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ABSTRACT

In this work we experimentally investigate the influ-
ence of parametric amplification and parametric suppres-
sion on the frequency stability of micromechanical resonators.
We isolate the influence of phase slope tuning from changes
in the vibrational amplitude and find that parametric sup-
pression improves the frequency stability in the thermal noise
regime by over threefold, while parametric amplification
degrades the frequency stability by nearly a factor of two.
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INTRODUCTION

Frequency stability is a key figure of merit that affects
the signal-to-noise ratio (SNR) of resonant sensors and tim-
ing references. In microelectromechanical (MEM) resonators,
frequency stability is known to depend on nonlinearity [1,
2], environmental noise [3], and resonator parameters such
as the quality factor (Q) [4, 5]. A variety of techniques
such as parametric amplification and thermal-piezoresistive
pumping have been studied for tuning the effective quality
factor (Qcsy) of MEM resonators [6, 7], and are known to
affect the thermomechanical noise of a resonator [8], but
the exact role they play in improving sensor and oscillator
performance is still under investigation. These techniques
have typically been used to construct oscillators [9] or im-
prove the sensitivity of amplitude-modulated sensors by in-
creasing the vibration amplitude [10, 11], but recently there
is interest in using effective quality factor tuning mecha-
nisms to improve the performance of frequency-shift sen-
sors. When placed in a phase-locked loop, frequency-shift
sensors transduce signals that induce a shift in the resonant
frequency of the device to a change in the loop phase via
the resonator’s phase-frequency relationship. In this oper-
ational mode, a larger phase slope results in more phase
change for a given input signal. Effective quality factor tun-
ing mechanisms have been used to improve the performance
of resonant sensors using this principle [12, 13], but the ef-
fect on a resonator’s fundamental frequency stability under
the influence of Qs tuning mechanisms is under investi-
gation [14].

In this work we experimentally investigate the influ-
ence of parametric amplification and suppression on fre-
quency stability of a resonator while controlling for the in-
fluence of vibrational amplitude. Increasing a resonator’s
intrinsic quality factor reduces the linewidth of the ampli-
tude response of the device transfer function, steepens the
slope of the phase response of the device transfer function,
and results in reduced phase noise [15]. However, because
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Figure 1: The setup for measuring the open loop response
of the cantilevered beam resonator under test. The motion
of the resonant beam, held at a bias voltage, Vj, induces a
current in the sensing electrode which is transduced into a
measurable voltage by a transimpedance amplifier (TIA).
We apply a drive voltage, Vg, at a frequency near the res-
onant frequency of the cantilever, and a parametric pump
voltage, V), at twice the frequency of the drive voltage.

phase-dependant Q. s y tuning methods like parametric pump-
ing have the opposite effect on the phase slope as they do on
the linewidth of the resonator, Q. sy suppression increases
the magnitude of the phase slope at resonance. When addi-
tive white noise dominates, the frequency stability, o, of a
resonant sensor over integration time, 7, is given by [4]:
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where ‘ g—f is the phase slope at resonance, wy is the reso-
w

nant frequengy, V. is the white noise floor, and Vj is the sig-
nal amplitude. Effective quality factor tuning mechanisms
modify the transfer function of the resonator, which changes
the observed thermomechanical noise, but in most practical
cases the noise floor of the system is dominated by another
source, such as noise in the readout method or an amplifier.
In the case where the Q). s tuning method does not modify
the noise of floor of the combined system and the amplitude
of the device remains constant, Eq. (1) demonstrates that in-
creasing the phase slope at resonance improves frequency
stability. Counterintuitively, this results in a scenario where
parametric suppression improves the frequency stability of
the resonator and parametric amplification, which reduces
the resonator’s linewidth, degrades frequency stability.

MODEL AND EXPERIMENTAL SETUP

We study a single-crystal silicon cantilevered resonator
with a lumped mass of 8.53 g, fabricated within a wafer-
scale encapsulation process [16] and capacitively driven and
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Figure 2: The measured (a,c) amplitude and (b,d) phase of a driven mechanical mode subject to parametric pumping (open
circles) plotted against the model from Eq. (5) (grey lines) for the case of (a,b) parametric amplification pump amplitudes
of 0:45:180 mV (light orange to dark orange) and (c,d) parametric suppression pump amplitudes of 0:45:180 mV (light
blue to dark blue). For the amplification case as the parametric pump strength increases, the slope of the phase response
becomes shallower, while in the parametric suppression case the opposite effect occurs. A thermomechanical calibration

is used to calibrate the displacement to units of meters.

sensed across a 1.0 um gap. Using a high gain readout am-
plifier suitable for transducing small signals, we first mea-
sure the thermomechanical motion of the device. For subse-
quent measurements we use a low-gain, high dynamic range
readout which has a noise floor dominated by a constant
white noise source. We calibrate the voltage amplitude at
the output of the capacitive readout to units of displacement,
and measure the gap size between the device and capac-
itively coupled electrodes using the measured thermome-
chanical motion of the device [17, 18] and the known gain
of the two readouts. We measure the device’s amplitude-
frequency and phase-frequency response under the presence
of direct forcing and a parametric pump using the experi-
mental setup depicted in Figure 1. For each level of para-
metric pump, the level of direct drive is adjusted to achieve
a constant amplitude at the resonant frequency for fair com-
parison of frequency fluctuations. We model the system
by considering a simple harmonic oscillator with natural
frequency wp and quality factor @) under the presence of
a mass-normalized direct drive force (f) and parametric
pump with strength (A) and phase (¢) given by:

T+ %i’-ﬁ-w%m-ﬁ-/\cos@wt)x = feos(wt+v). (2)

To derive the system response, we first decompose the dis-
placement into two slowly varying quadratures, a(t) and

b(t):

x(t) = a(t) cos(wt) + b(t) sin(wt), 3)
which must satisfy the equation of constraint:
0 = a(t) cos(wt) + b(t) sin(wt). “)

Via the method of averaging [19] we obtain the slow time
equations for the two quadratures, a(t) and b(t), accurate to
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the first order:
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These equations govern the slow time dynamics, and con-
stant values of a and b correspond to a periodic response.
Setting the expressions for the derivatives of the two slowly
varying quadratures to zero and solving for a and b gives
closed form solutions for the device response which can
be expressed in terms of amplitude (R = va? + b?), and
phase (¢ = — arctan (b/a)). Maximum parametric ampli-
fication occurs when the relative phase, v, is —7/4 and
maximum parametric suppression occurs when the relative
pump phase is 7/4. Fitting to those expressions allows us
to extract the device quality factor and frequency, and inde-
pendently confirm the capacitive gap size. The phase slope
of the response at resonance can be derived from the model

as:
9¢
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(6)
wo
where £\ corresponds to the maximum amplification or
suppression cases, respectively. Finally, for each combina-
tion of drive and pump we sample the amplitude and phase
of the resonator at resonance for an extended period. Using
the measured device phase response, we calculate the im-
plied frequency fluctuations from the measured phase fluc-
tuations. We then calculate the Allan deviation of frequency
stability as a function of integration time for the resonator
during the sampling period [20].
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Figure 3: The measured phase slope of the resonator re-
sponse at resonance as a function of parametric pump volt-
age for both parametric amplification (orange filled cir-
cles) and parametric suppression (blue open circles) plotted
against the model (grey lines).

RESULTS AND DISCUSSION

Figure 2 presents open-loop sweeps of the resonator
with the pump phase chosen to achieve maximum paramet-
ric amplification (¢ = —m/4), and maximum parametric
suppression (¢ = 7/4), demonstrating the effect of para-
metric pumping on the resonator’s phase slope. Fitting to
the model given by solving Eq. (5) allows us to measure
the natural freqeuncy, wo/2m = 515kHz, and quality fac-
tor, () = 2.8k, for the device and verify that the measured
gap size and applied pump and drive voltages corresponds
to the expected value of A and f in each case. In the para-
metric amplification case as the pump strength increases,
the linewidth of the resonator decreases whereas in the para-
metric suppression case as the pump strength increases, the
linewidth of the resonator increases. In both cases, the am-
plitude of the device at resonance is kept constant constant
by tuning the magnitude of direct forcing.

The magnitude of phase slope of the device at reso-
nance for each level of parametric pumping is plotted in
Figure 3 for both the amplification and suppression cases
against the model in Eq. (6). For the parametric ampli-
fication case the magnitude of phase slope of the device
decreases, or becomes shallower, as the pump strength in-
creases and in the parametric suppression case the oppo-
site occurs. This behavior is opposite from what would be
expected if the linewidth of the resonator was being modi-
fied by changing its quality factor, as increasing the @) of a
resonator decreases its linewidth and increases the magni-
tude of the phase slope at resonance. Modifying the effec-
tive quality factor of a resonator with parametric pumping
counterintuitively has the opposite effect on the amplitude
response as it does on the phase response.

Figure 4 shows the Allan deviation frequency, mea-
sured in open loop, of the device operating at resonance for
each of the cases plotted in Figure 3. The Allan deviation
in the white noise regime, for 7 < 1025, increases when
parametric amplification is applied but decreases when para-
metric suppression is applied. The Allan deviation in the
drift regime, for 7 > 1, is unaffected by parametric pump-
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Figure 4: The Allan deviation of frequency stability of a me-
chanical mode measured in open loop subject to direct drive
and parametric pump for, direct drive only (black line), in-
creasing parametric enhancement pump strength (light or-
ange to dark orange), and increasing parametric suppres-
sion pump strength (light blue to dark blue) for the pump
amplitudes plotted in Figure 3. The direct forcing was tuned
to maintain a constant device amplitude. The Allan devia-
tion in the thermal noise regime decreases in the case of
parametric suppression and increases in the case of para-
metric amplification.
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Figure 5: The Allan deviation of fiequency at 7, = 1072,
in the thermal noise regime, for constant device amplitude
and varying levels of parametric pump for both paramet-
ric amplification (orange filled circles) and parametric sup-
pression (blue open circles).

ing. This suggests that the steeper phase slope of the res-
onator in the case of parametric suppression reduces phase
to frequency noise conversion, mediated by the phase slope
of the resonator, but does not influence mechanisms that in-
duce drift. When strong parametric suppression is applied,
unexplained frequency fluctuations limit the Allan devia-
tion and appear as a “floor” in the Allan deviation [21]. The
Allan deviation in the thermal regime, plotted in Figure 5
shows that parametric suppression reduces the Allan devi-
ation in the thermal regime by more than threefold, while
parametric amplification almost doubles Allan deviation.
We employed parametric pumping to modify the ef-
fective quality factor of the resonator under study, and ex-
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perimentally demonstrated that the phase dynamics of the
resonator, not the linewidth modification, dominate the fre-
quency stability of the system in practical cases where the
system noise floor is constant. Using parametric suppres-
sion to increase the magnitude of the resonator phase slope,
we demonstrate a threefold improvement in resonator fre-
quency stability.
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