MULTI-FLOCKS: EMERGENT DYNAMICS IN
SYSTEMS WITH MULTI-SCALE COLLECTIVE BEHAVIOR

ROMAN SHVYDKOY AND EITAN TADMOR

ABSTRACT. We study the multi-scale description of large-time collective behavior of agents driven
by alignment. The resulting multi-flock dynamics arises naturally with realistic initial configura-
tions consisting of multiple spatial scaling, which in turn peak at different time scales. We derive
a ‘master-equation’ which describes a complex multi-flock congregations governed by two ingre-
dients: (i) a fast inner-flock communication; and (ii) a slow(-er) inter-flock communication. The
latter is driven by macroscopic observables which feature the up-scaling of the problem. We extend
the current mono-flock theory, proving a series of results which describe rates of multi-flocking
with natural dependencies on communication strengths. Both agent-based, kinetic, and hydrody-
namic descriptions are considered, with particular emphasis placed on the discrete and macroscopic

descriptions.
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1. INTRODUCTION

We present (to our knowledge — a first) systematic study of multi-scale analysis for the large-
time behavior of collective dynamics. Different scales of the dynamics are captured by different
descriptions. Our starting point is an agent-based description of alignment dynamics in which a
crowd of N agents, each with unit mass, identified by (position, velocity) pairs (x;(t),v;(t)) €
R? x R%, are governed by

Xl(t) :Vi(t)
(L.1) Vilt) =AY o(xi, x;)(vi(t) — Vi),  i€C:={1,2,...,N}.

jec
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The alignment dynamics is dictated by the symmetric communication kernel ¢(-,-) > 0. It is
tacitly assumed here that the initial configuration of the agents are equi-distributed which justifies
a scaling factor A = 1/N, and thus (1.1) amounts to the celebrated Cucker-Smale (CS) model [6, 7].
The tendency to align velocities leads to the generic large-time formation of a flock.

In realistic scenarios, however, initial configurations are not equi-distributed. Indeed, fluctuations in
initial density may admit different scales of spatial concentrations. What is the collective behavior
subject to such non-uniform initial densities? This is the main focus of our work.

The presence of different spatial scales leads to formation of separate flocks at different time
scales, which are realized by mixing different formulations of alignment dynamics — from agent-
based to hydrodynamic descriptions. In section 2 we make a systematic derivation, starting with
the agent-based CS dynamics for a single flock (1.1) and ending with dynamics which involves
several flocks Co,a0 = 1,... A: the a-flock consists of N, agents, identified by (position, velocity)
pairs {(Xai, Vai) }icc,, which is one part of a total crowd of size N = Ef‘: 1 No. The resulting
multi-flock dynamics is governed by a ‘master-equation’

Xai = Vai,
No A
(12) \"ai = Aoz Z maj¢a(xai7 Xaj)(vaj - Vai) +u Z M5¢(Xa, Xﬁ)(vﬂ - Vai)-
j=1 B=1

B#a

The system (1.2) arises naturally as an effective description for the alignment dynamics with
multiple spatial scaling, which in turn, yields multiple temporal scalings. Such multi-scaling appears
when each a-flock undergoes evolution on a time scale much shorter than relative evolution between
the flocks. Accordingly, the dynamics in (1.2) has two main parts. The first sum on the right encodes
short-range alignment interactions among agents in flock «, dictated by symmetric communication
kernel ¢, with amplitude \,. The new feature here is that spatial variations in initial density
require us to trace the different masses m,; attached to different agents located at x,;. The second
sum on the right encodes the interactions between agents in flock « and the ‘remote’ flocks 5 # a.
The communication is dictated by symmetric kernel ¢ with amplitude p: since these are long-range
interactions, they are scaled with relatively weak amplitude p < 1, and we therefore do not get
into finer resolution of different kernels, 14z, to different flocks (inter-flocking interactions driven
by different 1,4 is the topic of a recent study on multi-species dynamics [11]). The new feature
here is that the remote flocks in these long-range interactions, Cgq, are encoded in terms of their

macroscopic ‘observables’ — their mass, Mg = Z’iECB mgi, and centers of mass and momentum
1 1
Xp = My Z mgiXgi, Vpi= M Z mpivgi, Mg = Z mg;.
1€Cq ZECB ’LGCg

These macroscopic quantities {(X4, V4)} are determined by the slow inter-flocking dynamics: a
weighted sum ), mq;(1.2); yields

Xa = Vaa
(1.3) Vo =p Z Mp(Xa, X5) (Vg — Va).
B7a

Thus, starting with agent dynamics (1.1) we end up with the same classical Cucker-Smale dy-
namics (1.3) for ‘super-agents’, weighted by their respective masses and representing macroscopic
parameters of those flocks. This up-scaling — the process of bottom-up integration, [12], naturally
yields X, Vg and Mg and their corresponding communication kernel, v, as the the effective pa-
rameters for our multi-scale description. At the same time, our master-equation (1.2) specifies how
these up-scale parameters interact with the sub-scales parameters x,, v, and ¢, much like models
for collective dynamics at the cellular scale that which include sub-cellular mechanisms [14]. The
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importance of multi-scaling in collective dynamics was highlighted in a recent theme issue of the
Phil. Trans. Royal Soc. B devoted to collective migration in biological systems; as the editors [8]
indicate — multiscale methods in collective migration uncover new unifying organization principles
and in particular, shed light on the transition from single to collective migration. These features
are realized in our multi-flocking approach.

Remark 1.1. (Smooth and singular kernels). In the case when the inter-flock and internal
communication kernels are smooth, the global existence of the system (1.2) follows by a trivial
application of the Picard iteration and continuation. If the kernels ¢, are singular, however,
collisions lead to finite time blowup, so this case needs to be addressed separately. In the Appendix
we show that multi-flock dynamics governed by singular communication kernels with ‘fat-head’
so that fol ¢o(r)dr = oo, experiences no internal collisions. Consequently, one can deduce global
existence for systems with smooth v and a family of either smooth kernels or ‘fat-head’ kernels.

1.1. Statement of main results. Much of the theory available in the literature on mono-scale
flocking, e.g., [1, 2] and the references therein, admits proper extension to the framework of multi-
flocks. We chose to carry out proofs to three main aspects of (i) the large-time alignment behavior
of (1.2); (ii) multi-flocks in presence of additional attractive forcing; and (iii) large-crowd hydrody-
namics of multi-flocks. Below we highlight the main results.

We begin, in section 3, with the large-time alignment behavior of the multi-flock dynamics (1.2).
We assume that the short- and long-range communication kernels ¢, and ¢ are bounded and fat-
tailed in the sense that!

(14) ¢a(x7y) Z <|X - nyna’ ¢(XaY) Z <‘X - nyC’ Tlmg < 1.

They dictate the fast alignment rates insides flocks and slow cross-flocks rates, summarized in the
following two theorems.

Theorem 1.2 (Fast local flocking). Assume that the communication in an a-flock has a fat-
tailed kernel ¢o(x,y) 2 (Jx —y|)7 ", no < 1. Then, the diameter of the a-flock is uniformly
bounded in time, Do(t) := max; j [Xai(t) — Xa;(t)] < Da, and the a-flock aligns exponentially fast
towards its center of momentum

(1.5) max [Vai(t) — Vo ()| Se%t, 64 = AaMy(Dy) .

The main message of this theorem is that the a-flock alignment towards V, depends only on
the a-flock own parameters, but not the global values. The global alignment has a slow(-er) rate
reflecting weaker communication due to the smaller amplitude g and the global diameter of the
multi-flock D. Let V denote the center of momentum of the whole crowd, V := . 3> M, V,(t),
and observe that it is time invariant.

Theorem 1.3 (Slow global flocking). Suppose ¥ has a fat tail, ¥(x,y) = (|x—y|)~¢,¢ < 1. Then
the diameter of the whole crowd is uniformly bounded in time, D(t) := max, g |Xa(t) —Xp(t)] < D,
and solutions of (1.2) globally align with the global center of momentum V,

(1.6) max [Vai(t) — V| < e, 6= puM(D)~C.

As a consequence of the two theorems above we obtain what is called “strong flocking”, that is
when all the displacements between agents stabilize, Xq;(t) — Xaj(t) = Xaij as t — 00.

Here and below we abbreviate (X) := (14 |X|?)"/2, while (v, u) or simply v-u stands for the usual scalar product
of vectors. We also adopt the convention of approximate inequality signs to designate inequalities which hold up to
a constant: A 2 B if 3¢ > 0 such that A > ¢B, etc.
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Attraction

Alignment

FIGURE 1.1. 2-zone Attraction-Alignment model

Indeed, Xqi(t) — Xq;(t) = Xai(0) — Xq;(0) + /0 [Vai(s) — Vaj(s)] ds, hence

Zoij = Xai(0) — Xa3(0) + /0 " Vai(s) — Vag ()] s,

and the rate of convergence is obviously the same as that claimed for the velocities.

In section 4 we study the multi-flock dynamics (1.2) with additional attractive forcing (here we
restrict attention to interactions determined by a radially symmetric kernels)

Xai = Vs
1 Na A
AT ) Vai = 5 3 MasballXai = Xail)(Vaj = Vai) + > Ma([Xa = Xgl) (Vs = Vai) + Fas
*j=1 B=1
B#a
Here, F,;(t) = —Nia E;V:‘H VU (|xai — Xaj|) is an external attractive forcing induced by a convex

potential U which belongs to the class of potentials outlined in (4.6) below. Arguing along the lines
of [16] we prove the following (the detailed result is outlined in Theorem 4.1 below).

Theorem 1.4 (Local flocking with attraction potential). Consider the multi-flock dynamics
(1.7) with fat-tailed radial kernels, ¢o(r) = (r)™" and convex potential U(r) > 2 with tamed
growth UF) (r) <rP=% k =1,2, for some B > 1 (further outlined in (4.6) below). There exists ng
specified in (4.7), such that for n < ng, the dynamics of each flock admits asymptotic aggregation,

limsup,_,. Do (t) < L, and alignment decay

1
Zlvai—VQIQSJf(;, V6 > 0, a=1,2,..., A

It should be emphasized that the confining action of the attraction potential is assumed to act
only on far-field, » > L, but otherwise is allowed to be ‘turned-oft’ for U(r) = 0, r < L as depicted
in figure 1.1.This offers an extension of the recent result [17] for the case L = 0. In fact, as noted in
Theorem 4.2 below, if the potential U has a global support, then there is exponential rate alignment.

When N, > 1 one recovers the large-crowd dynamics in terms of the macroscopic density and
velocity (pq, uq), governed by the hydrodynamic multi-flock system, which is the topic of section 5

Otpa +V - (uapa) =0
O+ 1 Vit = [ 00(x.)(0a(y) = 1a () (¥) dy

+ 1Y Mpth(Xa, Xp) (Vs — ua(x, 1)),
B#a

a=1,..., A
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Here {(X4, Va)}a are the macroscopic quantities which record the center of mass and momentum of
a-flock governed by (1.3). The alignment dynamics reflects the discrete framework of Theorems 1.2
and 1.3, namely — if ¢, and v are fat-tailed then smooth solutions of the a-flock and, respectively,
the whole crowd will align towards their respective averages. The details can be found in Theo-
rem 5.1 below. In particular, we prove that the 1D multi-flock hydrodynamics with radial ¢,’s —
either smooth or singular, and subject to sub-critical initial condition v/, (z,0) 4+ AqPa * pa(z,0) = 0,
Vz € R, admits global smooth solution and flocking insues.

2. FROM AGENTS TO MULTI-FLOCKS AND BACK: UP-SCALING

2.1. Agent-based description. Our starting point is the alignment-based dynamics (1.1)

(2.1) Vilt) =Y o(xi, %) (vi(t) — vi(t)),  i€C:={L,2,... N}

jec

This expresses the tendency of agents to align their velocities with the rest of the crowd, dictated
by the symmetric communication kernel ¢(-,-) > 0. Let us assume that each of the terms on the
right is of the same order, O(1); then the total action on the right of order O(N) will peak at time
t = O(1/N). Using the scaling parameter A = 1/N, one arrives at the celebrated Cucker-Smale
model [6, 7]

Vi:)\ZQS(Xi,Xj)(Vj*Vi), )\:%,

jec

where the dynamics is re-scaled to peak at the desired ¢t ~ O(1). But what happens when the terms
on the right of (2.1) are of different order? Assume that the crowd consists of two mostly separated
groups, C = C1 UCsy, where Cq has a large crowd of N7 agents whereas Co has a much smaller crowd
of No < Np agents. By ‘mostly separated’ we mean that the two groups have a very low level of
communication so that {¢(x;,x;) < 1| (x4,%;) € (C1,C2)}. We will quantify a precise statement of
separation in section 2.3 below. Now the dynamics (2.1) will experience two-time scales: the action
of the larger crowd C; will peak earlier at time t; = O(1/N7), mostly ignoring the negligible effect
of the ‘far way’ crowd in Cy. The crowd of Cy will peak much later at time to = O(1/N3) > t1. In
[13] we suggested an adaptive scaling parameter

1

v = )\iZ(b(Xi7Xj)(vj — Vi), Ai = m’

jec

here, \; adapts itself to the different clocks of both crowds: when in the larger crowd ¢ € C1, we
have \; ~ 1/N; whereas for agents in the smaller crowd i € Co we have \; ~ 1/Ns

1 1
AiDlj X, X )(vi—vVv;), 1€C: i =es——"—"~—
o _ ZJ€C1 (15( ])( J ) 1 Zj ¢(1Xz‘,xj) ]\171

Ai Zjecz O(xi,x5)(vj —vi), 1€Ca: A= m ~ Ny

Thus, \; should be viewed as time scaling adapted for both crowds to peak at the desired t = O(1).
While this scaling is satisfactory for Cq, it neglects taking into account that the activity of the
smaller Co peaks much later after the peak of the larger crowd C;, which has an additional effect
on the dynamics of Cs.
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2.2. Scale separation in time. We want to take both groups into account while being precise of
using the same ‘clock’. To this end, it will be convenient to observe the configurations of crowds
C1 and Cs in terms of their empirical distribution

1 (%, v, ) Z B (1) (X) © By 1y (V) p1a(%,V, 1) Z O (1) (%) @ Oy (1) (V).
k:EC1 kECz

We distinguish between three time scales.

(i) Time ¢t < t1. The dynamics is captured by the agent-based description of the two separate
groups which form the crowd C in (2.1).

(ii) Time t; < t < tg. Since to > t1, crowd C; is captured by its large-time dynamics which is

realized as a continuum with macroscoplc density p,(x,v,t)dv Ml p1(x,t) : RTx Ry — Ry,

and momentum pu, (x,v,t)vdv it (p1uy)(x,t) : R x Ry + R%. Observe that the dynamics at
this stage involves two groups with two different descriptions: crowd C; is encoded in terms of its
hydrodynamic observables, (p1, p1u1), while crowd Cs is still encoded in terms of its agent-based
description

p2 (y,t) pzuz(y,t)
1
Py t) =,y D)+ 5 Z Saw®): pulyst) =y, t) + D V()b (¥) -
kGCQ keCo

The large-time dynamics of C; is governed by the hydrodynamic system [10, 3]
(2.2)1
(p1)t + Vx - (p1ur) = 0,

(pru1)t + Vx - (prus @ uy + Py) = Rn¢(x, V) {(p)(y, t)p1(x,t) — p(y, t)(prur)(x, 1)) } dy,

while crowd Cj is governed by the agent-based description (2.1) which takes the weak formulation
(2.2)2
(p2)t + Vx - (p2uz) =0,

(p2u2)¢ + Vx - (pruz @ ug + P) = Rnd’(xa y){(pu)(y. t)p2(x,t) — p(y, t)(p2uz)(x,1)) } dy.

Here, P, = P(v —u; ® v — uj) is a second-order fluctuations pressure tensor which requires a
closure relations between the microscopic and macroscopic variables. We shall not dwell on its
specific form: the large time behavior of C; in (2.2); is independent of the specifics of this closure.
It will suffice to observe the center of mass and average velocity of crowd Ci:

1 1
Xi(t) :== ]Wl/s xp1(x,t) dx, Vi(t) := ]Wl/s p1(x,t)uy(x,t)dx, Sy :=supp{pi(t,-)}.

Integrating (2.2); over the support of the first crowd Sp: since the ‘self--alignment of C; with
itself vanishes for y € &1, we are left with the contribution from the second crowd p(y,t) — p2 =

NLQ ZkGCQ 5xk(t) (y) and (pu) (Y7 t) = paug = NL2 ZkECZ Vk(t)éxk(t) (y)7 which yle]'ds
X, =V,

MV; = /ES /ES o(x,y){ (p2u2)(y, t)p1(x,t) — pa(y, t)(p1ur)(x,t)) } dy dx

— Z v, /XESI (%, x25)p1(x,t)dx — ]\2 Z /XES1 (%, X25) (p1ur)(x,t) dx

j€C2
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Due to assumed relatively large separation between the flocks, we can approximate the last two
integrals by the values of the kernel integrands at the centers of mass:

/ S P(x, x25)p1(x, 1) dx =: pup(Xy, Xo) My,
xed1

(2.3) (X, Y) = o(X,Y), p<1
. B(x, x25)(p1un)(x,t) dx =: pup(Xq, Xo) M1 V1,
XE01
obtaining
X, (t) = Vi(t)
(242) 957, 1) = (X1, Xa) (Va(t) = Vi(t)), Va(t) A / pruy(x,t)d Z v, (t
J652

For the dynamics of the second group C2 we may take P» = 0 on the left of (2.2);. The cross-group
interactions term (p, pu) — (p1, p1u1) on the right of (2.2)s yields

: d(x25,¥)p1(y, t) dy = pp(Xo, X1) M1, < (%25, ¥)(prur)(y, t) dy = pp(Xo, X1) M V1,
yed yed

arriving at
X2; = Vo, 1€C(y,
(2.4b) Vo = Z (%24, %25) (Vo — vay) + pp(Xo, Xq ) M1 (Vi — vay).
JEC2

Thus, we end up with a new agent-based dynamics, (2.4b), in which the dynamics of group C; is
encoded as new agent governed by mean position X; and a mean velocity V. This is a precisely
the system (1.2) written for the smaller flock Cs.

(iii) Time t > t9. Now the second crowd Cs is also captured by its large-time dynamics, real-
ized in terms of macroscopic density ua(x,v,t)dv — pa(x,t) : R? x Ry ~— R,, and momentum
po(x,v,t)vdv — (paug)(x,t) : R? x Ry +— R? Together, groups C; and Co form the crowd

py,t) = pi(y,t) + p2(y, 1) puly,t) = pru(y,t) + p2ua(y, 1),
S; = Si(t) := supp{pi(-, 1)}
which is governed by (2.2);-(2.2)s. Here, P, = P(v —uy ® v — ug) is a second-order fluctuations
pressure tensor which requires a closure relations between the microscopic and macroscopic vari-
ables. But we do not dwell on its specific form, since the large time behavior of Cz in (2.2)s is
captured by the center of mass and average velocity of crowd Ca:

1 1
/ xpo(x,t) dx, Vo(t) := M/ us(x, t)p2(x,t) dx.
SQ 2 52

X2 (t) = Mg

Integrating (2.2)s over the support of the second crowd Sa: since the ‘self--alignment of Cy with
itself vanishes for y € Sy, and using (2.3) we are left with

Xy = Vo,
MyVy = /es /GS o(x,y){(pu)(y, t)p2(x,t) — p(y, t)(pauz)(x,1)) } dy dx
= / o(x,y){(p1u1)(y, t)pa(x,t) — p1(y, t)(p2uz)(x,t)) } dy dx
x€Sy Jy€eS:

= < qb(x,Xl){Mlleg(x, t) — M, (pgug)(x,t))} dx.
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We approximate the last two integrals by the same principle as before

/ < P(x, X1)p2(x,t) dx = pp(Xa, X1) Ma,
(2.5) e

< P(x, X1)(p2uz)(x,1) dx = pg)(Xa, X1 ) MoV,
XE02

arriving at a 2-agent system described by the dynamics of their center of mass/momentum (x4, Vo),
X, () = Val(t),

(2:6) MoVa(t) = Y $(Xa, Xg)MaMp(V(t) — Vo (1),  “P€ {1,2}.
B#a

In summary, we began with the agent based description for two crowds of N1 > Ny agents, (2.1)
valid for ¢t < ;. It evolved into an agent-based description for crowd of Na + 1 agents (2.4) valid
for t1 < t <t and ended with 2-agent description (2.6) valid for ¢ > t,. This is a process of
up-scaling in which the notion of an ‘agent’ is replaced with a ‘multi-flock” — a larger blob made
of agents, which is identified by its center of mass/momentum. The only difference is that the
multi-flock-based dynamics now takes into account only the up-scaled quantities of the multi-flock.
Let us recall that the more general system (1.2) permits up-scaling in the same way.

2.3. Scale separation in space. Following up on the idea of spatial separation between islands it
is instructive to assess the scale on which approximation of mass/momentum given in (2.3),(2.5) is
valid. To make analysis more precise we assume the large distance behavior of the communication

kernel ¢(x,y) ~ |x —y|™". We consider the prototypical integrals in (2.3) / o(x,y)p1(x,t)dx

and d(x,y)p1ui(x,t)dx for y € So. We now fix X € convS; and Y € conv Sy, and for any
XES]

given pair of agents x € Sy, y € Sy we decompose x—y = (X-Y)+ (Y —y)— (X—x). Thus, R :=

|X — Y] is the (fixed) long-range distance between the two groups, whereas r := |(Y —y) — (X —x)|

encapsulates the short-range distances within the crowds, r < R. Similar decomposition holds for

the weighted integral of py sought in (2.5). We have

1 1
|X_Y| VR2 4+ 12 —2rcosf 72( )Pk (cos ),

where cosf = ((X —y)/R,(X — x)/r) and Py are the k-degree Legendre polynomials, Py(z) =
1, Pi(z) = x etc. We find

e ) o ()
;2<1+R2<X Y, (Y-y) - (X— )>+(9(;22)> x€eS8, y€ES.

Since the contribution of the second term on the right is of order r/R < 1 we can further approxi-
mate

wno e o vov e so(3)

1 2
RW+R2+’7<X Y, (Y -y)— —X>+(’)<R2+n)
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The first key point is that by choosing X = X; and Y = X5 as the centers of mass of the flocks,

so that M;X; = / xp1(x,t), then the second term has a negligible contribution. Indeed,
xES

1
| symeacs [t
XES] XEST ’X - y’

2
n T
:R”/ p1(x,t)dx + R+ /xeS1 (X1 —X9,(Xo—y) — (X1 —x))p1(x,t)dx + O (RQ"‘">

P1 (X> t) dx

1 n r’
= —M; + R0 / <X1 — Xo, <X2 - y))/)l(xvt) dx+ 0O <R2+n>

1 T 72
:R77M1+O<Rl+n>+0(R2+n>'

Noting that ¢(X;,Xs) = R~ we conclude with the first part of (2.3)

r
(272) [ ovmixnax=oxi v+ 0 (gim) . ves
Similarly, we recover the asymptotic formula for momentum (2.3)

r
(2.7b) [ oy t) dx = 6(X1 X)) M Vi (1) + O (7)) -

The same argument applies for crowd Co:

(2.8) /XESZ ¢(x,y){ f;;i;i)(x’t) } dx = ¢(X2,X1){ %zvm }+O (7)) ves.

Remark 2.1. The bounds (2.7),(2.8) quantify first order errors, O(e;;) < 1, provided the diameters
of crowds C;,C; are much smaller than their distance, €;; := max{r;,r;}/R;; < 1.

3. SLOW AND FAST ALIGNMENT IN MULTI-FLOCKS

In this section we focus on alignment dynamics for system (1.2) under conditions of Theorem 1.2
and 1.3. In fact, with a slight abuse of notation we will make a more general assumption that there
exist radially symmetric subkernels

(3.1) Pa(x,y) 2 da(lx—yl),  ¥(xy)=v(x—yl)

which are positive, monotonely decreasing, and fat tail at infinity
oo oo
(3.2) / Go(r)dr = 00, / Y(r)dr = co.
T0 To

We start by noting that any cluster system (1.2) satisfies the global maximum principle — max-
imum of each coordinate in the total family v,; is non-increasing, and the minimum is non-
decreasing. Therefore the system (1.2) is well prepared “as is” for establishing global flocking
behavior. However, this is not the case for each individual flock. Each flock satisfies ”internal
maximum principle” relative to its own time-dependent momentum V. This dictates passage to
the reference frame evolving with that momentum and center of mass:

(3.3) Wai = Vai = Vo, Yai = Xai = Xa.
Using (1.2) and (1.3) one readily obtains the system

Yai = Wai,
(3.4) e

Wai = )\a Z mozj(z)aij (Wai - Waj) - ,U,Ra (t)waiy
j=1
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where
Ra(t) := Z Mg (| Xa — Xpl),
B
and we abbreviate
¢aij = ¢a(Yai + Xa, Yaj + Xa)'
This system now does have a maximum principle and is well prepared for establishing flocking.
Let us denote individual flock parameters:

Da(t) := max [Xai(t) = Xaj(D)], Ao = max  |Wai—Woj|= max (£ Wai— Wa).
i,j=1,...,Nq

By Rademacher’s lemma, we can evaluate the derivative of A, by considering £, 4,7 at which that
maximum is achieved at any instance of time:

N, N,
d . . = =
&Aa = ('e7 Wai — Waj> = Aa Z Mok Paik <£a Wak — Won'> - Aa Z mak¢ajk <e7 Wak — Waj>
k=1 k=1
— R (t) (€, Wai — Way)
Na
= Ao Z mak¢aik(<£a Wak — Waj> - <£’ Wai — WOéj>)
k=1
Na
+ Ao Z mak¢ajk(<£7 Wai — Wak) — (€, Wai — Waj>) — pRo(t) A
k=1

Each difference of the action of £ is negative due to maximality of £,%, j. Hence, we replace values
of ¢o’s with the use of (3.1) and its minimal value at Dy:

Na

d
aAa < )\aﬁba(Da) Z mak(<£a Wak — Waj> - <£7 Wai — Waj> + <£a Wai — Wak> - <£> Wai — Waj>)
k=1
— 4Ra(t) Ao = ~NaMaba (Do) Aa — iRa(t) Ao.

At the same time, R, (t) > M (D), where
D :=max |X, — Xg|, A:=max|V,—Vj|.
a’lB a7/8

Combining it with the system for (D, .4) which follows a similar computation applied to macroscopic
values (1.3), we arrive at the following system of ODlIs:

Ao € “AaMada (Do) Ag — pMiy(D) Aq
Da
A
D

/

P

(e’

(3.5)
—uMy(D)A

NN N
PN

This system encompasses prototypical systems of the form

56) {A < —¢(D)A

D < A,

Following Ha and Liu [9] we can define a Lyapunov function

D
L:A—i—7/ o(r)dr,
0
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which is non-increasing. Hence, there exists D and § > 0 such that

(3.7) o(r)dr > A, D(t) <D, A(t) < Age 70D,
Dy v
Note that condition (3.7) is always satisfied for a fat tail ¢.
Going back to (3.5) and ignoring the term —uM(D)A, in the A, equation we observe that
the a-flock completely decouples from the rest of the multi-flock. We arrive at (3.6) for the pair
(Du, As). One obtains the fast internal alignment result (1.5) asserted in Theorem 1.2

max |V0ﬂ'(t) - Va(t)’ 5 6_6at7 504 = )\aMaQZ)oz(@oz)'

As noted before, this indicates that the a-flock behavior depends solely only on its own parameters,
but not the global values. In particular, the a-flock alignment towards V,(t) occurs regardless
whether these centers of momentum align or not. The latter will be guaranteed if the inter-flock
communication v satisfies the fat tail condition (3.2). In fact, in this case the global alignment
ensues even if internal communications are completely absent. This is evident from (3.5) where
we ignore the —A\q Mo (D) Aq term and obtain boundedness of D from the last two equations,
obtaining the slow alignment (1.6) asserted in theorem 1.3

max|vai(t) = V| S e, 5= uMy(D).

)

Alignment rate in this case is slow since it depends on p and the global diameter of the multi-flock.

Remark 3.1 (Asymptotic rate). Asymptotic dependence of the implied alignment rates for small
w and large A\, for the Cucker-Smale kernel can be worked out from (3.7) (we omit the details). In
the context of fast local alignment with ¢, (r) ~ r~"% we obtain § ~ A, for all 7, < 1, while in the
context of slow alignment with (r) = r~¢ we obtain

0~ :U’liiga C<]-a
pe e (=1

4. MULTI-FLOCKING DRIVEN BY ALIGNMENT AND ATTRACTION

In this section we consider multi-flock alignment model with additional attraction forces. Out
goal is to show that each flock would aggregate towards its center of mass within the radius of
influence of the potential. Our results present an extension of [16].

We assume that the interactions are determined by a radially symmetric smooth potential U €
C*(Ry):

Xoi = Vais
1 Ngq A
D Vai = 1 D Gallxai = Xa;)(Vay = Vai) + 1Y w(Xa = Xsl) (Vs = Vai) + Falt),
¢ =1 B=1

Ba

where

N,
1 «
Foﬂ'(t) = _E ZVUOXQZ' — Xaj|)'
7=1
Here we assumed for notational simplicity that all masses are 1/N,, and potentials are the same.
However, the statements below can easily be carried out for a general set of parameters.
Note that the system upscales to the same Cucker-Smale system (1.3) for the flock-level variables.
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Using transformation (3.3), we rewrite the system in the new coordinate frame

Yai = Wai,
N,
4.2 . 1 %
( ) Wai = Fa Zl ¢a1j (ch Waj) - NRa(t)Wai + Fai( )
]:

The classical energy &, = Ko + Pa where?,

1 Ng, 1 Nq,
Kai=35x5 Z [wail* = AN2 Z |Waij|, Waij = Wai = Way,
@ =1 @ =1
(4.3) L N
Po = IN2 Z U(|yaij|), Yaij = Yai = Yaj»
O i=1
satisfies N
d 1 =
*goc = T2 Z (baij‘waij’z - FLRoc(t)K:Oé'
dt N¢E Py

Denoting the dissipation term by
1
Lo = 3 2 daislWaisl*,
7,7=1
we obtain the energy law
d

(4.4) =

Ea = Lo — R (1)K,

At this stage already we can see that if © > 0 and v has a fat tail, then global slow exponential
alignment will insue regardless of internal flock communications. Indeed, the up-scaled dynamics

(1.3) will stabilize the macroscopic values which implies boundedness of R,,.
dissipation term Z, in (4.4) we obtain exponential decay of all the energies:

Eo S et

O~

Hence, ignoring

In this section we show that flocking occurs also in each individual a-flock regardless of global
communication, although it may be happening at a slower rate. To fix the notation we consider

regular communication kernels with power-like decay:

(4.5) OL(r) <0, ¢alr) = % for 7 > 0.

For the potential we assume essentially a power law: for some 3 > 1 and L' > L > 0,

Support: UecC*RY), U(r)=0, Vr<lL,
(4.6) Growth: U(r) > apr®, |U'(r)] < a1,
Convexity: U'(r),U"(r) >0, Vr>0.

|U" (r)| < asr® 2, Wr> L/,

Theorem 4.1 (Local flocking with interaction potential). Under the assumptions (4.

on the kernel and potential in the range of parameters given by

4
1, 1<8<=
) B 37
2 3
2? ﬁ>27

2Here and in the sequel we occasionally use a shortcut for ani; = ani — aaj-

) and (4.6)
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all solutions to the system (4.1) flock with the bound independent of Ny,:
Dy(t) < Do, Vt >0,

asymptotically aggregate
limsup D, (t) < L,

t—o0
and align

(4.8)

1 2
I Z]vm Val +2N2 ZU|XM—XQJ|) s 9> 0.
i,j=1

Note that the latter statement follows from local alignments (4.8) and the exponential alignment
of the flock parameters governed by the upscaled system (1.3).
Proof. We will operate with the particle energy defined similarly to [16]

N,
1 «@
’Waz|2 —|— — Z U ’yalk’) Eoco = mzax(‘:ai'

First, we observe that the particle energy controls the diameter of the flock. Indeed, by convexity
and our assumptions on the growth of the potential, we have

(4.9) Eai 2 U(I¥ail) = (Iyail - L)}
So,
(4.10) D, <EYP+ L.
Let us now establish a bound on £,.. For each i we test (4.2) with w,; and ignore that R,-term :

d 1 & 1 Lo
(411) Egaz S Z ¢aikwaki *Wai — F Z VU(’yasz " Wak-

Na k=1 * k=1
For the kinetic part we use the vector identity
1 1 1

(4.12) Api - A = _§’aki|2 - gfaz"Q + §\ak’2-

Discarding all the negative terms, we bound

N,
1 «
N E PaikWaki * Wai < ‘¢a|oo’ca
¢ k=1

Due to the energy law K, will remain bounded, but we will keep it in the bound above for now.
As for the potential term, there are several ways we can handle it.
For any 1 < 8 < % we apply a direct estimate from the first derivative:

Nao
ZVU |YOczk|) Wak

<\ﬁ< Z|VU|}’azk| ) < VEK.DI L

Consequently,
d g=1
&gai <Ky + CZ\/’CDQ_I ,S V ’Ca(l + gacéao ),
and
d L
(4.13) < e3v/Ka ) = Eae S = Dy < ().

dt
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In the range % < B < 2 it is better to make use of the second derivative:

N, N,
1 = 1 =
E VU (|Yaik]) - Wak A E (VU(|yairl) = VU(|yail)) - Vi
a4 =1

(414) HD2U||OO « ( Z |Yak| )

2

N,
1 o
< V ICOé N2 E |Y<xij|2

a =1

The following inequality will be used repeatedly

(4.15) P Z Vaij|? < (L)% + —2 Z (Iaij| — L)% < C(1+DE P+ P,).

7.] 1 ,] 1
Continuing the above,

1 Na
ZVU ’yonk’ - Wak

< ca/Ka(1+ D2 PPIY2 < e50/Ka(l + Enve) T .

In this case,

2

d 2-8 28 2
(4.16) agaoo < ¢ /’Ca(l + 5&00)225 = Easo 5 <t> 35—2 = D, < <t> 352_2.

Finally, for 8 > 2, we argue similarly, using that |D?U (|yaiz|)| < Dng, and (4.15), to obtain

< VKD

1 e
ZVU |yazk| * Wak

and hence,
d B-2 8 1

(4.17) &&wo < erVEKa(14 Enso) P = Cao S ()2 = D, < (t)2
We have proved the following a priori estimate:

]-7 1 < /6 < o)

d 2 4

(418) Da(t) ,S <t> 5 where d= m, § < /B < 2,

S 820

Denote ((t) = (t)~7%. Then according to the basic energy equation (4.4) we have

d
dt
Considering this as a starting point, just like in the quadratic confinement case, we will build

correctors to the energy to achieve full coercivity on the right hand side of (4.19). We introduce
one more auxiliary power function

1
(4.19) Ea < —5Za = cC(t)Ka — pRa(t)Ko.

n(t) = (B, yd<a<l,
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First, we consider the same longitudinal momentum

1 Qe
= E Z Yai - Wai-
=1

It will come with a pre-factor dn(t), where J is a small parameter. Let us estimate using (4.15):

(1) Xa| < 0o + o’ (t Z Vaij|2 < 0Ka + con2(t) + on2(t) DA+ P,
i,j=1
The potential term is bounded by dP, as long as 2a > d(2 — ). Hence,
(4.20) ()| Xal < 60 + cn?(t).

This shows that
Eo 4+ 0N(1) Xy + 2em*(t) ~ Eo + cOn?(t).
Let us now consider the derivative

-~ Z ’Waz|2 + Z Yaik - Wakz¢akz - N2 Z Yaik * VU(‘ygsz (t)Xa
&g k=1 & k=1

=Ko+ A—B— uR,(t)X,
The gain term B, by convexity dominates the potential energy B > P,. As to A:

b 51/2
A< =7 w3 LS el S

1/2 1/2 (2-8)+
25172 (1) 2 P Z+0"*n(t)+ 67 n(t)Dy; Pa.

51/2 ( )
By requiring a more stringent assumption on parameters

Z d(2 - /8)+7

we can ensure that the potential term is bounded by ~ p!/2P, which can be absorbed by the gain
term.
The inter-flock term in (4.19) helps abosrb the correspondmg residual term pR, (t)X,. Indeed,

1
Ra(D)Xa < ———— jRa(t)Ka + 11Ral Ve
pRa(t) Ok (t) 1 ;1| il?
1
< S5y R o()Ka + C10n(t) + Codn(t) DE=A+p,,

with the latter absored into the gain term as in the case of A.
So far, we have obtained

d
(4.21) 3 (Ea+on()Xa + 2en?(t)) < —c1dn(t)E€ + can?(t) + o' (t) X
In view of (4.20),
7 (t)
60/ ()] < 0 ()|Xa] < 30 +0
< ) {t) {t)
Since a < 1, the energy term will be absorbed, and the free term is even smaller then n?. Denoting

Ey =&+ on(t) Xy + 2em(t),

we obtain

d
aEa < —an(t)E, + 62772(15).
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By Duhamel’s formula,
els)

Fult) S exp(~ {0/} + exp{ (') [ i s

By an elementary asymptotic analysis,

el o1
— dS ~ exp{<t>17a }ﬁ
/0 (s)e {tye"—e
Thus, we obtain an algebraic decay rate
1

(4.22) E,(t) < e Va < 1,
provided
(4.23) dy<1 and d(2-0); <L

This translates exactly into the conditions on v given by (4.7), and (4.22) automatically implies
(4.8)

Going back to the estimates (4.13) and (4.16), but keeping the kinetic energy with its established
decay, we obtain a new decay rate for the diameter

Do < Cs(t)570, 6 > 0.

At the next stage we prove flocking: D,(t) < D,. In order to achieve this we return again to
the particle energy estimates. Let us denote

N, N,
1 2 1 2
Pon' = E ; U(|yaik|), Zon' = E ; ¢aik|waki‘27 Xai =Yai  Wai-

Using (4.11), (4.12), (4.14), (4.15) and the fact that D PP has a negative rate of decrease, we
obtain

d 1
JEai < Ko = 50a(Da) Wail* = Zai + ¢v/Ka = pRa(t)[ Wil
1 1
S.; _7¢a(pa)|wa’i‘2 - Iai + 1 MRa(t)’Wai’27 Vo > 0.
2 (t)z 5

In view of (4.23), we can pick a and small b such that

1 1
by <=2 S
(4.24) p Ty Ty

(2 — B)_;,_d + 25(2 — B)J,_ < 2a.
We use as before the auxiliary rate function n(t) = (t)~. Let us estimate the corrector
|6m(t) Xai| < M’Wai’2+5772(t)|yai|2 < 5|Wai|2+5772(t)pi_673ai+l/25772(t) < 5’Wai|2+057)ai+L25772(t)'

So,
Eoi = Eai 4 61(t)Xai + 2L2602(t) ~ Eai + L2602(t).
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Differentiating,
1 o 1 Qo
X(;i = ‘Wai‘2 + E ;ygzi “WakiPaki — Ni(l ;Yaik : VU(’yasz

Nao

1
A kz_l}’ak ~(VU(|yaik]) = VU(|yail)) = pRa(t) Xas
1 1 =
< i 2 1/2 at 2 7Iai - o AT 2
[wail* + 8" n(O)lyeal® + 57 s Toi = Poi + o l; | il
1 2 2
alt ai 20m(t alt [e%
+ g Fal0wa + 250(ORa Oy
where the last term is already smaller than 627 (t)|ya:|? for small enough 4,
1 1
< i 2 51/2L2 t 61/2D(2_6)+ t)Pai 71&1’ % C Ra t [o% 2
(Wil + n(t) + o ()P 500 Pai + 2" ()| Wail
in view of (4.24), u'/2D@=P+y(t) < u'/2, so the potential term is absorbed by —P;,

1 1 1
——Tni — 5 Pai
n(y T~ g e O o5

Again in view of (4.24), n(t) decays faster than ¢,(D,), so plugging into the energy equation we
obtain

< ‘Wai‘Q + MRa(t)|Wai‘2-

d
EEai < _677(t)Eai + T](t) + v Ko + (577/(t)Xaiv
and as before 07/ (t)X,; is a lower order term which is absorbed into the negative energy term and
+n?. So,

d
aEai < _677(t)Eai + U(t) + V ]Ca-

By our choice of constants (4.24), /K, decays faster than 7n(t), hence,
d
EEai S —0n(t) Eai + n(t).

This proves boundedness of Eq,;, and hence that of £u; + L26m%(t), and hence that of ;. In view
of (4.10), this implies the flocking bound D, (t) < D, for all ¢ > 0. g

It is interesting to note that when the support of the potential spans the entire line, L = 0, and
U lands at the origin with at least a quadratic touch:
(4.25) U(r) = apr®,r < L,
then we can establish exponential alignment in terms of the energy &,. Indeed, since we already
know that the diameter is bounded, the basic energy equation reads
d
dt
The momentum corrector needs only an d-prefactor to satisfy the bound
|0X,] < 0K + 0CP,.

This is due to the assumed quadratic order of the potential near the origin and, again, boundedness
of the diameter. Hence, &, + 60X, ~ &,. The rest of the argument is similar to the general case.
We obtain

1
ga < —Cg/Ca — 5.’[&

1 1 1
< 1/2 i, _ D -
Xo SKo+ 7Py + To — Pa < Ko 2770651/2

§51/2 Lo
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Thus,

%(Ea + 5Xa) < —Clga ~ —C1 (6a + 52(01).

This proves exponential decay of the energy &,. Going further to consider the individual par-
ticle energies, we discover similar decays. Indeed, denoting by Exp(f) any quantity that decays
exponentially fast, we follow the same scheme:

d 1 _
aé’ai < —01|wm-|2 — §Zm- + Exp(t), Exp(t) <e ot

In view of |yail? < Pai,

5|Xai| < 5|Wai|2 + 57)aia
80 Eqi + 0 X4 ~ Eqi. Further following the estimates as in the proof,
1 1

Iai - *,Pai .

Xo/és |Wa7;|2+m 9

)

Thus,

%(&d +6Xi) < —C1(Eni + 6Xs) + Exp(t).

This establishes exponential decay for £,+, and hence for the individual velocities. This also proves
that D, (t) = Exp. So, the long time behavior here is characterized by exponential aggregation to
a point.

Theorem 4.2. Let us assume that the support of the potential spans the entire space and (4.25).
Then the solutions aggregate exponentially fast:
Da(t) + max |V (t) — Va(t)|oo < Ce™,
(2
for some C,d > 0.

5. HYDRODYNAMICS OF MULTI-FLOCKS

In the case of smooth communication kernels, one can formally derive the corresponding kinetic
model from (1.2) via the BBGKY hierarchy. Let f,(x,v,t) denote a density distribution of the
a-flock, and define the corresponding flock parameters :

M, = fa(x,v,t)dxdv, X, = 1 Xfa(x,v,t)dxdv,
R2d My Jrea

_ 1

- E R2d

The kinetic model reads as follows

(5.1)

V. Vfa(x,v,t)dxdv.

(5'2) atfoz +v- fooz + /\vv ' Qa(.fou fa) + va ' Z MN/J(Xa, X5)<V6 - V)fa = 07
B

where

(5‘3) Qoa(fa f)(X,V,t) = f(X,V,t) ¢a(xax/)(vl - V)f(X/,V,t/) dx’ dv’.

R2d
The macroscopic system can be obtained, again formally, from (5.2) by considering monokinetic
closure f, = do(v — ua(x,t))pa(x,t). The resulting system presents as hybrid of hydrodynamic
and discrete parts, where the hydrodynamic part corresponds to the classical CS dynamics within
flocks, while the discrete part governs communication of a given flock with other flocks’ averaged
quantities. To write down the equations, we denote macroscopic variables by (pa, ua)A

a=1»
a3, t) = | falx,v,t)dV, paug = / Vialx, v, 1) dv,
R4 R4
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while (5.1) represent upscale parameters of the flocks. The full hydrodynamic system reads

Otpa +V - (uapa) =0
Ort -+ o Vit = Ao [ 60(0,3) 11 (y) = 1o () o)y

+u Z Mﬂd}(Xaa X,B)[Vﬁ - ua(xa t)]
B#a

(5.4) a=1,...,A.

Writing the momentum equation in conservative form we obtain
01(patta) + Valpatta ©1t0) = o | 603 (a(y) — a3 ()pa(y) dy
R

+ 1Y Mph(Xa, X3)[Vis = ta(x, )] pa(x).
BFa

(5.5)

Integrating (5.5) over RY, system (5.4) upscales to the same discrete Cucker-Smale system (1.3) for
macroscopic parameters {X,, Va4 }a-

5.1. Slow and fast alignment of hydrodynamic multi-flocks. As in the discrete case, we
will deal with kernels that admit fat tail subkernels (3.1). Alignment dynamics for hydrodynamic
description mimics that of the discrete one once we pass to Lagrangian coordinates. Denote by
Xqo(x,t) the characteristic flow map of the u,. From the continuity equation we conclude that the
mass measure p,(y,t)dy is the push-forward of the initial measure p,(y,0)dy by the flow. So,
passing to the Lagrangian coordinates vy (x,t) = ua(Xq(x,t),t) we obtain

G = Ao [ Galalx ) %03, 0)(Valy) = Val)pa(3,0)dy

+ Z M5¢<Xa, Xﬁ)[Vﬁ — Va(x, t)]
BFa

Passing to the reference frame moving with the average velocity in each flock:
(5.6) Wo (X, 1) == vo(x,t) — Vul(t)

we obtain the momentum system quite similar to its discrete counterpart (3.4)

G0 0) = Ao [ 000,650 () (W 1) = W0, ) (3.0) dy = e ()5

Thus, all the alignment statements of Theorem 1.2 and Theorem 1.3 carry over directly to these
settings. In the original variables these translate into the following.

Theorem 5.1. Assuming that the initial diameter of the a-flock is finite, and ¢, has fat tail, the
a-flock aligns at a rate dependent on A :
diam (supp pa(-; 1)) < Do,  max |ua(x,t) = Va(t)] S e,
XESUpPP Pa(-t)

where 6o = AaMa¢o(Dy). Furthermore, if 1 has a fat tail, the kernels ¢ > 0 are arbitrary, and
the multi-flock has a finite diameter initially, then global alignment occurs at a rate dependent on

I

diam (Uq supp pa(-, 1)) < D, max lua(x,t) — V| < e,
XEsupp pa('7t)>a:17"'7A

where § = uM(D).



20 ROMAN SHVYDKOY AND EITAN TADMOR

5.2. External forcing. Theorems 4.1 and 4.2 have similar analogues for the system with additional
external interaction forces [17]

Fo=—-VU * p,.

This is due to the fact that our arguments establish rates independent of the number of agents. The
hydrodynamic proofs repeat the discrete case ad verbatim, we therefore leave them out entirely.

5.3. Global existence and 1D multi-flocking: smooth kernel case. We restrict attention to
radial communication kernels ¢, € W2, The most convenient form of (5.4) to study regularity
is in the shifted reference frame attached to the flock:

Vo (T, 1) = ua(r — Xo(t), t) — Va(t), To = pa(x — Xa(t), t).
The new pair satisfies

Oro + (Vara) =0
Outa-+ vl = Ao [ 0l = 4 (00(0) ~ v ()ra(s) dy — pRa(E)

Ro(t) =Y Mgip(|Xo — Xp)).
B#a
In the case of the classical hydrodynamic alignment system the global well-posedness in 1D relies
on a threshold condition for the auxiliary quantity e = v’ + ¢ * p, which satisfies the same continuity
as the density, see [23]. For multi-flocks we define, accordingly, the family of such quantities

(5.7)

ea(T,t) = V), + Aada * To.

By virtue of (5.7), e, satisfies

Orea + (Vaea) = —puRa ()l
which can be written as a non-autonomous logistic equation along characteristics of v,:
d
dt dt
It is therefore natural to a expect threshold condition to guarantee global existence. We elaborate
on that in the next result.

(5.8) ea = (LR + €a) (o *Ta — €4), = 0 + V,,0;.

Theorem 5.2 (Global existence). Let 1, ¢, € W2(R). For any initial conditions (uq, pa) €
W2 x (WHo N LYY satisfying

(5.9) ul (2,0) + Aada * pa(2,0) =0  forall xeR, a=1,...,A

there exists a unique global solution (ua,pa) € LiS.([0,00); W2 x (WL n LY)). On the other
hand, if for some xg € R and o € {1, ..., A}

(5.10) ul, (20,0) 4+ Aada * pa(z0,0) < —pM)(0),
then the solution develops a finite time blowup.

The gap between the threshold levels is due to the fact that it is hard to predict the dumping
coefficient © R, (t), which may fluctuate in time. In particular, if ¢ has a fat tail, then the argument
below shows that the threshold for global existence is improvable to

(5.11) ea(7,0) > —pMy(D) forallz €eR, a=1,...,A4,
where D is determined from the initial conditions by equation (5.12):

D
(5.12) 1 Y(r)dr = Ap.
Do
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Proof. Let us start with the negative result. Noting that pM1(0) is the global upper bound for
d
Ry, from (5.8) we conclude that 6 < 0. So, e, will remain below —pu(1 + §)M1w(0) for some

0 > 0 along the characteristics starting at xg. Hence,

d )
&ea < mea(gba KTq — €a) S —63,

Hence, e, blows up in finite time.
On the other hand, if (5.9) holds initially, then since

ea(¢a * T — ea) < éq < (MRa + 6a)(|¢a|ooMa - ea),

eo will remain non-negative and asymptotically bounded from above by |¢q |00 Ms. Hence, ||v), |00
is uniformly bounded. Next, solving the continuity equation along characteristics

ro(Ta(20: ), 1) = Ta(z0,0) exp {— /Ot ol (Ta(®0: 5), 5) ds} ,

we conclude that r, remains a priori bounded on any finite time interval.
Next, differentiating the e-equation,

/ " /AN, 1 1
1o + v eq + 2vu,e, + Vol = —RaV,,

passing to Lagrangian coordinates and replacing v/l = e/, — M\, @, * po We obtain, in view of already
known information,

d
Sl < F@lenl +9(0),

where f and g are bounded functions. Hence, €/, remain bounded as well, and consequently so does
v/, Finally, v, € L follows from differentiating and integrating the continuity equation.
The obtained a priori estimates lead to a construction of global solutions by the standard ap-
proximation and continuation argument, (see [18] for systematic exposition).
O

We proceed with two strong flocking results that demonstrate alignment in cluster with inter-flock
slow and inner-flock fast rates as expected.

Theorem 5.3 (Strong flocking). Suppose the threshold condition (5.9) holds so the solution
exists globally. If for some a € {1,..., A} the a-flock has compact support and the kernel ¢, has a
fat tail, then there exists 0o = 0a(Pa, Ao, Ua(0), pa(0)) such that

D [ua(w,t) — UalD) + (a6 + (2, 1) S €77,
xESUPD po (-t)
and the density p, converges to a traveling wave with profile p, in the metric of C7V for any
0<y<1:
[pa (5 1) = Pal- = Xa(t))ller < e et
Furthermore, if 1 has a fat tail, the kernels ¢ = 0 are arbitrary, and the multi-flock has a finite
diameter initially, then global alignment occurs at a rate 6 = §(, p, u(0), p(0)):

sup o, 8) = U + [ufy (z, 1) + |ufy (2, 0)] S e,
TESUPP pa(-,t),a=1,...,A

lpa(t) = Pal- = Ub)lcv S e,

Proof. Let us prove the local statement first. Note that the alignment itself is a consequence of
Theorem 5.1. Plus we have a global bound D, on the diameter of the a-flock. Next, let us make
the following observation: since

Pa * pa(@) = Ma¢a(Da) = co, Va € suppra,
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then from (5.8) we obtain
d
dt
Consequently, there exists a time ¢y starting from which ey (x) > ¢¢/2 for all € suppr,. This
follows by direct solution of the ODI.
Let us now write the equation for v/,

.13 Gt o= [ 6= 9)(wa(s) — vala))rals) dy  (uRa(t) + ca)el

We already know from Theorem 5.1 that the velocity variations are exponentially decaying with the
desired rate. Let us denote, as before, by Exp(t) a generic function with such exponential decay.
Then, in Lagrangian coordinates,

ea = eqlco — €q).

d C Co
qilvel” < Bxp(t)u, — Sl < Exp(t) - 7|04

This establishes the decay for v/, on the support of r,. Next,

d
Gt 2l = [ 6 = ) alo) = vala)ral)

- 2vla¢/a *To — (MRa(t) + ecx)vg'

(5.14)

So, similar to the previous

d
S0 < Exp(t) = Zlenl
Thus, |v/| ~ Exp(t). As to the density,
d
(5.15) ar'a = =201l —vir, = Exp(t)r, + E(t),

and we obtain uniform in time control over ||| cc-
To conclude strong flocking we write
d /
e = “Vala —
This shows that r,(t) is Cauchy in ¢ in the metric of L>°. Hence, there exists 7, € L such
that ||74(t) — Talleo = Exp(t). Since 7/, is uniformly bounded, this also shows that 7, is Lipschitz.
Convergence in C7, v < 1, follows by interpolation. Finally, passing to the original coordinate
frame gives the desired result.
As to the global statement, the result follows from exact same argument above by noting that
R (t) = pMy(D) = ¢y, and all the macroscopic momenta U, align by Theorem 5.1. O

(5.16) v re = Exp(t).

Remark 5.4. We note that the strong flocking result is new even in the classical mono-flock context.
The work [20] treats the more restrictive case of a kernel with positive infimum, while [23] only
claims bounded diameter.

5.4. Global existence and 1D multi-flocking: singular kernel case. In the case when 1) is
smooth and inner communication kernels are singular

1
(517) ¢a(r) = 7’1?7 0<s< 2,

the system (5.7) becomes of fractional parabolic type with bounded drift (due to the maximum
principle) and bounded dumbing term. Considered under periodic settings T with no-vaccum
initial condition p, > 0, Va = 1,..., A, we encounter no additional issues in the application of the
regularity results obtained in [19, 20, 21]. Indeed, the dumping term pR, v, has no effect on the
continuity equation written in parabolic form

/
0o + VaTy + €aTa = TaAsTay
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where A, = —(—A)*/? is the fractional s-Laplacian. As to the momentum equation it can be
viewed as a bounded force for the initial Holder regularization applied from [22, 15] in the way
identical to our previous works. Further adaptation of the non-local maximum principal estimates
of Constantin-Vicol [5] and continuation criteria for higher order Sobolev spaces is straightforward.

Theorem 5.5. Let ¢ be a smooth kernel and ¢, be the kernel of As on T . Then system (5.4)
admits a global solition for any initial data in u, € HA(TY), po € H3S(TY) with no vacuum:

min p,(z,0) > 0.

a,zeT!

The solution belongs locally to

ta € C([0,00), HY N L2([0, 00), H*F3),  po € C([0,00), H3*) 0 L2([0, 00), H3 ).

6. APPENDIX. GLOBAL EXISTENCE FOR SINGULAR KERNELS

Although collisions between the agents are possible with smooth kernels, this does not cause issues
from the point of view of proving global existence of (1.2), using Picard iteration and continuation.
If the kernels ¢, are singular, however, collisions lead to finite time blowup, so this case needs to
be addressed separately. As was shown in [4], if the kernel is sufficiently singular collisions are
prevented by strong close range alignment. We revisit this result in the context of multi-flocks.

Theorem 6.1 (Singular communication kernels). Suppose the a-flock is governed by a singular
communication so that

1
(6.1) /0 ¢a(r) dr = 0.

Then the flock experiences no internal collisions between agents.

Proof. The proof given below is a simplified version of the argument given in [4]. First, we assume
for notational simplicity that all the masses are unity. Let us assume that for a given non-collisional
initial condition (Xai,Vai)ia @ collision occurs at time 7™ for the first time. Let QF, C Q, =
{1,...,N,} are the indexes of the agents that collided at one point. Hence, there exists a § > 0
such that |x4i(t) — xqr(t)| = 6 for all i € QF, and k € Q,\Q},. Denote

D3(t) = mas Peai(t) — Xy ()], AL() = xmax [Vas(t) ~ Vag(t)] = _mas {€,vai — Ve

LER™:|0)=1
1,5 €Q5

) e )

Directly from the characteristic equation we obtain |D¥| < A%, and hence
(6.2) — D5 < AL
Let us fix a maximizing triple (4,1, j) for A% (t) and compute using the momentum equation

d
gt e

N
> makldal|xin))E(Vari) = Gal[Xjk) E(Vars)] — A% Ralt)
p

= Z Mak|[ba(|Xik Jl(Vakj — Vaij) + Oa(|Xjk|)(—=Vaki — Vaij)]
ke

+ > mak@alxik)(Vari) = Gal k) e(Vary)] = AsRal(t).
kg

The term —A% R, (t) is negative and will be dropped. In the first sum all terms are negative, so we
can pull out the minimal value of the kernel which is ¢,(D}). In the second sum, all the distances
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|Xik|, |xji| are separated by ¢ up to the critical time 7. So, the kernel will remain bounded.
Putting together these remarks we obtain

d
aAZ <0 — CQQZ)Q(DZ)AZ‘

Let us consider the energy functional

1

E,(t) =A% (t) + Co /D* o b (r)dr.

d
From the above we obtain &Ea (t) < C1. So, E, remains bounded up to the critical time, which

implies that D} (t) stays away from zero. O

Corollary 6.2. Suppose v is a smooth kernel, and each kernel ¢, is either smooth or condition

(6.1

) holds. Then the system (1.2) admits a unique global solution from any initial datum.

We conclude by noting that this does not preclude collisions between agents from different flocks.
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