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ABSTRACT: Techniques from the branch of artificial intelligence %X Non-Carbonyl
known as machine learning (ML) have been applied to a wide range K. /0\

of problems in chemistry. Nonetheless, there are very few examples of IR Spectra EN dEEm

pedagogical activities to introduce ML to chemistry students in the :

chemistry education literature. Here we report a computational MaCh!ne @

activity that introduces undergraduate physical chemistry students to :> Learning Carbonyl
ML in the context of vibrational spectroscopy. In the first part of the %

activity, students use ML binary classification algorithms to distinguish

between carbonyl-containing and noncarbonyl-containing molecules Ketone, Carboxylic Acid,

on the basis of their infrared absorption spectra. In the second part of
the activity, students test modifications to this basic analysis including or Other Carbonyl

different analysis parameters, different ML algorithms, and different

test data sets. In a final extension of the activity, students implement a multiclass classification to predict whether carbonyl-
containing molecules contain a ketone, a carboxylic acid, or another carbonyl group. This activity is designed to introduce students
both to the basic workflow of a ML classification analysis and to some of the ways in which ML analyses can fail. We provide a
comprehensive handout for the activity, including theoretical background and a detailed protocol, as well as data sets and code to
implement the exercise in Python or Mathematica. This activity is designed as a standalone exercise for physical chemistry lab classes
but can also be integrated with courses or modules on vibrational spectroscopy and computational chemistry. On the basis of student
surveys, we conclude that this activity was successful in introducing students to applications of ML in chemistry.

KEYWORDS: Upper-Division Undergraduate, Physical Chemistry, Computer-Based Learning, IR Spectroscopy, Spectroscopy,
Computational Chemistry

B INTRODUCTION specifically, ML has been applied to both infrared (IR)
absorption and Raman vibrational spectroscopy'”'" including

Vibrational spectroscopy is a powerful molecular character- s
functional group identification. ™

ization tool encountered in the organic, analytical, and physical

chemistry undergraduate curricula. (Opportunities to incorpo- Although the chemical education community acknowledges
rate vibrational spectroscopy into the general chemistry the need for student training in computational methods and
curriculum have also been discussed in this ]ournal.l_s) The ML;M there are limited pedagogical materials and no standard
first introduction to vibrational spectroscopy is often in the way of incorporating this into the curriculum. One approach has
context of qualitative analysis, in which students learn to been the development of dedicated semester-long courses in
interpret vibrational spectra by looking for the spectral scientific computing for chemists'’ or cheminformatics'® that
signatures of specific functional groups. A variety of approaches introduce programming in general and include modules on ML
have been discussed for improving student’s ability to learn methods. There are also dedicated courses on data science for

vibrational spectral characteristics such as inquiry-based card
games,” physical models,” and virtual reality.®

The past decade has witnessed a rapid growth of machine
learning (ML) for a variety of applications such as image
classification and machine translation. Broadly defined, ML
algorithms use example training data to “learn” a model that can
be used to make predictions or decisions, without the need for
explicit programming of the model. ML has been applied to a
wide variety of problems in chemistry”® and efforts have been
made to formalize best practices for these studies.” More

chemistry.'”*° Another approach is the development of
standalone laboratory or classroom experiences that can be
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incorporated into existing classes, such as prediction of fluid
properties in introductory chemical engineering courses”' or
computer vision image analysis to distinguish different types of
laboratory glassware.”> We take the latter approach in this
article.

We report a way to introduce ML into the chemistry
curriculum by relating it to existing curricular activities
pertaining to vibrational spectroscopy. Students immediately
grasp the practical value and challenges of deducing molecular
structure from spectra. Here we describe a laboratory activity in
which students apply ML to functional group identification in IR
spectra. Students construct binary classifier models to identify
carbonyl-containing compounds from IR spectra (using a
database of calculated IR spectra), followed by multiclass
classification to distinguish ketones from carboxylic acids or
other carbonyls. This activity could be incorporated into many
locations in the undergraduate curriculum, but we have designed
it for a junior/senior level physical chemistry lecture or lab
course, where it can be integrated with existing experimental or
computational vibrational spectroscopy lab experiences. Differ-
ent versions of this experiment can be completed in either one or
two 3-h lab periods, with a number of optional additional
components. The computational data set and the code needed
for the experiment are provided as both Python-based Jupyter
notebooks and Mathematica notebooks. Interactive notebook-
based programming environments have many advantages both
for education'””*”*° and for practicing scientists.”” For
instructors, the combination of code and output and the
interactivity of notebook programming environments facilitate
sharing, viewing, and troubleshooting student work, either in an
in-person or remote setting.

B METHODS

Below we provide an overview of the methods used in this study.
Additional background is available in the Student Handout and
additional technical details are provided in the Supporting
Information. The latest versions of the notebooks and student
handout are available from GitHub.*®

Data Set

This experiment uses a data set from the Alexandria Library
containing the vibrational frequencies and intensities for 2337
molecules calculated using density functional theory (DFT)
with the B3LYP hybrid functional and the aug-cc-pVTZ basis
set.”” (Although experimental IR spectra are available from the
National Institute of Standards and Technology™ and other
sources, many of these databases are heterogeneous, containing
spectra for compounds in different phases with different units,
complicating their use.) In the Alexandria Library, each
vibrational mode has a calculated vibrational frequency and
oscillator strength describing its intensity. To simulate IR
absorption spectra, we convolve the vibrational frequencies with
a Lorentzian function of 40 cm™' width (Figure 1 and Figure
2A). Of the resulting spectra, 90% (2104) are used as training
data and 10% (233) are used as test data for the binary
classification. The total data set contains spectra of 351
carbonyl-containing molecules, of which 90% (316) are used
as training data and 10% (3S) are used as test data for the
multiclass classification. A Mathematica 12.1 script to perform
this data processing is provided in the Supporting Information;
in our activity, students are provided with the compiled training
and test spectra, so they do not need to conduct this step.

3270

Analysis Workflow
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Figure 1. Overview of data preprocessing and machine learning
workflow.

Data Preprocessing and Machine Learning

The training and test spectra must be processed further prior to
machine learning analysis (Figure 1). First, the spectral
intensities for each molecule are normalized from 0 to 1 (Figure
2A,B). The intensities in the Alexandria Library represent the
oscillator strengths of each vibrational mode, but this step allows
analysis of data sets where intensity values may reflect
concentration differences or other experimental parameters.
Next a thresholding step is performed, in which intensity values
below a specified threshold (0.2 by default) are set to 0 (Figure
2C). The data are then split to separate the attributes (i.e., the
spectral intensity at each frequency) and the labels (i.e., 2 0 or 1
indicating whether a carbonyl is absent or present) as two
different variables. Finally, a data balancing step is performed.
Carbonyl-containing compounds represent only 15% of the
Alexandria Library data set. Such an imbalance can sometimes
cause ML classification models, which often assume uniform
distribution of training samples among the classes,”" to be biased
toward the majority class. A data balancing approach called
synthetic minority oversampling technique (SMOTE)*” is used
to generate new synthetic instances of the carbonyl class for the
training data set. The resulting training data set, containing 50%
carbonyl-containing and 50% noncarbonyl-containing spectra, is
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Figure 2. Representative spectra of carbonyl-containing and non-
carbonyl-containing molecules. (A) Original. (B) After normalization.

(C) After thresholding.

used to train the ML models. Students are guided through each
of these data processing steps in the activity.

Four common ML classification algorithms are implemented
in this exercise: Decision Tree,>> Random Forest,>* k-Nearest
Neighbors,”* and Naive Bayes.*® These algorithms were chosen
because they are widely used, robust, and easy to understand; as
described below, they also perform very well for this
classification task. (They are not the only choices, and the
research literature provides other alternatives, such as support
vector machines and neural networks, that may be more
appropriate for vibrational spectral analysis.'>'*) The student
handout and Supporting Information provide brief discussions
of the assumptions of each of these models. The multiclass
classification performed in Part III of this activity is structured as
multiple one-vs-all binary classifications, in which the probability
of membership in each class is separately determined for each
molecule and the class with the highest probability is then taken
as the final predicted label. Standard metrics are used to evaluate
model performance including the accuracy (the proportion of
the total number of predictions that were correct), the sensitivity
(the proportion of actual positive cases which are correctly
identified), and the specificity (proportion of actual negative
cases which are correctly identified).

The Python (version 3.7) implementation of this activity uses
the scikit-learn library®” for the ML algorithms, the imbalanced-
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learn (imblearn) library®® for SMOTE, and other common
libraries for handling data sets (pandas™), carryin(g out
mathematical and statistical calculations (NumPy*’ and
SciPy*'), and visualizing data (Matplotlib,** Plotly,” and
Seaborn**). Our implementation was performed in the (free-
to-use) Google Colaboratory environment,** but it could also be
run in any standard Jupyter notebook environment. The
Mathematica implementation uses built-in functionality avail-
able in version 12.1 and above, and it includes a custom
implementation of the SMOTE algorithm.

B RESULTS

Binary Classification

In Parts I and II of the experiment, students use different binary
classification algorithms to predict whether input IR absorption
spectra correspond to carbonyl-containing molecules. The IR
spectra of carbonyl-containing compounds are characterized by
the strong carbonyl stretching mode at 1540—1870 cm™
(Figure 2A).*® The default classification analysis uses a
threshold value of 0.2, removing weaker vibrational modes
(Figure 2C). Table S1 shows representative performance
metrics for the four ML algorithms tested. Although the
performance will vary slightly due to randomness in SMOTE
balancing and model training, model performance overall was
very good, with accuracies, sensitivities, and specificities greater
than 95% for the Random Forest and k-Nearest Neighbors
models and slightly lower for Decision Tree. The Gaussian
Naive Bayes model is the clear outlier in performance, with an
accuracy of 85%, likely due to its inaccurate assumption of
feature independence.

After this basic analysis is implemented, students explore how
different analysis parameters affect the binary classification
performance. For example, students can assess the effect of
changing the threshold setting. There is little change in the
performance of the Random Forest model when this setting is
decreased to 0.0 from its default value of 0.2 (Table S2).
Increasing this setting to a large value, such as 0.5, removes all
but the strongest vibrational modes, yet the model performance
is still quite good. The sample protocol encourages students to
consider the implications regarding what features the model uses
to make predictions, and to reflect on similarities and differences
in how humans interpret vibrational spectra. Students can also
explore the effect of changing the parameters in the different ML
algorithms such as the number of neighbors to use in label
prediction for the k-Nearest Neighbors algorithm. Moderate
increases in this parameter from the default value of five have
little effect, but larger increases cause model performance to
deteriorate because the prediction relies on an increasing
number of nonsimilar neighbors (Table S2). Finally, students
can run the analysis without SMOTE data balancing; in this case,
they will observe little change in the performance, indicating that
class imbalance is not necessarily a problem if the classes are
sufficiently distinct (Table S2). These examples demonstrate
that model performance depends on the choice of analysis
parameters and that inappropriate analysis parameters can give
poor results.

A goal of this activity is for students to appreciate possible
pitfalls and failure modes of ML analyses. Part II prompts
students to analyze false positive and false negative error cases
for the different ML models. Although there is some variation in
these error cases, several common false positives and negatives
are shown in Figure 3. Common false positives, such as trans-

https://doi.org/10.1021/acs.jchemed.1c00693
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Figure 3. Spectra of (a) common false positives and (b) common false
negatives in binary classification analysis.

nitrous acid or chromium dihydride, have a strong IR absorption
peak near 1770—1780 cm™', in the same range as the carbonyl
stretch. For some of the common false negatives, like N,N-
diethylbutanamide or o-tolualdehyde, the carbonyl stretch is
shifted to lower frequencies due to electron-donating sub-
stituents, which likely explains the failure of the model to classify
them as carbonyls. Analysis of these error cases helps students
understand that ML models can fail. To illustrate this point
further, students are given four spectra of the carbonyl-
containing molecule N-methylacetamide, three of which are
formatted in various ways inconsistent with the training data; for
example, one spectrum uses a smaller spacing between data
points so that a smaller frequency range is covered. Students will
observe that the models correctly identify the carbonyl group for
the correctly formatted spectrum but fail for the incorrectly
formatted spectra. This example demonstrates the importance
of data preprocessing and the use of consistent data for training
and testing ML models.

The sample protocol suggests several other optional
extensions of the binary classification task such as generating a
learning curve by repeating the analysis using subsets of the
training data set or using the trained ML models for analysis of
other spectra obtained experimentally or computationally. The
National Institute of Standards and Technology (NIST)
Chemistry WebBook’ and Computational Chemistry Compar-
ison and Benchmark DataBase (CCCBDB)*’ are good
resources for experimental and computational IR absorption
spectra, respectively, or students could analyze spectra that they
obtained in previous course modules on IR spectroscopy or
computational chemistry.

Multiclass Classification

In Part III of the experiment, students implement a multiclass
classification model using the Random Forest algorithm to
classify carbonyl-containing molecules as ketones, carboxylic
acids, or other. Distinguishing between different carbonyl-
containing molecules is more challenging than the binary
classification analysis, and the model accuracy is correspond-
ingly lower, with an overall accuracy of 80% (Tables S3 and S4).
Nevertheless, prediction of carboxylic acids, which have a broad
hydroxyl stretching mode in the range of 2500—3300 em~ L% s
fairly accurate, as is prediction of other carbonyl-containing
molecules. Ketones, which lack distinctive spectral features
other than the carbonyl stretch, have the lowest accuracy (40%).
It should be noted that the training data set for this part of the
analysis is smaller than for the binary classification, which likely
decreases the overall model performance.

Although the sample protocol does not provide possible
extensions, Part III could be expanded by using different ML
algorithms, analysis parameters, or data sets. Students could also
analyze other carbonyl-containing functional groups, such as
amides or aldehydes, although there are fewer instances of these
groups in the Alexandria Library data set, or esters, of which
there are 99 instances. In particular, the spectra of esters are
characterized by a carbonyl stretch at higher frequencies relative
to ketones and two coupled C—O vibrational modes in the range
of 1000—1300 cm ™, and are distinguished from carboxylic acids
by the absence of the hydroxyl modes.*® This extension of the
activity would help reinforce student learning of the spectral
properties of different functional groups while also exposing
students to cheminformatics concepts like simplified molecular-
input line-entry system (SMILES) and SMILES arbitrary target
specification (SMARTS)."®

B IMPLEMENTATION

This activity was implemented in the Spring 2021 semester in
physical chemistry lab courses at Fordham University and
Whitman College, with a total of 22 junior and senior chemistry
majors. The core exercise is designed so that Parts I and II can be
carried out in a single 3—4-h laboratory period and Part III can
be carried out in a second period of the same duration. Student
estimates of time required to complete the activity were
consistent with this timeline (Figure 4), with most students
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Figure 4. Student estimates of time required to complete Parts I, II, and
III of the exercise.

requiring 1 h or less to complete Part I and approximately 2 h
each to complete Parts II and III. If two laboratory periods are
not available, Parts I and II can be implemented as a one-day
activity that still gives students an overview of ML classification
tasks and possible pitfalls. The exercise was carried out
asynchronously at Fordham University and synchronously but
remotely at Whitman College; completion times may be shorter
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Figure S. Results of the prelab survey assessing students’ familiarity with machine learning and Python programming.
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Figure 6. Results of the postlab survey assessing the effectiveness of the activity in introducing students to machine learning and Python programming

and in stimulating student interest in machine learning.

in an in-person setting where the instructor would be able to
assist students more easily.

This exercise is implemented in two notebooks: one for the
binary classification in Parts I and II and a second for the
multiclass classification in Part III. These notebooks provide
explanatory information and computer code needed to carry out
the analysis. The first notebook contains the complete code
needed to carry out binary classification in Part I of the activity.
It can then be modified by students to carry out the additional
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analyses in Part II. The second notebook, used for the multiclass
classification task in Part III, only contains a framework for the
analysis. Students must write larger chunks of code on their own,
all of which can be adapted from the binary classification
notebook, to complete the analysis. In this way, the three parts of
the exercise are designed so that students move from simply
executing code and observing the output, to making small
changes to code, and finally to writing their own larger blocks of
code.

https://doi.org/10.1021/acs.jchemed.1c00693
J. Chem. Educ. 2021, 98, 3269-3276


https://pubs.acs.org/doi/10.1021/acs.jchemed.1c00693?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.1c00693?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.1c00693?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.1c00693?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.1c00693?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.1c00693?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.1c00693?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.1c00693?fig=fig6&ref=pdf
pubs.acs.org/jchemeduc?ref=pdf
https://doi.org/10.1021/acs.jchemed.1c00693?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Education

pubs.acs.org/jchemeduc

These notebooks are available as both Python and
Mathematica notebooks. Python notebooks can be executed
with the free web-based Google Colaboratory platform,* or
using any available Jupyter Notebook environment. Mathema-
tica notebooks require a license for either the desktop or online
version of Mathematica, although it is presently available for free
on the Raspberry Pi computer. The two versions of the
notebooks are essentially the same, with minor changes
reflecting differences in the underlying programming languages.
Instructors may choose which version to use based on the
availability of a Mathematica license and on any previous student
experience with either programming language; instructors could
also weigh whether an introduction to the Google Colaboratory
environment is an important learning goal for their class. Both
trials of this exercise used the Python version of the notebooks.

Although our trials at Fordham University and Whitman
College used this activity as a standalone exercise, instructors
could integrate this activity with other course modules and
experiments. For example, this exercise could be performed after
a course module on experimental IR absorption spectroscopy,
allowing students to use their trained ML models to classify their
experimentally obtained spectra. Alternatively, this activity
could form the basis of a larger exercise or independent project
in a computational chemistry or machine learning course.
Students could extend the multiclass classification model in Part
III to include other carbonyl-containing functional groups, or
they could use the same approach to train a multiclass classifier
to distinguish between carbonyls and other functional groups
(such as alkenes, alcohols, or amines).

B RESULTS OF STUDENT SURVEYS

Anonymous surveys were conducted before and after the
experiment to assess students’ previous experience with ML and
Python programming and to determine students’ assessment of
the effectiveness of the exercise as an introduction to these
topics. The prelab survey (Figure S) revealed that although most
students had heard the term “machine learning” (71%) and were
familiar with its nonchemistry applications (57%), only a small
fraction (23%) knew of its chemistry applications. About half of
students (48%) had taken at least one computer science course
previously, either in high school or in college. Almost all students
(95%) had heard of Python, with smaller fractions having read
(57%) or written (43%) Python code, but almost no one had
previous experience working in Google Colaboratory or another
Python notebook environment (5%).

The postlab survey (Figure 6) demonstrated that students
found the experiment to be an effective introduction to ML, with
large majorities agreeing or strongly agreeing that after the
exercise they understood the basic steps in a ML classification
task (95%), some of the factor that affect ML analyses and
possible pitfalls (94%), and some of the possible applications of
ML to chemistry (84%). Most students felt more able to work in
a Google Colaboratory environment (84%) and to read Python
code (68%), although not to write Python code (26%). Finally,
most students enjoyed the exercise (63%) and reported
increased interest in learning more about ML (74%). From
these results, we conclude that the activity functions as an
effective introduction to ML and to working with Python code in
a Google Colaboratory environment, even if it is not a
comprehensive introduction to the Python programming

language.
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B CONCLUSION

We have developed an activity in which students train ML
algorithms to distinguish carbonyl-containing compounds from
IR absorption spectra. This activity, although designed for a
physical chemistry laboratory class, can be incorporated into
other chemistry or programming courses. It can be customized
to align with other course activities and can provide a foundation
for more advanced independent projects. Surveys reveal that this
activity was effective both in introducing students to applications
of ML in chemistry and in stimulating student interest in the
topic. In light of the growing importance of computational
methods and artificial intelligence across the chemical sciences,
activities such as these are an important component of a modern
education in chemistry.
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