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The biochemical reaction networks that regulate living systems are all stochastic to varying degrees. The
resulting randomness affects biological outcomes at multiple scales, from the functional states of single
proteins in a cell to the evolutionary trajectory of whole populations. Controlling how the distribution of
these outcomes changes over time—via external interventions like time-varying concentrations of chemical
species—is a complex challenge. In this work, we show how counterdiabatic (CD) driving, first developed
to control quantum systems, provides a versatile tool for steering biological processes. We develop a
practical graph-theoretic framework for CD driving in discrete-state continuous-time Markov networks.
Though CD driving is limited to target trajectories that are instantaneous stationary states, we show how to
generalize the approach to allow for nonstationary targets and local control—where only a subset of system
states is targeted. The latter is particularly useful for biological implementations where there may be only a
small number of available external control knobs, insufficient for global control. We derive simple
graphical criteria for when local versus global control is possible. Finally, we illustrate the formalism with
global control of a genetic regulatory switch and local control in chaperone-assisted protein folding. The
derived control protocols in the chaperone system closely resemble natural control strategies seen in

experimental measurements of heat shock response in yeast and E. coli.
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I. INTRODUCTION

A fundamental dichotomy for biological processes is that
they are both intrinsically stochastic and tightly controlled.
The stochasticity arises from the random nature of the
underlying biochemical reactions, and has significant con-
sequences in a variety of contexts: gene expression [1],
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motor proteins [2], protein folding [3], all the way up to the
ecological interactions and evolution of entire populations
of organisms [4,5]. Theories for such systems often employ
discrete-state Markov models (or continuum analogs like
Fokker-Planck equations) which describe how the proba-
bility distribution of system states evolves over time. On the
other hand, biology utilizes a wide array of control knobs
to regulate such distributions, most often through time-
dependent changes in the concentration of chemical species
that influence state transition rates. In many cases these
changes occur due to environmental cues—either threat-
ening or beneficial—and the system response must be
sufficiently fast to avoid danger or gain advantage.

The interplay of randomness and regulation naturally
leads us to ask about the limits of control: to what extent
can a biological system be driven through a prescribed
trajectory of probability distributions over a finite-time
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interval? Beyond curiosity over whether nature actually
tests these limits in vivo, this question also arises in other
contexts. In synthetic biology [6] one may want to precisely
specify the probabilistic behavior of genetic switches or
other regulatory circuit components in response to a
stimulus.

Control of a system is generally easiest to describe and
quantify if the perturbation is applied slowly (adiabati-
cally). The advantage of this assumption is that, at each
moment of the control protocol, the approximate form
of the state probability distribution is known from equi-
librium thermodynamics. However, in natural settings,
responses to rapid environmental changes may entail sharp
changes in the concentrations of biochemical components.
For instance, an ambient temperature increase of even a
few degrees can significantly increase the probability
that proteins misfold and aggregate. In response to such
“heat shock,” cells quickly upregulate the number of
chaperones—specialized proteins that facilitate unfolding
or disaggregating misfolded proteins [7-12].

If a system is driven over a finite-time interval, subject to
fluctuations that take it far from equilibrium, can there still
be a degree of control? We can pose this question more
concretely, as illustrated in Fig. 1(a). A biological system is
typically part of a larger complex of interacting compo-
nents. If we focus on a system of interest, and describe it via
a discrete-state Markov model, the transition rates between
states may depend on factors external to the system, like
concentrations of ligands that bind to the system, or energy
molecules like adenosine triphosphate (ATP) that are
required to fuel certain reactions. In certain experimental
or synthetic biology contexts these factors may be under
direct human control, but in natural contexts they are often
the product of autonomous processes outside the system of
interest, like the temperature fluctuations that lead to heat
shock. In either case we denote these external factors for
simplicity as control parameters and investigate their
influence on the system dynamics. We consider a specific
question of controllability: can one find a control protocol
(a time-dependent function of the parameters) such that the
probability distribution of system states follows a certain
sequence of target distributions over a finite-time interval?
We can define two types of control [Fig. 1(b)]: global
control, where we demand the probability of every state in
the system follow a chosen trajectory, and local control,
where we only care about a subset of states following the
target, and allow the remainder to have arbitrary dynamics.
Ideally, we would like criteria for what kinds of target
trajectories are achievable in a given system and a pro-
cedure to calculate the protocol if the target is possible
[Fig. 1(c)]. Answering these questions would not only give
us new tools to precisely manipulate biological systems in
experiments, but shed light on dynamical constraints
in vivo. For example, by exploring how controllability
depends on the duration of the target trajectory, one can
investigate limits on how quickly a system can alter its
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FIG. 1. Schematic of the biological control problem. (a) A system

of interest (here a membrane receptor protein) is described via a
network of transition rates between discrete states. Certain rates may
be influenced by factors external to the system, which we denote as
control parameters. For biochemical systems these are often
concentrations of chemical species (ligands, ATP, etc.) or environ-
mental factors like temperature. (b) We consider two types of
control: global control, where we require the probability of every
state to follow a target trajectory over a finite time interval, and local
control, where we impose this requirement on only a subset of
states. (c) In either case, the goal is to find whether control is possible
for a given target, and if so calculate the control parameter protocol
that forces the system to follow the target trajectory.

state distribution in response to an external environmental
change.

Interestingly, for one particular class of target
trajectories—forcing the system to mimic quasiequilibrium
behavior—the situation strongly resembles questions from
quantum control and quantum thermodynamics [13], where
a new line of research has been dubbed “shortcuts to
adiabaticity.” In recent years a great deal of theoretical
and experimental work has been dedicated to mathematical
tools and practical schemes to suppress nonequilibrium
excitations in finite-time, nonequilibrium processes. To this
end, a variety of techniques have been developed: the use
of dynamical invariants [14], the inversion of scaling
laws [15], the fast-forward technique [16-23], optimal
protocols from optimal control theory [24-27], optimal
driving from properties of quantum work statistics [28],
“environment” assisted methods [29,30], using the properties
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of Lie algebras [31], and approximate methods such as linear
response theory [32-35], fast quasistatic dynamics [36], or
time rescaling [37,38], to name just a few. See Refs. [39,40]
and references therein for comprehensive reviews of
these techniques.

Among this plethora of different approaches, counter-
diabatic (CD) or transitionless quantum driving stands out,
since it is the only method that suppresses excitations away
from the adiabatic manifold at all instants. In this paradigm
[41-44] one considers a time-dependent Hamiltonian
Hy(t) with instantaneous eigenvalues {e,(7)} and eigen-
states {|n(¢)) }. In the adiabatic limit no transitions between
eigenstates occur [45], and each eigenstate acquires only a
time-dependent phase that can be separated into a dynami-
cal and a geometric contribution [46]. In other words, if we
start in a particular eigenstate |7(0)) at r = 0, we remain in
the corresponding instantaneous eigenstate |n (7)) at all later
times, up to a phase. The goal of CD driving is to make the
system follow the same target trajectory of eigenstates as in
the adiabatic case, but over a finite time.

To accomplish this, a CD Hamiltonian H(¢) can be
constructed, such that the adiabatic approximation asso-
ciated with Hy(#) is an exact solution of the dynamics
generated by H(t) under the time-dependent Schrédinger
equation. It is reasonably easy to derive that time evolution
under [41-43]

H(t) = Hy(t) + H, (1)
= Hy(1) + ihZ(|8t”><"| — (n[0in)[n)(n]) (1)

maintains the system on the adiabatic manifold. Note that it
is the auxiliary Hamiltonian H(t) that enforces evolution
along the adiabatic manifold of H(¢): if a system is
prepared in an eigenstate |1n(0)) of H((0) and subsequently
evolves under H(r), then the term H,(r) effectively
suppresses the nonadiabatic transitions out of |n(z)) that
would arise in the absence of this term.

To date, a few dozen experiments have implemented and
utilized such shortcuts to adiabaticity to, for instance,
transport ions or load BECs into an optical trap without
creating parasitic excitations [40]. However, due to the
mathematical complexity of the auxiliary Hamiltonian (1),
counterdiabatic driving has been restricted to “simple”
quantum systems. Note that in order to compute H(r)
one requires the instantaneous eigenstates of the unper-
turbed Hamiltonian, which is practically, conceptually, and
numerically a rather involved task.

On the other hand, the scope of CD driving is not limited
to the quantum realm. Because of the close mathematical
analogies between classical stochastic systems and quan-
tum mechanics, it was recently recognized that the CD
paradigm can also be formalized for classical scenarios
[23,44,47-53]. The classical analog of driving a system
along a target trajectory of eigenstates is a trajectory of
instantaneous stationary distributions. Last year, our group

and collaborators developed the theory for the first bio-
logical application of CD driving: controlling the distribu-
tion of genotypes in an evolving cellular population via
external drug protocols [54]. This type of “evolutionary
steering” has various potential applications, most notably in
designing strategies to combat drug resistance in bacterial
diseases and tumors. The CD formalism in this case was
built around a multidimensional Fokker-Planck model,
generalizing the one-dimensional Fokker-Planck approach
of Ref. [50].

Our current work generalizes these initial results in two
significant ways. (i) We provide a universal framework
capable of handling the wide diversity of stochastic models
used in biology, taking advantage of graph theory to
construct general algorithms that can be applied to dis-
crete-state systems of arbitrary complexity. The discrete-
state formalism presented here includes the continuum
Fokker-Planck theory as a special case. (ii) Our earlier
results were limited to target trajectories that were instanta-
neous equilibrium distributions (CD driving) defined for all
states (global control). Here we relax both those assump-
tions: we allow arbitrary target distributions, and the
possibility for defining targets on only a subset of states
(local control). Thus our new formalism includes, for
example, the case of fast-forward driving [53,55,56], where
the target trajectory begins and ends in equilibrium, but can
be arbitrary in between. The usefulness of our method is of
course not confined to biology, but is relevant to other
classical systems described by Markovian transitions
between states. However, biology provides a singularly
fascinating context in which to explore driving, both
because it sheds light on the possibility of control in
complex stochastic systems with many interacting compo-
nents and it provides an accessible platform for future
experimental tests of these ideas.

Outline.—In Sec. II we start with the most basic version
of the theory, formulating CD driving for any discrete-state
Markov model. By looking at the properties of the
probability current graph associated with the master equa-
tion of the model, we can express CD solutions in terms of
spanning trees and fundamental cycles of the graph.
Beyond its practical utility, the graphical approach high-
lights the degeneracy of CD driving: the potential existence
of many distinct, physically realizable CD protocols that
drive a system through the same target trajectory of
probability distributions. The graphical approach is sche-
matically summarized in Fig. 2, highlighting the compo-
nents in the most general form for CD solutions, Eq. (31).

In Sec. III we show how the formalism can be gen-
eralized to arbitrary (non-CD) target trajectories and
local control. This discussion allows us to derive simple
graphical criteria for when global versus local control is
possible. The criteria can help us determine what types of
target trajectories are achievable in individual biological
systems, based solely on the structure of the corresponding
Markovian networks.
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In Sec. IV we apply our formalism to two biological
examples, illustrating global and local control, respectively.
The first is a repressor-corepressor genetic regulatory switch,
and the second a chaperone protein that catalyzes the
unfolding of a misfolded protein in response to a heat shock.
The switch provides perhaps the simplest example where the
parameters have been experimentally characterized and
various driving solutions can be directly tested in vitro.
For the chaperone system, we highlight the qualitative
similarities between local control protocols for rapidly
suppressing misfolded proteins and experimental measure-
ments of heat shock response in yeast and E. coli.

Section V concludes with connections to other areas
of nonequilibrium thermodynamics and questions for
future work.

II. GENERAL THEORY OF COUNTERDIABATIC
DRIVING IN DISCRETE-STATE
MARKOV MODELS

A. Setting up the counterdiabatic driving problem
1. Master equation and the CD transition matrix

Consider an N-state Markov system described by a
vector p(f) whose component p;(7), i =1,...,N, is the
probability of being in state i at time ¢. The distribution p ()
evolves under the master equation [57,58]:

Op(1) = Q(4)p(1). (2)

The off-diagonal element Q;;(4,), i # j, of the NxN
matrix Q(4,) represents the conditional probability per
unit time to transition to state i, given that the system is
currently in state j. The diagonal elements Q;(4,) =
— > ;2 ji(4,;) ensure each column of the matrix sums
to zero [57]. The transition rates €,;(4,) depend on a
control protocol: a set of time-varying external parameters,
denoted collectively by A(¢) = 4,. Q(¢) plays the role of the
Hamiltonian H(7) in the classical analogy.

The instantaneous stationary probability p(4,) associated
with Q(2,) is the right eigenvector with eigenvalue zero:

Q(4)p(4;) = 0. (3)

When 4, has a nonconstant time dependence, p(4,) in
general is not a solution to Eq. (2), except in the adiabatic
limit when the control parameters are varied infinitesimally
slowly, 0,4, = 0. The sequence of distributions p(4,) as a
function of 4, defines a target trajectory for the system,
analogous to the eigenstate trajectory |n(7)) in the quantum
version of CD.

Given an instantaneous probability trajectory p(4,)
defined by Eq. (3), we would like to find a counterdiabatic

transition matrix Q(4,,4,) such that the new master
equation,

ow(A,) = Q(im j‘t)ﬂ”’l)’ (4)

evolves in time with state probabilities described by p(4,).
Here, 1, = 0,4,. We are thus forcing the system to mimic
adiabatic time evolution, even when 4, is nonzero. As we see

below, Q(4,, 4,) will in general depend on both the instanta-
neous values of the control parameters 4, and their rate of
change 2, In the limit of adiabatic driving we should recover
the original transition matrix, Q(4,,4, — 0) = Q(4,).
Solving for the CD protocol corresponds to determining
the elements of the Q(4,., 4,) matrix in Eq. (4) given a certain
p(4,). This corresponds to finding the CD Hamiltonian H ()
of Eq. (1) in the quantum case.

We can look at the counterdiabatic problem as a special
case of a more general question: given a certain time-
dependent probability distribution that is our target, what is
the transition matrix of the master equation for which this
distribution is a solution? In effect, this is the inverse of the
typical approach for the master equation, where we know
the transition matrix and solve for the distribution.

2. Representing the system via an oriented
current graph

To facilitate finding CD solutions, we start by expressing
the original master equation of Eq. (2) equivalently in terms
of probability currents between states,

A,pi(t) = ZJ,»j(t), i=1,....N, (5)

where the current from state j to i is given by

Jij(1) = Q;i(A4)p;(t) — Qji(4) pi(2). (6)

We can interpret any pair of states (i,j) where either
Q;i(4) #0 or Q;;(4,) # 0 at some point during the pro-
tocol as being connected via an edge on a graph whose
vertices are the states i = 1, ..., N. Let E be the number
of edges in the resulting graph. Define a numbering
a =1,..., E and an arbitrary orientation for the edges such
that each a corresponds to a specific edge and choice of
current direction. For example, if edge a was between
states (i, j), and the choice of direction was from j to i,
then we can define current J,(r) = J;;(¢) for that edge.
Alternatively, if the choice of direction was from i to j, then
Jo(t) = Ji(t) = =J;;(t). We denote rates Q;;(4,) oriented
parallel to the edge direction as forward rates, and those
oriented opposite as backward rates. In this way we associate
the master equation with a directed graph, a simple example
of which is illustrated in Fig. 3. Equation (5) can be rewritten
in terms of the oriented currents J,,(7) as

O (1) = VI (1), (7)
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where J () is an E-dimensional vector with components
J,(t), and V is an N x E dimensional matrix known as the
incidence matrix of the directed graph [59] (closely related to
the stoichiometric matrix of Ref. [60]). V is given by

V=V -V (8)

where the components of the two matrices V* are
defined as

3 1 if the direction of edge « is toward i
via = .
0 otherwise,

1 if the direction of edge a is away from i
Vie = : ©)
0 otherwise.
The ath column of V contains a single 1 and a single —1,
since each edge must have an origin and a destination state.
With these definitions, Eq. (6) can be recast as a relation
between the vectors J(¢) and p(¢),

J(1) = G(A)p(1). (10)
where the E x N dimensional matrix G(4,) is given by
G(2,) = diag(k* (2,))V*7 — diag(k~())V~".  (11)

Here diag(k™ (4,)) is an E x E dimensional diagonal matrix
where the diagonal is k™ (4,), the vector of forward rates
associated with each edge. For example, k;; (4,) = Q;;(4,) if
the ath edge is oriented from j to i. Similarly, k™ (¢)
is the vector of backward rates. Comparing Eq. (2) to
Eqgs. (7)—(11), we see that the matrix Q(4,) = VG(4,). In
the special case where the matrix G(4,) has a right singular
vector with singular value zero, we say that the rates in
the system satisfy instantaneous detailed balance. This
would be true if there exists an N-dimensional vector
u(2,) such that G (1,)G(4,)u(4,) = 0, or equivalently when
det(GT(4,)G(4,)) = 0. We refer to k= (4,) as the “original”
rate protocol for the system, since they determine the original
transition matrix Q(4,) and hence the target p(4,) via
Eq. (3). Throughout the text we use the term original
to consistently describe quantities associated with Q(4,).
On the other hand, quantities associated with the CD
matrix Q(2,, 4,), like the CD rates k*(4,) described below,
will always have tildes to distinguish them from the
original case.

Conservation of probability is enforced by summing
over rows in Eq. (7), since > ;V,,=0, and so
SN, 9,pi(t) = 0. Since any given row of Eq. (7) is thus
linearly dependent on the other rows, it is convenient to
work in the reduced representation of the equation where
we leave out the row corresponding to a certain reference
state (taken to be state N):

ap(t) = VI(1). (12)

Here, p(t) = (p(t),..., py-1(#)) and the (N—1)xE
dimensional reduced incidence matrix V is equal to V
with the Nth row removed. Our focus will be on systems
where there is a unique instantaneous stationary probability
vector p(4,) at every t. In this case the master equation
necessarily corresponds to a connected graph in the
oriented current picture [57]. By a well-known result in
graph theory, both the full and reduced incident matrices V
and V of a connected, directed graph with N vertices have
rank N — 1 [59]. This means that all N — 1 rows of V are
linearly independent for the systems we consider.

Having described the original master equation of Eq. (2)
in terms of oriented currents, we can do the same for
Egs. (3) and (4). Let us define the oriented stationary
current 7 ,(¢) for the distribution p(4,) as follows: if the ath
edge is oriented from j to i, then

Tao(t) = Q;i(4)p(4) — Qji(A)pi(4,). (13)

In vector form, analogous to Eq. (10), the current is
given by

J (1) = G(4)p(1). (14)

The reduced representation of Eq. (3) corresponds to
VI (1) =0. (15)

If the system rates satisfy instantaneous detailed balance,
J (1) =0, since p(t) is the right singular vector of G(4,)
with singular value zero. However, our CD approach works
for the more general case where J () can be nonzero but
Eq. (15) is satisfied. In fact, as we see in Sec. Il A, we can
also generalize our theory to completely arbitrary (non-CD)
target trajectories p(7) where Eq. (15) no longer holds.

For the CD master equation, Eq. (4), we define the
oriented current:

To(t) = Qij(’ltv/.lt)pj(/lt) - jS(/ln/it)pi(’lt)' (16)

The time dependence of 7, is explicitly through 4, and )lt,

but we write it in more compact form as 7,(f) to avoid
cumbersome notation. The analog of Eq. (10) is

T (1) = G(p(1), (17)

where G(t) has the same structure as Eq. (11) but with
forward/backward rate vectors k™ (r) corresponding to the
CD rates €;j(4;,4,). Finally, Eq. (4) can be expressed as

0p(A) =V T (1). (18)
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3. Counterdiabatic current equation
Subtracting Eq. (15) from Eq. (18) we find

A

0ip(4) = V6T (1), (19)

where 87 (1) = J (1) — J (4,) is the difference between the
CD and stationary current vectors. For the CD problem, we
are given the original matrix elements Q;;(4,) and thus also
have the corresponding stationary distribution values p;(4,)
and stationary currents 7 ,(4,). What we need to determine,
via Eq. (19), are the CD currents J (). The following
sections (Secs. [IB-IID) detail the procedure for finding
these currents. Once we know 7 (¢), Sec. Il E shows how to
use Eq. (17) to solve for k*(z), or equivalently the CD
matrix transition rates Q; j (4,.A,). By construction, these
satisfy Eq. (4), and hence define a CD protocol for the
system.

As a first step, let us consider the invertibility of Eq. (19)
to solve for 67 (t). The (N — 1) x E dimensional matrix \Y
is generally nonsquare: N(N—1)/2>E>N—1 for a
connected graph. Only in the special case of treelike
graphs (no loops) do we have E =N — 1 and a square

Markov model with
transition matrix Q(\;),
control protocol \;

o—0
Pt ~e
o—0-

:>

Graphical approach:
Solve for _
CD currents J (t)

._"\

(N —=1) x (N — 1) matrix V. Since the rank of Vis N — 1,
as mentioned above, for treelike graphs V is invertible
and Eq. (19) can be solved without any additional
complications:

sT(t)=VT9p(,). ffE=N-1.  (20)
As described in the next section, the elements of V™! fora
treelike graph can be obtained directly through a graphical
procedure, without the need to do any explicit matrix
inversion.

In the case where £ > N — 1, the solution procedure is
more involved, but the end result has a relatively straight-
forward form: the most general solution 67 (¢) can always
be expressed as a finite linear combination of a basis of CD
solutions. How to obtain this basis, and its close relation-
ship to the spanning trees and fundamental cycles of the
graph, is the topic we turn to next.

B. General graphical solution for the
counterdiabatic protocol

The graphical procedure described in this and the
following two sections, culminating in the general solution

Use currents J (t) to find
transition rates k*(t) in
CD matrix Q(/\t At) via Eq. (34)

—0
0:>4r 3/0

Graph: N states, E edges Eqg. (31): J(t) =0TW(t) + Z @, (t)c
y=1
Target probability i B
trajectory vector p(\;) A—E_N+1
Eq. (23): one of the Fundamental cycle

Probability

spanning tree CD solutions

;zi .—’.\
Time 1 ‘
Eq. 3): Q(A:)p(Ae) =0 . .

basis vectors ¢(?) [Sec. | D]

FIG. 2. Overview of the graphical approach for deriving CD solutions. We start with a Markov model defined by a transition matrix
Q(2,) dependent on the control protocol 4,. Associated with this is a graph with N states, E edges, and a target trajectory p(/,) consisting
of instantaneous stationary states of Q(J,). The eventual goal is to find the CD transition matrix €(4,, 4,), where p(4,) is the solution to
the associated master equation, Eq. (4). To facilitate this, we must first find the CD currents J (), the main goal of the graphical
approach. The most general form of the solution for JF(¢) is given by Eq. (31), and consists of two components: (i) a spanning tree CD

solution &J(!
basis cycle vectors ), y=1,...,

)(t), given by Eq. (23) and derived via the procedure outlined in Sec. II B, and (ii) a linear combination of the fundamental
A, where A = E — N + 1, as described in Sec. II D. The coefficient functions dl/(t) are arbitrary.

Once the CD currents J (1) are known, we can use Eq. (34) to solve for the CD transition rates k*(¢) that determine Q(4,,4,).
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of Eq. (31), is summarized in Fig. 2. To illustrate
the procedure concretely, we use the two-loop system
shown in Fig. 3(a) as an example, where N =4, E = 5.
The solution for this case is relevant to the biophy-
sical model for chaperone-assisted protein folding dis-
cussed in Sec. IV B. Figure 3(a) shows the rates ki (1,)
that determine the transition matrix €(4,), and
Fig. 3(b) labels the oriented stationary currents 7,(¢),
a=1,...,F.

Every connected graph has a set of spanning trees:
subgraphs formed by removing A=FE—- N + 1 edges
such that the remaining N —1 edges form a tree
linking together all the N vertices. The number 7 of
such spanning trees is related to the reduced incidence
matrix through Kirchhoff’s matrix tree theorem [59],
T = det(VV"). For the current graph of Fig. 3(b), this
matrix is

and the number of trees is thus 7 = 8.

(a) + + (b)
750 07 0%

(C) Add edge 3
subtract edge 1 o e
Tree 1

Pyl XY
0. "o
i )

Reference spanning tree

Add edge 5
subtract edge 4

Derived trees and
fundamental cycles

FIG. 3. A two-loop discrete state Markov model, with N =4
states and E =5 edges. (a) The black arrows correspond to
entries in the transition matrix Q(4,): transition rates ki (4,) that
depend on an external protocol 4,. (b) The red arrows labeled a
correspond to the oriented stationary currents 7,(4,), defined in
Eq. (13). (c) On the left, one of the spanning trees of the graph,
chosen to be a reference for constructing the tree basis. Edges
deleted to form the tree are shown in faint red. On the right, two
trees in this set derived from the reference tree. Each such derived
tree has a one-to-one correspondence with a fundamental cycle of
the graph (highlighted in green).

Let us select one spanning tree to label as the reference
tree. The choice is arbitrary, since any spanning tree can
be a valid starting point for constructing the basis. The
left-hand side of Fig. 3(c) shows one such tree chosen for
the two-loop example. Here A = 2, so we have removed
two edges: J3 and Js. From this reference tree we can
derive A other distinct spanning trees using the following
method. (1) Take one of the A edges that were removed
to get the reference tree, and add it back to the graph.
(2) This creates a loop in the graph, known as a
fundamental cycle [highlighted in green in Fig. 3(c)]
[59]. (3) Remove one of the other edges in that loop (not
the one just added), such that the graph returns to being a
spanning tree. This new tree is distinct from the reference
because it contains one of the A edges not present in the
reference tree. For example, in the top right of Fig. 3(c),
we added back edge 3, forming the fundamental cycle on
the left loop. We then delete edge 1 from this loop,
creating spanning tree 2. A similar procedure is used to
construct tree 3.

We denote the A + 1 trees (one reference +A derived
trees) constructed in this manner as the tree basis. We
label the trees in the basis set with y=1,...,A+1,
where y = 1 corresponds to the reference. In general, this
basis is a subset of all possible trees, since 7 > A + 1.
To every tree in the basis, we associate a CD solution as
follows. Let 67 )(¢) be a current difference vector that
satisfies Eq. (19), but with the constraint that at every
edge o that is not present in the yth tree, we have

87 ,@(t) = 0. We call this a fixed current constraint, since
it corresponds to not being able to perturb the current
associated with that edge via external control parameters.
For example, imposing the restriction Q;; = Q. ; and
Q= Qﬁ for the pair (i,j) associated with edge «
would make 57 (1) = 0.

To find §J)(¢), consider the (N —1)x E dimen-
sional reduced incidence matrix V of the original graph;

for example, Eq. (21) in the case of the two-loop graph
of Fig. 3(b). For a given spanning tree y, we can

construct an (N —1) x (N — 1) submatrix VY from V
by choosing the N — 1 columns in V that correspond to

edges present in y. This submatrix \AZIET equal to the
reduced incidence matrix of the spanning tree y. Hence
we know that it has rank N —1 and there exists an

inverse [V")]-!. Let us now construct a “stretched

inverse”: an E x (N —1) dimensional matrix [V7)]5!

where the rows are populated by the following rule. If
the row corresponds to one of the A edges that was
removed from the original graph to get the tree y, it is
filled with zeros; otherwise, it is filled with the corre-

sponding row of W(y)]“. For the three trees in Fig. 3(c),
labeled y =1, 2, 3 clockwise from left, the matrices

[V"]5! have the following form:
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-1 0 O
-1 -1 0
vUisi=[ o o o [,
-1 -1 -1
0O 0 O
0 0 O 011
0 -1 0 001
[@(2)}51: 1 0o o |. [@(3)]51: 000
-1 -1 -1 000
0O 0 O 111

(22)

Moreover, it turns out one does not have to explicitly
write down or invert V) in order to find the elements of

W(”]gl. We can take advantage of a known graphical
procedure for constructing inverse reduced incidence
matrices of connected treelike graphs [61,62]. To deter-

mine the ith column of the matrix W(”)]El, start at the
reference state (the state removed when constructing the

reduced incidence matrix V, which in our case is always
state N). Among the edges of the spanning tree y, there is
a unique path that connects state N to state i. Following
that path, if you encounter the current arrow 7, oriented
in the direction of the path, put a +1 in the row of

W(”]gl corresponding to 7,. Similarly, if the current
arrow is oriented opposite to the path, put a —1. All other
entries in the ith column (current arrows not on the path,
or not in the spanning tree) are set to zero. For example,
consider the second column of W(l)]gl in Eq. (22). This
corresponds to the path from state N = 4 to state 2 in the
tree on the left of Fig. 3(c). This includes edges 4 and 2,
with the arrows along those edges all oriented opposite to
the path. Hence, the column has a —1 at the fourth and
second rows, and all other entries are set to zero.

(7)]51

By construction, each matrix [@ acts as a right

pseudoinverse of V, satisfying @[@(”]gl = Iy_;, Where
Iy_;isthe (N — 1) x (N — 1) dimensional identity matrix.
We can now write down a solution for §7)(1):

sTN(1) = [VV)5'9,p(A,). (23)

If we act from the left on both sides by @, we see that this

form satisfies Eq. (19). The ath row of [W”]g' is zero if
edge a corresponds to a fixed current constraint (edge not

present in the tree y). Thus, 5.7, ,(IY) (t) = 0 for these a. Not
only do the vectors 6J (¢) associated with the tree basis
constitute A + 1 solutions to Eq. (19), they are also linearly
independent from one another. To see this, note that
because of the procedure to construct derived trees (adding

back a distinct edge that was removed in the reference tree),
a tree with y > 2 will have a nonzero entry in 57 %) () in a
position where every other tree (reference or derived) has a
zero because of constraints. Hence, the 57 ") () vector for
each derived tree is linearly independent from all the other
vectors in the basis.

We also know that any linear combination of solutions to
Eq. (19) can be scaled by an overall normalization factor (to
make the coefficients sum to one) so that it is also a solution
to Eq. (19). Hence the following linear combination of
basis vectors is a valid solution:

A+1

8T (1) =Y w, (6T V(1) (24)
y=1
Here w,(f) are any real-valued functions where
A+l

1 wy (1) =1 at each 2, and .. As we argue in the
next section, the tree basis is complete: any CD solution
6T (1) can be expressed in the form of Eq. (24). Note that
Eq. (20) is a special case of Eq. (24). When the original
graph is treelike, A = 0 and there is only one spanning tree

(y = 1), equivalent to the original graph. In this case,

W(l)]gl — V7! and the sole coefficient function w;(7) = 1
by normalization.

C. Completeness of the tree basis

To prove that any CD solution can be expressed as a

linear combination of tree basis solutions 7 )(¢), let us
first introduce A vectors of the following form:

V(1) = 6T (t) =T D(1), (25)

fory = 2,..., A + 1. Since both basis vectors on the right-
hand side of Eq. (25) satisfy Eq. (19), we know that

ﬁv(}l)(t) = (9,ﬁ(/1,) - 9ip(4) = 0. (26)

Hence V) (¢) is a vector in the null space of V. Moreover,
since the basis vectors 6.7 (”(t) are linearly independent,
the set V(1) constitutes A linearly independent null
vectors of V. We can find the dimension of the null space,

A A

nullity(V), using the rank-nullity theorem: rank(V)+

A

nullity(V) = E, where E is the number of columns in
V. Since rank(V) = N — 1 for a connected graph, as des-

A

cribed earlier, we see that nullity(V) = E— (N — 1) = A.
Thus the A linearly independent vectors V)(¢) span the
whole null space. If there existed a vector 67 (¢) that
satisfied Eq. (19) but could not be expressed as a linear
combination of basis vectors, then the corresponding vector
V(1) = 6F(t) — 8T (t) would be a null vector that is
linearly independent of all the V) (¢). But since the latter
span the whole null space, this is impossible. Hence every
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CD solution §7)(¢) satisfying Eq. (19) must be expand-
able in the form of Eq. (24).

D. General solution in the cycle basis

The discussion in the previous section also allows us to
rewrite the expansion in Eq. (24) in an alternative form that
is convenient in practical applications. Using the fact that

Aﬁl w,(t) = 1, Eq. (24) can be equivalently expressed as

A+1

JI(1) =6T0(1) +Zw V(6T N (1) = 5T (1))
A+1
D)+ w, (VD (). (27)
y=2

Since the vectors V)(¢) form a basis for the null space of
@, the second term in the last line of Eq. (27), with its
arbitrary coefficient functions w,(¢), is general enough to
describe any vector function in the null space. With no loss
of generality, we can rewrite this second term in another
basis for the null space instead. A convenient choice is the
fundamental cycle basis corresponding to some reference
spanning tree [we need not choose the same reference as
used to find 57" (¢)]. The A fundamental cycles were
identified in the procedure to construct derived trees. If we
assign an arbitrary orientation to the cycles (clockwise or
counterclockwise), then the E-dimensional cycle vector
¢), associated with the derived tree y + 1, is defined as
follows: a £1 at every row whose corresponding edge in
the original graph belongs to the fundamental cycle, with a
+1 if the edge direction is parallel to the cycle orientation,
—1 if antiparallel. All edges not belonging to the funda-
mental cycle are zero. For the reference tree in Fig. 3(c) the
fundamental cycles are highlighted in green on the right-
hand side of the panel. Here the two cycle vectors are

(28)

(3
—~
=
I
—t e O =

1
1
1
0
0

In general, the A fundamental cycle vectors form a basis for

the null space of \Y [59].
In terms of the cycle vectors, Eq. (27) can be written as

5T(0) =500+ Y e, (29)

where vy(t) for y =1,...,A are another set of arbitrary
coefficient functions. The convenience of Eq. (29) over

Eq. (24) is that we only need to find one spanning tree
solution 67 (¢). Both have the same number of degrees
of freedom: in the first case A coefficient functions w,(t)
for y=2,...,A+1 [since w(f) depends on the rest
through the normalization constraint], in the second case
A coefficient functions v, ().

Finally, we note that because of Eq. (15), the oriented
stationary current vector J () corresponding to the original
protocol is in the null space of V. Hence it can also be
expanded in terms of the cycle vectors as

A
T() = u,(t)e, (30)

y=

—

with some coefficient functions u,(z). Since the CD cur-
rents J () = J(t) + 8F (t), we can combine Egs. (29)
and (30) to get the most general expression for any set of
currents that satisfies Eq. (18):

T(t) =TV (1) + > ®,(1)c. (31)

Here, ®,(t) = u,(4,) + v,(t). Because the v,(f) are arbi-
trary, the functions @, () are also arbitrary, and we still
have the same A degrees of freedom to span the solution
space. Combining Eq. (31) with Eq. (23), we can write the
general solution for the CD currents as

T (1) = [VV5'0,6(2,) + Cd(1). (32)

where C is the E x A matrix whose columns are the
fundamental cycle vectors ¢), y =1,..., A, and D(1) is
a A-dimensional vector whose components are the arbitrary
functions @, (z).

E. Solving for the CD transition rates

Once we know J (¢) from Eq. (32), the final step to find
the CD protocol is solving for the CD transition rates via
Eq. (17). Using the fact the diag(x)y = diag(y)x for any
vectors x and y, Eq. (17) can be rewritten as

(k" (1)

where M*(t) is an E x E diagonal matrix, M*(t) =
diag(V*Tp(1,)). Since every row of V=T has exactly
one nonzero element equal to 1, and we focus on systems
where the elements of p(4,) are all positive, the matrix
M= (1) has positive elements on the diagonal and hence is
invertible. We can thus solve Eq. (33) for k™ (1),

O] T (1) + [ME ()] M- (0™ (1). (34)

TJ(t) =M+ — M~ (k™ (1), (33)

k(1) = M+
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Any vectors k™ (r) and k(¢) with positive elements that
satisfy Eq. (34) constitute valid forward/backward CD
transition rates. If one can control both k™ (¢) and k= (1),
valid solutions to Eq. (34) always exist.

A special case of Eq. (34) often arises in biological
contexts: for each edge a, we can only externally control
one rate, which we take to be the forward rate without loss
of generality. The backward rates do not vary in the CD
protocol, l}_(t) =k~. In this scenario, when we use
Eq. (34) to solve for k™ (¢), we have to choose the arbitrary
function vector ®(z) in Eq. (32) to ensure that k™ (¢) has
positive elements. If this is not possible, then CD driving
along the given target trajectory cannot be achieved by only
changing the forward rates.

F. Thermodynamic costs of CD driving

To quantify the thermodynamic costs of driving via the
CD protocol, one can calculate the total entropy production

rate $°(z) at time 7 [58],
§Ut) = kg T (1) - 2(), (35)

where the E-dimensional edge affinity vector j(r) is
given by

Z(1) = In(M* (k" (1)) = In(M~ (k™ (1)). ~ (36)

Throughout this section we use the convention that a
function like Inv or expv for a vector v is a vector with
components (Inv),=Inv, or (expv),=expwv, The
structure of Eq. (35), where every term in the inner product
is of the form (x — y)(Inx —Iny) for non-negative quan-
tities x and y, gives $(r) >0, in accordance with the
second law of thermodynamics. We note that since the
biological systems we consider later are modeled in terms
of transitions between macrostates, we are necessarily
dealing with a mesoscale entropy production (ignoring
contributions from microscopic transitions not in the
model) [63,64]. This mesoscale quantity can be seen as
a lower bound for the true entropy production [58].
Plugging Eq. (34) into Eq. (36) we can express ¥ () as

Z(1) =In(F (1) + M~ (k™ (1)) = In(M~ (k™ (1)). ~ (37)

The form of Eq. (37) has an interesting consequence.
Imagine a hypothetical scenario where one can control both
the forward k* () and backward k™ (1) rates, satisfying
Eq. (34). For a given CD current solution J (), the limit
where the backward rates become large, k; () — oo for all
a, would correspond to ¥(¢) in Eq. (37) becoming arbi-
trarily small, |7,(¢)| — 0. Note that due to Eq. (34) this
limit also means the forward rates k;} (f) — co. With fixed
J (1) and vanishing (), we see from Eq. (35) that the

instantaneous entropy production S‘“’t(t) can approach
zero if both backward and forward rates can be made
arbitrarily large.

The fact that we can drive the system over a trajectory in
finite time with negligible thermodynamic cost is only
possible because increasing the rates corresponds to mak-
ing the local “diffusivity” in the system large (if we imagine
dynamics on the network as a discrete diffusion process).
In other words, we are reducing the effective friction to zero
in order to eliminate dissipation. In practice this extreme
limit is not realistic, particularly for biological systems.
There are likely to be physical constraints that prevent
us from simultaneously tuning each pair of rates in the
network over an arbitrary range, so the CD implementation
with §'°'(r) — 0 is not realizable.

If there is some constraint on at least one of the rates in
each pair, the minimum $''(7) among all CD protocols for
a given target trajectory will have a finite value. For
example, let us take the case mentioned above where the
backward rates are fixed, k= (f) = k™. Let us also assume
that A > 0, so that if we vary the functions ®(7) in Eq. (32)
we get all possible protocols for a particular choice
of p(4,). Among these protocols, the condition for mini-
mizing $'(7) is given by a gradient with respect to ®(7) of
Eq. (35),

0 = Vo $ (1) = kgCT (1 + 7(1) = e#10), (38)

where 0 and 1 denote vectors of zeros and ones, respec-
tively (of size A and E in this context). To derive this, we
have used the fact that 9.7 ,(t)/ 0®, = C,, from Eq. (32),
and that J(¢) = !(¢)(e*") —1) from Eq. (37), where
['(t) = [diag(M~(¢)k~)]~". Note that after finding a set of
®(¢) that satisfies Eq. (38), one must also check that the

corresponding forward CD rates k" () given by Eq. (34) all
have positive elements.

There is one case where Eq. (38) can be solved
analytically. If the driving is slow enough that the magni-

tudes of the components of J () are small [and hence also
those of 7(t) via Eq. (37)], then 7(1) ~ T'(¢)F (¢). In this
limit Eq. (38) becomes

0~ CTq(t) = CTT (1) T (¢1). (39)

From Egs. (39) and (32) we can now solve for ®(7),
(1) = B(1)v(1), (40)
where (1) = W(l)]gla,ﬁ(t) and the A x E dimensional
matrix B(t) = —(C'T'(+)C)~'CTI'(¢). The corresponding

minimum instantaneous entropy production for this slow
driving regime is
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Smin(1) =¥ (LT (T(1)L(1)w (1), (41)

where L(t) = I+ CB(t), and I is the E x E identity
matrix.

The protocol that satisfies Eq. (39) has a particular
interpretation: let us define a A-dimensional cycle affinity
vector 7¢(t) = CTj(t), where each component is the sum
of the edge affinities over a fundamental cycle [65].
Equation (39) thus states that 7¥(¢) = 0. Satisfying these
A conditions is equivalent to specifying that the CD
protocol rates obey local detailed balance, in other words
that there exists a right singular vector of G(¢) with singular
value zero. Hence in the slow driving regime, out of all the
possible CD protocols for a given target, it is the one with
local detailed balance that minimizes $'(7). This is not
generally true outside of the slow driving regime, where
Eq. (38) does not coincide with g¥¢(¢) = 0. This obser-
vation is compatible with the results of Ref. [56], where
they showed among all driving protocols between fixed
initial and end distributions the one with the lowest total
entropy production violates detailed balance. Equation (38)
shows that this is also true for any specific target trajectory.
Note that when A = 0 for a system with a treelike graph,
there is no degeneracy in J(¢) and the CD protocol
automatically satisfies local detailed balance.

III. GENERALIZING COUNTERDIABATIC
DRIVING: NONSTATIONARY TARGETS
AND LOCAL CONTROL

Up to now the theory has been framed in terms of driving
all N states in the system along a target p(4,) that is an
instantaneous stationary distribution [Eq. (3)] with respect
to some original transition matrix Q(4,). However, in
biological contexts the control problem may be more
general: perhaps one is interested in having only a subset
of states follow a target trajectory, and the target trajectory
does not necessarily have to be a stationary one. In this
section we generalize our theoretical framework to accom-
modate both these aspects. Doing so allows us to define a
set of graphical rules for controllability in discrete-state
Markov models, which we apply to biological examples
in Sec. IV.

A. Driving along nonstationary target trajectories

Let us imagine an arbitrary target trajectory p(¢) where
Eq. (3) is not satisfied, and hence Q(4,)p(t) # 0 for at least
some ¢ during the driving time interval O to 7. A special case
of this is known as the fast-forward problem, where we
start and end in a stationary distribution, Q(44)p(0) =
Q(4,)p(z) =0, but allow a nonstationary trajectory for
0 < t < 7. We seek a modified transition matrix €(¢) that
satisfies the master equation O,p(f) = Q(t)p(t) during
driving.

It turns out that our framework generalizes to arbitrary
p(1) in a straightforward way: the main difference is that we
no longer enforce Eq. (15), and we seek a solution to
Eq. (18) instead of Eq. (19). The general form of 7 (¢) that

satisfies 9,p(r) = V J(¢) is given by
T (1) = VVI510p(1) + C' (1), (42)

Here W(U]gl is the stretched inverse corresponding to
one of the spanning trees of the graph, and @'(¢) is a
A-dimensional vector whose components are arbitrary
functions @, (). From the fact that @[@(1)]51 =1Iy_; and

VC =0 (since the columns of C are cycle vectors), we see
that Eq. (42) does indeed solve Eq. (18). Once J () is
known, we find associated transition rates k= () that satisfy
Eq. (34). Note that the structure of Eq. (42) is identical to
our earlier CD current expression of Eq. (32).

In order to elucidate the perturbation 67 (f) to our
original currents J () necessary achieve the driving, we
can write it in the form

T(t)-T (1)
VWI5H0p(1) = VT (1) + Cd(r),  (43)

8T (1)

where the new vector ®(¢) is defined via
Co(r) = /(1) + VVVT (1) - T (1) (44)

The right-hand side of Eq. (44) vanishes when acting on it
with V from the left, and hence it is in the null space of V.
Thus it can be expressed as a linear combination of the
fundamental cycle vectors, and hence there must exist a
®(¢) that satisfies Eq. (44). Note that W(”]glﬁ isan Ex E
matrix that does not equal the identity in general, since
W(l)]gl is a right, not left, pseudoinverse of V. The one
case where W(l)}glﬁ = I is when the original graph is a
tree and hence £ = N — 1.

For the CD driving scenario, where the target trajectory
is stationary and V.7 (1) = 0, Eq. (43) reduces to our earlier
CD solution in Eq. (29). More generally, the structure of
Eq. (43) allows us to see that only a subset of the currents in
the original system need to be modified in order to achieve
an arbitrary target. Since ®(¢) is arbitrary, we can set
®,(t) = 0 for all y, and hence from Eq. (43) we get that
8T 4(t) #0 only for those N — 1 edges a present in the

spanning tree (because the rows of [@“)]51 associated with
edges not in the tree are all zero). If k() are the original
forward/backward transition rates associated with edge «,
we have to be able to modify one or both of them to new
rates ki(f) in order to satisfy the 87,(¢) condition,
Eq. (43). We call an edge « where it is possible to modify
the transition rates via external parameters a controllable
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edge. No solution exists with less than N — 1 controllable
edges, and if we set @, (¢) # 0, we generally get solutions
that require more than N — 1 controllable edges, since the
cycle vectors involve currents on edges not in the tree.
Since we can use any spanning tree in Eq. (43), we can
formulate a general rule for global control, the ability to
drive every state in the network along an arbitrary target.

Global control condition.—In order to drive an N-state
network along an arbitrary target trajectory p(4,), the set of
controllable edges must span the entire network graph. One
consequence is that global control is impossible with less
than N — 1 controllable edges.

The minimal condition for global control (N — 1 con-
trollable edges forming a spanning tree) is the same
whether or not the trajectory is an instantaneous stationary
one. Depending on the physical details of a specific system,
there may be additional conditions necessary to achieve
global control, but the above one must always be fulfilled.
For example, if the backward rates cannot be modified, the
forward rates k' (¢) given by Eq. (34) must all be non-
negative at every time 7. A similar story applies to the case
where different controllable edges cannot be independently
varied (i.e., because they depend on a single external
parameter). In this situation it may not be possible to
simultaneously satisfy the §.7,(¢) conditions at all con-
trollable edges.

B. Local control

The local control problem means we are only interested
in having Ny < N — 1 of the states in the system follow a
target trajectory. If we label the states such that the first N
are target states, we need to find Q(r) such that the master
equation J,p(1) = Q(t)p(t) is satisfied with a solution
whose probability vector has the form

p(t) = (pi(1) oo pw, (1), 41 (2), oy (1))

= (p(1), =(1)), (45)

where we denote the Np-dimensional target trajectory
vector p(¢) and the (N — Ny)-dimensional vector of
remaining nontarget states as z(z). As discussed below,
the case where Ny = N — 1 corresponds to the global con-
trol scenario, since the probability of the Nth state is con-
strained by the normalization condition > ¥, p;(1) = 1.
The target trajectory p(t) is specified beforehand, and we
are looking for all possible solutions compatible with a
given p(1). Note that this definition of local control involves
specifying the absolute probabilities of the target states, not
just their relative probabilities.

Imagine there are E. < E edges in the system that are
controllable, and we label the edges such thata =1, ..., E,
correspond to the controllable ones. We can then partition
the current vector J(¢) into controllable (supserscript ¢) and
not controllable (superscript n) components as follows:

T(0) = (F5(0). .. Te (0. Tk 1 (1), ... Th(0))
=(T(n.J" ()) (40)

Analogously, we can partition the forward/backward rates
on the edges:

L kE(D), kf”H,...,l}fEE”)

(k= (). k™). (47)

Note that by definition the rates k=" on the noncontrollable
edges cannot be externally modified. We additionally
assume here that they are time independent, the typical
case for biological systems. This allows us to find the
analytical solution for z(¢) shown below. If k*"(¢) are
fixed, time-dependent functions, Appendix A shows how
the general solution requires numerically solving a differ-
ential equation for z(¢). Finally, we can partition the graph
matrices V and G(¢) each into four submatrices as shown in
Fig. 4(a).

(a) Ec E’Ec NT N*NT
~ N —
V"C Vpn }~|2 ch Gcw }gn
V - 6 =
< m
Vwc V7rn }\:2 an Gnﬂ' }n”"'

(b) Local control possible

Op i O
E*6 5 E.=6

Target state

O O Nontarget state

= Controllable edge
Noncontrollable edge

i Target subgraph

FIG. 4. (a) Partition of the graph matrices V and G(t) into
submatrices to facilitate solving the local control problem. (b) A
network with Ny =4 target states and E- = 6 controllable
edges, depicted as indicated by the legend. The three target
subgraphs, each containing at least one target state and all other
states connected to it via controllable edges, are outlined in
dashed curves. Because each target subgraph includes at least one
nontarget state, the local control condition is satisfied. (c) Same
network as (b), except that the set of Ny =4 target states is
different. Here neither of the two target subgraphs contain any
nontarget states, and hence local control is impossible.
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At the outset of the local control problem, the following
quantities are known: the target trajectory p(t), the noncon-
trollable edge rates k*", the four submatrices of V, and the
bottom two G(¢) submatrices G" and G"* (which depend
only on the noncontrollable rates, and hence are time
independent). The goal is to figure out controllable edge
rates k¢ (1) that force the system to follow the trajectory on
the target states. A detailed derivation of the solution is
presented in Appendix A. Here we summarize the resulting
procedure, which consists of three steps.

(i) Solve for z(1):

. ! Ay Yol
(1) :e’BGmn’(O)—f—/ dre="1BC"q(¢),  (48)
0

where

B = V™ — 7 [v,/)c]glvpn7
a(t) = V™ [Vrel519,p(1) + BG™p (1) + V™ C®* ().
(49)

Here z(0) is a set of arbitrary initial probabilities for
the nontarget states, with the constraint that the
components of 7(0) and p(0) must add up to 1. C¢ is
a matrix with dimensions E,. x A, whose columns
form a basis for the null space of V¢, As we argue
below, A. = E. — Ny when a local control solution
exists. @°(¢) is a A -dimensional vector of arbitrary
functions. The freedom to choose z(0) and ®°(r)
means that in general the solution for z(z) is
nonunique.
(i) Solve for the currents at the controllable edges:

T(t) = [VI5 (9p(1) — V" Gp 1)
— VP Ga(1)) + CCD<(1). (50)

(iii) Solve for the controllable edge rates:

ke (r) = [M(0]7 T(1)
+ MO Mk (1), (51)

where  M*(t) = diag(V**<Tp(t) + V=T x(t)).
Here, V¢ and V¢ refer to submatrices of V*
of the same form as those for V in Fig. 4(a).

As a consistency check, we note that the above approach
recovers our earlier global control results in the limit when
Nr=N-1 and E. = E. In this case V= V, V=
V=0, A,=A, C°=C, and [Vr)5' = [VIL
Because V7 here is the last row of V, and each column
of V sums to zero, V7 is just minus the sum of the rows of
V. This implies that V=[Vr¢|cl = (—1,...,—1) and
V#C® = 0. Hence Eq. (49) simplifies to B =0 and
a(t)==>N'9,p;(t), so that Eq. (48) becomes

ay(t)=1=>"Y'p:(¢). In a similar way, Eq. (50) becomes
Eq. (42) and Eq. (51) becomes Eq. (34).

A local control solution is not always possible, since
there are two criteria that need to be satisfied. The first is
that there must exist an E,. X N stretched inverse matrix
[VPe]g! such that VP¢[VPe]g! = Iy . The second is that the
components z(¢) from Eq. (48) need to be valid proba-
bilities, ;(¢) > 0 for all ¢ during the driving protocol. Note
that normalization, where the components of z(¢) and p(r)
sum to 1 at all 7, is guaranteed by the structure of the
solution, but 7;(z) > 0 is not automatically enforced. Given
the ability to choose z£(0) and ®“(1), it is often feasible to
satisfy this second criterion. For the first criterion to work,
V?¢ must have rank Ny, and there is a simple graphical
method to check for this. Let us define a target subgraph as
follows: starting from any state in the target subset, this is
the connected subgraph of all states reachable via only
controllable edges. Examples of target subgraphs are
highlighted with dashed curves in Figs. 4(b) and 4(c).
These two panels depict the same network and same set of
E, = 6 controllable edges, but with two different sets of
target states with Ny = 4. There may be multiple target
subgraphs in a network, involving disjoint subsets of the
controllable edges. As shown in the figure, a target sub-
graph must include at least one target state, but can also
include nontarget states. We can now formulate the general
rule for local control, encapsulating both criteria.

Local control condition.—In order to drive Ny < N — 1
states from a network of size N through an arbitrary
trajectory p(t), every target subgraph must include at least
one nontarget state. One consequence is that local control is
impossible with less than N; controllable edges. An
additional criterion is that there must be a solution for
7(t) with non-negative components during the time interval
of driving.

The reason that the subgraph condition is sufficient for
[VPel5! to exist is that we can choose one of the nontarget
states in each target subgraph as the analog of a reference
state for that subgraph. This makes the row of V7¢ for each
target state equal to the row of the reduced incidence matrix
for the target subgraph to which the state belongs. We know
that rows of a reduced incidence matrix are linearly
independent from one another for the same subgraph,
and for different subgraphs they are linearly independent
because they involve different subsets of edges. Thus
overall if the local control condition is satisfied, all rows
of V¢ are linearly independent. The condition also implies
a lower bound on the number of controllable edges,
E. > Ny. To see this, let us imagine there are K target
subgraphs in the network, x = 1, ..., K, each containing n,
target states and at least one nontarget state. For each
subgraph to be connected, it must involve at least n,
controllable edges. We thus get that E. > > X . n. = Ny.
The linear independence of the N rows of V*¢, plus the
fact that the number of columns E. is at least Ny,
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FIG. 5. (a) Biochemical network of a repressor-corepressor
model, showing an operator site on DNA in three different states:
(1) free, (2) bound to a bare repressor protein, (3) bound to a
represssor-corepressor complex. Transition rates between the
states are shown in green. The binding reaction rates depend
on three concentrations of molecules in solution: R(f) for bare
repressors, C(t) for corepressors, and X(r) for the complexes.
(b) One of the spanning trees for the associated network graph,
with the edge deleted to form the tree shown in faint red. We take
this to be the reference spanning tree for the tree basis. (c) The
other tree in the basis, with the corresponding fundamental cycle
in green.

guarantees that V/< has rank N. Since the rank and nullity
of V7¢ must sum to E,, this also implies that its nullity
AC - EC - N T

When the local control condition is satisfied, we can
write down the stretched inverse [V/’C]gl using a graphical
procedure analogous to the global control case. First,
choose a controllable edge spanning tree for each target
subgraph. To find the ith column of [V*¢[!, follow the tree
path from the nontarget reference state to state i in the
corresponding subgraph, and put a -1 at each row « where
the corresponding edge is parallel/antiparallel to the path.
All other entries in the column are zero.

IV. DRIVING IN BIOLOGICAL NETWORKS

To illustrate the general theory in specific biological
contexts, we consider two examples of driving in bio-
chemical networks, corresponding to global and local
control, respectively. The first example is a simple genetic
regulatory switch involving a repressor protein and cor-
epressor ligand binding to an operator site on DNA, turning
off the expression of a set of genes. Here it turns out there
are enough control knobs—concentrations of repressors,

corepressors, and repressor-corepressor complexes—to
implement a whole family of exact global control solutions.
Among this family we can then examine which ones satisfy
certain physical constraints, or minimize thermodynamic
costs. The second example involves a chaperone protein
that binds to a misfolded substrate, catalyzing the unfolding
of this misfolded protein and giving it another chance to
fold into the correct (“native”) state. The available control
knobs—chaperone and ATP concentrations—are insuffi-
cient for global control, but do allow the system to locally
control the probability of being in the misfolded state. This
local control turns out to be of crucial importance, since
rapidly decreasing the misfolded probability is a way to
ameliorate the damage due to heat shock. In fact the local
control protocols from our theory qualitatively mimic
experimental results from yeast and E. coli.

A. Repressor-corepressor model

The first system we consider is a common form of gene
regulation in bacteria, illustrated schematically in Fig. 5(a): a
repressor protein has the ability to bind to an operator site on
DNA. When bound, it interferes with the ability of RNA
polymerase to attach to the nearby promoter site, preventing
the transcription of the genes associated with the promoter.
The system acts as a genetic switch, with the empty operator
site the “on” state for gene expression, and the occupied
operator site the “off” state. In many cases, additional
regulatory molecules—inducers or corepressors—influence
the binding affinity of repressor proteins [66]. In the present
model, binding of the bare repressor to the operator site is
weak (it unbinds easily), but the binding strength is enhanced
in the presence of a particular small molecule—the cor-
epressor. Hence the corepressor concentration acts like an
input signal, with sufficiently high levels leading to the
promoter site being occupied with high probability, and the
associated genes being turned off. Such genetic switches are
basic building blocks of natural and synthetic biological
circuits. From the control standpoint, can we drive the switch
through a prescribed trajectory, turning it on or off in a finite
time, and at what cost?

There are several reasons this system provides a con-
venient testing ground for our theory. As described below,
it can be modeled with three discrete states connected
via Markovian transitions, forming a three-state loop
[Fig. 5(a)]. This is the simplest graph structure where there
exists a whole family of global control protocols for any
given target trajectory. Though each of these protocols
achieves the same target, they are chemically and thermo-
dynamically distinct, allowing us to explore interesting
facets of degeneracy in the driving theory. Since all the
forward and reverse rates of the system are known
experimentally, taken from in vitro measurements of the
purine repressor (PurR) system of E. coli [66,67], the
system also provides a simple platform to directly test
theoretically predicted control protocols in the future (for
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example, using a time-resolved version of the in vitro
fluorescence spectroscopy already successfully applied to
PurR in Ref. [67]). Finally, the general structure of the
network, with edges where either the forward or backward
transition depends on the concentration of a regulatory
molecule or enzyme, is quite representative of biochemical
systems in general. Hence it serves as a jumping-off point
for the analysis of more complex biological networks.

As is generally the case with genetic regulation in
biology, the processes underlying repressor dynamics are
stochastic [68]. The three discrete states in our Markov
model are (1) free operator, (2) bare repressor bound to the
operator, and (3) repressor-corepressor complex bound to
the operator. Transitions in both directions [clockwise
and counterclockwise in Fig. 5(a)] are possible. In each
pair of transition rates between neighboring states there is a
binding reaction proportional to the concentration of a
chemical species in solution. The relevant concentra-
tions are those of bare repressors R(f), corepressors
C(1), and repressor-corepressor complexes X (7). If we
label the binding reactions as the forward rates, then
k*(t) = (k,R(1), k.C(t), kX (1)), with associated binding
constants k, for each species u. The concentration depend-
ence of the forward rates means we have three controllable
edges, thus satisfying the global control criterion (at least
two controllable edges for a three-state network). The
reverse rates, describing the unbinding reactions, cannot
be externally tuned: k= = (k_,, k_., k_,).

To be concrete, we choose parameters based on the purine
repressor system of E. coli [66,67]. The PurR protein turns
off genes responsible for the de novo production of purines, a
class of molecules including guanine and adenine that are
essential ingredients in DNA and RNA and energy trans-
ducing molecules like ATP. If the cell has an excess of
purines (for example, from environmental sources), this is
signaled by an abundance of the corepressors guanine or
hypoxanthine (a purine derivative) that form complexes with
PurR, enabling it to bind strongly with its operator site. This
way, the cell can switch off the energetically expensive
de novo production of purines when it is not needed. The
parameter values, as well as the calculation of the control
protocols, are shown in Appendix B.

For a given target trajectory p(), the goal is to find
forward rates k*(¢) = (k,R(7), k.C(t), k,X(z)) that force
the system to be on target. These define concentration
protocols R(z), C(t), and X(¢) for the three species.
Figure 6(a) shows our chosen target p(), mimicking a
biological scenario where the genetic switch is rapidly
turned off over the course of a couple of minutes: the free
operator (state 1) probability is decreased, with a corre-
sponding increase in the repressor-bound states 2 and 3.
This particular p(¢) (details in Appendix B) consists of
instantaneous stationary distributions for the system, so the
driving is CD, but as described in Sec. IIl A any other p()
could have been chosen.
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FIG. 6. (a) Components of the target stationary distribution

trajectory p(4,) (solid curves) for the repressor-corepressor
system. (b)—(d) Characteristics of four different control protocols
that all drive the system along the target trajectory p(/,). The four
protocols are: spanning tree 1 (violet, corresponding to Fig. 5(b));
spanning tree 2 (teal, corresponding to Fig. 5(c)); the solution
satisfying local detailed balance, Au(t) = 0 at all ¢ (yellow); and
the optimal solution that minimizes $*(7) at all 7 (thick black).
For each case we depict: (b) the total entropy production rate
§'°4(r), with the inset showing the difference 55°'(r) = §'°'(7) —
S§1°LOPL(1) between non-optimal and optimal rates on a log scale
[units: kp/min]; (c) the instantaneous chemical potential Ap(?);
(d) the concentrations C(1), R(1), X(t).

Since A = 1 for the oriented current graph, there will be
many possible concentration protocols that drive the system
along exactly the same target, via different choices of @ (¢)
in Eq. (32) for the CD currents. Figure 6(d) shows four
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different examples of concentration protocols. The violet
and teal curves are for the tree 1 and 2 solutions [Figs. 5(b)
and 5(c)] where 7 () = O and 7, () = 0, respectively. The
other two protocols are described below. Despite leading to
the same system behavior, the protocols have quite distinct
physical characteristics, with concentrations varying up to an
order of magnitude among the four examples shown. They
also differ in the cycle affinity 7°V°(¢), which is a scalar since
A = 1. This affinity has a more direct physical interpretation
as the chemical potential Au(t) = kgTp®°(t) for the
repressor-corepressor binding reaction, and is plotted in
Fig. 6(c) for the four protocols. One of the protocols (yellow
curve) has rates chosen so that Ay (t) = 0, satisfying the local
detailed balance condition. As described in Sec. IIF, we
know that this protocol should be the one with the smallest
entropy production rate in the slow driving limit. Here we are
away from that limit, but the protocol still does well in
economizing thermodynamic costs, as seen in the plot of

§°Y(r) in Fig. 6. The protocol that satisfies Eq. (38), and

hence optimizes $°(r), is shown as a thick black curve for
comparison. It is close, but not exactly equal, to the detailed
balance protocol, exhibiting slightly negative Ap(r) at
intermediate times [Fig. 6(c)]. The inset of Fig. 6(b) shows

the difference 65"'(¢) = §°'(r) — $°“P(¢) between each
nonoptimal solution and the optimal one. The detailed
balance solution is significantly closer to optimal entropy
production than the two tree solutions.

The repressor-corepressor model illustrates the variety
of physically realizable control solutions that can exist in
certain cases. This gives nature (or an experimentalist engi-
neering a synthetic system) a rich array of options to achieve a
specific probabilistic target. When we observe, for example, a
genetic switch within a biological circuit being rapidly turned
off by changing concentrations of external species, there will
typically be a variety of alternatives that would have led to
same state distribution at each instant of time. An interesting
question for future studies would be to ask whether certain
options would be evolutionarily favored over others because
of selection pressures due to energetic costs [69].

B. Chaperone model

Many newly synthesized proteins, susceptible to mis-
folding, become trapped in long-lived metastable states that
are prone to aggregation. Since aggregates present a danger
to the survival of the cell, there exists an elaborate rescue
machinery of molecular chaperone proteins that facilitate
unfolding or disaggregating misfolded proteins [7-10]. In
the case of E. coli, which has the most extensively studied
chaperone network, certain components like the GroEL-
GroES system are obligatory for survival [70]. Environ-
mental stresses further exacerbate the problem, and an
increase of ambient temperature by just a few degrees can
significantly enhance protein misfolding and consequently
aggregation [11]. Responding to a heat shock requires

creating extra capacity, since even under normal conditions
the majority of chaperones are occupied by misfolded
proteins [9] (i.e., occupancy for GroEL can approach 100%
for fast-growing E. coli [10]). This is accomplished by
rapidly upregulating the number of chaperones to cope with
additional misfolded proteins [11,12].

Most chaperones require constant power input in the form
of ATP hydrolysis. As a result the stationary probability
distribution of conformational states for a protein interacting
with a chaperone will generally be out of equilibrium (non-
Boltzmannian) [71,72]. When the chaperone concentration
increases after a heat shock (for example, following a sudden
rise to a new temperature [73]), the protein is driven away
from the previous stationary distribution, and eventually
relaxes to a new stationary distribution once the chaperone
concentrations reach steady-state values at the new temper-
ature. Chaperone upregulation during heat shock therefore
serves as a natural example of nonequilibrium driving in a
biological system.

Figure 7 shows experimental results for the heat shock
response of two representative organisms. In Fig. 7(a)
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FIG. 7. Experimental results for the heat shock response of
yeast and E. coli. (a) Relative mRNA expression of six chaperone
genes in S. cerevisiae yeast versus time after the start of a
30°C — 39°C heat shock. The genes, listed on the right, all have
the Gene Ontology database annotation 0051082 [77,78], in-
dicating that their products exhibit chaperone activity (binding to
unfolded proteins). (b) The black curve shows the relative mRNA
expression of the E. coli chaperone gene dnaK versus time after
the start of a 30°C — 42 °C heat shock [73], with units shown
on the left-hand axis. The blue curve shows ATP concentration
for the same system, with units shown on the right-hand axis.
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relative mRNA levels for six different chaperone genes in
Saccharomyces cerevisiae (S. cerevisiae) yeast are plotted
as function of time [74]. Since higher mRNA expression
generally leads to higher concentrations of the proteins
coded for by the mRNA, the mRNA levels can be seen as a
proxy for chaperone concentration. At the start of the
experiment, the temperature is raised from 30 °C to 39 °C,
and then held constant. Chaperone gene expression rises
sharply in the first half-hour (in some cases by more than
an order of magnitude), then peaks and levels off at a value
roughly half that of the peak. E. coli shows similar
behavior [Fig. 7(b)] for mRNA levels of the dnaK
chaperone gene [73], in this case following a heat shock
from 30°C to 42°C. In both organisms the chaperone
levels overshoot and then remain elevated for a long
duration after the shock, a characteristic feature of the
heat shock response [11,75]. Interestingly, E. coli shows
another, less common, behavior: ATP concentration tran-
siently increases by about a factor of 2 in the first minutes
after the shock, an observation additionally supported by
metabolic evidence [76]. How do such changes in

(a) (b)

Unfolded

3: Intermediate
2: Misfolded
+

chaperones and ATP affect the state distribution of a
protein targeted by chaperones? In the analysis below, we
will see that these two control knobs enable local control
of states involving the misfolded protein.

Our starting point is a four-state Markov model for
chaperone-assisted protein unfolding, inspired by earlier
models like those of Refs. [71,72]. We focus on a network
of four states for a particular substrate (“client”) protein,
and one type of chaperone, depicted in Fig. 8(a): (1) a
misfolded protein state, prone to aggregation; (2) the
misfolded protein bound to chaperone; (3) an intermediate
conformational state of the protein, along the folding
pathway between the unfolded and native states; (4) the
correctly folded “native” state. These four states can
interconvert with transition rates denoted in the figure
(further details below). The model is a small biochemical
module within a broader set of processes, some of which
are depicted schematically with dashed arrows in the figure:
protein synthesis and the initial folding to the intermediate
state, and aggregation of the misfolded proteins. Our focus
will be on a single protein once it enters the intermediate
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(a) Conformational states of a protein interacting with a chaperone. Transition rates in our kinetic network model are indicated

by solid green arrows. Related transitions outside the scope of the model are shown as dashed arrows. (b) If &, is fixed and k_,C(z) is
negligible, there is effectively only one controllable edge in the network, the one between state 1 and state 2. We can thus choose a target
subgraph to enable one-state local control, with state 1 (misfolded) as our target. (c),(d) Example of a one-state local control solution,
with a chaperone concentration protocol C(t) in (c) forcing the state 1 probability p, () to follow a target sigmoidal decrease in the
misfolded probability p (¢) in (d). The state probabilities p;(¢), i = 1, ..., 4, are calculated by numerical solution of the master equation,
with parameters described in Appendix C. (e)—(g) Same as (b)—(d) except with an additional controllable edge due to varying ATP levels,
allowing k, (1) to be time dependent. We can now have two-state local control, targeting states 1 and 2, and find a protocol of C(¢) and

k,(t) to make the system follow a chosen set of targets p;(¢) and p,(7).
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state, and then transitions among the four states. Similarly
we ignore the aggregation process, occurring over much
larger timescales than the transitions in the network. We
model the dynamics in the aftermath of a heat shock
[11,75]: a sudden jump to some high temperature 7', which
then remains fixed as the system adapts. The conditions
favor misfolding over the native folding pathway. In the
absence of chaperones, state 2 (misfolded) would be most
likely, and over longer timescales this would eventually
result in a buildup of aggregates.

To understand how this system can be controlled, let
us summarize the various transitions in the network
[Fig. 8(a)]. The protein can interconvert between states 3
and 1 with rates k,, and k_,,. A chaperone can bind to the
misfolded protein at rate k.C(¢), where C(t) is the con-
centration of unoccupied chaperones and k.. is the binding
constant. Note that we do not explicitly model the total
chaperone population (free and bound), and how the bound
fraction is determined by the overall concentration of
misfolded proteins present in the cell. We take C(r) to
be the concentration of free chaperones at a given time f,
and assume that when chaperone expression is eventually
upregulated in the aftermath of heat shock, C(¢) increases.
Once bound, the chaperone catalyzes the partial unfolding
of the misfolded state to the intermediate state at rate k,.
This conversion may involve several substeps and hydroly-
sis of multiple ATP molecules, but we simplify the process
to a single reaction step hydrolyzing one ATP molecule,
with some rate function k,. Though typically negligible
compared to the forward rate k,, the reverse rate k_,C(¢),
proportional to chaperone concentration, must be formally
defined in order to have a thermodynamically complete
description of the system. Transitions from the intermediate
to native state occur with rate k,, and from the native to
misfolded state with rate k,. The full details of the model,
including parameter values estimated from experimental
data on the chaperone GroEL assisting the folding of the
substrate protein MDH [71], are described in Appendix C.

The model allows us to determine what kinds of external
control are possible in the system. We consider two
different scenarios. The first is the typical case with one
control knob, as seen in yeast, where chaperone concen-
tration C(#) can vary as part of the heat shock response, but
ATP levels (and thus k,) are fixed. In principle, changes in
C(¢) affect two edges in the network, via the rates k.C(¢)
and k_,C(t). However, k_, is usually so small that changes
in C(r) make no noticeable difference to the current
between states 2 and 3, which is dominated by the rate k.
For example, in our parameter set k_,/k, = 0.0952 M~!.
Since chaperone concentrations are usually on the micro-
molar scale or smaller, k_,C(t) is at least 7 orders of
magnitude smaller than k,. If k, is fixed, we can treat the
edge between states 2 and 3 as effectively noncontrollable.
Hence in this scenario we have a network with a single
controllable edge (edge 1 between states 1 and 2) and thus
can choose a target subgraph as shown in Fig. 8(b). The target

state in the subgraph is state 1, and state 2 is included as the
nontarget state to fulfill the local control condition. We will
dub this scenario one-state local control. Given the danger of
having a high probability of misfolded proteins, state 1 is a
natural target for control. One could imagine of course other
biologically plausible targets, for example, trying to increase
the probability of the protein being in its functional native
state 4. However, given the available control knob C(z), no
target subgraph including state 4 would satisfy the local
control condition, since there are no controllable edges
involving state 4. What this means practically is that while
we can solve for a concentration protocol C(¢) to make the
state 1 probability decrease arbitrarily rapidly (as we will see
below), we would not generally be able to find a C(¢) that
makes state 4 undergo an arbitrarily fast upward shift. This
highlights the usefulness of the local control condition to help
us rationalize the influence of external factors on the system.

To illustrate how one-state local control works, we
choose a target trajectory for p; () that is a rapid sigmoidal
decrease in the misfolded probability over the course of a
few minutes, shown as the dotted curve in Fig. 8(d). This
would be a desirable heat shock response for the system.
Details of the target and the local control solution are
described in Appendix C. Figure 8(c) shows the necessary
chaperone concentration protocol C() needed to drive state
1 along the target, derived from Eq. (51). Note how C(t)
closely resembles the qualitative features of actual chap-
erone expression in yeast experiments [Fig. 7(a)]: a large
initial increase, a peak, and then a more gradual leveling
off. This kind of protocol is the typical solution if your
target is a rapid suppression of the misfolded probability. If
we plug in the C(¢) result and numerically solve the master
equation for the system, we find p,(#) [solid blue curve in
Fig. 8(d)] agreeing exactly with p;(t), as expected. The
remaining nontarget state probabilities are compatible with
Eq. (48) for z(t) = (p,(2), p3(t), p4(2)). As explained in
Appendix C, the second clause in the local control con-
dition, that all components of z(7) must be non-negative
during driving, actually gives us information about the
kinds of target functions p,(¢) that we can implement.
Virtually any p;(7) that is monotonically decreasing leads
to non-negative z(1) solutions, regardless of how steep the
decrease. On the other hand, if one chose an increasing
p1(t), one could violate the non-negative z(z) criterion.
This distinction agrees with our biological intuition:
changing chaperone concentration gives us fine-grained
control in decreasing the misfolded probability, via the
outgoing transition k.C(r) from state 1. An arbitrary
increasing p; () target would be biologically detrimental,
and thus it is not surprising the system has not evolved the
proper control knobs to achieve it.

In the second scenario we have two control knobs: in
addition to C(¢), we imagine ATP levels can change, as
seen in E. coli, allowing k,(#) to be a time-varying function.
This gives two independently controllable edges (again
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ignoring the negligible role of k_,), and allows us to choose
a target subgraph as seen in Fig. 8(e). We fulfill the local
control condition for two target states (1 and 2), and thus
dub this scenario two-state local control. For both the one-
and two-state cases the target subgraphs do not have loops,
so A, = 0 and we do not have the extra degeneracy coming
from arbitrary ®_.(z) functions. Despite the additional
control knob in two-state local control, we still cannot
include state 4 as a target. Having both p,(¢) and p,(¢) as
targets allows one to control the total probability of
observing a misfolded protein, both free (state 1) and
bound to chaperone (state 2). For example, one can avoid
the peak for state 2 seen in the one-state local control results
of Fig. 8(d). Such transient accumulation of misfolded
proteins bound to chaperones might not be ideal if the
chaperones need to be turned over quickly to handle
multiple different substrate proteins. Figure 8(g) shows
the same p;(¢) target as in the one-state control case, but
with p,(¢) chosen to be a small sigmoidal step, avoiding
transient accumulation (red dotted curve). The solutions for
C(t) and k,(f) are shown in Fig. 8(f). The chaperone
concentration protocol is nearly identical, and I}a(t) exhib-
its a transient peak, necessary to suppress the buildup of
misfolded proteins on the chaperones. Comparing with the
E. coli experimental results in Fig. 7(b), we again have
qualitative similarities in both chaperone expression and
ATP concentration behavior. At least for our representative
set of model parameters, the influence of the additional
k,(t) control knob is not as large as that of C(¢). This may
in part explain why varying ATP levels is a fairly atypical
heat shock response, while chaperone upregulation is
universal. However, the two-state local control case does
clearly illustrate the increasing precision of influence
available with additional control knobs.

V. CONCLUDING REMARKS

Our theory of classical stochastic driving and its biological
applications open up a variety of questions for future work.
We have focused here on discrete-state Markov models, but
taking the continuum limit of such models allows one to
connect to diffusive dynamics described by Fokker-Planck
equations. In Appendix D we show the simplest such
connection, using the continuum limit of a 1D lattice to
recover the Fokker-Planck CD driving theory of
Refs. [50,79]. However, there are still open questions, like
what a continuum version of local control would look like.

The fact that there can exist many CD protocols for
the same target trajectory, with distinct thermodynamic
properties, means that one can search among these pro-
tocols for those that optimize certain quantities—Ilike
minimizing dissipated work under given physical con-
straints. Optimal control of nonequilibrium and finite-time
processes is an active research area [80-83], with connec-
tions to techniques like Monge-Kantorovich transport theory
[55] and trajectory-observable biasing within the framework

of large deviations [84,85]. Situating our driving theory
within the broader context of these earlier optimal control
approaches is an interesting topic for further study, both
generically and in specific biological implementations in
areas like ecology and evolution [86,87].

Driving a system between long-lived states is also
subject to universal bounds or “speed limits” [88-90] that
constrain the speed of driving in terms of dissipated work.
Does CD or non-CD global driving saturate these bounds in
certain circumstances? If so, are there biological implica-
tions, for example, cases where natural selection has
pushed a control process close to the theoretical limit?
Finally, are there analogous bounds when we only specify
local control targets?

In summary, stochastic processes and their biological
realizations are an ideal laboratory for investigating non-
equilibrium control ideas. The driving framework we have
developed is a particularly useful starting point, because the
control protocols can be expressed analytically in terms of
easy-to-calculate graph properties of the underlying Markov
model. We can thus in principle explore a wide swath of
control solutions, and identify generic features of control in
diverse biological systems sharing similar graph topologies.
The practicality of our formulation makes it well suited for
deriving driving prescriptions in specific experimental con-
texts, like evolving cell populations [54] or the example
systems in the current work. Because the protocols involve
accessible control knobs—Ilike varying drug or protein
concentrations—we believe near-term experimental valida-
tion is within reach. Thus our approach may help with
implementing control of biological systems in the lab, and
also understanding how that control operates in nature.
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APPENDIX A: DERIVATION OF THE LOCAL
CONTROL SOLUTION

Here we present a derivation of the local control solution,
Egs. (48)—(51). The partitioning of the V and G matrices
described in Sec. III B allows us to split Eq. (7) into two
coupled equations,

Qp(1) = VT e(1) + V" T (), (A1)
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On(t) = V(1) + Y TM(0). (A2)
and similarly split Eq. (17) into

T = G2 (p() + E(Dml). (A3)

T(0) =GP (p(r) + G (a(r).  (Ad)

For generality we allow G"(¢) and G"*(t) to depend on
time via some fixed (not externally modifiable) time-
dependent functions for the noncontrollable rates k=" ().
However, we will later specialize to the more typical case
where k" are time independent.

If the stretched inverse [V#¢|g! exists, which can be

determined from the graphical criterion described in
Sec. IIIB, then Eq. (Al) can be inverted to find an
expression for J¢(t):
Te(t) = [V¥I51 (0p(1) = V7" T (1)) + C@°(1).  (AS)
Here C¢ is the matrix whose A. columns are the basis
vectors for the null space of Vr¢, and ®°(r) is a
A .-dimensional vector of arbitrary functions. If we plug
Eq. (A5) into Eq. (A2), and substitute the right-hand side of
Eq. (A4) for J"(t), we can rewrite Eq. (A2) as

d.(t) = BG™ (1)a(1) +a(t). (A6)

where

B = V" — 7¢ {V/}c}glv/m’
a(t) = V=[Pl 0,p(1) + BG™ (1)p(t) + V™ Ced< (7).
(A7)

Since the quantities that determine B, G"*(t), and a(t)
are known at the outset of the problem, we can always
numerically solve the linear system of differential equa-
tions in Eq. (A6) for z(¢), given some initial condition
7(0). In the common scenario where the noncon-
trollable rates are time independent, and hence also the
matrix G"*, Eq. (A6) has an analytical solution, given by
Eq. (48):

~ t ~
7(t) = 9" 7 (0) —I—/ dre="BC"q(¢).  (A8)
0

Once z(t) is known, the next step is to solve for J¢(z).
Substituting Eq. (A4) into Eq. (AS5), we obtain the result of
Eq. (50):

Te(1) = (95 (Dupe) = VG p (1) = V7Gx (1)

+ CoDe(r). (A9)

Finally, we can relate the controllable edge currents
J (1) to the corresponding edge rates k= (¢) via the analog
of Eq. (33),

T(t) = M (k" (1) = M~ (1)k™ (1), (A10)
where M*¢(t) = diag(V*<Tp(t) + V**Tx(¢)). The sub-
matrices V¢ and V*7¢ are based on the same partition as
shown in Fig. 4(a), except substituting V* for V. Solving
Eq. (A10) for k™(¢), we find Eq. (51):

ke (r) = [MFe(0)]7 T (1) + M (1) 7 M () (1).
(Al1)

APPENDIX B: DETAILS OF THE REPRESSOR-
COPRESSOR MODEL CALCULATIONS

The entire biochemical network of Fig. 5(a), including
both clockwise and counterclockwise transitions, was
experimentally measured for PurR, and the parameters
are given by Ref. [67]: k, = 0.0191 nM~! min~!, k. =
7.83 x 107* nM~'min™!, k, =09 nM'min~!, k_, =
1.68 min~!, k_.=0.72 min~!, k_, =0.072 min~!. Note
that k_, < k_, (the repressor-corepressor complex unbinds
from the operator more slowly than bare repressor) and
k. > k, (it binds more easily), demonstrating the enhanced
affinity of the complex to the operator relative to the bare
repressor.

While our system description focuses on the state of the
operator, the repressor and corepressor can also bind or
unbind in solution away from the operator [67], and in
some systems there are other molecules (like inducers)
competing for the repressor in solution. In general then we
will take the solution concentrations (R(t), C(t),X(z)) to
be some functions determined by processes outside of the
system, and explore how these three control knobs can
influence the state of the operator.

Following the graphical solution procedure of Sec. II B,
we start with the N = 3, E = 3 oriented current graph for
the model, with currents oriented as shown in Figs. 5(b) and
5(c). The incidence matrix for the graph is

(B1)

The matrix can be decomposed as V =V~ — V' using
Egs. (8) and (9), where

00 0
vV-=|10 0|, Vi= (B2)
01 1

S O =
S = O
S O =
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The reduced incidence matrix V is given by the first two
rows of Eq. (B1). Because A = E— N + 1 =1, we have
A + 1 = 2 trees in a tree basis. Taking the tree with edge 1
missing as the reference [tree 1 in Fig. 5(b)], we choose the
other tree in the basis to be the one with edge 2 missing
[tree 2 in Fig. 5(c)]. Using the graphical algorithm, we can
easily write down stretched inverse reduced incidence
matrices for these trees:

0 0 0 1
VO =10 1|, [VP5'=[0 o
-1 0 -1 -1

(B3)

One can readily check that @W(”}g' for y =1, 2 is the
2 x 2 identity matrix. There is a single fundamental cycle
vector for the graph, shown as a dashed line in Fig. 5(c),
given by ¢V = (1,1, -1).

Using Eq. (32) we can write the currents J () to achieve
a certain target p(4,) as

T(1) = VI5'06() + @, (1), (B4)

where @ (¢) is an arbitrary function. The backward rates
k(1) =k = (k_,.k_..k_,) are fixed, and we can solve
for the forward rates k*(r) = (kR(t),k.C(t), kX (r))
using Eq. (34). The diagonal matrices M*(t) =
diag(V=Tp(4,)) in Eq. (34) are given by

p1(4) 0 0
Mi)=| 0  pd) O |,
0 0 p1(4)
p2(Ar) 0 0
M-()=1 0 ps(4) O (B5)
0 0 p3(4)

Substituting the expressions from Egs. (B3)—(B5) into
Eq. (34), we can solve for the concentration protocols

R(1), C(t), X(¢) that determine the forward rates:

o D) + ke pa(h)

="t
C(l) _ D, (t) - atij;jt()ﬂj k_cp3(/1[) ’
X(1) = P, (1) - 8};{/);(1/};)’; k_p3(4) . (86)

Different choices of ®,(#) correspond to different control
protocols that drive the system through the same trajectory
p(4,). For example, @, (1) = 0 gives the protocol associated

with tree 1 [Fig. 5(b)], and ®,(r) = 0,p,(4,) gives the
protocol associated with tree 2 [Fig. 5(c)]. The one addi-
tional constraint is that only ®,(z) functions that lead to
non-negative concentrations in Eq. (B6) at all ¢ during
driving are physically allowable.

To illustrate a family of control protocols, we need to
choose a specific target trajectory p(1,). Based on the
discussion in Sec. IIT A, Eq. (B6) describes the control
protocol regardless of whether the target trajectory is an
instantaneous stationary one or not. However, to be con-
crete, we will choose an instantaneous stationary trajectory,
making our control protocols CD. To mimic a rapid switch
in gene expression from on to off, we will select p(4,) to be
the stationary distribution associated with a set of concen-
tration functions that serve as control parameters in the
original system, 4, = (C(t), R(t), X(¢)). We choose C(t) to
sharply increase in a sigmoidal fashion, with R(¢) kept at
a constant level and X(7) in detailed balance with C(¢)
and R(1):

R(l) — R(), C([) — C() + (Cf - CO) 1 + ek(t_t()) ’
k.R(t)k.C(t)k_,
X(t) = B
( ) k_rk_ckx ’ ( 7)

where Ry =200nM, Cy=02uM, C;=20uM, k=
3min~!, #, =5 min, and the remaining parameters are
described above. Equation (B7) determines the forward
rates k™ (¢) that enter into the transition matrix ©(4,), and
hence allows us to use Eq. (3) to solve for the instantaneous
stationary state p(4,). The components of this stationary
target distribution are shown in Fig. 6(a). They represent a
transition from a system dominated by state 1 at the
beginning of the protocol to one dominated by state 3 at
the end (the gene turning mostly off).

The local detailed balance and optimal control protocols
shown in Fig. 6 can be found numerically in a straightfor-
ward way. For the detailed balance case, we need to satisfy
the condition 7¥¢(¢) = CTx(t) =0, where 7¥¢(¢) is a
scalar because A = 1. Plugging in the expressions from
Eq. (B6), the 7¥°(t) = 0 condition becomes a nonlinear
equation for @ (7). We can then use numerical root finding
to determine the @, (¢) at each r that satisfies the condition,
thus defining the local detailed balance protocol. In a
similar way, the optimal protocol (minimizing entropy
production) should satisfy Eq. (38). When we plug
Eq. (B6) into Eq. (38), we get another nonlinear equation
for @, (¢), which can be numerically solved at each 7. We
verified that the resulting @, (7) is exactly the same as what

we would get by direct numerical minimization of $*(¢) in
Eq. (35). We also checked that the solution for ®;(r)
always gives non-negative rates k" (f), or equivalently non-
negative concentrations R(z), C(¢), and X(1).
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APPENDIX C: DETAILS OF THE CHAPERONE
MODEL CALCULATIONS

1. Transition rates and model parameters

The transition rates of the chaperone model in Fig. 8(a)
satisfy certain local detailed balance relationships. The
rates k,, and k_,,, describing interconversion between states
3 and 1, obey

;m o e_ﬂem,

x| &

(C1)

m

where €, > 0 is the free-energy difference between the
intermediate and misfolded states. The rates k_, and k_,, are
related to their counterparts k, and k, through

k_n — e_ﬂen’ k_u — e_ﬁeu‘

k}’l ku

(C2)

Here ¢, and ¢, are the free-energy differences between the
intermediate and native, and between the native and
misfolded states, respectively. Since going from states
1 - 4 — 3 should yield the same cumulative free-energy
difference as going directly from 1 — 3, we know that
€, =€, T €,

Since a full traversal of the left loop clockwise (states
3 - 1 - 2 — 3) involves hydrolysis of an ATP molecule,
the product of clockwise/counterclockwise rate ratios over
the entire cycle is related to the chemical potential differ-
ence Ay of ATP hydrolysis:

Kk C(1)k Kk k
m'c a mtcta . fAu
Cokock OO Fophck, (O

We base the parameter values in our model on those
associated with the chaperone GroEL assisting the folding
of the substrate protein MDH, estimated from fitting to
experimental data[71]: k,, = 0.37 min~!, k,, = 0.366 min~!,
k, = 0.025 min~!, k_, =7.78 x 1073 min~!, k., = 1.7 x
10°M~! min~!, k, = 4 min~'. In cases where only upper
or lower bounds on the parameters could be determined, we
used the values at the bound. Using Eq. (C2) and the values of
k, and k_, yield an estimate of €, = 1.17kzT. We do not
know the precise value of ¢,, from the experimental fitting,
but we assume a typical value of ¢€,, = 3kzT, which then
gives €, =¢€,, —¢€, = 1.83kgT. Similarly, we set k_. =
0.1 min~! as the unbinding rate of the chaperone, a typical
scale assuming strong binding affinity between the chaper-
one and substrate. The remaining unknown parameters can
now be determined using Eqgs. (C1)—(C3) (setting the ATP
hydrolysis potential difference Au = 22kgT [91]): k_,, =
0.0184 min~!, k_, =0.0585 min~!, k_, =0.381 M~ min~".
As mentioned in Sec. IV B, given typical chaperone concen-
trations C(t) ~ O(1 uM) or smaller, we get k_,C(1) < k,,
and hence we can neglect the effect of the k_, transition.

2. One-state local control

Let us first consider the one-state local control solution
corresponding to the target subgraph of Fig. 8(b). Here the
number of target states N = 1, and hence we want p, (1) =
p1(t) for some chosen target trajectory p;(¢), while the
nontarget states are given by z(7) = (p,(t), p3(1), p4(1)).
The number of controllable edges is E. = 1, with only edge
1 in Fig. 8(b) amenable to external control (assuming fixed
k, and negligible k_,). The goal is to solve for the
controllable edge rate vector k™¢(r) = (k.C(r)) from
Eq. (51), using the method outlined in Sec. III B. The
various quantities needed to construct the solution are as
follows. The submatrices of V and G(t) are given by

Vre=(=1), V7=(0 1 0 1),

1 -1 0 0 0
ve=10]|, Vm=|1 -1 -1 0 |, (C4)
0 0 0 1 -1

and
G (t)= (k. C(1)), G =(=k_. 0 0),
0 k, 0 0
5 (km 5 0 k, O
G = . Gm= (o)
0 0 k, —k_,
—k_, 0 0 &k,

where we have set k_, ~0 in G"* because its effect is
negligible. Because the target subgraph associated with V*¢
is treelike, the stretched inverse [V*¢|g! is just the ordinary
inverse: [V#¢]5! = (—1). Given these submatrices, we can
calculate the matrix BG"™ and vector a(t) needed to
evaluate the expression for z(z) in Eq. (48):

—k, kp ky
BG"” = | k, —k,—k, k_, ,
0 k, —k, —k_,
=0,p1 (1) — (k_y + k_p)p: (1)
a(t) = ko (1) (C6)
k_,py (1)

Note that there is no dependence on arbitrary functions
®“(¢) in a(t), since V¢ has no null space (A, = E.—
Ny =0, and hence C¢ does not exist). The integral in
Eq. (48) can then be carried out numerically to find 7(¢).
Knowing z() allows us to evaluate the currents at the
controllable edges J°(¢) from Eq. (50). Finally, we plug
these currents into Eq. (51) to find k™ (¢) and, hence, our
control protocol C(f). The matrices that appear in this
equation are M (1) = (p, (1)), M~“(t) = (=,(¢)), and the
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reverse rate vector is k¢ = (k_,), which cannot be exter-
nally varied.

To get the control results shown in Figs. 8(c) and 8(d) we
chose a sigmoidal decreasing target function for p; () of the
form

pi(0) = aytanh(x(t = 1)) + 1. (CT)
where a; = —0.276, f; =0.368, x =1 min~!, and
to = 5 min. We numerically integrated Eq. (48) for a range
of tfrom 0 to 20 min, choosing z(0) = (0.003, 0.054,0.299)
initial conditions compatible with the value of p,(0) =
0.644. Note that in the absence of any control protocol,
our starting probability distribution at ¢ = 0 is the stationary
distribution corresponding to alow (1072 M) concentration
of chaperones. Of course, once the local control protocol
begins, the system does not follow a stationary distribution
trajectory, since this is not a global CD solution.

To understand when Eq. (48) for z(¢) yields invalid
solutions [components 7;(#) < 0 for some ¢ during driv-
ing], we can look at the structure of the system of differ-
ential equations, Eq. (A6), whose solution is Eq. (48). To
prevent 7;(¢) from becoming negative, the derivative
O,m;(t) evaluated at =;(r) =0 must be non-negative.
Using Eq. (A6), and plugging in the expressions from
Eq. (C6), we can thus write three conditions:

i1 ()|, (=0 = =01 (1) = (k_yy + k_)p1 (7)
+ ko (1) + kym3(1) 2 0,
(=0 — k—mpl(t) + kaﬂl (t) + k—n”3(t) 20,
(=0 — k—upl(t) + kn”Z(t) > 0.

3 (t

(1)

z10]
O3 (1)) (C8)
The second and third conditions are automatically fulfilled,
since all the terms on the right-hand side are non-negative
by construction. Only the first condition can sometimes be
violated. For our parameter set, k_, + k_,, = 0.026 min~!
is small relative to k,, = 0.37 min~!, so the only term likely
to cause trouble is —0,p, (t). However, if the target p, (7) is
monotonically decreasing, we get a positive contribution to
the right-hand side and can generally fulfill the condition.
Thus local control will be possible for a wide range of
biologically plausible target functions where the goal is

suppressing the misfolded probability.

3. Two-state local control

To find the two-state local control solution correspond-
ing to the target subgraph of Fig. 8(e), we proceed
analogously to the one-state solution described above.
We now have N; =2 and thus two target functions
p1(7) and p,(t) for states 1 and 2. The nontarget states
are 7(t) = (p53(1), p4(r)). The number of controllable
edges E, =2, and we seek solutions for the controllable
edge rate vector k() = (k.C(t). k,(r)) from Eq. (51).
The submatrices of V and G(¢) are

-1 0 1 01
Ve = R v/ :
(1 —1) <o 0 o)

0 1 -1 -1 0
v;zc — ( )’ VIm — < >7 (C9)
0 0 0 1 -1

o= (490 o), o (32)

—k_, O k, O
G = 0 o, G"=|k, =k, |. (C10)
—k_, 0 0 Kk,

where we have again set k_, ~ (0. As before, the target
subgraph associated with V7¢ is treelike, so the stretched
inverse [V7¢J5! is just the ordinary inverse:

v = (0 0)

We alsohave A, = E. — Ny = 0, so C° does not exist. The
resulting expressions for BG"™ and vector a(t) that enter
into Eq. (48) are

(C11)

~ (—kn k,+k_, >
BGH/T — ,
k, —k,—k_,
—0,p1(1) = Bypy — k_ypy (1
a(r) = ( »1(1) P2 pi( )) (C12)
k—upl(t)

The matrices M=¢(¢) that appear in Eq. (51) are

pi(t) 0 ) M-v(r)—<p2(§t) nl(Zt))

0=
(C13)

To plot the control protocol results of Figs. 8(f) and 8(g),
we choose the same p () target function from Eq. (C7). For
p»(t) we also choose a sigmoidal target:
p2(t) = ay tanh(k (1 — 19)) + f. (C14)
where a, = 0.008, , =0.011, x =1 min~!, and 7, =
5 min.
Just as in the one-state local control case, we can derive

conditions for having valid z(z) solutions from the structure
of Eq. (A6):

atﬂl(t)‘ﬂl(t)=0 = —3,p1(t) - a,pz(l‘) - k—upl(t)
+ (ku + k—n)”Z(t) >0,
> 0.

02 (1)|zy(1)=0 = k—up1 (2) + Ky (1) (C15)
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The second condition is always fulfilled, while the first one
depends on the target trajectory. Since k_, < k,,, the main
concern is again the time derivatives of the target functions,
0,p1(t) + 0,p,(t). However, if the total misfolded target
probability p;(t) + p,(¢) (free and bound to chaperone) is
monotonically decreasing, two-state local control solutions
generally exist.

APPENDIX D: CD DRIVING IN
CONTINUOUS SYSTEMS

Let us consider discrete-state Markov models on lattice
graphs (also known as grid graphs). In these cases the states
can be visualized as points on some d-dimensional lattice,
with transitions occurring between neighboring lattice
points. If we imagine the states as actual positions in a
d-dimensional space, and allow the lattice spacing to
become infinitesimal as the number of states N — oo, then
the behavior of such models should approach continuum
diffusive dynamics described by Fokker-Planck equations.
Thus, taking appropriate limits, we should be able to use
our formalism to derive control solutions for Fokker-Planck
systems. Here we describe how to do this for a d = 1 lattice
in the global CD control case, rederiving the Fokker-Planck
CD driving results of Refs. [50,79]. Beyond this validation,
we demonstrate how CD driving works for systems
exhibiting position-dependent diffusivity, not considered
in Refs. [50,79].

To connect our formalism to Fokker-Planck dynamics, let
us first describe a one-dimensional Fokker-Planck equation
for the time evolution of a probability density p(x, t),

82

_ _%Wx)p(x, 0]+ 55 PP (D)

d,p(x,1)
where x is our position variable, A(x, ¢) is the drift func-
tion, and D(x) is the position-dependent local diffusivity.
Though D(x) is often taken to be a constant, D(x) = D, we
allow it to be position dependent for generality. We focus on
the case where the drift A(x,7) = —D(x)0,E(x, 4,), and
hence arises from forces due to a potential energy E(x, 4,)
that may be dependent on time-varying control parameters A, .
Equation (D1) can then be rewritten as

Oupln) = = 2 [-Dloptn 1) g 281
0
= _a.](x, l), (DZ)
where
e PE(xA)
p(x.A) = W (D3)

From the structure of Eq. (D2) it is clear that p(x,4,)
is the instantaneous stationary distribution that makes the

right-hand side vanish. We assume the energy function
E(x,4,) > o as x — x; and x — xp, defining a domain
of x of width Ax = xp — x;. Thus the partition function

A) = [3x dxexp(=pE(x,4,)) is well defined. An infinite

domain would correspond to the special case where
Ax — oo. The second line of Eq. (D2) defines a probability
current density J(x, ), in terms of which the Fokker-Planck
equation takes the form of a continuity equation for
probability.

To apply our global CD control approach for discrete
Markov systems, let us construct a one-dimensional lattice
graph Markov model with N states, shown in Fig. 9(a),
that approximates the Fokker-Planck equation as N — oo.
State i corresponds to position x; = x; + ia, where a =
Ax/N is the lattice spacing, which becomes infinitesimal
for large N. In this limit the probability p;(¢) of being in
state 7 is related to the probability density p(x, ) through
a”'pi(t) = p(xi.1).

In the discrete model the nonzero transition matrix
elements correspond to the forward (right) arrows,
Qi1(4) =k (4,), and the backward (left) arrows,
Qi1(4) =k (%), for i=1,...,N—1. We choose the
following forms for the transition rates [92]:

! -E.
k(4,) = _[;2 —(1/2)B(Eir () =Ei(4)) |
14 .
ki (A,) = L_az (1/2)B(Ei1(A)=E;(41)) (D4)

Here D; = D(x;) and E;(1,) = E(x;,4,) are the discrete
versions of the local diffusivity and potential energy. The
ratio of the forward and backward transitions satisfies the
local detailed balance relationship:

(D5)

As aresult, the instantaneous stationary distribution for this
system assumes a form analogous to Eq. (D3),

G—GQQVO Q=
) @ -0-0-0

FIG. 9. (a) N-state Markov model on a one-dimensional lattice
graph, with £ =N —1 edges. Black arrows correspond to
transitions between neighboring states, k; (4,) and k;(4,),
i=1,...,N—1, which depend on the control protocol A4,.
(b) Oriented stationary currents J,(¢), a = 1,...,N — 1. These
currents form the only spanning tree for the graph.

D

In-1

021048-24



SHORTCUTS IN STOCHASTIC SYSTEMS AND CONTROL OF ...

PHYS. REV. X 12, 021048 (2022)

g_ﬂEi(/‘{I)
Z(k)

pi(d) = (D6)
where Z(4;) = >N, exp(—pE;(4,)). To check whether the
transition rates of Eq. (D4) give the correct Fokker-Planck

equation in the continuum limit, we note that the master
equation for the discrete system can be written as

Oipi(t) = ZQij(ﬁz)Pj(f) = —Jin (1) +Ji(1), (D7)

where the current from state i to i 4+ 1 is given by

Ti(t) = K (A) pi(t) = k7 (A) pisa (1). (D8)

Equation (D7) is the discrete analog of the second line in
Eq. (D2), with the conversion J;(t) — J(x;,1), a' p;(t) —
p(x;,t). Plugging Eq. (D4) into Eq. (D8), we can rewrite
the current J;(¢) as

AR f%:l(;g -/ff((l?)]. (D9)

Equation (D9) goes to the correct limit in the continuum
case, becoming the current density in the square brackets in
Eq. (D2). To see this, note that

a™! VPis1(A)pi(4) = [p(x; + a’jt)p(xi’jt)]lﬂ
~ [(p(xivﬁt) + aaxp(xi’ﬂt»p(xi’ﬂl‘)] 12
— plx,.4) + O(a), (D10)

1
Ji(1) = —=D;
(1) ==_D,

where O(a) denotes corrections of order a. Thus Eq. (D4)
is a valid discretization of the Fokker-Planck system. It is
not unique, but any valid discretization should lead to the
same CD results in the continuum limit.

With the discretization validated, we can now proceed
to applying the general solution procedure. The oriented
current graph (N states, E = N — 1 edges) is treelike, so the
graph itself is the only spanning tree. Using the graphical
algorithm we can write down the (N—1)x (N—1)
dimensional stretched inverse reduced incidence matrix
for this tree:

1 0 0 0 0
1 -1 0 o0 0

O I R 0

e I T T o |- (P
|

Because the graph is treelike, the stretched inverse is also
the ordinary inverse of the reduced incidence matrix,

W(l)]gl — V7. From Egs. (D4) and (D6) we can deduce
that the stationary currents have zero magnitude:

Ti(t) = ki (A)pi(A:) = ki (2)pis1(4) = 0. (D12)
Hence we know that J () = 87 (t). Moreover, since there
are no cycles in the graph, Eq. (23) gives us the full CD
current solution:

T (1) = [VV5'0p(4). (D13)
Let us assume CD rates k; (¢) and k;(r) of a form
analogous to Eq. (D4),

£ (1) = 2 ma2pE0-E0)
a

(1) = Di_(;) V/2BEr (0-E(0) (D14)
a

where D;(t) represents a modified, potentially time-
dependent, local diffusivity which we allow for generality,
and E;(t) is the energy associated with state i in the CD
protocol. In many cases it may not be possible to control the
local diffusivity via external parameters, and hence it
remains unchanged, D, (1) = D;. However as will be seen
from the structure of the CD solution described below, we
have in principle the freedom to choose D;(t) to be any
non-negative function. The energy perturbation at each site
due to the CD protocol is U;(t) = E;(t) — E;(,). To solve
for these CD perturbations U,(¢), the first step is to rewrite
Eq. (D13) using Eq. (D11) and the expression for J () in
terms of the CD transition rates:

& (0nih) K (D) = = Y0 0,(4). (D13)

After plugging in Eq. (D14) for the CD rates, and Eq. (D6)
for the stationary distribution, Eq. (D15) can be written as

- 207D,V Th o G sinn L = )

>0, (D16)

We can invert this to find a recursion relation for the U,(¢):

a2 Zj-:] atﬁj (’1[) :|
2D;(1)\/pi(A)pir1(A) .
(D17)

Us (1) = U0) = Zsint™ |

Given an arbitrary choice of function U, (¢) (which corre-
sponds to the freedom of redefining the zero level for
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energies), we can use consecutive applications of Eq. (D17)
to solve for U,(¢), i =2,...,N.

The final step is to transform the CD results back to the
continuum, where the CD energies can be expressed as
E(x,t) = E(x,4,) + U(x, t). The perturbations U(x, t) can
be found from the continuum analog of Eq. (D17):

oU(x.t) 1 X ,
% BB p(d) KL dx'0,p(x',4;).  (DI18)

To derive this we have expanded in small a and used
the fact that sinh~!(e) ~ € to lowest order in e. In the
continuum limit Zj.:l adpi(4,) = f;“L dx'0,p(x',4,;) and
a'\/pi(A)pii1(A) = p(x,4,), to leading order. This fol-
lows from the same argument as Eq. (D10), setting x = x;.
From Eq. (D18) we can directly solve for U(x, ),

x o 1
U(x, 1) = Upy(1) +[0 dx pD(X, 0)p(x', ;)

X /x dx"0,p(x", ), (D19)
XL

where x, is an arbitrary reference position and U (7) is an
arbitrary energy offset function (which does not affect the
driving).

In practice, a particular CD protocol means simultane-
ously implementing the diffusivity D (x, ¢) and perturbing the
energy landscape by U(x, 7). As mentioned earlier, in many
experimental scenarios control of diffusivity will not be
possible, so the only available CD protocols will involve
keeping the diffusivity equal to the value in the original
system, D(x,t) = D(x). One special case of this is a
position-independent diffusivity D(x) = D that is not varied
during the CD protocol. This was solved by Li et al. [79] and
Patra and Jarzynski [50] using alternative approaches, and
their expressions for the CD perturbation are equivalent to
our Eq. (D18) with the substitution D(x,t) = D.

From the perspective of thermodynamic costs, Eq. (35)
for our discrete-state system takes the form

qot (. SF M
SOt) = kg ; Ji(#)In ki (0)pisi ()

=72 T ) = V()
2k N 7 (sinh! a7 (1)
=203 Jiopa | )

(D20)

where we have used the CD rates from Eq. (D14) and
JTi(t) ==, 9,p;(4) from Egs. (DI1)~(D13). The

functional form for St"t(t) is always non-negative, since

ysinh~!(cy) > 0 for any y when ¢ > 0. In the limit of
adiabatically slow driving, 9,p;(4,) — 0, we see that
Ji(t) = 0 and, hence, the entropy production rate
§(f) - 0. As noted in Sec. IIF, under the (unlikely)
scenario that one can control the local diffusivity D;(¢) and

make it large during the CD protocol, then $'°'(7) can be
made small even for fast driving.
In the continuum limit, Eq. (D20) becomes

Xp 72
() = kB/ AR L

. Dl 0p(x, 1)

where 7;(f) = J(x,1) is the continuum CD current. This
expression has the same form as the standard Fokker-

Planck result for §'(¢) [93], with the CD current and CD
local diffusivity substituted for the original ones.
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