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ABSTRACT

A body of studies has proposed to obtain high-quality images from low-dose and noisy Computed

Tomography (CT) scans for radiation reduction. However, these studies are designed for
population-level data without considering the variation in CT devices and individuals, limiting the
current approaches’ performance, especially for ultra-low-dose CT imaging. Here, we incorporate
a physical anthropomorphic phantom model PIMA-CT with an unsupervised learning framework,
using a novel deep learning technique Cyclic Simulation and Denoising (CSD), to address the
limitations. We first acquired low-dose and standard-dose paired phantom CT scans and then
developed two generative neural networks: noise simulator and denoiser. The simulator extracts
real low-dose noise and tissue features from two separate image spaces (e.g., low-dose phantom
model scans and standard-dose patient scans) into a unified feature space. Meanwhile, the
denoiser provides feedback to the simulator on the quality of the generated noise. In this way, the
simulator and denoiser cyclically interact to optimize network learning and ease the denoiser to
simultaneously remove noise and restore tissue features. We thoroughly evaluate our method
for removing both real low-dose and Gaussian simulated low-dose noise. The results show that
CSD outperforms one of the state-of-the-art denoising algorithms without using any labeled data
(actual patients’ low-dose CT scans) nor simulated low-dose CT scans. This study may shed light
on incorporating physical models in medical imaging, especially for ultra-low level dose CT scan
restoration.
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1 INTRODUCTION

The quality of medical imaging is critical for diagnosis and treatments. However, medical imaging
often suffers from noise produced at either the image reconstruction or post-imaging stages. Medical
physicists in radiology play several essential roles in maintaining imaging quality and stability for imaging
machines, such as Computed tomography (CT). They usually adopt an anthropomorphic physical model
to facilitate the assessment of imaging quality and the adjustment of the imaging machines’ parameters
before performing on real patients. Motivated by this, we hypothesized that a physical model could also
help restore high-quality images for the cases in the post-imaging stage, such as radiation reduction in CT
imaging.

Reducing radiation dose during imaging is a low-cost approach to release concerns about causing cancer or
other negative health conditions using CT scanning (1), but this method introduces noise into CT scans,
hindering the diagnostic effectiveness of such scans. Several studies (2, 3) have been proposed to address
this problem by removing the noise from low-dose CT scanned images. However, these studies are designed
based on Gaussian noise simulation for populations without considering the variation in CT devices and
individuals, limiting the current approaches’ performance, especially for ultra-low-dose CT imaging (see
Figure 1A).

Moreover, most of the success of deep learning-based approaches for low-dose CT image restoration (4, 5)
much relies on a large number of labeled images. However, obtaining the real low-dose CT scans is not
available in practice. Accessing real image noise is critical for the development of any practical imaging
algorithm. Also, real noise properties significantly vary among different CT machines and individuals.
Thus, the Gaussian noise assumption is not always guaranteed in practical scenarios and significantly limits
the existing approaches for ultra-low-dose CT imaging.

We address these problems by incorporating an anthropomorphic physical phantom model into generative
adversarial networks. The proposed framework is named Cyclic Simulation and Denoising (CSD). The
physical model provides paired low-dose and standard-dose phantom CT scans before scanning the actual
patients. These phantom scans can offer statistical noise prior, which is related to the specific CT machine
for patient diagnosis, for CSD to precisely capture noise properties and remove real complex noise from
CT scans. Our CSD is composed of noise simulation and denoising two networks. The simulation network
facilitates the denoising network to learn real noise properties. The denoising network thus can access
realistic noise through physical phantom CT scans. However, phantom scans lack tissue features (see
Figure 1B). The missing tissue information prevents feasible phantom-based solutions for CT image
restoration. As one can see in Figure 1C, the model trained with paired low-dose and standard-dose
phantom scans fails to remove real noise from low-dose patient scans. To overcome this problem, we
train CSD using normal-dose and phantom CT scans simultaneously to embrace realistic noise and tissue
features into a unified learning framework without the access labeled or Gaussian noise simulated data.

We evaluate our CSD for removing both real low-dose and Gaussian simulated noise. The results show
that CSD outperforms one of the state-of-the-art denoising algorithms for ultra low-quality medical image
restoration. Our main contributions include that (1) we incorporate an anthropomorphic physical phantom
model into generative adversarial learning to address the challenges of removing real noise from ultra-low-
dose CT scans for radiation reduction; (2) we develop a unsupervised framework in the combination of
phantom CT scans that can outperform one of the start-of-the-art methods without using any labeled or
other noise simulation data; (3) to the best of our knowledge, this is the first study to incorporate physical
model into deep learning for medical imaging.
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2 MATERIALS AND METHODS

The problem of CT image denoising can be understood by L = H + N, where H is the clean, standard-
dose CT image, L is the noisy, low-dose CT image, and /N is additive image noise. Though an additive
relationship does not completely represent the relationship between clean and noisy images, this formula
provides a baseline for understanding the problem.

We utilize two deep networks in the framework. The first network G is the noise simulator and can be
modeled by L. = G4(H, «), where « is the desired simulated dose level and implicitly indicated in training
data. The second network G is the denoiser that can be modeled by H = G4(L), where G is the network
generating a clean image from a given low-dose noisy input L.

2.1 Unsupervised Learning by Incorporating Physical Model

We use a head phantom model to obtain paired low-dose and standard-dose phantom CT scans, with which
we combine the normal dose (standard-dose) patient CT scans to develop our CSD model. The phantom
scans allow the model to access real noise properties and the patient scans offer the actual brain tissue
features to the model. In this way, we eliminate the need for noisy low-dose CT scans from actual patients
and even the Gaussian noise simulated low-dose CT scans to develop our mode (Figure 2A). Therefore,
we present an unsupervised learning framework by incorporating an anthropomorphic physical phantom
model.

2.2 Cyclic Simulation and Denoising (CSD)
2.2.1 Overview

We develop two deep networks to perform simulator and denoiser individually. To ease the network
training, we first use paired low-dose and standard-dose phantom CT scans to pre-train the simulator
and denoiser, separately. Then, we plug the simulator and denoiser pre-trained models into our CSD
framework (Figure 2A). In particular, we start with noise simulation using both the phantom and patient CT
scans to generate low-dose noisy patient CT images that simultaneously provide noise and tissue features
for training the denoiser (Figure 2B). Meanwhile, CSD also allows the backward training process from
denoiser to simulator. The denoiser takes phantom noisy scans and simulated noisy patient scans as input to
learn how to remove realistic noise and restore tissue features simultaneously, while the simulator mainly
plays as a regularizer to the denoiser for stabilizing the training (Figure 2B). The interaction between
simulator and denoiser forms a dynamic data-driven framework, named Cyclic Simulation and Denoising
(CSD), to address the challenges of low-dose CT image restoration.

2.2.2 Pretrain Simulator and Denoiser (H — L, L — ﬁ)

We train the simulator with a u-shape encoder-decoder generative adversarial network by formulating the
objective as an adverarial learning. We use a discriminator Dy to differentiate real low-dose CT images
from fake samples generated by the simulator GG5. We illustrate the formulation of the simulation as below.

Laan(Gs, Ds) = ELNp(L) [log(Ds(L))] + EthantomNp(H) [log(1 — Ds (GS(thantom)))] (D

To encourage the output of the denoiser to match the clean phantom scans, we use an /1 loss between the
output and the ground truth image.

L1(Ga) =Er gpr,m |H — Ga(L)]4 ()
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Initializing the weights by pretraining can significantly ease the convergence of two interactive generators
in both spatial and temporal space. However, the phantom scans still lack the essential features as scanning
on a real patient.

2.2.3 Learn Simulation Interacting with Denoiser: S2D (H — L — f{\)

We start with noise simulation to provide both noise and tissue features for training denoiser. We apply a
discriminator Dg to train the simulator G5. We formulate the simulation objective as below.

LN (G5, Ds) = Epppylog(Ds(L))] + Egrpanyllog(1 — Ds(Gs(H))) @

The simulator feeds its output into the denoiser during training. Thus, we formulate the denoising loss
using a modified Equation 2 as below.

LP?P(Gq) =Ep gopir,m |1 H — Ga(Gs(H))|ly “

Besides the discriminator D, we take advantage of the denoising performance as regularization feedback
to indicate the quality of the simulation. As the simulation becomes better, the denoising is getting harder.

Furthermore, the simulator D, in S2D takes the standard-dose scans from both phantom and patients as
inputs. The phantom data apples a latent constrain to the D; and stabilizes the training. Interacting with
denoising encourages the simulator to generate realistic low-dose noise. Further, the denoise can benefit of
taking the output of the simulator as additional training data, dynamically.

2.2.4 Learn Denoising in Simulator: D2S (L — H— L)

The development of the training process from denoising to simulation has two significant varies from the
cycle consistency study (6) (see Figure 2(c)). We first enable supervised learning to train the denoiser G4
using the standard-dose and the corresponding low-dose CT images. Compared to the adversarial learning,
supervised learning provides a stronger supervision signal to build an accurate denoiser. More importantly,
the simulator in S2D produces the noise gradually close to the desired level during training. Thus, we can
acquire various noise level images from the simulator, with which, the denoiser-self implicitly learns to
restore clean CT scans for a range level of low-dose CT scans, rather than a specific noise level indicated in
the training data. Therefore, the input to the denoiser GG in D2S includes phantom low-dose and simulated
patient low-dose images. We use a /1 loss to train the denoiser GG;. The ¢; loss encourages a pixel-wise
match to the ground-truth. We illustrate the ¢; loss as below.

LP*(Gy) = Ep gepir.n |H — Ga(L)||; (5)

Besides, we use adversarial learning to train the simulator in D2S to match the desired noise distribution in
the actual low-dose CT scans. The objective to this adversarial learning the distribution is written as below.

‘Cg?ég\f(Gs, DS) = ]ELNp(L) [log(DS(L))] + Eﬁ[,vp(H) [log(l - DS(GS([:[)))] (6)
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We develop the cyclic 51mulat10n and den01smg tralmng with regularizations in both directions and take
advantage of both cycles H — L — Hand L — H — L. The total objective is illustrated as below.

G:, Gy =arg Cgniclr;ld rrlljax )\155?;5\7((;57 Ds) + )\25*192D(Gd)—|—
> 3 (7
ALEZ (G, Ds) + MLP?5(Gy)

where A indicates the weights of each loss. With these novel developments, the simulator and denoiser
interact each other in a cyclic self-learning manner to enable realistic noise simulation and accurate
denoising for low-dose CT image.

3 RESULTS
3.1 Datasets

We use three CT datasets during training and testing. The first dataset is obtained from the CT scanning
on a single tissue-equivalent physical phantom model. This set contains various levels of low-dose series,
scanned between 5 mAs and 95 mAs with 5 mAs intervals (see examples in the supplementary Figure S1) .
In this work, we simply use 20 mAs, 30 mAs, and 60 mAs low-dose phantoms for training noise simulation
and evaluating the reality of various types of noise in Figure 1C. We also include the standard-dose (175
mAs) scans as the ground-truth. Each dose level of phantom series produces 138 CT scans. The second
dataset is a public Retrospective Image Registration Evaluation (RIRE) dataset. This dataset includes 388
standard-dose CT scans. We use 80% for training the simulator and denoiser in the proposed CSD and
also task 20% for demonstrating the advantages of CSD over end-to-end training a denoiser in Table 2,
where we simulate the low-dose noise by adding Gaussian noise on normal dose CT scans. We compute
the corresponding standard variation of Gaussian noise for a specific mAs by following (7). Additionally,
we acquire a real patient dataset including paired standard-dose (190 mAs) and low-dose (20 mAs) in a
total of 432 CT scans (see examples in the supplementary Figure S2) . We use them for comparing various
types of simulated noise in Figure 1C and evaluating real noise removal performance of our approach in
Table 1, where 250 scans are used for training and 182 scans are used for testing. Moreover, we randomly
select 373 scans from this dataset combining with 20% of the RIRE dataset, in total 449 scans included, to
evaluate our CSD’s generalizability in Table 2.

3.2 Evaluation Metric

We develop CSD with U-net (8) for the simulator network GGs and DnCNN (9) for the denoiser network G ;.
We evaluate image denosing performance using Peak signal-to-noise ratio (PSNR) and image structural
similarity index measure (SSIM).

3.3 Unsupervised Learning Performance on Real Low-dose Noise Removal

Here, we aim to demonstrate that the proposed CSD framework in a combination with phantom can remove
the real low-dose noise effectively. We first take the start-of-the-art medical image denoising network (9)
as a baseline and train it with Gaussian simulated low-dose CT scans at different noise levels. Then, we
build the G; in CSD using the baseline’s architecture and train it with paired low-dose and standard-dose
phantom CT scans at the same noise levels as Gaussian simulation. We test each model on 182 real low-dose
CT scans at the noise level 20 mAs. The comparison results are shown in Figure 1C at 20 mAs and Table 1
at 30, 60 mAs noise levels. As one can see, the combination of the proposed CSD training framework and
phantom simulation significantly outperforms the baseline with an average 1.56 dB improvement on PSNR
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across three different noise levels. Furthermore, as one can see in Figure 1C, the baseline network, which
is trained with paired low-dose and standard-dose phantom scans, performs much worse than the model
trained with both our CSD phantom and Gaussian simulation, which may be due to the lack of critical
tissue features in the phantom scans. Notably, these results may indicate that CSD, in combination with
phantom simulation, can encourage the denoiser to learn both real low-dose noise features from phantom
and tissue image features from patient scans, simultaneously, and leading to real low-dose noise removal
with greater accuracy and precision.

3.4 Evaluate CSD’s generalizability (Ablation without G,)

Here, we further evaluate the proposed CSD’s generalizability to train a denoiser targeting the general
simulated low-dose noise, such as Gaussian simulation. We still use the same baseline network to conduct
this study. We use the standard end-to-end manner and our CSD framework to train two networks with
the same architecture as the baseline, separately. Notably, to have a fair comparison, we only use original
noisy CT scans in training dataset as the input of the GG; in D2S cyclic training. Then, we compare the
two networks to remove 30 and 60 mAs levels of Gaussian simulated low-dose noise from 449 CT scans.
As one can see in Table 2, the model trained with our CSD can consistently outperform the one trained
with end-to-end manner, with impressive average performance gain 0.355 dB for PSNR. In addition, we
also show a visual result comparison in Figure 3. As one can see, the denoiser G trained with our CSD
framework can produce more realistic CT scans from its low-dose noisy version. More visual results of
low-dose simulation and denoising can be found in the supplementary Figure S3 and Figure S4. These
results suggest that starting with simulation may create a live environment from which the denoiser can
learn high-validity representations to achieve a better denoising performance. Theoretically, the simulator
and denoiser in the CSD may play as a regularizer to each other to optimize the networks effectively.

4 CONCLUSION

This paper proposed incorporating an anthropomorphic physical phantom model with generative deep
learning networks for medical imaging, with a focus on realistic low-dose CT image restoration. The
combination of an anthropomorphic physical model with deep generative adversarial networks can
eliminate the needs of both actual low-dose patients and even other low-dose simulation CT scans to
build an unsupervised learning framework for low-dose CT image restoration. More importantly, an
anthropomorphic physical model CT scanning can abstract the unique noise properties of a particular CT
imaging machine for the deep learning model to take CT machine domain variation into account during
training. Eventually, with the interaction between a noise simulation network and a denoising network
in cyclic training processing, the proposed deep learning model embraces realistic noise from low-dose
phantom CT scans and tissue features from normal-dose patient CT scan into a single unified framework
for building a state-of-the-art method for real low-dose CT image restoration.
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Table 1. The average real low-dose noise removal performance of a same deep neural network frained
with Gaussian noise simulation and CSD + physical phantom noise simulation, separately. The best results

are highlighted in bold.

PSNR (dB) / SSIM
Noise level (mAs) | Trained with Gaussian | Trained with CSD + phantom
30 24.47/0.7555 26.10/0.8235
60 23.03/0.6960 25.51/0.7894

Table 2. The average Gaussian noise removal performance of the same deep neural network trained
through the proposed CSD framework and the standard end-to-end manner, separately. The best results are

highlighted in bold.

PSNR (dB) / SSIM
Noise level (mAs) | End-to-end training | CSD training
30 31.93/0.9105 32.05/0.9124
60 33.33/0.9365 33.92/0.9429
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Patient Patient Gaussian Phantom

standard-dose  low-dose low-dose low-dose
c. 26.85 0.8530
26.30 0.8275
25.75 0.8020
£ 25.20 =
z 5 0.7765
A 24.65 N
0.7510
24.10
2355 0.7255
23.00 0.7000 =
RL PL GS PS RL PL GS PS
PSNR SSIM

A denoising model trained with:

RL: real low- and standard-dose paired patient CT scans
PL: real low- and standard-dose paired phantom CT scans

GS: Gaussian simulated low- and standard-dose paired CT scans
PS: our CSD incorporating with physical phantom model

Figure 1. Real low-dose has a different noise distribution from Gaussian noise and is hard to remove. (A)
It shows a visual comparison of the standard-dose CT, real low-dose CT, and Gaussian simulated low-dose
CT scans. (B) It shows a low-dose CT scanned by using a physical phantom model. (C) We trained four
same structural deep neural networks(DNNSs) using various types of low-dose noise with the same noise
level (20 mAs radiation dose) and then compared the effectiveness of noise removal.
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a. Diagram of model development

Standard-dose patient head clean scans\

C;/\—_i;bg\ -
——— Patient Q — F - | —
(/‘C/ — /;_/ i) ~

Noisy low-dose patient head scans

7 CT scLannmg o i .
Cyclic Simulation and Denoising (CSD) development
~
- ]
. 53 ~ '
J L )),"{
1\ a Denoised clean patient head scans

Physical phantom model Paired low- and standard-dose phantom scans

b. Cyclic Simulation and Denoising (CSD) training framework
= Input CT image I.I

= Ground-truth

—

Loss

Deep network
r——===- =
IH . Standard-dose clean |

L .

1 * Low-dose noisy 1

Input / output

(1) Phantom pretrain

(4) CSD training framework

Figure 2. The overview of the model development in (A) and the proposed CSD training framework in
(B). (A) demonstrates how we incorporate a physical phantom model into the proposed deep learning
model CSD. (B) shows how our CSD is developed in detailed. Two training stages: first, we initialize the
weights of simulator and denoiser by pretrain on physical phantom CT scan (1); second, the cycle-training
from noise simulation to denoising (2) and another cycle-training from denoising to simulation (3) are
developed, simultaneously. The G5 and GG represent simulation and denoising, separately. During training,
the two cycles interact with each other and are executed, alternatively.

Noisy image End-to-end trained network CSD trained network Clean image

Figure 3. The visual comparison of the denoising performance between the network trained with end-to-
end and the one trained with our CSD framework.
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