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ABSTRACT2

A body of studies has proposed to obtain high-quality images from low-dose and noisy Computed3
Tomography (CT) scans for radiation reduction. However, these studies are designed for4
population-level data without considering the variation in CT devices and individuals, limiting the5
current approaches’ performance, especially for ultra-low-dose CT imaging. Here, we incorporate6
a physical anthropomorphic phantom model PIMA-CT with an unsupervised learning framework,7
using a novel deep learning technique Cyclic Simulation and Denoising (CSD), to address the8
limitations. We first acquired low-dose and standard-dose paired phantom CT scans and then9
developed two generative neural networks: noise simulator and denoiser. The simulator extracts10
real low-dose noise and tissue features from two separate image spaces (e.g., low-dose phantom11
model scans and standard-dose patient scans) into a unified feature space. Meanwhile, the12
denoiser provides feedback to the simulator on the quality of the generated noise. In this way, the13
simulator and denoiser cyclically interact to optimize network learning and ease the denoiser to14
simultaneously remove noise and restore tissue features. We thoroughly evaluate our method15
for removing both real low-dose and Gaussian simulated low-dose noise. The results show that16
CSD outperforms one of the state-of-the-art denoising algorithms without using any labeled data17
(actual patients’ low-dose CT scans) nor simulated low-dose CT scans. This study may shed light18
on incorporating physical models in medical imaging, especially for ultra-low level dose CT scan19
restoration.20
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1 INTRODUCTION

The quality of medical imaging is critical for diagnosis and treatments. However, medical imaging22
often suffers from noise produced at either the image reconstruction or post-imaging stages. Medical23
physicists in radiology play several essential roles in maintaining imaging quality and stability for imaging24
machines, such as Computed tomography (CT). They usually adopt an anthropomorphic physical model25
to facilitate the assessment of imaging quality and the adjustment of the imaging machines’ parameters26
before performing on real patients. Motivated by this, we hypothesized that a physical model could also27
help restore high-quality images for the cases in the post-imaging stage, such as radiation reduction in CT28
imaging.29

Reducing radiation dose during imaging is a low-cost approach to release concerns about causing cancer or30
other negative health conditions using CT scanning (1), but this method introduces noise into CT scans,31
hindering the diagnostic effectiveness of such scans. Several studies (2, 3) have been proposed to address32
this problem by removing the noise from low-dose CT scanned images. However, these studies are designed33
based on Gaussian noise simulation for populations without considering the variation in CT devices and34
individuals, limiting the current approaches’ performance, especially for ultra-low-dose CT imaging (see35
Figure 1A).36

Moreover, most of the success of deep learning-based approaches for low-dose CT image restoration (4, 5)37
much relies on a large number of labeled images. However, obtaining the real low-dose CT scans is not38
available in practice. Accessing real image noise is critical for the development of any practical imaging39
algorithm. Also, real noise properties significantly vary among different CT machines and individuals.40
Thus, the Gaussian noise assumption is not always guaranteed in practical scenarios and significantly limits41
the existing approaches for ultra-low-dose CT imaging.42

We address these problems by incorporating an anthropomorphic physical phantom model into generative43
adversarial networks. The proposed framework is named Cyclic Simulation and Denoising (CSD). The44
physical model provides paired low-dose and standard-dose phantom CT scans before scanning the actual45
patients. These phantom scans can offer statistical noise prior, which is related to the specific CT machine46
for patient diagnosis, for CSD to precisely capture noise properties and remove real complex noise from47
CT scans. Our CSD is composed of noise simulation and denoising two networks. The simulation network48
facilitates the denoising network to learn real noise properties. The denoising network thus can access49
realistic noise through physical phantom CT scans. However, phantom scans lack tissue features (see50
Figure 1B). The missing tissue information prevents feasible phantom-based solutions for CT image51
restoration. As one can see in Figure 1C, the model trained with paired low-dose and standard-dose52
phantom scans fails to remove real noise from low-dose patient scans. To overcome this problem, we53
train CSD using normal-dose and phantom CT scans simultaneously to embrace realistic noise and tissue54
features into a unified learning framework without the access labeled or Gaussian noise simulated data.55

We evaluate our CSD for removing both real low-dose and Gaussian simulated noise. The results show56
that CSD outperforms one of the state-of-the-art denoising algorithms for ultra low-quality medical image57
restoration. Our main contributions include that (1) we incorporate an anthropomorphic physical phantom58
model into generative adversarial learning to address the challenges of removing real noise from ultra-low-59
dose CT scans for radiation reduction; (2) we develop a unsupervised framework in the combination of60
phantom CT scans that can outperform one of the start-of-the-art methods without using any labeled or61
other noise simulation data; (3) to the best of our knowledge, this is the first study to incorporate physical62
model into deep learning for medical imaging.63
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2 MATERIALS AND METHODS

The problem of CT image denoising can be understood by L = H +N , where H is the clean, standard-64
dose CT image, L is the noisy, low-dose CT image, and N is additive image noise. Though an additive65
relationship does not completely represent the relationship between clean and noisy images, this formula66
provides a baseline for understanding the problem.67

We utilize two deep networks in the framework. The first network Gs is the noise simulator and can be68
modeled by L = Gs(H,α), where α is the desired simulated dose level and implicitly indicated in training69
data. The second network Gd is the denoiser that can be modeled by H = Gd(L), where Gd is the network70
generating a clean image from a given low-dose noisy input L.71

2.1 Unsupervised Learning by Incorporating Physical Model72

We use a head phantom model to obtain paired low-dose and standard-dose phantom CT scans, with which73
we combine the normal dose (standard-dose) patient CT scans to develop our CSD model. The phantom74
scans allow the model to access real noise properties and the patient scans offer the actual brain tissue75
features to the model. In this way, we eliminate the need for noisy low-dose CT scans from actual patients76
and even the Gaussian noise simulated low-dose CT scans to develop our mode (Figure 2A). Therefore,77
we present an unsupervised learning framework by incorporating an anthropomorphic physical phantom78
model.79

2.2 Cyclic Simulation and Denoising (CSD)80

2.2.1 Overview81

We develop two deep networks to perform simulator and denoiser individually. To ease the network82
training, we first use paired low-dose and standard-dose phantom CT scans to pre-train the simulator83
and denoiser, separately. Then, we plug the simulator and denoiser pre-trained models into our CSD84
framework (Figure 2A). In particular, we start with noise simulation using both the phantom and patient CT85
scans to generate low-dose noisy patient CT images that simultaneously provide noise and tissue features86
for training the denoiser (Figure 2B). Meanwhile, CSD also allows the backward training process from87
denoiser to simulator. The denoiser takes phantom noisy scans and simulated noisy patient scans as input to88
learn how to remove realistic noise and restore tissue features simultaneously, while the simulator mainly89
plays as a regularizer to the denoiser for stabilizing the training (Figure 2B). The interaction between90
simulator and denoiser forms a dynamic data-driven framework, named Cyclic Simulation and Denoising91
(CSD), to address the challenges of low-dose CT image restoration.92

2.2.2 Pretrain Simulator and Denoiser (H → L̂, L → Ĥ)93

We train the simulator with a u-shape encoder-decoder generative adversarial network by formulating the94
objective as an adverarial learning. We use a discriminator Ds to differentiate real low-dose CT images95
from fake samples generated by the simulator Gs. We illustrate the formulation of the simulation as below.96

LGAN (Gs, Ds) = EL∼p(L)[log(Ds(L))] + EHphantom∼p(H)[log(1− Ds(Gs(Hphantom)))] (1)

To encourage the output of the denoiser to match the clean phantom scans, we use an ℓ1 loss between the97
output and the ground truth image.98

L1(Gd) = EL,H∼p(L,H) ∥H − Gd(L)∥1 (2)
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Initializing the weights by pretraining can significantly ease the convergence of two interactive generators99
in both spatial and temporal space. However, the phantom scans still lack the essential features as scanning100
on a real patient.101

2.2.3 Learn Simulation Interacting with Denoiser: S2D (H → L̂ → Ĥ)102

We start with noise simulation to provide both noise and tissue features for training denoiser. We apply a103
discriminator Ds to train the simulator Gs. We formulate the simulation objective as below.104

LS2D
GAN (Gs, Ds) = EL∼p(L)[log(Ds(L))] + EH∼p(H)[log(1− Ds(Gs(H)))] (3)

The simulator feeds its output into the denoiser during training. Thus, we formulate the denoising loss105
using a modified Equation 2 as below.106

LS2D
1 (Gd) = EL,H∼p(L,H) ∥H − Gd(Gs(H))∥1 (4)

Besides the discriminator Ds, we take advantage of the denoising performance as regularization feedback107
to indicate the quality of the simulation. As the simulation becomes better, the denoising is getting harder.108

Furthermore, the simulator Ds in S2D takes the standard-dose scans from both phantom and patients as109
inputs. The phantom data apples a latent constrain to the Ds and stabilizes the training. Interacting with110
denoising encourages the simulator to generate realistic low-dose noise. Further, the denoise can benefit of111
taking the output of the simulator as additional training data, dynamically.112

2.2.4 Learn Denoising in Simulator: D2S (L → Ĥ → L̂)113

The development of the training process from denoising to simulation has two significant varies from the114
cycle consistency study (6) (see Figure 2(c)). We first enable supervised learning to train the denoiser Gd115
using the standard-dose and the corresponding low-dose CT images. Compared to the adversarial learning,116
supervised learning provides a stronger supervision signal to build an accurate denoiser. More importantly,117
the simulator in S2D produces the noise gradually close to the desired level during training. Thus, we can118
acquire various noise level images from the simulator, with which, the denoiser-self implicitly learns to119
restore clean CT scans for a range level of low-dose CT scans, rather than a specific noise level indicated in120
the training data. Therefore, the input to the denoiser Gd in D2S includes phantom low-dose and simulated121
patient low-dose images. We use a ℓ1 loss to train the denoiser Gd. The ℓ1 loss encourages a pixel-wise122
match to the ground-truth. We illustrate the ℓ1 loss as below.123

LD2S
1 (Gd) = EL,H∼p(L,H) ∥H − Gd(L)∥1 (5)

Besides, we use adversarial learning to train the simulator in D2S to match the desired noise distribution in124
the actual low-dose CT scans. The objective to this adversarial learning the distribution is written as below.125

LD2S
GAN (Gs, Ds) = EL∼p(L)[log(Ds(L))] + EĤ∼p(H)[log(1− Ds(Gs(Ĥ)))] (6)
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We develop the cyclic simulation and denoising training with regularizations in both directions and take126
advantage of both cycles H → L̂ → Ĥ and L → Ĥ → L̂. The total objective is illustrated as below.127

G∗
s, G

∗
d = arg min

Gs,Gd

max
Ds

λ1LS2D
GAN (Gs, Ds) + λ2LS2D

1 (Gd)+

λ3LD2S
GAN (Gs, Ds) + λ4LD2S

1 (Gd)
(7)

where λ indicates the weights of each loss. With these novel developments, the simulator and denoiser128
interact each other in a cyclic self-learning manner to enable realistic noise simulation and accurate129
denoising for low-dose CT image.130

3 RESULTS

3.1 Datasets131

We use three CT datasets during training and testing. The first dataset is obtained from the CT scanning132
on a single tissue-equivalent physical phantom model. This set contains various levels of low-dose series,133
scanned between 5 mAs and 95 mAs with 5 mAs intervals (see examples in the supplementary Figure S1) .134
In this work, we simply use 20 mAs, 30 mAs, and 60 mAs low-dose phantoms for training noise simulation135
and evaluating the reality of various types of noise in Figure 1C. We also include the standard-dose (175136
mAs) scans as the ground-truth. Each dose level of phantom series produces 138 CT scans. The second137
dataset is a public Retrospective Image Registration Evaluation (RIRE) dataset. This dataset includes 388138
standard-dose CT scans. We use 80% for training the simulator and denoiser in the proposed CSD and139
also task 20% for demonstrating the advantages of CSD over end-to-end training a denoiser in Table 2,140
where we simulate the low-dose noise by adding Gaussian noise on normal dose CT scans. We compute141
the corresponding standard variation of Gaussian noise for a specific mAs by following (7). Additionally,142
we acquire a real patient dataset including paired standard-dose (190 mAs) and low-dose (20 mAs) in a143
total of 432 CT scans (see examples in the supplementary Figure S2) . We use them for comparing various144
types of simulated noise in Figure 1C and evaluating real noise removal performance of our approach in145
Table 1, where 250 scans are used for training and 182 scans are used for testing. Moreover, we randomly146
select 373 scans from this dataset combining with 20% of the RIRE dataset, in total 449 scans included, to147
evaluate our CSD’s generalizability in Table 2.148

3.2 Evaluation Metric149

We develop CSD with U-net (8) for the simulator network Gs and DnCNN (9) for the denoiser network Gd.150
We evaluate image denosing performance using Peak signal-to-noise ratio (PSNR) and image structural151
similarity index measure (SSIM).152

3.3 Unsupervised Learning Performance on Real Low-dose Noise Removal153

Here, we aim to demonstrate that the proposed CSD framework in a combination with phantom can remove154
the real low-dose noise effectively. We first take the start-of-the-art medical image denoising network (9)155
as a baseline and train it with Gaussian simulated low-dose CT scans at different noise levels. Then, we156
build the Gd in CSD using the baseline’s architecture and train it with paired low-dose and standard-dose157
phantom CT scans at the same noise levels as Gaussian simulation. We test each model on 182 real low-dose158
CT scans at the noise level 20 mAs. The comparison results are shown in Figure 1C at 20 mAs and Table 1159
at 30, 60 mAs noise levels. As one can see, the combination of the proposed CSD training framework and160
phantom simulation significantly outperforms the baseline with an average 1.56 dB improvement on PSNR161
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across three different noise levels. Furthermore, as one can see in Figure 1C, the baseline network, which162
is trained with paired low-dose and standard-dose phantom scans, performs much worse than the model163
trained with both our CSD phantom and Gaussian simulation, which may be due to the lack of critical164
tissue features in the phantom scans. Notably, these results may indicate that CSD, in combination with165
phantom simulation, can encourage the denoiser to learn both real low-dose noise features from phantom166
and tissue image features from patient scans, simultaneously, and leading to real low-dose noise removal167
with greater accuracy and precision.168

3.4 Evaluate CSD’s generalizability (Ablation without Gs)169

Here, we further evaluate the proposed CSD’s generalizability to train a denoiser targeting the general170
simulated low-dose noise, such as Gaussian simulation. We still use the same baseline network to conduct171
this study. We use the standard end-to-end manner and our CSD framework to train two networks with172
the same architecture as the baseline, separately. Notably, to have a fair comparison, we only use original173
noisy CT scans in training dataset as the input of the Gd in D2S cyclic training. Then, we compare the174
two networks to remove 30 and 60 mAs levels of Gaussian simulated low-dose noise from 449 CT scans.175
As one can see in Table 2, the model trained with our CSD can consistently outperform the one trained176
with end-to-end manner, with impressive average performance gain 0.355 dB for PSNR. In addition, we177
also show a visual result comparison in Figure 3. As one can see, the denoiser Gd trained with our CSD178
framework can produce more realistic CT scans from its low-dose noisy version. More visual results of179
low-dose simulation and denoising can be found in the supplementary Figure S3 and Figure S4. These180
results suggest that starting with simulation may create a live environment from which the denoiser can181
learn high-validity representations to achieve a better denoising performance. Theoretically, the simulator182
and denoiser in the CSD may play as a regularizer to each other to optimize the networks effectively.183

4 CONCLUSION

This paper proposed incorporating an anthropomorphic physical phantom model with generative deep184
learning networks for medical imaging, with a focus on realistic low-dose CT image restoration. The185
combination of an anthropomorphic physical model with deep generative adversarial networks can186
eliminate the needs of both actual low-dose patients and even other low-dose simulation CT scans to187
build an unsupervised learning framework for low-dose CT image restoration. More importantly, an188
anthropomorphic physical model CT scanning can abstract the unique noise properties of a particular CT189
imaging machine for the deep learning model to take CT machine domain variation into account during190
training. Eventually, with the interaction between a noise simulation network and a denoising network191
in cyclic training processing, the proposed deep learning model embraces realistic noise from low-dose192
phantom CT scans and tissue features from normal-dose patient CT scan into a single unified framework193
for building a state-of-the-art method for real low-dose CT image restoration.194
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Table 1. The average real low-dose noise removal performance of a same deep neural network trained
with Gaussian noise simulation and CSD + physical phantom noise simulation, separately. The best results
are highlighted in bold.

PSNR (dB) / SSIM
Noise level (mAs) Trained with Gaussian Trained with CSD + phantom

30 24.47/0.7555 26.10/0.8235
60 23.03/0.6960 25.51/0.7894

Table 2. The average Gaussian noise removal performance of the same deep neural network trained
through the proposed CSD framework and the standard end-to-end manner, separately. The best results are
highlighted in bold.

PSNR (dB) / SSIM
Noise level (mAs) End-to-end training CSD training

30 31.93/0.9105 32.05/0.9124
60 33.33/0.9365 33.92/0.9429
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Figure 1. Real low-dose has a different noise distribution from Gaussian noise and is hard to remove. (A)
It shows a visual comparison of the standard-dose CT, real low-dose CT, and Gaussian simulated low-dose
CT scans. (B) It shows a low-dose CT scanned by using a physical phantom model. (C) We trained four
same structural deep neural networks(DNNs) using various types of low-dose noise with the same noise
level (20 mAs radiation dose) and then compared the effectiveness of noise removal.
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Figure 2. The overview of the model development in (A) and the proposed CSD training framework in
(B). (A) demonstrates how we incorporate a physical phantom model into the proposed deep learning
model CSD. (B) shows how our CSD is developed in detailed. Two training stages: first, we initialize the
weights of simulator and denoiser by pretrain on physical phantom CT scan (1); second, the cycle-training
from noise simulation to denoising (2) and another cycle-training from denoising to simulation (3) are
developed, simultaneously. The Gs and Gd represent simulation and denoising, separately. During training,
the two cycles interact with each other and are executed, alternatively.

Figure 3. The visual comparison of the denoising performance between the network trained with end-to-
end and the one trained with our CSD framework.
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