.
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Denoting

� “ max
px,v,✓q,py,u,⇣q P supp f

zpu, vq.

Claim 3.9. We have � § �2D.

Proof of Claim 3.9. For any px, v, ✓q, py, u, ⇣q P supp f , consider the two dimensional subspace ⇧ “
spanten, ũ ´ ṽu where en “ p0, . . . , 0, 1q. We have ⇧ P Gp1, n ´ 1q and ũ ´ ṽ “ ũ⇧ ´ ṽ⇧ . By the
law of cosines, we get

2p1 ´ cos zpu, vqq “ |ũ ´ ṽ|2 “ |ũ⇧ ´ ṽ⇧ |2 “ 2|ũ⇧ |2p1 ´ cos {pu⇧ , v⇧ qq
§ 2p1 ´ cos {pu⇧ , v⇧ qq.

It implies that for any px, v, ✓q, py, u, ⇣q P supp f there exists ⇧ P Gp1, n ´ 1q such that zpu, vq §
{pu⇧ , v⇧ q. Therefore, the claim is followed. ⇤

Remark 3.10. Claim 3.9 and the inequality (50) imply that if Dptq § D † 8 then

1 ´ cos � § 1 ´ cos �2D À e´c�pDqt.

Now we set

R “ max
px,v,✓q,py,u,⇣qPsupp f

|v|2
|u|2 .

Suppose that px, v, ✓q, py, u, ⇣q maximize R at time t, we have

d

dt
R “ 2

|u|2
„ª

⌦
�px ´ zqpv ¨ w ´ |v|2qfpz, w, ⌘, tqdz dw d⌘ ` �|v|2p✓ ´ |v|pq

⇢

´ 2|v|2
|u|4

„ª

⌦
�py ´ zqpu ¨ w ´ |u|2qfpz, w, ⌘, tqdz dw d⌘ ` �|u|2p⇣ ´ |u|pq

⇢

“ 2

|u|2
ª

⌦
�px ´ zqpv ¨ w ´ |v|2qfpz, w, ⌘, tqdz dw d⌘(51)

` 2|v|2
|u|4

ª

R2d
�py ´ zqp|u|2 ´ u ¨ wqfpz, w, ⌘, tqdz dw d⌘ ` 2�Rp✓ ´ ⇣ ` |u|p ´ |v|pq.

Since u, v maximize R, we have v ¨ w ´ |v|2 § |v|p|w| ´ |v|q § 0 for all w P supp f . Hence, the first
term on the right hand side of (51) is nonpositve. For the second term, we have

|u|2 ´ u ¨ w “ |u|2 ´ |u||w| cos {pu,wq À 1 ´ cos �.

Note that R is bounded from above and below, hence,

2�Rp✓ ´ ⇣ ` |u|p ´ |v|pq “ 2�Rp✓ ´ ⇣q ` 2�R
|u|p p1 ´ Rp{2q À Q ` p1 ´ Rq.

Therefore, there exist positive constants c1, c2, c3 such that

(52)
d

dt
pR ´ 1q § ´c1pR ´ 1q ` c2p1 ´ cos �q ` c3Q.

Firstly, we see that the flock diameter grows at most linearly in time,

(53) Dptq À t

since

(54)
d

dt
Dptq § Aptq

and |v| is bounded for all px, v, ✓q P supp f . It is not hard to see the relation

(55) A2 À pR ´ 1q ` p1 ´ cos �q.
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Thus, to prove an exponential alignment it su�ces to show that both pR´1q and p1´ cos �q decay
exponentially fast.

We now consider two cases for �:
Case I: � † 1. Our assumption on the kernel and (53) imply that

(56) �pDq Á 1

p1 ` t2q�{2 .

Plugging it into (50) and applying the Grönwall’s Lemma we get

(57) 1 ´ cos � § 1 ´ cos �2D À e´cxty1´�
.

Plugging (56) into (36) and solving for Q we also have

(58) Q À e´cxty1´�
.

Combining these inequalities with (52) and solving for R ´ 1 we obtain

(59) R ´ 1 À e´cxty1´�
.

From (54), (55), (57) and (59), we have

d

dt
D À e´cxtyp1´�q{2

.

Solving this ODI gives

(60) Dptq § D † 8.

Thus, (36) implies that

Qptq § Qp0qe´t�pDq.
Hence, ✓ptq aligns to ✓8 exponentially fast for all px, v, ✓q P supp f . Due to finite flock diameter
(60) and Remark 3.10, we have

1 ´ cos � À e´c�pDqt.
Putting the estimates for Q and p1 ´ cos �q into (52) and solving for R ´ 1 where we use the
Grönwall’s Lemma, we obtain the exponential decay for R ´ 1 as well. Therefore, we arrive at an
alignment with an exponential rate.

Denoting by E any quantity which decays exponentially fast. So far we have |✓´✓8| “ Eptq, |v´
u| “ Eptq for any ✓, v, u P supp f . By (42) and Lemma 3.4, |v˘|ptq are bounded, hence, the following
equations hold for |v˘|pptq ´ ✓8:

d

dt
p|v˘|p ´ ✓8q “ p�p|v˘|pp✓8 ´ |v˘|pq ` Eq „ p´p|v˘|p ´ ✓8q ` Eq.

It follows that |v˘|pptq converges to ✓8 exponentially fast. Therefore, from the characteristic
equation for v P supp f in (34) we deduce that

d

dt
v “ E, @v0 P supp f0.

The existence of v8 is followed then.

Case II: � “ 1. In this case, we have �pDq Á 1?
1 ` t2

, hence,

1 ´ cos � § 1 ´ cos �2D À xty´↵, and

Q À xty´↵, for some ↵ ° 0.

Therefore,
d

dt
pR ´ 1q À ´pR ´ 1q ` xty´↵.
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Solving this ODI we yield

R ´ 1 À xty´↵.

Here we used the fact that e´ct ˚ xty´↵ „ xty´↵. It implies that

A À xty´↵{2,

and hence,

D À xty1´↵{2.

Thus,

�pDq Á �pxty1´↵{2q Á 1

p1 ` t2q�̃{2 for some �̃ † 1.

Now we can argue exactly as in the case � † 1 replacing � by �̃ to reach the conclusions of the
theorem. ⇤

3.2. Propagation of Chaos. Using Proposition 3.3 as a key ingredient we now prove our main
result for the Rayleigh-forced system, Theorem 1.3. So, let us we consider the full Liouville equation
for a probability density fN on ⌦N :

(61) BtfN `
Nÿ

i“1

vi ¨ rxif
N `

Nÿ

i“1

rvi ¨ pfNFN
i q `

Nÿ

i“1

rvi ¨ pfNRN
i q `

Nÿ

i“1

r✓i ¨ pfN⇥N
i q “ 0,

subject to the initial condition

(62) fN p0q “ fbN
0 ,

where f0 : ⌦ Ñ R` and for pX,V,⇥q “ px1, . . . , xN , v1, . . . , vN , ✓1, . . . , ✓N q,

FN
i pX,V,⇥q “ 1

N

Nÿ

k“1

�pxi ´ xkqpvk ´ viq,

⇥N
i pX,V,⇥q “ 1

N

Nÿ

k“1

�pxi ´ xkqp✓k ´ ✓iq,

RN
i pX,V,⇥q “ �vip✓i ´ |vi|pq.

We introduce a similar notation for the flow-maps. Denote by

�N
t “ px1ptq, v1ptq, ✓1ptq . . . , xN ptq, vN ptq, ✓N ptqq : ⌦N Ñ ⌦N

the flow-map of the discrete system (14) which is also the characteristic flow of (61). Then, as
before, fN is the push forward of fbN

0 under �N
t ,

fN “ �N
t 7fbN

0 .

Let also
s�t “ px̄ptq, v̄ptq, ✓̄ptqq : ⌦ Ñ ⌦

be the characteristic map of (29), which consists of solutions to (34). The direct product of N
copies will be denoted s�bN

t . Then we have

(63) f “ s�t7f0, fbN “ s�bN
t 7fbN

0 .

By the same logic as before the theorem reduces to establishing the bound

(64)

ª

R2nN
|�N

t pX0, V0q ´ s�bN
t pX0, V0q|2 fbN

0 pX0, V0qdX0 dV0 § CmintN, t4u.
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We split the integrand into three components:

P “ 1

2

ª

⌦N
|XtpX0, V0,⇥0q ´ sXtpX0, V0,⇥0q|2 fbN

0 pX0, V0,⇥0qdX0 dV0 d⇥0,

K “ 1

2

ª

⌦N
|VtpX0, V0,⇥0q ´ sVtpX0, V0,⇥0q|2 fbN

0 pX0, V0,⇥0qdX0 dV0 d⇥0,

C “ 1

2

ª

⌦N
|⇥tpX0, V0,⇥0q ´ s⇥tpX0, V0,⇥0q|2 fbN

0 pX0, V0,⇥0qdX0 dV0 d⇥0.

(65)

For the potential energy we will use the same inequality as before, (23). For K, we obtain

d

dt
K “ S1 ` S2,

where S1 is the exact same alignment term that we handled before, but now with the use of
Proposition 3.1 and Proposition 3.3,

(66) S1 § ce´�tK1{2p1 ` P1{2q.
And S2 is given by

S2 “
ª

⌦N

Nÿ

i“1

pvi ´ v̄iq ¨
`
�vip✓i ´ |vi|pq ´ �v̄ip✓̄i ´ |v̄i|pq

˘
fbN
0 pX0, V0,⇥0qdX0 dV0 d⇥0.

Let us write S2 as follows

S2 “ �

ª

⌦N

Nÿ

i“1

pvi ´ v̄iq ¨
`
✓ivi ´ ✓̄iv̄i

˘
fbN
0 pX0, V0,⇥0qdX0 dV0 d⇥0

´ �

ª

⌦N

Nÿ

i“1

pvi ´ v̄iq ¨ pvi|vi|pq ´ v̄i|v̄i|pq fbN
0 pX0, V0,⇥0qdX0 dV0 d⇥0

:“ J1 ´ J2.

Since

pvi ´ v̄iq ¨
`
✓ivi ´ ✓̄iv̄i

˘
“ 1

2
p✓i ` ✓̄iq|vi ´ v̄i|2 ` 1

2
pvi ´ v̄iq ¨ rp✓i ´ ✓̄iqpvi ` v̄iqs,

one has

J1 “ �

2

ª

⌦N

Nÿ

i“1

`
p✓i ` ✓̄iq|vi ´ v̄i|2 ` pvi ´ v̄iq ¨ rp✓i ´ ✓̄iqpvi ` v̄iqs

˘
fbN
0 pX0, V0,⇥0qdX0 dV0 d⇥0.

For J2, since

pvi ´ v̄iq ¨ pvi|vi|p ´ v̄i|v̄i|pq “ 1

2
p|vi|p ` |v̄i|pq|vi ´ v̄i|2 ` 1

2
p|vi|2 ´ |v̄i|2qp|vi|p ´ |v̄i|pq,

and
1

2
p|vi|2 ´ |v̄i|2qp|vi|p ´ |v̄i|pq • 0,

we get

´J2 § ´�

2

ª

⌦N

Nÿ

i“1

p|v̄i|p ` |vi|pq|vi ´ v̄i|2fbN
0 pX0, V0,⇥0qdX0 dV0 d⇥0.
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Therefore,

S2 “ J1 ´ J2 § �

2

ª

⌦N

Nÿ

i“1

p✓i ´ |vi|p ` ✓̄i ´ |v̄i|pq|vi ´ v̄i|2fbN
0 pX0, V0,⇥0qdX0 dV0 d⇥0

` �

2

ª

⌦N

Nÿ

i“1

pvi ´ v̄iq ¨ p✓i ´ ✓̄iqpv̄i ` viqfbN
0 pX0, V0,⇥0qdX0 dV0 d⇥0.(67)

Because |✓i ´ |vi|p| § ce´�t and |✓̄i ´ |v̄i|p| § ce´�t, the first integral on the right hand side of (67)
is less than or equal to ce´�tK. Then, we apply the Hölder inequality and the boundedness of |v̄i|
and |vi| to the second integral to obtain

S2 § cpe´�tK ` K1{2H1{2q.(68)

Combining (66) and (68) we get

(69)
d

dt
K § ce´�tK1{2pK1{2 ` 1 ` P1{2q ` K1{2H1{2.

Let us now turn to the characteristic parameters term C:

d

dt
C “

ª

⌦N

Nÿ

i“1

p✓i ´ ✓̄iq ¨
˜

1

N

Nÿ

k“1

�pxi ´ xkqp✓k ´ ✓iq ´
ª

⌦
�px̄i ´ yqp⌘ ´ ✓̄iqfpy, w, ⌘, tqdy dw d⌘

¸

ˆ fbN
0 dX0 dV0 d⇥0

:“ I1 ` I2 ` I3,

where

I1 “
ª

⌦N

Nÿ

i“1

p✓i ´ ✓̄iq ¨ 1

N

Nÿ

k“1

r�pxi ´ xkq ´ �px̄i ´ x̄kqsp✓k ´ ✓iq fbN
0 dX0 dV0 d⇥0,

I2 “
ª

⌦N

Nÿ

i“1

p✓i ´ ✓̄iq ¨ 1

N

Nÿ

k“1

�px̄i ´ x̄kqrp✓k ´ ✓̄kq ´ p✓i ´ ✓̄iqs fbN
0 dX0 dV0 d⇥0,

I3 “
ª

⌦N

Nÿ

i“1

p✓i ´ ✓̄iq ¨
˜

1

N

Nÿ

k“1

�px̄i ´ x̄kqp✓̄k ´ ✓̄iq ´
ª

⌦
�px̄i ´ yqp⌘ ´ ✓̄iqfpy, w, tqdy dw d⌘

¸

ˆ fbN
0 dX0 dV0 d⇥0.

We have I2 § 0 because

I2 “
ª

⌦N

1

N

Nÿ

i,k“1

�px̄i ´ x̄kqrp✓i ´ ✓̄iq ¨ p✓k ´ ✓̄kq ´ |✓i ´ ✓̄i|2s fbN
0 dX0 dV0 d⇥0

“ ´
ª

⌦N

1

2N

Nÿ

i,k“1

�px̄i ´ x̄kq|p✓i ´ ✓̄iq ´ p✓k ´ ✓̄kq|2 fbN
0 dX0 dV0 d⇥0.



18 VINH NGUYEN AND ROMAN SHVYDKOY

For I1, we obtain, using Proposition 3.1,

|I1|2 § 2C
ª

⌦N

Nÿ

i“1

ˇ̌
ˇ̌
ˇ
1

N

Nÿ

k“1

r�pxi ´ xkq ´ �px̄i ´ x̄kqsp✓k ´ ✓iq
ˇ̌
ˇ̌
ˇ

2

fbN
0 dX0 dV0 d⇥0

§ 2|r�|28C
ª

⌦N

Nÿ

i“1

˜
1

N

Nÿ

k“1

|pxi ´ xkq ´ px̄i ´ x̄kq||✓k ´ ✓i|
¸2

fbN
0 dX0 dV0 d⇥0

§ ce´2�tC
ª

⌦N

Nÿ

i“1

˜
1

N

Nÿ

k“1

p|xi ´ x̄i| ` |xk ´ x̄k|q
¸2

fbN
0 dX0 dV0 d⇥0

§ ce´2�tC
ª

⌦N

Nÿ

i“1

˜
|xi ´ x̄i|2 ` 1

N

Nÿ

k“1

|xk ´ x̄k|2
¸

fbN
0 dX0 dV0 d⇥0

“ ce´2�tCP .

Thus,

(70) |I1| § ce´�tC1{2P1{2.

For I3, we have

|I3|2 § 2C
ª

⌦N

Nÿ

i“1

ˇ̌
ˇ̌
ˇ
1

N

Nÿ

k“1

�px̄i ´ x̄kqp✓̄k ´ ✓̄iq ´
ª

⌦
�px̄i ´ yqp⌘ ´ ✓̄iqfpy, w, ⌘, tqdy dw d⌘

ˇ̌
ˇ̌
ˇ

2

ˆ fbN
0 pX0, V0,⇥0qdX0 dV0 d⇥0

“ 2C
ª

⌦N

Nÿ

i“1

ˇ̌
ˇ̌
ˇ
1

N

Nÿ

k“1

�px̄i ´ x̄kqp✓̄k ´ ✓̄iq ´
ª

⌦
�px̄i ´ yqp⌘ ´ ✓̄iqfpy, w, ⌘, tqdy dw d⌘

ˇ̌
ˇ̌
ˇ

2

ˆ fbN p sX, sV , s⇥, tqd sX dsV ds⇥

“ 2CN
ª

⌦N

ˇ̌
ˇ̌
ˇ
1

N

Nÿ

k“1

�px̄1 ´ x̄kqp✓̄k ´ ✓̄1q ´
ª

⌦
�px̄1 ´ yqp⌘ ´ ✓̄1qfpy, w, ⌘, tqdy dw d⌘

ˇ̌
ˇ̌
ˇ

2

ˆ fbN p sX, sV , s⇥, tqd sX dsV ds⇥

§ 2CN 4

N
sup

px̄,v̄,✓̄q,px̄1,v̄1,✓̄1qPsupp ft

|�px̄ ´ x̄1qp✓̄ ´ ✓̄1q|2 § cCe´2�t.

Here in the penultimate step we used again [12, Lemma 3.3]. Therefore,

(71) |I3| § ce´�tC1{2.

Combining the three estimates for I1, I2, I3, we obtain

(72)
d

dt
C § ce´�tp1 ` P1{2qC1{2.

Setting p “ 1 ` P1{2, k “ K1{2, q “ C1{2. By (23), (69) and (72) we obtain the system of ODIs:

(73)

$
’&

’%

9p § k, p0 “ 1,

9k § ce´�tpp ` kq ` cq, k0 “ 0,

9q § ce´�tp, q0 “ 0.

Claim 3.11. For any nonnegative solution pp, k, qq to (73), there exists a constant C depending on
c, � such that

(74) p § 1 ` Ct2, k § Ct, z § Cmint1, tu.
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Proof of the Claim 3.11. Fix ", ⌧ ° 0 to be chosen later. We have
$
’’’’’’’&

’’’’’’’%

d

dt
p"p2q § 2"pky § ?

"p"p2 ` k2q,
d

dt
k2 § ce´�tp2pk ` 2k2q ` 2ckq § ce´�t

„
1?
"

p"p2 ` k2q ` 2k2
⇢

` c?
⌧

pp2 ` ⌧q2q,

d

dt
p⌧q2q § 2⌧ce´�tpq § c

?
⌧e´�t

?
"

p"p2 ` ⌧q2q.

It implies that

d

dt
p"p2 ` k2 ` ⌧q2q § cp⌧, "qe´�tp"p2 ` k2 ` ⌧q2q `

ˆ?
" ` c?

⌧

˙
p"p2 ` k2 ` ⌧q2q.

Applying Grönwall’s lemma we get

"p2 ` k2 ` ⌧q2 § " exp

ˆˆ?
" ` c?

⌧

˙
t ` cp", ⌧q

�
p1 ´ e´�tq

˙
§ " exp

ˆˆ?
" ` c?

⌧

˙
t ` cp", ⌧q

�

˙
.

Now choosing " “ �2{4, ⌧ “ 4c2{�2, we obtain

p À e�t{2.

Plugging it into the third equation in (73) and solving for q we have

q § c

ª t

0
e´�s{2 ds § Cmint1, tu.

Substituting p, q into the second equation in (73) we have

d

dt
k § ce´�tk ` ce´�t{2 ` Cminp1, tq.

It implies that
k § Ct.

Hence, by the first equation in (73) we get

p § 1 ` Ct2.

The Claim 3.11 follows that

P § Ct4, K § Ct2, C § Cmint1, t2u.
On the other hand, in view of the global estimates on the support of the flock, P § CN . Due to
the alignment we also have K § CN . Therefore,

P ` K ` C § CmintN, t4u,
as desired. ⇤
Remark 3.12. Our final remark concerns the case  “ 0. This represents the system with ”frozen”
characteristic parameters ✓. In opinion dynamics such system can be interpreted as a non-cooperative
game where ”players” come with their fixed convictions ✓’s but may change their opinions v’s to
achieve a consensus. In the discrete case this situation was examined in detail in [10] where the
consensus was identified as a Nash equilibrium. The equilibrium is unique, stable, and is also a
global attractor for the system. While the kinetic version of such result would be highly desirable
to achieve – this could be interpreted as a dynamics of infinitely many players – we leave this
question to a future research. At this point we note that in the case  “ 0 no alignment dynamics
is possible, however the maximum principle obtained in Lemma 3.4 and Lemma 3.5 still holds.
The Grassmannian reduction still works also to show that the support of any sectorial solution ft
narrows down to a kinetic ray R`v8 for some v8 P Sn´1. It is therefore an essentially unidirectional
flow.
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Since no global flocking information is available in this case applying our analysis gives the same
exponential rate as in Natalini and Paul’s estimate (9).
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