LOCAL WELL-POSEDNESS OF THE TOPOLOGICAL EULER ALIGNMENT
MODELS OF COLLECTIVE BEHAVIOR

DAVID N. REYNOLDS AND ROMAN SHVYDKOY

ABSTRACT. In this paper we address the problem of well-posedness of multi-dimensional topological
Euler-alignment models introduced in [21]. The main result demonstrates local existence and
uniqueness of classical solutions in class (p,u) € H™T* x H™%! on the periodic domain T", where
0 < a < 2 is the order of singularity of the topological communication kernel ¢(z,y), and m =
m(n,a) is large. Our approach is based on new sharp coercivity estimates for the topological
alignment operator

Lof(@) = [ o)1)~ (@) d.

which render proper a priori estimates and help stabilize viscous approximation of the system.
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1. INTRODUCTION

Several recent field studies on animal and human behavior revealed that in some cases commu-
nication between agents is dominated by so-called topological interactions. Topological, as opposed
to the classical metric, interactions are based on the principle that a given agent (bird, fish, hu-
man, etc) is only capable to sense a limited number of other agents in its immediate proximity to
adjust its direction of motion, see [1, 2, 7, 18] and references therein. Kinetic models interpreting
such topological interactions as the K-nearest neighbor rule were studied at length by Blanchet
and Degond in [3, 4]. In the context of Cucker-Smale type alignment model introduced in [8, 9]
Haskovec [15] proposed a topological interaction ¢(d), which depends on asymmetric “distance”
d(x,y) between agents x and y defined by counting all agents crowded in the ball of radius |z — y|
centered at x. Thus, in crowded directions, propagation of information is hindred by the higher
density. Under a global in time graph connectivity assumption — one that is guaranteed to hold,
for instance, in the classical metric case such as

H
(1) ¢($7y) = (1 T ’LU _ y’2)5/2a

p<1,
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it is shown that the system flocks.

Recently, newly designed topological protocols resurfaced in the context of a different, although
not unrelated, problem of flock self-organization under purely local interactions. To recall let us
consider the hydrodynamic Euler-alignment system (macroscopic counterpart of the agent-based
Cucker-Smale system):

pe+ V- (pu) =0,
wtu-Va= [ oeg)lult.y) - ut.0)p(t.) d
D

where D is an environment, typically assumed to be R™ or T", see [13, 14, 12] for derivation. For
kernels with non-integrable at infinity tails, like those of Cucker-Smale type (1), the system is shown
to exhibit unconditional exponential alignment

lut) = allec S e,

~

(2)

and flocking diam supp p(t) < D < oo, see Tadmor and Tan [26]. While long range communication
is indeed relevant in some technological applications, such as its remarkable adaptation to the
Darwin mission, [17], in relation to biological systems where communication almost always has a
finite reach,
supp ¢ C {lz —y| <ro},

the fundamental issue of self-organization remained open. To be mathematically consistent the
problem ought to be considered in the "bulk” of the flock modeled by periodic domain T", as it
is easy to produce a counterexample on R™ by placing two distant and disconnected flocks with
opposite momenta in the same system.

To address this problem a new topological model was introduced in [21]. The communication
protocol involves a singular, local, symmetric kernel ¢(z,y) with adaptive diffusion. The adaptive
diffution is a mechanism of active recalibration of communication strength based on the density of
the crowd in an intermediate region between a given pair of agents. Specifically, it is postulated
that the strength of interactions between (z,y) is inversely proportional to the mass of a symmetric
region Q(z,y) = Q(y,x) (a key difference from Haskovec’s model) at time ¢ which is encoded into
the topological quasi-distance function

1/n
d(z,y) = ( /Q el dg) .

We define ¢(z,y) as a non-convolution type singular kernel of degree 0 < o < 2 by

h(lz —yl)
(3) ¢(w7y) - ’.’1}' _ y’""‘o‘_'rdT(i,y)’
where h = h(r) is a radial smooth bump function supported on a ball of radius r¢y — a communication
cutoff scale, and 7 > 0 is a parameter that gauges presence of topological effects in the system. The
new protocol (3) reflects the core principle of topological interaction — information spreads faster
in thinner regions and slower is dense regions.

Theoretical restrictions on what the domain Q(z, y) might be are rather loose and can be calibrate
according to a specific application. For example, [21] considers the American football body of
revolution. Specifically, we require the family {Q(z,y)}syep to be self-similar, i.e. obtained by
rescaling and rotating of a basic domain g = Q(—ej, e;) such that

(D1) 09 is smooth except at +e; where it is Lipschitz of conical opening of degree < T,

(D2) Qo = —y,

(D3) Qo C Bl(O)
Figure 1 shows a prototype family of such domains. The global self-organization of topological
systems was established in the following theorem.
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FIGURE 1. Communication domain satisfying assumptions (D1)—(D3)

Theorem 1.1 ([21]). Suppose T > n. Then any classical solution (u,p) to (2) on the torus T"
satisfying the hydrodynamic connectivity condition

@ p6) 2 1

aligns to its conserved momentum u at a logarithmic rate

1
—_all. < =
Ju(®) ~ e S =
Condition (4) presents a degree of hydrodynamic connectivity required for the result to hold — a
very common and often necessary assumption in the literature on collective behaviour. Remarkably,
it holds true automatically in the one dimensional case, n = 1, see the discussion in [23, 21].
Regularity theory of metric models (2), i.e. where ¢(z,y) = ¢(|x — y|) is studied in a body of
literature [5, 6, 10, 16, 11, 22, 23, 24, 20, 27, 26|, and is most completely understood only in one
dimensional settings due to an extra conserved quantity

(5) e=uy+oxp, e+ (ue),=0,

which allows to directly control u,. For the smooth kernel case this leads to Burgers’ type threshold
condition eg > 0 to guarantee global existence, see Carrillo et al [5]. For singular communication,
o(r) = ﬁ, additional parabolic structure leads to regularization and global existence for any
smooth non-vacuous data on T, [11, 22, 23, 24]. In multi-D, small initial data results were proved
in [10, 20, 16].

Topological models presented a new set of challenges from the perspective of regularity theory as
they do not fit directly under any studied class of fractional drift diffusion equations, see [19, 25].
The one dimensional case has been treated in the same article [21] where global wellposedness was
established in class u € H™! p e H™* for 7 < .

The primary goal of this paper is to lay a technical foundation for the study of topological
models by establishing local well-posedness for solutions in higher Sobolev classes in arbitrary
spacial dimension n > 1.

Theorem 1.2. Let 0 < a < 2 and 7 > 0. For any initial data ug € H™TY(T™), po € H™ *(T"),
m > m(a,n), with no vacuum po(x) > 0 there exists a unique non-vacuous solution to the system
(2)-(3)-(D2) on a time interval [0,Ty) where Ty depends on the initial conditions, in the class

u € Cy([0, Tp), H™) N L2([0, Tp), H™ %)

©) p € Cyu([0,Tp), H™ ).
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Here, C,, stands for weakly continuous functions.

The main technical challenge in proving Theorem 1.2 is the presence of derivative overload in
the continuity equation. In direct energy estimates, it simply takes more derivatives than it can
handle a priori. The natural way to handle this difficulty, as was done in previous works on 1D
case [11, 22, 23, 24, 21], is to consider a multi-dimensional version of the e-quantity given by

e=V-u+Lyp,

where L4 is the singular alignment operator associated with the topological kernel ¢:

7) Lof = [ o) (£0) = Fla) o

One proceeds to replace the continuity equation with an equation for e. However, unlike in 1D, it
no longer satisfies the pure conservation law (5) due to first, the appearence of extra stresses as in
the metric case, see for example [16], and second, residual terms coming from active dependency
of the kernel on p:

(8) et + V- (ue) = (V-u)* = Te(Vu)® + Lo, (p) + Lo (pu).

By replacing the (u, p)-system with the new (u, )-system, we essentially move the overload problem
from transport to those last two residual terms in (8). The advntage is that the latter have more
geometric structure which we handle by developing an ”easing” technique, which allows to transfer
analysis from the bulk of communication region to its boundary or other more regular terms in the
equation.

The second technical ingredient of the proof is to ensure that the membership of the new pair
(u,e) in class H™T! x H™ is in fact equivalent to the original setting of (u,p) being in class
H™+1 x H™* This is done by establishing sharp coercivity estimates

9) | Lo Sl gym ~ ||l fym+a + lower order terms,

which reflect a seemingly natural fact that L, appears to be of order a. This fact, however, is far
from obvious given that the active dependency on the density in ¢ may influence the order of the
operator due to the density being limited it its own class of regularity. In Proposition 3.1 we detail
exactly how the density regularity enters into the equivalence relation (9).

Lastly, we note that the membership of u in L2([0,Ty), H m+1+%) is orginated of course from the
dissipation. A similar dissipative structure can be seen in the continuity equation if written in the
form

(10) pt+u-Vp+ep=pLyp.

However, presence of e injects a rough forcing term ep that drives the density out of the expected
smoother class H™T*"2. We therefore cannot ensure a similar membership of p in this smoother
class.

Taking all the precausions mensioned above into consideration our general strategy in establishing
Theorem 1.2 will be to trace the grand quantity

2 2 2 -, -1

(11) Vi = lullgmer + llellgm +olm +74+27
where p = min p, p = max p, and to obtain a short term control over Y, by proving a priori Riccati
type equation

d
12 —Y,, <CYYX,
(12) g im =Y

where N € N may be large. Coercivity estimates (9) demonstrate that Y, is equivalent to control-
ling v in H™*! and p in H™T® The actual realization of such a priori estimate presents itself in a
viscousity-regularized system which produces a unique solution via valishing viscosity limit as we
detail in Section 6.
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The proof is split between several sections. In Section 2 we set the notation and make elementary
a priori estimates on lower order terms in Y,,. Section 3 is entirely devoted to coercivity bounds
on the alignment operator via commutator estimates. Sections 4 and 5 detail a priori estimates on
the v and e equations, respectively. In Section 6 we conclude by finding local solutions via viscous
regularization scheme and establish stability of our a priori estimates under such approximation.

2. PRELIMINARIES

In this section we go through a few quick computations that establish a priori estimates on the

lower order terms in the grand quantity Y, (11), namely, ||p|/%,, + 5+ p .

The bound on ||p||%, follows by a simple classical commutator estimate. Indeed, we have
pt+u-Vp+ (V-u)p=0.

So, testing with 9™ p we obtain

d m m m m m m
Tl = [0 wiomoP s = [@ (- Vo)~ u- VO pds — [0V - wp)” pd,
Recalling the classical commutator estimate

(13) 10™(fg) — fO™gll2 < IV floollgll grm—1 + £l grm 9]0

we obtain, for m > 7,

d ,
1Pl < Vool + [l gmlloll [V oloo + Tull grmsa ] g loloo < CY 2.

Next, differentiating the maximum we obtain

P < [Vl
and similarly,
%B_l < |Vu|oog_1.
Thus,
ol +74 27 SV

Having these simple bounds out of the way, the main focus now will be on obtaining similar bounds
on the first two components of Y,,, and ensuring that Y, is comparable with the spaces in which
we are proving local well-posedness.

3. COERCIVITY BOUNDS ON L

Letting y = = + 2z and defining the increment operator ¢, f(z) = f(x + z) — f(z) we can rewrite
the operator as

(14) Lof = ¢z, x + 2)0, f(x) dz.
Tn

Proposition 3.1. For any sufficiently largem € N and 0 < oo < 2, 7 > 0, there exists a polynomial
pn of degree N = N(m,n,a,7) € N such that the following inequalities hold

L6 f 1 S 272" U F e+ 1PN 3gmra) + 2N (Do 27 0 s 1l o),
L6 f B Z 272" U Va2 ca) = PN Py 27" 0l s L g2 )-
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As a consequence of this proposition we obtain control on the key norm |[|p|| fym+a, that will
appear in the main estimates on Y,,:

(16) Hp||H7n+a ~ Y’r)]fLV7
for some large N € N. Indeed, setting f = p in the above, we find (N may change from line to line)

1ol i S B Lo + DN By p ™ N0l pm—r40)
<Pl is + D5l + N B o 0 frm1ia) < Yo + P8 (B 07 ol - va)-

Now by the same estimate applied to ||p|| jm-1+o We have

o1 m-rve < Y1 285 07 12 fpm—240)-
However, trivially Y,,_1 < Y, for m > 1, and ||p|| gm-21a < ||pllgm for all 0 < a < 2 with the
latter being included into the definition of Y;,. Hence,
HpHHera ~ Ym +pN(ﬁ7B_17Ym) < Yn];[7

and (16) follows.
Conversely, it is clear that ||p|| gmra controls || Lypl|zm by first in (15). So, along with ||ul|?

H7n+1
it controls e. We obtain
Y’m ~ ||u||?-']m+1 + ”pH?-'[m-Fa +E+B71

Remark 3.2. Although, as we have just seen, estimate (15) is sufficient to establish control over
|| ol rm+a, what one can actually prove following our argument below is a somewhat sharper version
of (15) where the dependence on the density p is of order below m + a. Namely, for every € > 0
there exists a ¢ > 0 such that

N
a7 [y o S M o 2 SO [ U o 0 O S | [

L6130 2 1 s = N0l el mara = 1o 112y — Cellol Fpmmriase 15005 -
Here inequality signs <, 2 mean up to multiples of p and p.

~) ~

As a first step in proving Proposition 3.1 we show a basic coercivity estimate.

Lemma 3.3 (Basic coercivity). For any 0 < a < 2 the following bounds hold
Lot 13 S 072" 1 e + 277" >IN D2 F a2

(18) _ _
L6 15 Z 52" f I3 = 2°7" o2 V2L

Ha/2®
Proof. Let us denote

1
dé = —— d¢.
fQ(O,z) pla+6)de 192(0, 2)| /Q(O,z) pla+6)dt

Note that [©(0, z)| ~ |z|™. In order to remove the x-dependence from the kernel we “freeze” the
coefficient, meaning replace d with the average value and then replace it with p(z):

e [ B BGED 1 1 s
£og(e) = pla) 7" || Fpima s [ oy oo+ g " 77 B

The first integral represents the truncated fractional Laplacian A, and hence is bounded above
and below by B_T/ || £|l g« and =7/ | ;7a» respectively. In the residual term we estimate

1 1w ~ oo x+€)d£}

ooy pla+©ag] " 77D e x+£>d&} o7/ ()
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and by Taylor expansion,

T/n
pr/Mx) — []é(o )p(:ﬂ+§)d£] <p"p! <" p !V plool2]-

pa) = £ plate)dg
Q(0,z)
So, the residual term is bounded by

—1—27/n z
57/ Il / e |,f'+a)1w f(@))d=.

Estimating the L?-norm of the remaining integral for & < 1 we get a bound by ||f|[2 by the
Minkowskii inequality, and for o > 1,
2 2
1)
305/ P oS @)y,
T

(2] | [ A e,
Tn ‘ Z|n+2(a71+5)

o |2 Cinratl0=f(¥)ldz] = 2|5 |7 F o1

2

Integrating in = we obtain < || f||2

ra—14c- In either case, we can increase regularity to [|f|| a2

0

We now want to lift the base regularity into higher order Sobolev spaces H™. The natural way
to obtain such estimates is through a commutator

(19) ' Lof = L0 [+ [Ls, 01T

The commutator can be expanded by the Leibniz rule,

m—1

=

The main term in (19), upon summation over ¢ enjoys the estimates from Lemma 3.3:

ZII%WUH%S P s + 27T TN DB I g
(20)

Z\\E¢3mf!\% P f s = P2 TN D 1
=1

By interpolation and the generalized Young inequality, we further obtain

A A v ol

H™TS

— —9_ 20 2—-260
<P B T R I ™

(21)
< epn (P, 27 10l v 1 | g2 5) + €27 F -

The highest term ep— 27/ HfHHmM for small € can be absorbed into the leading terms in (20). Thus,

we obtain required bounds (15) from the highest term. The rest follows from the following estimate
on the commutator.

Lemma 3.4 (Main commutator estimate). We have the following inequality

(22) Lo I3 S ol Fm a1 g + 1 meg) + (ol + 1Al

LIy
for some N = N(m,n,«,7) € N. Here, < means up to a factor ofﬁag_b

All the terms on the right hand side of (22) can be treated by interpolation between H™T* and
a lower order metric. A computation similar to (21), thus, readily implies (15).



8 DAVID N. REYNOLDS AND ROMAN SHVYDKOY

Proof. In the course of this proof all inequalities are understood up to a factor of p*p~?, where
a,b > 0 may change from line to line. We omit those factors for the sake of brevity.

Let us denote by R(p, f) the right hand side of (22).

We denote for short 9; = 9. To show the commutator is of lower order in f we need obtain
bounds on [|Lgm-1,0'f|3, for I € {0,...,m — 1} but first we expand 8™ !¢ using Faa di Bruno’s
Formula.

Writing ¢(z,y) as ¢(z, x + z), we see that the derivatives fall only on the topological part of the
kernel. Thus we have

(23) I (w, 5+ 2) = 2| DR (w1 + 2),
—7/n

= " d (2, + 2)] 77"
z,x+2)

(24) O (wat2) = ! [/Q G

Denoting g = d" and h(g) = g~ ™/™, then using Faa di Bruno’s Formula gives,

m—I .
m—l j—r _ (m — ! (1ot dm—1) ko)’
(25) T e 2 = ) g ot~ (9) kl_Il (9%9)

where the sum is over all (m — [)-tuples of integers j = (j1, ..., jm—1) satisfying

(26) i 4 2js 4 o+ (m = Dy =m — 1
Any term in the commutator takes the form,
! = M m—l[ j—T l
(27) Lontgd (@) = [ B0 et 260 ()
TTL
Then any term in the derivative will take the form
m—I k Tk
n(l) TS (Jopar 0°0(9dS) "

28 I;[0 = : 6,0 dz,
(28) N = [ () dz

where |j| = ZZ:ll T

CASE 0 < a < 1. First, we will look at fﬂ(m r42) Ok p(¢£)dé. We estimate it with the use of the
Hardy-Littlewood maximal function:

/ Ep(€) de| < [o|" - / 0% 0(6)| € < |2 M (0" p)(),
Q(:v,z—l—z) | | Q(z,z+=

where
1
Mg|(x) = sup — 9(&)]d¢§
r>0 T By (x)

So,

o dz

Lo o) [ a0 el

Pt Tn |2
To estimate the L?-norm of I; [ f] we pick a set of conjugate exponents pg, ¢ such that

Q\I\D
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and apply Hélder inequality

1500711 < HIIM gl </ (/ (E10:0' (@)l \nia>qu>3

by the classical Hardy-Littlewood inequality,

S mH ot ([ ([ mshiso sl ) o)

10" DI~ 10" F[1ye-ve.

2N

S?v
A

>
Il
—

by the Sobolev embeddings,

m—I
2j 2
< D0 g M sy

Let us make the following choice of exponents: pg = 277”, q= QTm Then

m—

l
2j
<TI0y I gt
k=1

Examining the regularity of the density norms obtained on the last line, we observe that for all
k=1,...,m—1 we have
k
k 1-—)<m-1
+ 2( m) <m + a,

provided m is large enough. So, the whole density product becomes bounded by a lower order term
foralll=1,...,m— 1

2j
H P -

for some possibly large N (we take the liberty of changing N from line to line in the sequel). When
I = 0, the product above still satisfies the same estimate for all multi-indeces j except one where
k = m, which can only happen if j = (0,...,0,1) due to the restriction given by (26). In this case
the density term reaches higher order norm |[|p||%

As to the f-term, we have for [ < m — 2

l
l+a+€+ﬁ(1——)<m—1—|—a,
2 m

which contributes the lower order term. So, in this case, given the density estimates above, we have

IGIO"FIIE < Mo a1 Fprra + 101 11320y < Rlps f)y 1=0,..,m —2.

For future reference let us record the estimate for the particular subcase when | = 0, j,, = 0:

(29) (e 1 1 2 12/ S ] ey

For the remaining case of l = m — 1 we have kK =1, j; = 1. So, as far as regularity of f,

1
m-l+atet-——<mta—-=,
2m 2

and hence,
0™ 15 < Nplreg 1P oy < R(p: D)
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The obtained estimates cover all the cases, so in summary we have obtained
(30) |Lom-150"£113 < R(p, f).
which proves (22).
CASE 1 < a < 2. This is a more involved case since for the application of the Gagliardo-Sobolevskii

norm one has to include the next term in the Taylor finite difference of f: 0,0'f(x) — z - VO' f(z).
We therefore add and subtract that term in the formula for I [0 f](x):

) T (Jogw s @ p(©0d) "
R e

z|nta-T dTHﬂn(m,x + 2)

m— Jk
o[ IS (fogoen) 20(€)d)
Tn |Z|n+oc—’r dT—Hj'n(w,[I} + Z)

= Ij1[0' f)(x) + I 2(0" ] ().

The estimate on [ ; [81 f] goes in exact same way as in the previous case noting that the Gagliardo-
Sobolevskii definition applies to smoothness exponents away from the interger values, 2 > a+¢e > 1.
In Ij2[0' f] we symmetrize first

m—l k Jk m—1 k J’C
h(’ZD Hkil (fQ(x,g:Jrz) 9 p(E)dg) k=1 (.I‘Q(g;,zfz)a p(ﬁ)d{)
Ij,2[8lf]($) = Valf(w) . /w P (.2 1 2) — 0 (7 — 2) zdz

o h(z) S . e[ grtlin (g, @ — 2) — dr+liln (g, o + 2)
=Vo f(:T) . /ﬂm ‘Z|n+a—7' H </Q(x7x+z 0 p(§)d§> [ dT—HJ\n(x x—l—z)d7+|J|”(a; T — Z)

z-V'f(z)dz

zdz

k=1

| (|Z — Jk
+ Vo f(x)/ ‘ |n+a TdT-HJ\n HT—Z H ( Q(ajx-‘rz )d€> -

m—l
- kl_Il (w/Q(z:E z)

= I;2.1[0' f](2) + Lj22[0' f)(2).
By a straightforward computation,

40N (2, 3 = 2) — A9 (2, 4 2)] < |Vplaol 2 HIn .

With this at hand we proceed to estimate Ij21[0' f](z):

m—l
a0 @) < 190 @) [T ) [ nll=) s

Since a < 2, the integral converges. Thus,

m—I
l k [ 25
I2a [0 711 < TT 9% 10+ 12 < H G T
k=1

Since I +1 < I + a + ¢ by further increasing the smoothness of f the estimate blends with the
previous case.
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It remains to estimate Ij22[0' f](z). To do this we must estimate

m—l Jr el N
ok d — o q '
/}_J; </Q(m,:p+z) Pl §> kl_ll </Q(ac,xz) p(&) é)

We can rewrite such a difference as

m—I
Jk Jk __ Jk— 1 Gk \7,Jk+1 Jom—1
Hak_kuz_Z“ ' aklak bbby
k=1 k=1
and furthermore,
j 1, 2 i —2 ji—1
ol — b = (ax — b)(ad " + ¥ 2bg 4 -+ agbl 2+ B,

We will focus on the main difference ai — by, while estimating all other terms with the maximal
function like before. We write, letting s =a —1+4+¢ < 1,

" d¢ — €)d _ a4
/Q(:Jc,achz) P& /Q(ac,zz) )it = / pla+€) - (‘T §)d¢
/P
= n redE < d n+s
/Q“’ ?) . s s /52<07z> j€JmFep e

= (D p 0" p()) /P¥ 2|,

where [ D;pg(x)dz = ||g|[}ys»- Then we can estimate the difference in the products by

m—I Jk m—I1 Jk
31 o p(€) d — O p(£)d
(31) ( / G 5) kﬂ( /| G a)

k=1 =

m—Il m—I
5 Z 1—[1 ( [8k ]( ))jk*l(D&pkakp(x))l/pk|Z’|j|n+s‘
1#k

Therefore, returning to [ j7272[8l f], we estimate in L2, using the same Holder conjugates as before,

155,220 f1113

(32 < [ vesar (| hﬁ’z_‘)l_dz)z x
Tn ™ [2[Prert=e
2
m—l m—I ‘ ) )
> 1T Mol (@) (M[0* p) ()~ (Dy p, 0F p()) /7 | da
k=1 i=1
i#k
ol Teian i H 107 ol | 1105 pll 710" pl oo
iZh
m—l
27; 1)
S HfH2Hl+1+n %—é) H Hp” ]Z+n(1fi)”pH iin(l 1 )HPH2 k+5+n(77f)
2
m—I

24; 2(jx—1)

7HfHHl+1+ — ’p” l+ (1_L)HPH C kR (1*£)Hp”Hk+s+ n(q %>

Ly
m

m.’:l
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As before let us examine regularity of the density first. In any case when the top j-index vanishes,
Jm =0, so that i,k € {1,...,m — 1} we have

) 1——)<m-—1
H—z( m) m—1+«

k
k—i—s—&—ﬁ(l——)gm—l—i—a,
2 m

if m is large enough. So, in this case the entire product of densities is controlled by the lower order
norm:

2 1
H ||p||;l+ (1,7) HpH Jk )17£) ||p||Hk+5+ (17£) — ||IO||Hm 1+a-
ik
This applies in particular for all { = 1,...,m—1 and even in the case | = 0 with j = (j1, ..., jm—1,0).

Note that this also extends (29) to the entire range of a’s, 0 < a < 2.
When k = m which is only attainable at [ = 0, j,, = 1 case, we are off by &: the product collapses

to only one norm ||pHHm 1+as. While the f-term is of low order:

1522013 < olFm-viaselF ey <ol gyl 10es < R(p. f).

Combined with the other j-indeces, the case [ = 0 altogether gives the estimate above.
Next, for Il =1,...,m — 2,

l
l—i—l—l—g(l—E)Sm—l—i-a.

So,
15220113 < 11 Frm—1a |l Gpmiia < Rp, f)-
For the only remaining case | = m — 1, the regularity exponent for f is

o <m+ S
m -_— m —
2m — 2’

while the density product is of course of lower than m — 1 4+ « order as elucidated above. So, we
arrive at

121),2210™ U3 S Mol 0 |1 g < R(p, )

4. A PRIORI ESTIMATES ON THE VELOCITY EQUATION

The goal of this section is to establish a priori bound
(33) Ol|ull?ymin < CY,).
Let us rewrite the velocity equation as
u +u - Vu = Cy(u, p),
Cop(u, p)(z) = . d(x,x + z)0u(x)p(r + 2) dz = Ly(up) — ulyp.
Let us apply 0™*! and test with 9™+!u. We have (dropping integrals signs)
&eHuHHm+1 = 0™ (u- Vu) - 9™ a4+ 0™ Cy(u, p) - 0™ .
The transport term is estimated using the classical commutator estimate
O™ (u - V) - 0"y = w - V(O™ ) - 0 4 [0 u] Vi - 0™
Then
u V@) 0 = (Vw0 uf? < [Vl
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and using (13) for f = u, g = Vu, we obtain
[ ]V - 0" ] < [ Vuloo [[ul 3,40
Thus,
OellullZymsr < ullfpmer + 0™ Co(u, p) - 0™ s

In the rest of the argument we focus on estimating the commutator term. So, we expand by the
product rule

m+1

(34) I p) = Y

k=k1+ko=0

(m+1)!

k k
Frllel(m 41— om0 02 p),

Various term in this expansion will be estimated differently. There is however one end-point term
which provides necessary dissipation :

(35) Cy(0™ M, p) - 0"y < —

< r/”” [—

Note that this particular term eventually guarantees inclusion of the velocity in class L2([0, Ty); H m+1+%)
as claimed in the statement of the main result.

CASE k=1,...,m. The bulk of the terms can be estimated simultaneously. Those correspond to
the range k = 1,...,m. We start by the standard symmetrization:
/ C3m+1_k¢(8klu, o*2p) - o™y de = 5.0 u(z)o2 p(x + 2)0™  u(x) 0" R p(x, x + 2) dzda
Tn T2n
1

- 2/ 5,0 u(2)8,0% p(x) 0™ u(x)0™ T R (x, 1 4 2) dz da
T2n

1
+3 8.0 u(x)9%2 p(2)6,0m  u(x) 0™ K p(x, x + 2) dzdx
T2n

=J1 + Jo.

In the Faa di Bruno expansion of the kernel 8m+1_kd>(a:,a; + z) we obtain a set of terms, again,
labeled by j = (41, ..., Jm+1—k) With

1j1 +...+(m+1 —k)jm+1_k =m+1—k.
With the use of the Hardy-Littlewood maximal function as before we obtain

m+1—k

J1<Z / 1605 u(2)8.0% p(2)0™ (@) ] <M[alp1<a:>>f'l|zﬁf+adx

=1

We pick a set of exponents ¢; = 2(’”:’1)7 = M:
m—+1— k]
N + -+ + oA
=1
We have
+1-k ,
75> 50| 5-0%pta)] |07 ulo)) [ IO,
1 T2n £+a(nz k) |Z|%7E njy
S P =R

m+1—k

SHUHHM%M%%HHPHHWW%%HUHHm+1 11:11 I

|Jl
nm+l-—1"
8 T
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Provided m is large enough and ¢ is small enough we have

k 1—-k%

R RO e Y
m 2 m+1 2
am—k) nm+1—ko

: k —

P 2+ 5 ma1 <m+«

l+nm—|—1—l< n

: —— < m+ta«a

P 2 m+1 :

forall ky +ke=k,l=1,....m+1—k, k=1,...,m. Thus,

JL <YN 4 eul?

I{m+1-‘,-7

(N will change from line to line). Note that the last term can be hidden into dissipation (35).
Moving on to Js,

5. akl | |92 §,0m+1 mELE ol i
J2 < Z/ ‘ u ‘ ( 8)‘ ’ z £<$)’ < [ pj](la:)) dZde
T P L 2| =1 2| 7
. J
L PR TON  peSssu P | )

pmilol-
We now examine the remaining end-point cases.

CASE k = 0. Here we deal with only one term
Com+14(u, p) = Lom+1) g[up] — ulymsn yp-

In the Faa di Bruno expansion of the kernel, we single out again the case j = (0,...,0,1) from
the rest, because in the rest of the cases j = (ji, ..., jm,0) we do not have to use the commutator
structure at all. Instead we have by (29), (noting that m — m + 1) and the control bound (16),

/I [up] - 0™ uda < [|L[up) 31wl gmr < DN 1PN rmsa) 1uplFoe g el grmea

N
S LA ol e + lulorg + e < Yo

JiEa
And similarly,
[t -0 e < |Gl s <

Let us consider now the more involved term corresponding to j = (0,...,0,1). In this case

S.u(x)p(z + 2)0™ u(x) dz de

T2n

’Z’n—l-a Td’T—‘rTL(x JJ—FZ)

[ ilue) — o)) - 07 e =
after symmetrization,

S.u(z)0,p(x)0™ Hu(x) dz dz

1 / h(|=) fQ(z,x+z) "t p(€) de

2 Jpon |z[PTOmTdTEN (2 2 4 2)

1 (121) mex+z) 0" p(€) dg
L%

_ m-+1
5 g (2,7 2) S u(x)p(x)d, 0™ u(x)dz de.
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The highest density term suffers a derivative overload and needs to be reduced:

[ o O™ p(€)e A = 0" p(w + €)ve dg
Q(z,x+2) O (z,x+2) 090(0,2)

= \z|”1/ 0"p (z+ |2|U,0) vpdb
0Q(0,e1)
where U, is the orthogonal transformation mapping e; to Z,
ot / 07 p (2 + |2]U-0) — 9™ p(x)] vp do.
89(0 e1)

We recover one power of z by |0,u| < |z|||Vu||s and in the first intergal |6.p| < |2]||Vp||so. Putting
together we estimate the integrals by

m _ am m—+1
< HWHOO\VPHOO/ // P2 [0 p (z + [2|U-0) = 0" p(@)] 19" w(@)] 4 4. 49
0,e1 T2n

CEa o373
h(|z])|0™p (x + |2|U.0) — 0™p 5,0m
+HVUIlooHpHoo/ // (1)) 10™p ( ng ) (@) | ( )| 4 de 4
99(0,e1) JJT2n |z]272 2|2+

< [IVulloo IV pllol[ull grm1 + IVullocllpllcol[tell fyms1+ g (D2a—1(0™p) +Da(<9 P));

_ [ hR)lglr+ U0) —g@)”
Ds(g)—/w ks dzdz.

where

By Lemma 7.1 this expression is bounded by the H 2 norm. Thus,

(36) [ Glup) = ullol) - 97 ude < el g + VY.

CASE kK = m + 1. In this case the kernel gets no derivatives, however, we deal with a total of m
terms Cy(0'u, 0™ 17p) for I = 0,...,m (note that the case | = m + 1 yields the dissipative term
which has been considered already). Let us consider first the end-point case of [ = 0. In this case
the density suffers a derivative overload. We apply the following “easing” technique:

Co(u, 0™ p) - 0" ude = / o2,z + 2)0,u(x)d™ M p(x + 2)0™ () dz da.

Tn T2n

We observe that
"M p(x 4 2) = 0,0Mp(x + 2) = 0.(0™p(x + 2) — O™ p(x)) = 0,6,0™p(x).

Now we integrate by parts in z:

Co(u, 0™ p) - 0" My de = // D.p(x, x + 2)6,u(x)8, 0™ p(x) 0" u(z) dz dx +
T T2n

+ / oz, x + 2)ou(z + 2)6,0™p(2)0"  u(x) dz da == Jy + Jo.
T2n
Let us examine Jo first. By symmetrization,

Jy = / 5z8u(x)5z8mp(:c)8m“u(x)¢ dzdz — / ou(2)8,0™p(x)6,0™ u(x)p dz dw := Joq + Jas
T2n T

2n
1<V “’“// 10:07p(@ 7 |n+a B2 oty (@) da < [V 2ulscllol] s [l s < VY

Joo < IVulooll e g il gy < el mareg + Y.
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As to Jp, let is first observe that 0,¢(z,z + z) = (x,x + 2) is antisymmetric, ¢¥(z,y) = —¢(y, x).
Then, by symmetrization we have

= ;// 0.¢(x,x + 2)0,u(x)5,0" p(x)5,0™  u(z) dz d.
T2n

Since
. a. | p(O)dE  a.n
_ Zi Q(x,a+2) h(2)
O:p(x,x + 2) = —(n+ a —7)h(2) |2|nFot2—rgr +h(2) |2|nta—Tqrn 2| to—Tdr
and noticing that
0. / p(€) de| < |plocl2l™ Y,
Q(z,x+2)

we can see that this kernel is of order |2|™"~®~! up to the usual quantities bounded by Y,Y. The
one derivative loss is compensated by [0 u(z)| < |2||Vu|oo. With this at hand we estimate Jy:

Ji < Y [Vulso[ull gmivs 1ol < ellullmireg + Y

™S

Let us now examine the rest of the commutators C¢(8lu, o H=lpy for I = 1,...,m. After
symmetrization we obtain

1
Cy(D'u, 0™ lp) o™ lyda = = 6,0 (x)6,0m M p(z)d™ M u(x)p dz da+
Tn T2n

+ 6.0 (x)0™ 1 p(2)0,0m u(z)p dz da = Ty + Jo.
T2n

For J; we distribute the singularity of the kernel among the three terms

[ m~+1—1 m+1
ne [ BB ) o,
T

P e T
using a Holder triple
1 1 1
S+S4+=1
p oq 2
We have
Jl S ||uHWl+E+QTO‘,pHp”W'm-s-l—l+2—a,qHu||Hm+1 S ||u||Hl+s+2To‘+n(7—f)||pH m—+41— l+2a+n(g l)||u||[{m+1
Choosing p = 2mT+1 and g = 2m”f{11 we verify for all [ =1,...,m
(m+1-0Da nim+1-1) o'
u: l+e+ <m4+1+—,
m+1 2(m+1) 2
la In
p: m+1—-I1+ + <m+ a.

m+1 2(m+1)
We conclude as before
+YN.

Jl < €||UHHm+1+7

For J, the computation is similar:

e L u(a)| 0 ) 0 ),
—Jr ‘ Stet+3 ‘Z|7_E |z’

2n ]z Hu||wl+€+ p”PHWmel,q

N
< ”’LLH l+£+ +n(%7 )”pHHm«rlflan %7%)||UHH7R+1+7 < 5||uHHm+l+a +Y

1
p
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where the last line follows by the same choice of p, ¢ and noting that

1-1
u: l—i—&—l—g—kM

1
2 2mr M7

In
: 1—-14+4——<
p m + +2(m+1)_m+a,

foralll=1,...,m.

5. A PRIORI ESTIMATES ON THE e-EQUATION
Consider the quantity
e=V-u+Lyp.

The goal of this section is to show

d

el < Y.y,
We have,

pt+ V- (pu) =0

Due to the topological part of the model, the interaction kernel depends on the density p. Therefore
the operator L4 does not commute with derivatives. Taking the divergence of the momentum
equation and using the density equation and the e-quantity we get the identity

e+ V- (ue) = (V-u)? — Tr(Vu)? + 0(Ly(p)) + V- Lo(pu).

Let us take a closer look the last two terms and work out a more explicit formula. For the time
derivative,

(Ly(p)) = Lo(pe) + Lo, (p)

where,

T M) Jowary O
/ | 6zp(z)d

E¢i (p) = _E Z|n+a7‘r d7+n($’m + Z)

T / hl2)) Jowars V- (00)(€) €
Con e |

Z|n+a—7 dT+n($7x + Z)

.p(z)dz.
- p(z)dz

Then looking at the divergence we have,
V- Ly(pu) = Lo(V - (pu)) + Lyg.(pu)
where,
Loplon) = | Volwa +2)-8u(pu)(w)dz

:_T/ h(z) Jowars VPE) S
T

n|z|PresT dTH (e + 2)

- -0, (pu)(z) dz.

Now using the density equation we see that the first terms in 9;(L4(p)) and V - L4(pu) cancel, and
the equation becomes,

(37) et + V- (ue) = (V- ) — Te(Va)® + Lo, (p) + Ly (pu).
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In order to achieve our estimate we apply 0™ to (37) and test with 0™e. Estimating the last two
terms will be the main technical component of this section. So, let us make a few quick comments
as to the remaining terms. Dropping integral signs we have for the transport term

" (eV -u)d™e+ (u-Vo"e)d™e+ [0™(u-Ve) —u-VI"e]0™e.

So, it can treated exactly like the similar term in the momentum in the beginning of Section 4. For
O™[(V - u)? — Tr(Vu)?]0™e we have quandratic in Vu expression whose L?-norm breaks into the
product estmate of ||u|| gm+1|Vu|s. We thus can see that all these terms are bounded by Y,3.

We now focus solely on the residual alignment term and start with the ”worst” in a sense end
point cases.

END-CASE 1. Here we estimate the worst term when all m derivatives fall on the density to form
a derivative of order m + 1:

I= / . [ /Q o) "V p(z + €) A€o (pu)(z) — / V(ud™p)(x + €) d€dp(x) | x

Q(0,2)
h(l=)
|Z|n+oc—'rd7'+n(x7x + Z) dz.

Integrating by parts inside the integrals we obtain the expression
o 700 000 ) — (" )+ €000 - v

Using that 6,(pu)(z) = d.p(x)u(x) + p(z + 2z)d,u(z), we write the integrand as
" p(a +&§)dzp()(u(x) — u(z 4 §)) + 0" p(x + )0 p(x)0-u(z) + 0" p(x + &) p(x)d-u(x).
We focus on the last term which is most difficult. We write
0" p(x + &)p(x)du(x) = 0" p(x + &) p(x)[du(x) — Vu(z)z] + 0" p(x + &) p(x)Vu(z)=.

We focus on the last term. Let us write the integral to be estimated

h(l=)
J:// I"p(x+ &) — 0" p(x)|p(x)Vu(x)z - ve dE dz.
n aﬂ(o,z)[ (e @lel@)Vulz)z v |z[rremTdTin (2, x + 2)
Changing the variable to § € 99(0, e;) we obtain
h(l=l)
J = o™ U.g)— o™ \% U, dzdé.
Lo L 070 1U20) =0 @) Vo) Vot

Let us freeze the coefficients in the kernel:
J=J1 4+ Jo,

where

J1 = / p_T/”(x)/ [0 p(x + |2|U,0) — 0" p(z)|Vu(x)z - Uzl/g% dzde
20(0,e1) n |2

h
Jy = / / (0™ p(x + [2|U-0) — 0™ p(x)]p(z) Vu(z)z - Uz’fe%x
09Q(0,e1) n ’z‘

X ! — ! dz dé.

7/n+1 7/n+1
[fQ(O,Z) plz +¢) df} P (@)
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To estimate J; we further symmetrize in z noting that U_, = —U,, and so the kernel is even:
g = / /(@) / (07 pl + [2|U.0) + O™ p( — |2]U.6) — 20™ ()] x
00(0,e1) T

h
x Vu(x)z - UZVQIZTSLZCBFI dz do,

and we estimate

h(]z\)inZk

‘Z‘n-&-a-f—l dz

PAPEY R
1:7j’k

[ 1070t + 41U-0) + 0o~ [21U-0) ~ 20700

2
< p7 M Vuloo ol frmtas

where the ultimate bound follows from Lemma 7.2.

To estimate Jo we note that a similar estimate from before gives

1 1
P ET T A

Therefore by Lemma 7.1

’J2‘ <pn+2 —3— QT‘VP‘oo‘VU’oo/ / |8 x+’Z‘U 9) p(m)‘ h( Z|) dzde
091) n -

_T _3_ 27
<Pt 3 | Vplaol 2.

+a—

_ 27‘
I 2ll2 < 77292 [V ploc| Vuloo 1] -y

Now to estimate the first term. The integral we need to estimate is

o) [ [ ot gl VD
n JoQ(0,z)

| |n+a TdT+TL(:L» LL'—|—Z)

- m [6.u(x) — Vu(z)z]h(|2])
0 vy df d
/n /89 (0,e1) 97 pla + |2|U:0) = 87p(a)] - U |z|1te—Tdmn (z, 2 + 2) :
1] < 21V / / h(|z])|0™p(z + |2|U.0) — 0™ p(z)] d6ds
% Jrn Joao.er) |z|nta-t '

So estimating in L? and applying Lemma 7.1 again, we get,

112 < 7l V2ulssllp]

Hm-&-a—% N

Now returning to the first integral in this section, we still need to estimate the first two terms,

(12
I = /n/mz) ol + €)0.p(a)(ul() — u(w +€)) - v dg dz.

|Z|n+a TdT+’n(x7x+Z)

To estimate this we add and subtract 9" p(z)u(x) in the integrand to get,

o VRN 1| O N
=) [ [ @t o) v dz.

‘Z|n—&-o¢—7’d7’—|—n(w7 T+ Z)

I = - / / (0™ p(x + Eulz + &) — " playu(a)) - ve de —EN=PE)
n J09Q(0,2)

’Z‘n—i-a—'rdT—i-n(x’ T+ Z)
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Looking at I1; we include the next term in the Taylor finite difference.

i e (D Bple) — V()]
Ty = u( )/n /69(072)(8 p(z+ &) — 0" p(x)) 5d€|z|n+a7‘rd7'+n(x7x_’_z) dz,

M)2Vpl@)
|Z|n+a7‘rd7'+n(x’x+z) :

Iy = u(z) / " /6 (0l )~ 9" @) - v

Notice that shifting to 9€2(0, e;) and symmetrizing makes I11; and 112 take the same form as J;
above, so Lemma 7.2 gives

T11ll2 < 7™V ploo|ttloslpll v
Proceeding the same way for 112 we get

gy = — / /m(o @™z + E)ulz + €) — 9™ p(z)u(z)) - ve e MEDB=p(@) = 2Vp()] |

‘Z|n+a77—d7’+n($’ T+ Z) ’

M)aVplw)
|Z|n+ozf7'd7—+n(x’'r + Z) :

f= = [ [0l ute )~ 0" pleu(e) v
n (0,2
Shifting to 9€2(0, e;), symmetrizing and using Lemma 7.2 with ¢ = ud™p also gives
12ll2 < o7/ |V plos[ud™ pl gra < 7™ [V ploottloo 1o]] frmsa-

The second term in the first integral to estimate is

h(|z])0zp(x)d-u(x)

|Z|n+a TdT+n(x,m+Z)

We pick up two powers of z from d,p(z) and d,u(x) to get

2|0 p(x + |2|U.0) — 0™ p(x
L B e
Q(0,e1) " |Z|

dzd#.

Applying Holder’s inequality and using Lemma 7.1 we get
1] < [Vploo| Vulos|lpll

Hm+ocff °

Now let us look at the other endpoint where all m derivatives fall inside the increment 9, f in
the residual terms.

END-CASE 2. Here we need to combine terms from Lyg.(pu) and Ly, (p) again.

h(|z])0:0™ p(x)
|Z|n+a—7d7+n(m, T+ Z)

B 1= [/Q( Va6~ Vol +9 -U(x)dfl
Expanding V- (pu) = Vp-u+p(V -u) we get two terms to be estimated. We focus on the last first.

- (1280 p(x)

’z‘n—i-a—TdT—l-n(x’ T+ Z)
As before we will freeze the coefficients, splitting this into J = Ji + J2 with,

= AT [ D 5 )

,OE—H( ) Z|n+a

(2D [ fops P OV W)@+ dE p(a)(V - u)(x) .
JQ—/Tn FED - 30" p(x) dz.

(Foomy ol +©)¢) ™ pr@)

dz.

/ P+ €)Y - u)( + &) d&]
Q(0,z)
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The integral in J; is the truncated fractional Laplacian, so is bounded by B_%+1ﬁ|Vu\oo||pHHm+a.
Then for Jo we need to control the difference, by adding and subtracting appropriately.

P%* <fQ(0Z (x+ &) df) Z+1
(J[Q(O,z) p(z + &) dg) ntl P51 ()

3 z m
< P (V]| Vol / ||§’+J)1wa ol dz,

_ h(lz]) m
Jo1 = /IF" 2|rra ]{2(072) p(x+&)(V-u)(z+§)dE 0.0"p(z)dz

for a < 1 estimating in L? we get a bound by ||p|| ;m by the Minkowskii inequality, and for a > 1
we get a bound by ||p[| ymta-14-. Then looking at J; 2 we get,

a2 P@ + (V- u)(z + &) d§ — p()(V - u)(z) .
J2,2=/ E |n+a ( 200, ,05“(:5) >6z8 p(x)dz

1 h(|z m
< 0 RVl [Vl Tplo) [ 1807 ) 0

where we can estimate the integral in the same way as for Js 1. Now we still need to estimate the
first term from expanding V - (pu). The term we need to estimate is

h(lz])0-0™p(x)

d
|Z|n+a—7d‘r+n($,x+z) z

(39) J = [/ Vp(z + &) - (u(z + ) —U(x))dﬁl
T Q(0,2)

h 6,0™
I < IVPIOOIVUOO/ (12D ,p(m dz
Tn |z’n+a 1

which again is bounded by ||p[| ym for o <1 and ||p| ym+a-1+- for a > 1.

We no longer need to combine terms from the two residual terms so we will now proceed to esti-
mate the remainder of the terms from Lyg.(pu) and Ly, (p) individually. First looking at Lyg.(pu)
we will estimate some of the higher order terms where all m derivatives hit the density, and then
combine the rest of the intermediary terms in one estimate.

END-CASE 3. In the previous case we used u(x)d,0™ p(z) from J,(ud™p(z)) = §,u(x)d,0™p(x) +
u(z)6,0™p(x) + 0" p(x)d,u(x), we still need to estimate the other two terms.

h(|z])0zu(x)0-0™ p(z) /
40 I = AV déd
(40) 1 /Tn |z te—TdTn (2, x + 2) Az 242) p(x)dEdz

h(|z)6,0™p(x
|11|gw|oo|w|oo/ (=DIo:0"pl@)] ;.
Tn | 2|t

Then estimating in L? the integral is bounded by ||p|| 7m for o < 1 and ||p|| gm+a-14- for o > 1.

For the second term we need to look at separately for a < 1 and for o > 1. First a < 1,

(41) I = /T MOt ))07 () /Q oy VP A

n |z[PTemTdTI (2,2 + 2)

L] < [Vatloo | Vploo 0™ p()| / ,Jld
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which in L? is bounded by ||p|| zm. For o > 1 we add and subtract the next Taylor term to get
Iy = Ip + Ino

= [ e | o TP A Bau(e) —Tu(e)]

n |z|PresTdTE (2 2 + 2)

h(l=1)
Ioy = m .
- VU(m)a p(x) /]1‘n ‘Z|n+o¢—7'd7'+n (‘Tv T+ Z) /Q(x,:t:+z) vp(x) dezdz

For Io; we use |6,u(z) — 2Vu(r)| < |V2u|s|2|? to get

m, !Z|)

which in L? is bounded by ||p|| ;7 again. To estimate o2 we symmetrize first and split into two
parts,

Iy =V
22 u\xr Tn |z|n+a77 dTJr’rL(m’ T _I_ Z) dT+n(fB, xTr — Z)

= Vu@omsla) [ AT e ) ( [ v dg>zdz

L dT+n _ dr+n —
+ Vu(z)0™p(x) /11% |ng|fa|)T /Q(O )Vp({) dg < d7+glx(;;f)z)d7+n(x($g’:x Z)Z)) 2dz

= I991 + I299.

Now for Is5; we notice that a similar computation as before gives,

[ Ve [ Vpde S (Dudpla) Pz,
Q(z,x+2) Q(z,x—2)

where s=a—1+e<1l,andson+a—1—s<mn,

[I221| < |Vu!oolamp(x)|(psypap(x))1/p/ h(lz]) ds.

Tn |Z|n+aflfs
Then using Holder’s inequality in L? with % + % =1 we get,
122113 < \VU@OHPHZM” l,;>HPH2 Lpstn(d-1)°

(3 q

Then choosing ¢ = % and p = 2m gives

1
<m -+ .

1 nm—
p: 1+s+n<—>:1+s+
p

For I9s we have already shown how to estimate the difference d™"(z,x + 2) — d"™"(x,x — 2) so
we get,

A1)
m 2
ol < [Vl (@) Vol [ s a

122213 < [Vl VoIS llpl Fom-
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END-CASE 4. Since 0™ (pu) = 0™ (pdu) + ud™p, we still need to estimate the term

satz) VPE) A€
(42) Ioo[0™ " (pdu))(x) = /T . ‘Z‘n-’&-ﬂ T ch;T‘F:(:)C T+ 2)

For ao < 1 and ¢ so that a +¢ < 1, we get
i h -
Inol0™ 1 (p0)] ()] < |Vpleo / | }'le (™ () (2)| d=

1Zo,0[0™ " (p0u)]l[3 < VoIl 000l Gy

S |vp| ”pHHm 1+a+s||u||Hm+1‘

For a > 1, we again add and subtract the next Taylor term, focus on the second one, and symmetrize

Tupalo™ Hpou)(e) = V" (g0 (o) [ HEL (f“;T;:(; e >zdz

5.(0™ 1 (pou))(z) dz.

splitting this into two parts
Top2,1[0" " (pdu))(z) = V(9™ (pdu))(z)

h(lz])
. /]Tn \Z|"+O‘_TdT+N(a:,x + Z) A(m,x«#z df / (z,x—2) dg 2

Lop22[0™ (pdu))(z) = V(9™ (pdu))(z) %

h(12)) o a—zy VP(E) € 1 1
X /n |Z’n+a—~r <d7+n(ﬂ§,$+2) a d‘H_n(I,ﬂf—z)) zdz

and estimating these as before we get,
h
0240 (p0)(0)] < [0 0u) (@) (Deyp(@)? [ T a:

Tn ’Z‘n—i-a—l—s
10,021 0™ (pdu)][l3 < VO™ (pdu)[I5]|0p]l7
<ol

2 2
m+n(,_,)||U|| FmtinG >||p|| Fitstni-1)

Choosing ¢ = —1 and p = 2m we get

192,113 < 1ol g 2l e

< YN||U”Hm+1 + EHUH

and for In22[0™ 1 (pdu)](z) we get,

Hm+l+7

Ioo2200" (o0 < (99" (p0u) (@) Vol [ ez s

10,02,2[0™ (pdu)]l13 < [Vplacll ol Fpm 10l Fpms -
END-CASE 5. All m derivatives on V¢, and [ = 0,...,m — 1. Have to estimate

h 5 Uy 05 0(£)dE
e = AL 1<Q}+<§|)ﬂ>n V' sirireras

Using the maximal functions we get

x)| < H )7 MO p)( )/Tn |Z?7|jr|()l|6zpu(aj)|dz
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Then using Holder’s inequality with

Z—+—+— 1,
— PE @1 2

and the Hardy-Littlewood inequality, we get for 0 < o < 1,

m—l
k j l
5 2pulll3 S TT 1%l 107 ollz, Nl oullfyase.as
k=1
m—

l
27 2 2
H ||p|| j:_kn(l_L)HpH l+1+n(§ )Hpu” a+5+n(g—i)
k=1

2m 2ml*1, and ¢ = . Then we get

Now we choose, for [ # 0, pp = Toa = w

1 1 n m-—k
: k+ —— — | =k+ - <m+
p n<2 k> 2( - ) <m+«

for m large enough, for all k =1,...,m. Then for I =1,...,m — 1,

1 1 o2m —1—21
pr dl+l4n(5-—)=l+l4n(Fo—1 ) <m+a

@ 2(2m —1)
ey 1 1 n +n 2m? —m — 1 <2+n
uw: ate+n|lz——)=a+e+—-|—— -
P 2 2 2m2 —m 2

and for [ = 0, instead of using the maximal function on Vp we simply estimate with |Vp| and
use [0z (pu)| < |2[(|Vploo|uloc + Pluloo) to get

| Z,0[pu)(z)] < H M0 p)(2) )|V ploo (IV ploo [ttloo + Pl V| oo)
2
125,0lpul| H PN 1 212 (1 loo oo + P Vuloo)?.

For o > 1 we add and subtract the next Taylor term to get Ij;[pu] = Ij.1[pu] + Ij 1 2]pu]

- " Jk
L[] () = / () TH (fagors #0(6) ) x
jlpP - Tn |2|Pte=T dT+(‘j|+1)”($,x+Z)

X (/ d'Vp(€) dé) [0-(pu)(x) = 2V (pu)(2)] dz
Q(z,x+2)

m—1 k Ik
h 5 Uagewsn 9°0(8) A8
ualpul() = Vipu)(a) [ ,,Q” /| IRACGIE ;fj,jo;(’x,xﬂ) .

The argument for I, 1 [pu] goes just as above, noting again that the Gagliardo-Sobolevskii definition
applies to smoothness exponents away from the integer values, 2 > o+ ¢ > 1. Looking at I;; 2[pu]
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we symmetrize and split further into three parts getting,
—1 k ]k
fse [/ 'V p(¢) d—— Ui 0016) )
w0 Uarn A G (5, 4 2)

1 k:ll (fQ(w,z—z) akp(g) d£> '

_ 2(ED l o erae)
= Vi@ [ g [ 900 ] ( [ d5> .

x (a7 WD (g, 0 4 2) — a7 WHED (g, 5 - 2)) 2

h .
+ V(pu)(x) /T ) ||(‘+')_ /Q _ 0'Vp(¢)dgd I (o 2 — 2) x

m—I Jk m—I Jk
k - k zdz
x (H ( /| o P00 df) 11 ( / S d{) ) a

Ij1lpul () = V(pu) (2) /

k=1

m—l Jk
i) [ LTI ( L. )akp<s>ds) AT, )

k=1

x ( [ oV 9 p(¢) d£> 2dz
Q(z,x+2) Q(z,xz—2)
= L2 lpul(z) + Li2.20pul(z) + L2 3[pul(z).

For I 21[pul(x) and Ij; 2 2[pu](x) we make the same estimates as before, using
‘dT+(|j|+1)n(.’E,ZU + Z) B dT+(|j\+1)n($’x B Z)| < ‘vp‘oo‘z|7'+(j+1)n+1
and also applying the Maximal function to fQ(x,aerz) Vol p(€)dé < |2["M [0 (p)] () to get,

m—l

2. [pu)(2)] < [V (pu)| oo Vploo M0+ p](z) TT (M )%

1502, [pul 13 < [V (pu) 2|V ol3 107 o1l H 10"l

25
< [V (o) B VeI, s ) H el iy

where we used Holder’s inequality with

3

T
I

25
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Picking g = Q—m and pr = QT’” gives
—1
p: l+1+%§m+a,
p: k+ M <m+a.
2m
Then for I 2 2[pul(z) we get
m—Ilm—l
| li0.20pul ()] < |V (pu) M0 pl(z) > [T (M )Y M ([0 p) () )4~ (D 0 pl)) /75
=
([ D,
Tn |Z|n+a 1-s
m—I

[ i il ak k
Zia2.20pulll3 < 1V (o) 2107 pll3 TT 1107132 10" ll7% 110 pl Gy

=1
i#£k

[ 274
< V(o) B0 I sy, H ol g ol
17$k

Picking the same Holder conjugates gives

p: l—i—l—i—wﬁm—l—a
2m
) k_i_n(mfk:)gm_*_a
2m
—k
p: k—i—s—i—mﬁwm—a

m

To estimate Ij; 2 3[pul(x) we note that a similar computation as before gives

k"r"(g_i)

2
”p||Hk+S+n(%_i)'

/ DVp(€) de — DIV p(€) dE < |2 (Dy g0 plar)) V4.
Q(z,x+2) Qz,x—2)

Therefore, again using the maximal function we get,

m—I1

T 230pu) ()] < |V(pu)]oo(Ds 40 p(x)) 19 H(M

27
1T52.2,3lpulllz < [Vl iy -1 HH,OH ’Zml 1

Choosing the same Holder conjugates gives,

n(m —1)
p: l+1+s+——<m+a,
2m
—k
D L Ul )P S

2m

INTERMEDIARY CASES. Foralll=1,...m—1,i=0,....m—Il,and k=1,....,m

estimate

)

h(lz])
" Z|n+aflfs dz

— [ — i, we have to
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26,0 (pu)(z) dz.

m—Il—1 k Jk
h("z‘) i k=1 fQ(x,m—l—z) 9 p(f) dg
lﬁW@mW»:AMAWW*L@H@aVMQ%' mimmw%x+@ )

First, for 0 < @ < 1, we employ the Maximal functions again to get,

m—l—1 .
0@l £ TT (o) ariotae) [ P50

k=1 T

6.0 (pu)()]| d=.

Then estimating in L?-norm, applying Holder’s inequality with

m—Il—i .

2 2 2
AR |
—1 Pk @1 @2

and using the Hardy-Littlewood inequality, we get
m—l—i
L1l 2 2jk 2 2
||ijl[a (PU)] HQ S H HpHHk+n(%,i) Hp”HiJr1+n<%7i) HpuHHlJra+6+n(%7é) .

k=1

Now we choose pp = sz, Q= QTm, and g2 = QTm Provided m is large enough and ¢ is small enough,

n
Y
P + 5

. n{m-—1
p: z+1+2< >§m+a

m

m—k
<> <m-1l4+a«

m

n{m-—1
ou l—l—a—i—s—l—() <m+ a,
2 m

foralll=1,...m—1,i=0,..m—Il,and k=1,...m—1— 7.

As before, to extend the argument to include o > 1, we must include the next term in the Taylor
finite difference

m—Il—1 k .7/9
n(lz)) TS (Jaers) 9°0(€) d8
o) = [ L <d7+<m+1>n )

x ( AL dg) - [8:0"(pu) () — 298 pu(a)] d=
Q(z,x+2)

m_—l—i oF d Ik
et | PUpeae Untasn #946)5) 2V (pu)() dz
n Qz,z+2)

’Z|n+a77 dr+il+)n

= 110 (pw))(2) + L;,.200' (o)) ().
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Again, the estimate on Ij;1[0'(pu)] goes as before, and for I ; 2[0'(pu)](x) we symmetrize

m l ) Jk
Qe Z- (Joroe 9 0(6) de)
I;.i 20" (pu)] (z) = /Tn [zrte— [/Q(%HZ) d'Vp(§) A€ d”(mﬂ)n(%x e

T (o 9060 02) "

dT+(|J|+1)"(;[;’ x — z)

() - = erae)
=V — 9'Vp(¢)d "p(¢)d
Ly B I ALGL 11 ( fo 200 f) .

X (d*T*(mH)”(m, x4 2) —d W (g g — z)) zdz

+ V' (pu)(z) / h('f‘), / 0'Vp(&)dgd WD (g 2 4+ 2)
Tn |Z|n a T Q(z,z+2)

m—Il—i Jk m—Il—1i Jk
k _ oF d
S ( II ( /| o p(@ds) I1 ( /| . p<£>ds> ) :

- / V() d |- 296 (pu(x)) a2
Q(z,x—2)

k=1

Jk
[ daeag) a g )
Q(z,x+2)

x ( [ oo [ oV dg) 2dz
Q(z,x+2) Q(z,x—2)
= Ii21[0' (pw)) (&) + Li2,3(0' ()] (2) + I .2,3[0" (pu)] ().

For Ij;21[0'(pu)](z) and I, 22[0' (pu)](x) we apply the same estimates as above to get

m—Il—i
aaal0pu)@)] <[99 ()] T] (M@ M0 9l0) [ 1l iy
k=1

Since a < 2, the integral converges, and

m—Il—i

12110 (pu)]I3 < 1107 (pu) 13,1107 oI, H 10" plI32*

m—l—1

27
< ”pU,HQ l+1+n 77f)HpH 'L+1+n(§7q— H Hp” ﬂiJF”(j*;%)

Choosing the Holder conjugates as before blends this into the previous case. For Ij; 22[0'(pu)](z)
we have,

| ji,2200" (pu)) ()| < [V (pu) ()| M [0 p) () x

m—l—im—Il—i

S I | R R = SR
k=1 X\=1
i#k
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Since av < 1 + s < 2, the integral converges, so for any k= 1,...,m — [ — i,

m—Il—i
[ [ ] A k k
175,220 (pw)] |5 < 10" (o) 5,10 pllz, TT 1070l 10 oIl V10" plfyem
T2k
m—l—i
2 2j (Jx—1) 2
< ”(PU)H l+1+n(g_i)||p’| z+1+n(§_i) H ||10|| Ji+n(1 1 )HIOH ;:'_n(l 1 )||p||]i[k+s+n(%_i)'

A=1

Again choosing the same Holder conjugates as before gives the necessary bound. Now for [ j’m,g[al (pu)]
we get,

m—l—1

! 2j
175.0.2,3[0" (pu)]l13 < [ (pu )IIQHH,L(?M)IIPII PRICTINSYE S [T Il ’,ﬁml L
k=1

Choosing the same Holder conjugates again gives the desired bound. Therefore we have the neces-
sary bounds for every term in 0" Lyg.(pu).

Now let us examine Ly, (p). Notice that any term in 0™ Ly, (p) takes the form

m l i a d I
I_/ s / OV - (pu)(€) d¢ Unte 10 %)) 0:0'p(x) dz.
'JI‘"‘ Q(z,x+2)

z|nto—T dT+(|J\+1)"(x, T+ 2)

The cases where [ = 1,...,m — 1 are estimated exactly the same as the Intermediary case for
Lv¢.(pu) above by switching the roles of pu and p in the increment J, and in the first integral that
contains the gradient.

Similarly the case where [ =0 and ¢ = 0,...,m — 1 is taken care of by End Case 5. Further, we
have already used the case where | = m during the estimates in End Case 2, and part of the term
| =0,i=m in End Case 1. Since VO™ (pu) = V(ud™p) + VO™ (pdu) we still have to estimate
the term

Vo1 (pou
J:/ | ) foHz) (p0u) 5(5Zp(x)dz.

Z|n+a T dT+n(l’,l’—|—2’)
For oo < 1 we use |9.p(z)| < |Vp|oo|z| and the maximal function to get

1 < 9ol poue) [ lEk a

1713 < [V 3o 1o 11l -

For 1 < a < 2 we utilize the next Taylor term again and estimate the second of these by sym-
metrizing and splitting into two parts to get,

I h(|z|) fQ(Z etz) VO ~H(pdu) d¢ d
2 — p(.%') " ‘Z|n+o¢ T dT-‘rn(m JZ—i—Z) zdz

P (x)/ D foI+Z) VO (pou) d¢ — fox 2 V@mfl(pau) dgzdz
21 = VP T |z|n+a T dT+n(x,:E + Z)

n |Z|n+a—7

Jog = Vp(x)/ _hllzD) / VO™ N pou) dE (A~ (z,x +2) —d T " (z,x — 2)) zdz.
Q(z,x—2)
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Estimating Jo; gives
h
I

‘Z|n+o¢7175

[Tl < [Vl D@ (9002 |

2 2 2 2
[J21112 < VoIS 1ol sl rmea s
Ny, (12
<Y lullmaen + 5Hu||Hm+1+%a
where we used Interpolation and Young’s inequality to get the last inequality. Since 1 < o < 2 it
is possible to find an s such that s < a/2 < 1 for interpolation and 1 + s > « to make the above
integral finite.
For Joo we use the differences in d=7 7" to get

A(lz)
< |Vpl2 M[0™
aal < 9ol pow)] [ 00 s

1722113 < IV L3 ol Gy 1l -

This covers all the terms in 0™Ly,(p). Recalling that the goal is to bound everything by the
grand quantity Y,, we have shown that

10™ (Lo, (p) + L. (pu)) 0™ elly < Y5

Combined with the transport terms we have estimated in the beginning we therefore have proved
the desired a priori bound

d 2 N
- S CY

6. Viscous REGULARIZATION, LOCAL EXISTENCE AND UNIQUENESS

To actually produce local solutions we consider viscous regularization of the system
pt + V- (up) =elp

43
(43) ur +u - Vu = Cy(u, p) + eAu,

First, we show that this regularization is sufficient to obtain local solutions via the standard fixed
point argument. Second, we show that such regularization does not interfere with the a priori
estimates we have obtained in the previous sections.

To prove local estimates of smooth solutions to (43) we consider the mild formulation

t
plt) = — [ IV (up) () s
(44) o '
u(t) = e Pug — / =By, . Vu(s) ds +/ EEIAC, (u, p)(s) ds.
0 0
Let us denote by Z = (p,u) the state variable of our system and by T[Z](t) the right hand side
of the mild formulation. In order to apply the stadard fixed point argument we have to show that
T leaves the set C([0,T5s.); Bs(Zp)) invariant, where Bs(Zy) is the ball of radius e around initial
condition Zj, and that it is a contraction. We limit ourselves to showing details for invariance as
the estimates involved there are identical to those required to also prove Lipschitzness.
First we assume that p has no vacuum: po(x) > ¢y > 0. The metric we are using the same as
before p € H™*NL', uw € H™*!. Note that if § > 0 is small enough then for any ||p— pol| gmia < &
which has the same mass [ p = [ po, one obtains

(45) () > Jeo
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So, let us assume that Z € C([0,T5); Bs(Zo)). It is clear that |[e*2Zy — Zo|| < § provided time ¢
is short enough. The Z has some bound || Z|| < C. Using that let us estimate the norms under the
integrals. First, recall that |[Ane®™® |22 < ta% In the case a > 1, we have

t
Hé?mAa/ AT . (up)(s)ds
0

t 1 N
2 S/o mua up)(s)|l2ds

t
< - . . < a/2 - 2
< [ e i ol da < €310 < &
provided Ty is small enough. In the case a < 1, we combine instead one full derivatives with the
heat semigroup, and the rest ™% gets applied to up, which produces a similar bound.

Moving on to the u-equation, we have

t
Ham'H / =98y, . Vu(s) ds

t 1 -
0 < [ e V)l ds

2
t

1 2,172 _ 0

S/o m”UHHmHHUHHm ds < C/% < >

As to the commutator form, for a < 1 the computation is very similar: we combine one derivative
with the heat semigroup and for the rest we use (15):

N N N
10™Cs(u, p)ll2 < llullmiallplimea < C*,

and the rest follows as before. When o > 1 we need to use the refined estimate (17). Namely, it
follows from the first in (17) by keeping the highest norms only,

I£of 1 grm S cellpl Fm—rrose |1l grmsa
Lo f lgm-1 S cellplFom-2tare 1] gm-rsa

Therefore, by interpolation, we have an estimate in the fractional space H™ 145 for 0 < s < 1:

N
(46) Lo Nl gm—rvs S Mol rm—sare [l rm—1+ats

Taking s = 2 — « yields

(47) L6 f | ms1-a S o0 Fm—rase 1F 1 gmsa-

Combining « derivatives with the heat, and using the inequality above with ¢ = 1, we obtain

t 1
2§/0 (t—s)a/ZH

t
1 N 2,1—aj2 _ 0
< [ e el ds < €100 <

t
/0 Aaea(t—s)AAm+1—aC¢(u’ p)u(s) ds

Lo(up)| g -+ 1L (P frms1-a] ds

We have proved that | T[Z](t) — Zo|| < J, and the proof is complete.

The obtained interval of existence of course depends on € as it enters into all the estimates of
the integrals. In order to conclude the local existence argument we still have to show that our a
priori bound

(48) dy <yn

g™~
is independent of €. This would allow us to extend 7. s to a time dependent on the initial condition
only. Then the classical compactness argument would apply to pass to the limit as € — 0 in the
same state space (u, p) € Cy([0,T); (H™ N L) x H™).
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It is clear that the u-equation will not see the effect of viscous regularization because the term
produced by the energy method is —e[0™ 2u||3. The e-equation, however, will produce several
extra terms:

(49) e+ V- (ue) = (V-u)? — Tr(Vu)? + Ly, (p) + Lyg (pu) — 26LygVp — eLagp + e,

After the test, the extra terms become
(50) = ellelmsn — 2600 LygVp, 0™ e) — (0 Lagp, 0 le)
1 _ _
< —§€H€Hfgm+1 + 8|0 Loy Vpll3 + e 0™ Lagpll3.

Let us observe that the residual two terms present special parts of the expansion of the commutator
we have estimated in Lemma 3.4 for m — m + 1. So, from (22) we obtain
_ - N
107 Loy V3 + 0™ Lagpllz S N0l Fmra (16117 s g se + 12l Gmirig )+
2 2 2
RVl N o V| ST | /] S

Let us recall that we have another e-gain term from viscous regularization:

_EHam+2uH§ljm+1 - §€||e”?-'[m+1 rg _88727/anH%}m+l+a + EYTrJX

By a computation similar to (21) the residual term can be estimated by

el Ls Vol + €™ LagolB S 5o ol dmsren + VY-
So, the total influence of the viscous term on a priori estimates will be an additional ¢Y,Y added
o (48) which has no effect.

Having obtained uniformly bounded solutions (uf, p?) € C([0,T); H™*! x H™*®) on a common
time interval we pass to the w*-limit in the top space and strong limit in any lower regularity space
H™H1=0 5 gm+a=d which guarantees that the limit will actually be weakly continuous in the top
space. This concludes the proof of local existence.

Let us briefly address the uniqueness as it is essentially a straightforward consequence of the
estimates we obtained so far. One assumes that there is a pair of solutions (v, p'), (u”, p") in the
same local class (6) sharing the same initial data. Let us note that the kernels being active will
differ as well, denote them ¢', ¢”, respectively. Denote p = p' — p", u = — ", ¢ = ¢ — ¢”,
e =¢€ —¢e”. We write the system for the tripple (u, p, e):

(51)
Op+ V- (up) + V- (up)=0
up +u-Vu' +u" - Vu = Cy(u, p') 4+ Cyr (u, p') + Cor (u”, p),
et +V-(ue)+V-(u"e)=V-uV-u'+ V- -u"V-u—Tr(VuVu') — Tr(Vu'"Vu)
+ at(ﬁqs(p,)) + 8t(£¢// (p)+ V- £¢(p’u’) + V- Ly (pu’) + V. £¢>// (p”u).

The analysis of this system resembles very closely the analysis we undertook to reach the Riccati
estimate for the grand quantity Y;,. We simply note that the u-equation shares the same dissipative
structure with Cy»(u, p') being the princial diffusion term, albeit with kernel being dependent on
p" rather than p’. This discrepancy, however, does not alter the estimate (35), as we assume
no-vacuum for both densities to hold. With the dissipation at hand, the rest of the estimates
repeat those presented above, and it would be impractical to reproduce the entire argument for the
remaining parts of the system (51).
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7. APPENDIX: VARIANTS OF INTRINSIC DEFINITIONS OF A SOBOLEV SPACE.

In the proof we encountered the following quantity
h .0) — g(x)
Do) = [, ML o)y,
T2n

|Z|n+a

where 6 € 92(0, e1). It is not essential where exactly 6 is localted as long as it is uniformly bounded.

Lemma 7.1. Let 0 < a < 2. Then there exists a constant Cyy > 0 such that for all g € H*'? one
has

Da(g9) < Csllgll a2
Proof.
’2
dz.

M)y e + U0 = 9@l 4 g, S~ ppagpe [ ML
L. dzdz= Y G0 |

’Z‘n—i-a ’Z‘n—l—a
kezn
Since
eill21U=0 _ 1\ < min{2, |k||2|}
the splitting of the integral into small scale |z| < 1/|k| and large scale |z| > 1/|k| as in the classical
case, shows that the integral is bounded by |k|* which implies the claim. O
Similarly goes the proof of the next lemma.

Lemma 7.2. Let 0 < o < 2. Then there exists a constant Co, > 0 such that for all g € H® one has

h(|z ingk
| lot o+ 161020) + gt~ 41020) 2601 " T | < Callo

2
Proof.

T7ik
[ ot + 100+ ot~ 210:0) — 290 MDA |

2

- ik|z ik h(|z))zU2"
_ Z ’g(k)‘Q / (€k| \UZG_’_e k| |U29_2)Wdz

n

kezn
2
< (k)12 ik:|z|U.0 —ik|2|U=0 _ 9 h(’ZDd
< ST @[ e +e |
kEZn ’]I‘TL

The integral is estimated with the use of
eI 4 om0 _ 9] < ming3, 22k}

and splitting as before into |z| < 1/|k| and |z| > 1/|k|. The result is |k|* and the formula
follows. O
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