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ABSTRACT: Phosphorylation of select amino acid residues is one
of the most common biological mechanisms for regulating protein
structures and functions. While computational modeling can be
used to explore the detailed structural changes associated with
phosphorylation, most molecular mechanics force fields developed
for the simulation of phosphoproteins have been noted to be
inconsistent with experimental data. In this work, we parameterize
force fields for the phosphorylated forms of the amino acids serine,
threonine, and tyrosine using the ForceBalance software package
with the goal of improving agreement with experiments for these
residues. Our optimized force field, denoted as FB18, is para-
meterized using high-quality ab initio potential energy scans and is
designed to be fully compatible with the AMBER-FB15 protein
force field. When utilized in MD simulations together with the
TIP3P-FB water model, we find that FB18 consistently enhances the prediction of experimental quantities such as 3J NMR couplings
and intramolecular hydrogen-bonding propensities in comparison to previously published models. As was reported with AMBER-
FB15, we also see improved agreement with the reference QM calculations in regions at and away from local minima. We thus
believe that the FB18 parameter set provides a promising route for the further investigation of the varied effects of protein
phosphorylation.

■ INTRODUCTION
Protein phosphorylation, the enzyme-catalyzed reversible
addition of a phosphate group to protein residues, represents
one of the most ubiquitous post-translational modifications
(PTMs); it has been estimated that approximately 30% of all
proteins are phosphorylated at some point in their lifetimes.1,2

Protein kinases catalyze the transfer of a phosphate group from
molecules such as ATP to various amino acid residues, while
phosphatases catalyze the reverse reaction.3,4 This reversible
PTM can cause changes to the local and/or global structure of
proteins, which may serve to modify their activity in key
cellular pathways.5 Many phosphorylation sites are located in
intrinsically disordered proteins (IDPs); for such a protein,
phosphorylation may alter its conformational ensemble and/or
ability to bind to its biomolecular partners.6−9 Because
phosphorylation represents a strong chemical perturbation to
a protein, it is perhaps unsurprising that it is used by the
cellular machinery to regulate important processes such as
metabolism, apoptosis, membrane transport, cell signaling, and
a variety of other essential cellular processes.2,10,11

Human genome mutations can result in improper functions
of the protein kinases and phosphatases that catalyze the
addition and removal of phosphate groups from proteins,
potentially leading to improper regulation of these key cellular
pathways. This leads to diseases such as cancer, diabetes, and

various neurodegenerative disorders.1,12−15 Due to the central
role that the kinases and phosphatases play in the regulation of
these diseased pathways, phosphorylated systems are increas-
ingly becoming promising targets for drug development
strategies, demonstrating the importance of this PTM for
proper cell functions.16−22 Thus, the effects of protein
phosphorylation must be studied thoroughly to understand
how it modulates the regular functions of proteins and to
understand how/why abnormal phosphorylation associated
with disease disrupts these functions. The detailed study of
these systems may significantly aid current drug development
processes in addition to furthering our basic understanding of
cellular physiology.
Computational simulations are a valuable complement to

experimental techniques that aim to characterize the changes
in protein structures and functions that occur upon
phosphorylation (or dephosphorylation). This is especially
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true for IDPs, which exist as an ensemble of structures that
may be difficult to deduce from experimental data that often
consist of ensemble averages.23 Molecular dynamics (MD)
simulations in particular have been used to study a wide variety
of protein properties in general, including protein folding and
conformational change.24−32 Numerous MD simulations have
been performed for various phosphorylated systems in the past,
such as tau protein, RNA polymerase III, smooth muscle
myosin, and others, in order to elucidate the conformational
changes that phosphorylation introduces to these systems.33−36

The accuracy of these simulations, however, is strongly
determined by the classical force field used for the MD
simulation.37−40

Force fields for phosphorylated amino acids have been
mainly developed for those relevant for eukaryotes: serine,
threonine, and tyrosine. These force field parameters are
generally available for monoanionic and dianonic protonation
states as these are the relevant forms at physiological pH.41 In
the AMBER force field, phosphorylated amino acid parameters
were first created for AMBER ff9942 by Homeyer et al.43 The
partial charges were parameterized using RESP,44 the Lennard-
Jones (LJ) parameters were generally taken from phospho-
diesters in the AMBER force field, and a variety of new bonded
parameters were implemented. Validation was performed in
order to ensure that torsional energies reproduced example ab
initio calculations. As the LJ parameters were not optimized for
the phosphorylated amino acids, Steinbrecher et al.45

optimized the oxygen LJ radii on the phosphate group to
reproduce solvation free energies computed using thermody-
namic cycles, gas-phase basicities, and other values from
quantum chemistry (QM) calculations of phosphorylated
amino acid analogues. There exist another set of force field
parameters in AMBER ff03 as part of Forcefield_PTM, which
was designed for a variety of PTMs,46 but parameters are only
available for the dianionic species of the phosphorylated amino
acids in this package. The AmberTools 20 distribution includes
newly derived side-chain-specific torsion parameters for
phosphorylated residues that are compatible with the ff14SB
and ff19SB force fields, but the parameterization and validation
approaches have not yet been published. Parameters for
phosphorylated residues have also been developed for the
GROMOS and CHARMM force fields, with parameters either
derived from nucleic acids or parameterized similar to the
AMBER force fields.47−51

The validation of phosphorylated amino acid parameters by
comparing simulation predictions to experiments is lacking in
the literature, in contrast to the case of the canonical amino
acids. A recent article by Vyme  tal et al.52 has pointed out
inconsistencies in calculated quantities by the AMBER and
CHARMM force fields for the phosphorylated amino acids
over a wide range of properties related to their conformational
ensembles, such as NMR 3J couplings, intramolecular hydro-
gen-bonding propensities, conformational preferences, and
more; inconsistencies in calculated conformational preferences
by AMBER and CHARMM for larger IDPs have also been
noted by Rieloff and Skepö.53 This raises questions about the
suitability of current force field parameter sets for simulation of
these systems.
The need to improve force field accuracy for phosphorylated

residues can be met by leveraging recent methods that were
used to reparameterize force fields for the canonical amino
acids.54−56 One of the well-established avenues for improving
these force fields is to refit the bonded parameters, particularly

those describing the dihedral angle degrees of freedom, by
fitting to high-quality ab initio quantum chemistry calculations.
The AMBER-FB15 protein force field is one example of this
approach.54 In the parameterization of AMBER-FB15, the
parameters were fit to a large data set consisting of RI-MP2/
aug-cc-pVTZ-level57,58 calculations on blocked dipeptide
versions of the 20 canonical amino acids in standard and
alternate protonation states, including relative potential
energies and gradients of constrained optimized structures
on dense grids of main-chain and side-chain dihedral angle
constraints, and vibrational frequencies at optimized geo-
metries. The parameters were optimized in automated fashion
using ForceBalance, a program which has been successfully
used for systematic and reproducible force field parameter-
ization for a variety of systems.59−62 Although AMBER-FB15
produced notably improved predictions of equilibrium and
temperature-dependent properties of proteins, the original
work did not develop compatible parameters for PTMs such as
phosphorylation.
The goal of this work is to create AMBER-FB15 compatible

parameters for six phosphorylated amino acids: phosphoserine,
phosphothreonine, and phosphotyrosine in their monoanionic
and dianonic protonation states. We first build a reference data
set composed of accurate MP2-level QM data as was done for
AMBER-FB15. ForceBalance is used to optimize bonded
parameters starting from those created by Homeyer et al.43 for
the phosphorylated side chains in order to keep consistent
parameters for the backbone atoms, with the nonbonded
parameters unmodified from those implemented by Homeyer
et al.43 and Steinbrecher et al.45 Detailed potential energy
surface comparisons are made between parameters from
AMBER ff99SB,63 which we use as a starting point for the
force field optimization, the “FB18” optimized parameters
presented in this work, and the QM reference data for
validation of the energies predicted by the new parameters.
Additionally, we compare the new force field to experimental
data for blocked dipeptide forms of each of the amino acids
parameterized here, similar to the procedure performed by
Vyme  tal et al.52 These are essentially the simplest phosphory-
lated systems possible, for which a multitude of data exist, such
as 3J NMR couplings and chemical shifts, intramolecular
hydrogen bond propensities, and backbone conformational
preferences.64−66 The simple nature of these systems allows for
relatively straightforward comparison between MD simulation
results and experiments.
We find that the parameters from AMBER ff99SB generally

overestimate QM energetic barriers for these phosphorylated
systems, consistent with what was observed in the parameter-
ization of AMBER-FB15.54 The FB18 parameters adjust these
barriers to overall better agreement with the QM data, which
we believe can lead to further improvement in the prediction of
experimental observables. Indeed, we find that FB18 is able to
significantly enhance force field predictions for quantities such
as 3J NMR couplings in these systems, which is particularly
promising as the force field was not explicitly parameterized to
any experimental data of this nature. Moreover, comparisons
between AMBER ff99SB and FB18 indicate that the latter
yields improvements in the qualitative predictions from MD
simulations with respect to experimental data on phosphate
group-to-backbone hydrogen bonding. We therefore recom-
mend the use of FB18 along with AMBER-FB15 for the further
study and exploration of phosphorylation on the effects of
protein structures.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.1c07547
J. Phys. Chem. B 2021, 125, 11927−11942

11928

pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.1c07547?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


■ METHODS

Reference Data Set. The reference data used to
parameterize AMBER-FB18 are composed of QM single-
point energies, gradients, and vibrational modes, largely
following the procedure described for canonical amino acids
in parameterizing AMBER-FB15.54 The single-point energies
and gradients were computed for constrained energy-
minimized structures where constraints were varied over 2-D

grids of main-chain or side-chain dihedral angles. The
TorsionDrive67 procedure was employed to generate the
grids of constrained optimized structures using a wavefront
propagation method, as illustrated in Figure 1. The procedure
starts with a user-specified grid of dihedral angle constraints
and one or more initial structures. In the first iteration, the
initial structures are energy-minimized with the dihedral angle
constraints set to the nearest grid point. Next, constrained
energy minimizations are started from the minimized

Figure 1. Illustration of the TorsionDrive procedure. Grid points containing energy minimization data are represented by a circle; blue circles
represent inactive grid points with data from previous iterations, red circles are grid points with active minimization(s), and green circles indicate
that a new lowest-energy structure has been found at a grid point containing the results from previous iterations. Arrows point from the initial to
target constraint values.
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structures with new target constraint values set to the
neighboring grid points (4 for a 2-dimensional scan), and
the cycle is repeated. As the iterations proceed, multiple
minimizations may be targeted at the same grid point starting
from different neighboring points, or new minimizations may
be targeted at a grid point that already has results from a
previous iteration. When this occurs, the energies of the newly
finished minimizations are compared with any previous results
at that grid point, and new calculations are launched in the
next iteration only if a new lowest-energy structure is found.
Thus, at the end of the TorsionDrive procedure, the dihedral
grid has an energy-minimized structure at each point with the
property that no new constrained minimizations started from
neighboring grid points could further lower the energy. While
TorsionDrive is computationally more expensive than running
the constrained minimizations separately, it has the advantage
of producing a maximally continuous potential energy surface
even when there are multiple local minima in the orthogonal
degrees of freedom.
Figure 1 explains how the TorsionDrive iterations unfold for

a hypothetical example with a 2-D grid of (ϕ, ψ) angles with a
60° resolution. The individual iterations are described as
follows:
Iteration 0: (not shown) The user-provided initial structure

is energy-minimized with dihedral constraints set to the nearest
grid point at (120°, 0°).
Iteration 1: Four new minimizations are started with

constraints targeting the neighboring grid points (120° ± 60,
0° ± 60).
Iteration 2: Four new minimizations are started from each of

the completed minimizations from iteration 1 for a total of 16,
including 4 targeting the original grid point at (120°, 0°). The
five circles in the middle are highlighted for clarity.
Iteration 3: Four new minimizations are launched from the

lowest-energy minimized structure at each of the 8 blue circles
on the perimeter (32 in total). These include three new
minimizations at each of the outer four points in the
highlighted region (120° ± 60, 0° ± 60). The four energy
minimizations at the center point (120°, 0°) from Iteration 2
are compared with the existing result from Iteration 0. If a new
lowest-energy structure is found, then four new minimizations
are started from this point (3b). Otherwise, this point becomes
inactive (3a). Note that two minimizations are started at the
grid point (−60°, 0°) from opposite ends of the propagating
wavefront.
Iteration 4: Four new minimizations are launched from the

lowest-energy structures on the perimeter (40 in total). The
energy minimizations at (120° ± 60, 0° ± 60) from Iteration 3
are compared with the previous results from Iteration 1. If a
new lowest-energy structure is found, then new minimizations
are launched (4b, 4d). Otherwise, the points become inactive
(4a, 4c).
Iteration N: The iterations continue until self-consistency,

that is, no new local energy minima are found with a lower
energy.
For each monoanionic phosphorylated amino acid, we

performed two TorsionDrive calculations that scanned the
backbone (φ, ψ) and side-chain (χ1, χ2) dihedral angles,
respectively, each on a 2-D grid with a 15° resolution. We
observed that some of these minimizations led to proton
transfer from a backbone N−H group to the phosphate and
rectified this by constraining the two N−H bond lengths to
1.01 Å. These minimizations produce two 24 × 24 grids with

an associated geometry at each point. As the constrained
dihedral angles are varied over the grid, the orthogonal degrees
of freedom can change significantly; this effect can be seen in
Figure S1 in Supporting Information, which shows the
variation in the optimized ϕ/ψ angles as the χ1/χ2 angles are
scanned. Because this procedure involves several times as many
energy minimizations as grid points (i.e., thousands per
dipeptide), they are carried out using a relatively inexpensive
level of theory, B97-D3/6-31G*.68,69 The lowest-energy
structures on each grid point are then reminimized with
their constraints at the RI-MP2/aug-cc-pVDZ level of theory,57

followed by a RI-MP2/aug-ccPVTZ gradient calculation and a
RI-MP2/aug-cc-pV(T,Q)Z single-point energy calculation to
estimate the MP2/CBS energy using Helgaker’s two-point
extrapolation.70 Because the TorsionDrive procedure was
highly costly, we took a less expensive approach for the
dianionic residues by removing the hydrogen on the phosphate
group from each structure in the monoanionic grids and
running the constrained minimizations independently; single-
point energy and gradient calculations were then performed
following the same procedure as the monoanionic case.
In addition to the dihedral potential energy surfaces, we also

performed vibrational analyses to provide additional data for
the bonded parameters. For each dipeptide in both
protonation states, an unconstrained RI-MP2/aug-cc-pVTZ
energy minimization was carried out for the overall lowest-
energy structure taken from the grids, followed by a RI-MP2/
aug-cc-pVTZ numerical Hessian calculation and vibrational
analysis for the vibrational frequencies and normal modes.
Scaling factors for the vibrational frequencies were the same as
those used for the AMBER-FB15 frequency calculations.54,71

Despite our best efforts to scan over the relevant degrees of
freedom when generating the QM data, the optimized
molecular mechanics (MM) force field often has spurious
local energy minima that occur at structures not covered by the
QM data set. To address this issue, we generated new QM
energies and gradients from MM energy-minimized structures
using the optimized force field and appended them to the
training data set and then reoptimized the force field with the
expanded data set. After we have optimized the initial force
field using the dihedral potential energy surfaces and frequency
calculations, each structure on the 2D QM grid is optimized
using the new force field, and the resulting structures are
clustered using heavy-atom root-mean-square deviation (rmsd)
and a cutoff of 0.1 Å. The clustering produces 25−50
geometries per residue/protonation state, from which RI-
MP2/CBS single-point energies and RI-MP2/aug-cc-pVTZ
gradients are computed and added to the data set. Because
spurious minima have relatively high QM energies, adding
these data to the parameter optimization creates a feedback
loop to eliminate these minima in the “reoptimized” force field.
This outer loop is repeated three times to reduce the
occurrence of spurious local minima before producing the
final FB18 parameter set.
Table 1 summarizes the total reference data in the parameter

optimization. The TorsionDrive procedure used Q-Chem 4.4
to perform the energy minimizations and the Work Queue
library to distribute the independent minimizations at each
step of the wavefront propagations.72,73 The final MP2
optimizations were carried out using Psi4 1.1 called from the
geomeTRIC geometry optimization package;74,75 Psi4 was also
used for the single-point energy and gradient calculations as
well as the vibrational analysis.
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Parameter Optimization. ForceBalance, a software pack-
age designed for systematic and reproducible force field
development, was used for the parameter optimization. The
underlying theory of ForceBalance is reviewed here, and the
reader is directed to refs 54, 59, and 62 for a more
comprehensive description.
ForceBalance seeks to minimize the difference between the

results predicted by the reference data and the force field
represented as a least-squares objective function of the
following form:

L w L wk k k( ) ( )
T

T Ttot
targets

reg
2∑= + | |

∈ (1)

Here, Ltot refers to the total objective function and is
dependent on the optimization variables k. The objective
function has a hierarchical structure, and Ltot is composed of
individual objective functions for each target, LT(k),
individually weighted by wT. A Tikhonov regularization term
is also added, with a user-determined global regularization
strength wreg, here set to 1.0. In the context of this work, there
are four targets for each residue/protonation state: the two
QM dihedral scans, the vibrational frequency calculations, and
the single-point energies and gradients from MM-optimized
structures from the feedback procedure. The wT applied to the
QM dihedral scans and vibrational frequencies is set to 1.0 in
this work, while a wT of 4.0 was used for the MM-optimized
structures to increase the contribution of this term focusing on
elimination of spurious minima.
Each target objective function in ForceBalance consists of

contributions representing one or more properties of a
molecular system

L w Lk k( ) ( )T
j

j
T

j
T

properties

( ) ( )∑=
∈ (2)

Here, the wj
(T) refers to the weight applied to the contributions

from individual properties Lj
(T). For the targets consisting of

single-point energies and gradients (the dihedral potential
energy surfaces and MM-optimized structures), wj

(T) was set to
1.0 for the energies and 0.1 for the forces, whereas for the
vibrational frequencies, there is only one property (wj

(T) = 1.0).
The lower weight for the forces was chosen because the QM
forces for the constrained energy-minimized structures tend to
be relatively small compared to those if they had been sampled
from a constant-temperature ensemble. As the (QM/MM)
force deviations are normalized by the rms of the (small) QM
forces, the force deviation term in the objective function is
artificially large.54 Therefore, we choose wj

(T) = 0.1 to
counteract this effect so that the energy and force
contributions to the objective function are roughly equal.
The Lj

(T)(k) are given by

L
d

w y y

w
k

k
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1
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This term computes the difference between the property
predicted by the force field parameters on a specific data point
p, yjp

(T), and that predicted by the reference data, yjp,ref
(T) . The dj

(T)

variable is used to normalize and remove physical units for
each property. Individual weights for data points within a
property are given by wjp

(T) and are all set to 1 for the
vibrational frequencies. For the dihedral grids, a weight
function similar to the one implemented for the construction
of AMBER-FB15 is used54
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The weight function is a decreasing function of the potential
energy above the minimum and has the effect of prioritizing
the objective function toward low-energy structures that are
statistically most probable during the MD simulations. For
relative energies below D, the weight takes a constant value
and then becomes inversely proportional to energy until the
upper cutoff U is reached, where the weight drops to 0. The
lower cutoff D is set to 5 kcal/mol in both AMBER-FB15 and
this work. However, in contrast to the canonical amino acids
where U is set to 20 kcal/mol, the dianionic residues have a
substantial number of structures with relative energies greater
than 20 kcal/mol (shown in Figures S20−S22). Therefore, the
cutoff energy was increased from U = 20 kcal/mol to U = 40
kcal/mol for the dianionic species. The A(yjp

(T)(k) − yjp,ref
(T) ) term

depends on the sign of the MM/QM energy difference and is
designed to heavily penalize force field predictions in which the
MM energy is lower than the QM energy (see ref 54).
To compute yjp(k) above, the mathematical parameters k are

mapped to physical parameters K through a linear trans-
formation

K K p k(0)= +λ λ λ λ (6)

where λ is an index pertaining to individual force field
parameters, Kλ is the current physical value of the parameter
undergoing optimization, Kλ

(0) is the original physical
parameter, pλ is the parameter prior width, and kλ is the
mathematical parameter or optimization variable. The linear
mapping between mathematical and physical parameters allows
one to simultaneously optimize parameters that have different
physical units and may vary across many orders of magnitude.
The prior width is a hyperparameter that is user-specified for
each parameter type and controls the size of the variations of
parameters of that type over the course of the optimization.
For a fixed change in the physical parameter, the change in the
mathematical parameter is inversely proportional to the prior
width; therefore, the prior width is proportional to the inverse
square of the penalty function contribution. Due to a greater
anticipated deviation in the initial parameters compared to
those seen in AMBER-FB15, the prior widths for the bond and

Table 1. Reference Data Types for the FB18 Force Field.

reference data
no. of

calculations

grid of energies and gradients over (ϕ,ψ) for 6 protonation
states

3451a

grid of energies and gradients over (χ1, χ2)for 6 protonation
states

3456

vibrational frequencies for each protonation state 6
energies and gradients of MM-optimized structures 405
aThe (ϕ, ψ) Grids Include Five Geometry Optimizations That Failed
to Converge as Shown in Figures S20 and S21.
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angle parameters were both increased by a factor of 5. The
prior widths used for FB18 are shown in Table 2.

The AMBER-FB15 force field parameters for the backbone
of each amino acid along with the AMBER ff99SB parameters
(with some modifications detailed below) for the phosphory-
lated side chains were used as the starting point of the
optimization.43,45,54 As the purpose of this work is to add onto
the existing AMBER-FB15 model, only bonded parameters
pertaining to the side chain for each protonation state were
optimized in order to maintain compatibility. Residue and
protonation-state-specific β-carbon atom types (and γ-carbon
atom types for monoanionic and dianionic phosphorylated
threonine) were added in order to better fit the dihedral
potential energy surfaces; the atom types for each residue are
listed in Tables S1−S6. Additionally, we found a sizeable
discrepancy for the phosphorous−oxygen (linking the amino
acid side chain to the phosphate group) equilibrium bond
length parameter for the dianionic phosphorylated amino acids
compared to the value produced from the QM optimizations
and of model phosphorylated analogues (detailed in
Supporting Information §1.2). As the parameter optimization
is sensitive to the initial parameter values through the penalty
function, we altered these initial bond length values in order to
produce a more reasonable starting point for ForceBalance.
GROMACS 5.1.4 interfaced with ForceBalance was used for
performing MM single-point energies/gradients, energy
minimizations, and vibrational analysis for the parameter
optimization process.76

MD Simulations. Unphosphorylated, protonated phos-
phorylated (charge: −1e), and deprotonated phosphorylated
(charge: −2e) serine, threonine, and tyrosine dipeptides were
built in extended conformations using the tleap program of
AmberTools 1877 and either the AMBER ff99SB63 or FB18
force fields. We will use the three-letter identifiers SER, THR,
and TYR for unphosphorylated serine, threonine, and tyrosine
dipeptides, respectively; S1P, T1P, and Y1P to refer to
protonated phosphorylated serine, threonine, and tyrosine
dipeptides, and SEP, TPO, and PTR refer to deprotonated
phosphorylated serine, threonine, and tyrosine dipeptides. As
outlined in the leap setup script leaprc.phosaa10 (contained in
AmberTools 18), the partial atomic charges for the
phosphorylated amino acids were obtained from Homeyer et
al.,43 and modified LJ radii for the phosphate oxygens were
obtained from Steinbrecher et al.45 Each peptide was solvated
in a truncated octahedron of 1380 to 1400 TIP3P78 (for
ff99SB) or TIP3P-FB12 (for FB18) water molecules and
neutralized by the addition of 1−2 sodium ions where
applicable. The Joung−Cheatham monovalent ion parame-
ters79 for TIP3P were used with the ff99SB/TIP3P
simulations, while the same authors’ monovalent ion
parameters for SPC/E were used with the FB18/TIP3P-FB

simulations as the TIP3P-FB water model is closer in
parameter space to SPC/E80 than TIP3P.
All energy minimizations and MD simulations were

performed using pmemd and pmemd.cuda81 programs of
Amber 18. Periodic boundary conditions were used with a
9.0 Å cutoff for real space nonbonded interactions, particle
mesh Ewald (PME) for long-range electrostatics, and an
analytic correction for long-range van der Waals interactions.
First, each system was minimized with 250 steps of steepest
descent minimization, followed by 250 steps of conjugate
gradient minimization. During this phase of minimization,
peptide atoms were restrained with a harmonic force constant
of 10.0 kcal mol−1 Å−2. Next, the same amount of minimization
was performed without restraints. The subsequent MD
simulations were performed using a 2.0 fs time step and with
SHAKE to constrain all bonds with hydrogen atoms. First, the
systems were heated linearly from 100 to 303.15 K over 20 ps
with an additional 20 ps of NVT equilibration using a Langevin
thermostat with a coupling constant of 1.0 ps−1. Next, 50 ps of
NPT equilibration was performed at the same temperature and
with a pressure of 1.013 bar using a Berendsen barostat with a
coupling constant of 2.0 ps−1. During the heating and
equilibration steps, the peptides were again restrained with a
harmonic force constant of 10.0 kcal mol−1 Å−2. A final NPT
equilibration without constraints was performed for 200 ps
using a Monte Carlo barostat, with volume swaps attempted
every 100 steps (200 fs). Production simulations were
performed for 1.5 μs, with trajectory snapshots saved every
10 ps.
We observed slow convergence of dihedral angle distribu-

tions and/or scalar couplings for some of the dipeptides. In
particular, we aimed for all systems to have uncertainties no
larger than ∼0.01 in terms of predicted probabilities of
backbone conformational states and ∼0.1 Hz in terms of
predicted scalar couplings. For these systems (ff99SB: T1P and
TPO; FB18: SER, THR, Y1P, and PTR), we performed replica
exchange MD (REMD) simulations to improve the conforma-
tional sampling. The REMD protocol consisted of running 20
replicas in exponentially spaced temperatures between 303.15
and 410 K. Replicas were first equilibrated (i.e., simulated
without any exchange attempts) for 10 ns. After the
equilibration period, REMD simulations were performed for
300 or 600 ns, with exchange attempts made every 0.2 ps (100
steps) and structures saved every 5 ps (25 swap attempts). The
exchange success rate was between 22 and 25% for all replicas
(and systems).

Data Analyses of MD Simulations. A simple approach
was used to generate uncertainty estimates for all the numerical
data obtained from the MD simulations. First, each production
simulation was first split into two equally sized blocks. Then, to
create two quasi-independent simulation blocks, the first 10%
of each block was discarded as a decorrelation period. The
resulting numerical data from these blocks are presented as the
mean of the two blocks ± the difference between the two
blocks.
Backbone conformational preferences were categorized by

binning ϕ/ψ angles according to the definitions of Vyme  tal et
al.52 Backbone 3JHN,Hα scalar couplings were calculated using
the “ensemble” Karplus equation parameters given in Table 1
of Vögeli et al.82 The quality of agreement with experimental
scalar coupling data was quantified using the following χ2

statistic:83

Table 2. Prior Width Values for Each Parameter Type

parameter type prior width

bond length 0.05 nm
bond force constant 5 × 105 kJ mol−1 nm−2

bond angle 25°
angle force constant 500 kJ mol−1 rad−2

dihedral phase π rad
dihedral amplitude 10 kJ mol−1
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Here, we assume that the uncertainties σi
2 are dominated by

the uncertainties inherent in the Karplus equation parameters
(rmsd: 0.36 Hz), which are an order of magnitude larger than
the reported experimental uncertainties (∼0.05 Hz) or
simulation uncertainties due to finite sampling. We also
calculated these scalar couplings using the “rigid” Karplus
equation parameters of Vögeli et al.82 to verify that our
conclusions were robust with respect to the choice of
parameters (Table S7 in Supporting Information).
Side-chain 3JHα,Hβ scalar couplings were calculated using the

residue-specific Karplus equation parameters given in Table 2
of Peŕez et al.84 We used the residue-specific parameters as
opposed to the “consensus” parameters because the scalar
couplings for serine and threonine are systematically and
significantly lower than those of all other residues due to the
electron-withdrawing nature of the oxygen substituent attached
to the Cβ atom in these residues.84

■ RESULTS AND DISCUSSION
Optimized Parameter Values. Figures S2−S19 in

Supporting Information show the top 10 parameter value
changes for each parameter type. While the equilibrium bond
lengths and angles from the AMBER-FB15 optimization
procedure changed by no more than 5%, the largest parameter
changes noted for FB18 are slightly greater than 10%. The
parameters describing the different phosphorous−oxygen bond
and angle terms were, in general, changed the most, as can be
seen in Figures S2−S5. The equilibrium bond lengths were
mainly increased for these atom types, with the exception of
the OV−P bond length (oxygen linking to the phosphate
group in PTR), which experienced a small reduction compared
to the initial value we assigned from QM energy
minimizations. The force constants for the bond and angle
terms associated with the phosphate group were also largely
modified, with a close to 25% reduction for the hydrogen−
oxygen−phosphorous angle for the monoanionic species being
the largest parameter change. The other large parameter
changes are associated with the new beta carbon atom types

that have been introduced. These parameters had greater
changes for the dianionic residues compared to the
monoanions.
Figures S6−S17 break down the dihedral angle parameter

changes by multiplicity. The dihedrals involved with the newly
introduced β-carbons and the amino acid backbone were
generally modified more than the dihedrals involving the
phosphorous atom. The dihedral angle parameters belonging
to the dianions changed more than the corresponding
monoanions as in the bond and angle terms, although this
varies by residue/multiplicity. As in AMBER-FB15, the
equilibrium phase angles change by no more than approx-
imately 30°, and the torsion amplitudes change by no more
than 1 kcal/mol.

Quality of Fit. Figure 2 above displays an example potential
energy surface for monoanionic phosphorylated tyrosine
dipeptide (Y1P) with the (χ1, χ2) angles constrained,
comparing the QM reference data with the ff99SB and FB18
force field predictions. As can be seen, ff99SB predicts a broad
low-energy region around the (χ1) dihedral angle of −100°,
which is shown not to exist in the QM data. FB18 corrects this
region, albeit with a slight overestimation of the energy at the
higher-energy peaks. It also manages to broaden low-energy
regions that ff99SB predicts to be too high, such as at the
regions of (50, 100) and (50, −100). We expect the better
agreement with the QM potential energy surface to lead to a
more accurate sampling of equilibrium structures in simulation
and improved temperature-dependent properties as is observed
in AMBER-FB15. Heat maps for all residues/dihedral angle
combinations are shown in Figures S20−S22 in Supporting
Information. Similar agreement as shown in Figure 2 is
observed, although the (ϕ, ψ) grids for dianionic phosphory-
lated serine and threonine dipeptides appear to significantly
overestimate the energy in some regions.
Figure 3 shows the results of reoptimizing the parameters

after adding QM training data computed at MM energy-
minimized structures, with different iterations of the optimized
force field used for the minimizations. The initial energies
predicted in the first cycle have an RMSE of 9.08 kcal/mol,
with the force field predicting MM energies that are too low
compared to the QM data. The addition of these data points to
the objective function in eq 3 seeks to increase the energies of

Figure 2. Potential energy surface for monoanionic phosphorylated tyrosine blocked dipeptide (Y1P). Left: QM relative energies calculated at the
RI-MP2/CBS level at RI-MP2/aug-cc-pVDZ energy-minimized structures with constrained (χ1, χ2) dihedral angles. We compare the MP2 energies
to the initial force field parameters (ff99SB, central panel) and the optimized parameters in this work (AMBER-FB18, right panel). The agreement
with QM is markedly improved after the fit.
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these spurious minima. In the second cycle, where the force
field is reoptimized with the additional QM data, the RMSE for
the energies calculated at the MM-minimized structures
significantly decreases to 1.54 kcal/mol. In the third cycle,
the RMSE has a minor decrease from cycle 2 to 0.92 kcal/mol,
indicating that the reoptimization procedure has essentially
converged.
Validation of Parameters: MD Simulations of Dipep-

tides. Intramolecular Hydrogen-Bonding Propensities.
NMR chemical shift data obtained for phosphorylated serine
and threonine dipeptides at varying pH levels suggest that the
oxygen atoms of the phosphate group are able to form
hydrogen bonds with the two backbone amide protons of the
capped dipeptides.65 In the analysis that follows, we will refer
to the amide nitrogen immediately N-terminal to the side
chain as Nself and the amide nitrogen that belongs to the C-
terminal capping group as Ncap.
For the phosphorylated serine dipeptides (in our nomen-

clature: S1P and SEP), the experimental data suggest that there
is a substantial increase in hydrogen bond formation to the
proton of Nself upon deprotonation of the phosphate group
(i.e., when S1P becomes SEP), while there is no change in the
hydrogen bond formation propensity for the proton of Ncap.

65

MD simulations performed with ff99SB yield nearly zero
phosphate-to-backbone hydrogen bonding in either S1P or
SEP (Table 3). Conversely, simulations performed with FB18
display hydrogen bonding to both amide protons for both S1P
and SEP, with increases in hydrogen-bonding propensities for
both upon deprotonation of the phosphate group. Here, it
appears that neither force field offers an entirely satisfactory
reproduction of the qualitative trends present in the
experimental data as ff99SB does not form these phosphate
group-to-backbone hydrogen bonds enough and FB18 perhaps
forms them too readily (at least to the proton of Ncap).
The experimental data for the phosphorylated threonine

dipeptides (in our nomenclature: T1P and TPO) display a
different trend, with a greater increase in hydrogen bond
formation to the proton of Nself upon deprotonation of the
phosphate group (i.e., when T1P becomes TPO) and a non-
negligible increase in the hydrogen bond formation propensity

for the proton of Ncap.
65 For these residues, ff99SB yields a

slight increase in hydrogen bonding to Nself upon deprotona-
tion of the phosphate group but a decrease in hydrogen
bonding to Ncap. FB18, however, is able to recapitulate the
experimental trend, with a large increase in hydrogen bond
formation to the proton of Nself and a modest increase in
hydrogen bond formation to the proton of Ncap. In this case, it
appears that FB18 is able to more faithfully reproduce the
hydrogen-bonding trends than ff99SB.

Backbone Conformational Preferences. Backbone con-
formational preferences are a common method of validation
for force field development because they play a key role in
determining the secondary structure preferences of simulated
proteins. Here, we examined the backbone conformational
preferences of all nine dipeptides using the same definitions of
secondary structure (i.e., “helical”, “PPII”, and “extended”) as
Vyme  tal et al. to facilitate direct comparison with that work
and additionally validate our own simulation results.52 We
classify ϕ/ψ angles not corresponding to one of these three
regions as “other”; such conformers would be considered as
either αL or αr in Vyme  tal et al.52 For completeness, we have
included the ϕ/ψ free-energy surfaces for all the dipeptides in
Supporting Information (Figures S23−S25).
As in Vyme  tal et al., we find that phosphorylation and then

deprotonation of the phosphate group successively increase the
helical nature of the serine dipeptide when simulated using
ff99SB (Figure 4). Similarly, phosphorylation causes a modest
shift from PPII to extended conformations in threonine,
whereas the opposite trend appears for tyrosine (Figure 4).
With FB18, however, the shifts in conformational preferences
are generally much larger, especially for the deprotonated
phosphorylated residues. In particular, we see that deproto-
nated phosphorylated serine (SEP) has more helical content
and greatly reduced extended and PPII content compared to
neutral serine; the missing ∼50% of conformers are in the
lower left of the α-helical (αr) region of the Ramachandran
diagram and are therefore classified as “other” rather than

Figure 3. MM vs QM predicted energies for phosphorylated tyrosine
dipeptide (−1e). The points represent predicted minimum energy
structures from the force field, which are eliminated through multiple
cycles of adding the QM energies and gradients for these points back
into the objective function.

Table 3. Phosphate Group-to-Backbone Hydrogen Bond
Propensitiesa

residue donor ff99SB FB18
expt.
trend

S1P Nself 0.0180 ± 0.0009 0.186 ± 0.002
Ncap 0.0095 ± 0.0005 0.090 ± 0.003

SEP Nself 0.0022 ± 0.0001 0.318 ± 0.004
Ncap 0.0003 ± 0.0001 0.338 ± 0.003

diff:
SEP − S1P

Nself −0.0158 ± 0.0009 0.132 ± 0.005 ↑↑

Ncap −0.0092 ± 0.0005 0.248 ± 0.004 ↔

T1P Nself 0.080 ± 0.002 0.028 ± 0.002
Ncap 0.252 ± 0.009 0.009 ± 0.002

TPO Nself 0.127 ± 0.002 0.59 ± 0.02
Ncap 0.146 ± 0.007 0.043 ± 0.005

diff:
TPO − T1P

Nself 0.047 ± 0.003 0.56 ± 0.02 ↑↑↑

Ncap −0.10 ± 0.01 0.034 ± 0.005 ↑
aNote: The “Expt. Trend” column represents a qualitative
interpretation of chemical shift data given in Lee et al.65
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“helical” according to the definitions of these regions (Figure
S23).52 The same is largely true for threonine under FB18,
although more of the conformers remain in the “helical”
region. In both cases, it is likely that FB18’s greater propensity
to form phosphate group-backbone hydrogen bonds (due to
the changes in torsion potentials and other bonded potentials
relative to ff99SB) enables the stabilization of the “helical” or
nearly helical “other” conformers of these dipeptides. Finally,
for tyrosine, we see that the deprotonated phosphorylated
residue (PTR) has a much larger proportion of “extended”
conformers than its neutral or protonated phosphorylated
counterparts (Figure 4). As the phosphate group of PTR is
unable to form hydrogen bonds with the backbone, it is

difficult to attribute the stabilization of the “extended”
conformation to changes in any specific nonbonded
interaction.
Overall, it appears that the predicted impacts of phosphor-

ylation on backbone conformational preferences are quite
different between ff99SB and FB18. One way to begin to
address which force field is more accurate is to examine
experimental data that report on these preferences; in this case,
3JHN,Hα scalar couplings report directly on the ensemble
average of the ϕ angle distribution. Experimental 3JHN,Hα scalar
coupling data are available for both unmodified and
phosphorylated (both protonation states) serine and threonine
but only unmodified tyrosine. As shown in Table 4 and Figure

Figure 4. Comparison of backbone conformational preferences: results obtained with ff99SB (left) and FB18 (right). Conformers were classified as
helical, polyproline II, or extended, according to the definitions used by Vyme  tal et al.52 Filled bars represent the averages between two halves of the
simulations. Black whiskers show the differences between two halves of the simulations.
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5, ff99SB generates scalar couplings that are close to
experiments for unmodified residues and protonated phos-
phorylated serine (S1P) and threonine (T1P), but the
predicted scalar couplings for deprotonated phosphorylated
serine (SEP) and threonine (TPO) are far from the
experimental values (∼1.5 and ∼2.5 Hz, respectively).
Moreover, all the predicted scalar couplings generated by
ff99SB reside between approximately 6.9 and 7.6 Hz, regardless
of residue identity, phosphorylation, or the protonation state.
This can be rationalized by noting that the backbone
conformational preferences, specifically the proportions of
extended conformers (ϕ centered on −165°) versus
proportions of helical + PPII conformers (ϕ centered on
−60°), are quite similar for all these dipeptides under ff99SB.
As with the backbone conformational preferences, FB18
generates J-coupling predictions that are qualitatively different.
In particular, FB18’s predictions agree with experiments to a
level of ≤0.5 Hz for all the simulated dipeptides.
To quantify the agreement between the scalar couplings

predicted from our simulations and the experimentally
measured couplings, we computed both the χ2 score, as in
Best et al.,83 and the (Pearson) correlation coefficient r for
these data. Across all seven residues for which there are
experimental data, we find that the χ2 score for ff99SB is 10.27,
while the χ2 score for FB18 is 0.79. If we restrict the

comparison to only the phosphorylated residues with
experimental data (i.e., S1P, SEP, T1P, and TPO), then the
χ2 scores for ff99SB and FB18 are 17.63 and 1.14, respectively.
We note that a χ2 score of 1 or below suggests that the
predicted couplings are comparable to the experimentally
measured couplings, given all the uncertainties present.
Calculating the correlation coefficient r and its 95% confidence
interval (CI) for the scalar coupling data of all residues under
ff99SB yields −0.389 (95% CI: [−0.883, 0.515]), while for
FB18 r is 0.916 (95% CI: [0.524, 0.988]). The former CI
suggests that despite the “clustered” appearance of Figure 5,
there is little-to-no correlation between ff99SB’s predictions
and the experimental data, whereas the latter CI suggests that
FB18’s predictions have a moderate-to-strong correlation with
these same data.
In short, FB18 generates accurate (i.e., within ∼0.5 Hz)

predictions of backbone scalar couplings across all residues
examined but especially for the deprotonated phosphorylated
residues that have the largest charge perturbation relative to
the unmodified residues. This gives us some confidence that
the differences in backbone conformational preferences
between ff99SB and FB18 that are shown in Figure 4 are
meaningful and that FB18’s predictions are likely as accurate
asand in some cases substantially more accurate than
ff99SB.

Side-Chain Conformational Preferences. We next exam-
ined the conformational preferences of the amino acid side
chains by analyzing their χ1 and χ2 angle distributions. As can
be seen in Figure 6, all the residues appear to sample three
states (with varying preferences for these states) that are either
gauche or trans with respect to rotation about the Cα−Cβ
bond. ff99SB yields nearly identical χ1 distributions for each
unmodified amino acid and its phosphorylated variants, with
the greatest exception being unmodified threonine (THR)
versus phosphorylated threonine (T1P and TPO). In this case,
the addition of a phosphate group appears to be the sole factor
behind the change in conformational preferences, rather than
the charge state of the phosphate group. In contrast, we find

Table 4. Backbone 3JHN,Hα Scalar Couplings (in Hz)

residue ff99SB FB18 experiment

SER 7.098 ± 0.005 6.687 ± 0.009 7.02
S1P 7.31 ± 0.01 6.338 ± 0.009 6.85
SEP 7.56 ± 0.02 6.06 ± 0.01 5.98
THR 7.608 ± 0.003 7.40 ± 0.02 7.35
T1P 7.623 ± 0.001 8.047 ± 0.005 7.55
TPO 7.767 ± 0.008 5.50 ± 0.02 5.23
TYR 7.45 ± 0.01 6.997 ± 0.003 7.13
Y1P 6.95 ± 0.01 5.86 ± 0.02 n/a
PTR 7.132 ± 0.008 6.686 ± 0.003 n/a

Figure 5. Comparison of experimental and simulated 3JHN,Hα scalar couplings: results obtained with ff99SB (left) and FB18 (right). Scalar couplings
are calculated from simulation structures using the “ensemble” Karplus equation parameters of Vögeli et al.82 Experimental data are taken from
Avbelj et al. and Kim et al.64,66
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that FB18 yields χ1 distributions that are generally quite
distinct between the unmodified residues and their phosphory-
lated counterparts. Moreover, there are significant differences
in side-chain conformational preferences between the proto-
nated (S1P, T1P, and Y1P) and deprotonated (SEP, TPO, and
PTR) phosphorylated residues. In this sense, FB18 yields χ1
distributions that are immediately distinguishable from those
of ff99SB. We discuss how these differences might manifest
themselves in experimental data further below.

The χ2 distributions generated by each force field, shown in
Figure 7, also display striking differences, particularly for
phosphorylated serine and threonine. In particular, ff99SB
predicts nearly all trans conformations for phosphorylated
serine (both S1P and SEP), whereas FB18 predicts sampling of
all three stateswith a preference for the gauche statesin
S1P and a strong preference for the gauche− state in SEP.
Similarly, ff99SB predicts a fairly broad distribution of χ2 angles
in T1P and TPO (between 60 and 180°), while FB18 predicts
more strongly peaked distributions (albeit within the same

Figure 6. Comparison of χ1 side-chain conformational preferences: results obtained with ff99SB (left) and FB18 (right). Lines represent the
average between two halves of the simulations. Shaded regions represent the differences between the two halves.
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general range). It is likely that the χ2 distributions for
phosphorylated threonine diverge from the usual gauche±-
trans paradigm due to the fact that this dihedral angle is
defined by rotation about the central Cβ−Oγ bond between
the Cα and P atoms and both the steric effects and
intrapeptide hydrogen bonding of the phosphate group. Both
force fields are consistent, however, in predicting the ±90°
preference of tyrosine residues, as expected for residues where
the Cγ atom is sp2-hybridized.

Finally, we briefly revisit the question of how the accuracy of
these two force fields (and others) could be evaluated with
respect to side-chain conformational preferences. One direct
reporter of the χ1 distribution of a side chain is the 3JHα,Hβ

scalar coupling. To this end, we calculated predicted 3JHα,Hβ

coupling values for all the residues we examined in this study
to see what, if any, differences we might find (Table 5). We
observe that ff99SB and FB18 differ in their predictions by
anywhere between 0.6 and 2.7 Hz for these residues. These
differences are approximately an order of magnitude greater

Figure 7. Comparison of χ2 side-chain conformational preferences: results obtained with ff99SB (left) and FB18 (right). Lines represent the
average between two halves of the simulations. Shaded regions represent the differences between the two halves.
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than the typical experimental uncertainties of ∼0.05 Hz.
Therefore, it is our belief that if NMR scalar coupling data
could be obtained for the side chains of these dipeptides, then
it would almost certainly enable force field developers to
discriminate between “less accurate” and “more accurate” when
it comes to reproducing the intrinsic conformational
preferences of phosphorylated residues.

■ CONCLUSIONS
Through a combination of the existing AMBER-FB15 protein
force field and a systematic optimization of the intramolecular
parameters for the side chains of phosphorylated serine,
threonine, and tyrosine, we have built FB18, a new set of
parameters for the simulation of phosphorylated peptides and
proteins. We demonstrated that it was possible to generate a
substantially improved fit to the QM data in both the low-
energy and high-energy regions. As is observed in AMBER-
FB15, we expect the better agreement to the QM scans to
improve sampling of equilibrium structures and temperature-
dependent properties for simulations of larger phosphopro-
teins, although such systems were not studied in this work.
Our model is validated by examining the conformational

preferences of blocked dipeptides using comprehensive
ensembles generated from either μs-long MD simulations or
REMD and comparisons with available experiments. The
validation simulations demonstrate significant improvements in
the accuracy of predicted experimental quantities, particularly
NMR scalar couplings and intramolecular hydrogen-bonding
propensities in comparison to AMBER ff99SB. We identify this
promising agreement as a result of the QM torsion scans
performed using TorsionDrive as both these experimental
quantities are related to the dihedral angle potentials; this
further demonstrates the utility of the procedure for generating
reference data for force field development. Further improve-
ments in reproducing experimental data might be obtained by
generating the QM reference data and performing the MM
calculations using implicit solvent models, as in the AMBER
ff19SB protein force field and several AMBER nucleic acid
force fields.85−88

We believe that the performed benchmarks on the model
dipeptide systems in this work indicate that FB18, along with
AMBER-FB15, is a promising framework for the further
investigation of phosphoprotein structural and functional
properties. The more accurate prediction of the conforma-
tional ensembles provided by FB18 will likely play a crucial
role in the simulation of IDPs, where individual amino acids
may adopt a wide variety of conformations. Additionally, we
anticipate that the procedure we performed may be extended
to add additional PTMs to AMBER-FB15, which should allow
for the generation of an accurate and comprehensive parameter

set for the simulation of a large variety of protein conforma-
tional states.
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