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Abstract. In this paper we address the problem of well-posedness of multi-dimensional topological
Euler-alignment models introduced in [21]. The main result demonstrates local existence and
uniqueness of classical solutions in class (⇢, u) 2 H

m+↵ ⇥H
m+1 on the periodic domain Tn, where

0 < ↵ < 2 is the order of singularity of the topological communication kernel �(x, y), and m =
m(n,↵) is large. Our approach is based on new sharp coercivity estimates for the topological
alignment operator

L�f(x) =

ˆ
Tn

�(x, y)(f(y)� f(x)) dy,

which render proper a priori estimates and help stabilize viscous approximation of the system.
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1. Introduction

Several recent field studies on animal and human behavior revealed that in some cases commu-
nication between agents is dominated by so-called topological interactions. Topological, as opposed
to the classical metric, interactions are based on the principle that a given agent (bird, fish, hu-
man, etc) is only capable to sense a limited number of other agents in its immediate proximity to
adjust its direction of motion, see [1, 2, 7, 18] and references therein. Kinetic models interpreting
such topological interactions as the K-nearest neighbor rule were studied at length by Blanchet
and Degond in [3, 4]. In the context of Cucker-Smale type alignment model introduced in [8, 9]
Haskovec [15] proposed a topological interaction �(d), which depends on asymmetric “distance”
d(x, y) between agents x and y defined by counting all agents crowded in the ball of radius |x� y|
centered at x. Thus, in crowded directions, propagation of information is hindred by the higher
density. Under a global in time graph connectivity assumption – one that is guaranteed to hold,
for instance, in the classical metric case such as

(1) �(x, y) =
H

(1 + |x� y|2)�/2
, �  1,
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it is shown that the system flocks.
Recently, newly designed topological protocols resurfaced in the context of a di↵erent, although

not unrelated, problem of flock self-organization under purely local interactions. To recall let us
consider the hydrodynamic Euler-alignment system (macroscopic counterpart of the agent-based
Cucker-Smale system):

(2)

8
<

:

⇢t +r · (⇢u) = 0,

ut + u ·ru =

ˆ
D
�(x, y)(u(t, y)� u(t, x))⇢(t, y) dy,

where D is an environment, typically assumed to be Rn or Tn, see [13, 14, 12] for derivation. For
kernels with non-integrable at infinity tails, like those of Cucker-Smale type (1), the system is shown
to exhibit unconditional exponential alignment

ku(t)� ūk1 . e
��t

,

and flocking diam supp ⇢(t)  D < 1, see Tadmor and Tan [26]. While long range communication
is indeed relevant in some technological applications, such as its remarkable adaptation to the
Darwin mission, [17], in relation to biological systems where communication almost always has a
finite reach,

supp� ⇢ {|x� y| < r0},
the fundamental issue of self-organization remained open. To be mathematically consistent the
problem ought to be considered in the ”bulk” of the flock modeled by periodic domain Tn, as it
is easy to produce a counterexample on Rn by placing two distant and disconnected flocks with
opposite momenta in the same system.

To address this problem a new topological model was introduced in [21]. The communication
protocol involves a singular, local, symmetric kernel �(x, y) with adaptive di↵usion. The adaptive
di↵ution is a mechanism of active recalibration of communication strength based on the density of
the crowd in an intermediate region between a given pair of agents. Specifically, it is postulated
that the strength of interactions between (x, y) is inversely proportional to the mass of a symmetric

region ⌦(x, y) = ⌦(y, x) (a key di↵erence from Haskovec’s model) at time t which is encoded into
the topological quasi-distance function

d(x, y) =

 ˆ
⌦(x,y)

⇢(t, ⇠) d⇠

!1/n

.

We define �(x, y) as a non-convolution type singular kernel of degree 0 < ↵ < 2 by

(3) �(x, y) =
h(|x� y|)

|x� y|n+↵�⌧d⌧ (x, y)
,

where h = h(r) is a radial smooth bump function supported on a ball of radius r0 – a communication
cuto↵ scale, and ⌧ � 0 is a parameter that gauges presence of topological e↵ects in the system. The
new protocol (3) reflects the core principle of topological interaction – information spreads faster
in thinner regions and slower is dense regions.

Theoretical restrictions on what the domain ⌦(x, y) might be are rather loose and can be calibrate
according to a specific application. For example, [21] considers the American football body of
revolution. Specifically, we require the family {⌦(x, y)}x,y2D to be self-similar, i.e. obtained by
rescaling and rotating of a basic domain ⌦0 = ⌦(�e1, e1) such that

(D1) @⌦0 is smooth except at ±e1 where it is Lipschitz of conical opening of degree < ⇡,
(D2) ⌦0 = �⌦0,
(D3) ⌦0 ⇢ B1(0).

Figure 1 shows a prototype family of such domains. The global self-organization of topological
systems was established in the following theorem.
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x y
⌦(x, y)

Figure 1. Communication domain satisfying assumptions (D1)–(D3)

Theorem 1.1 ([21]). Suppose ⌧ � n. Then any classical solution (u, ⇢) to (2) on the torus Tn

satisfying the hydrodynamic connectivity condition

(4) ⇢(t, x) & 1

1 + t

aligns to its conserved momentum ū at a logarithmic rate

ku(t)� ūk1 . 1p
ln t

.

Condition (4) presents a degree of hydrodynamic connectivity required for the result to hold – a
very common and often necessary assumption in the literature on collective behaviour. Remarkably,
it holds true automatically in the one dimensional case, n = 1, see the discussion in [23, 21].

Regularity theory of metric models (2), i.e. where �(x, y) = �(|x � y|) is studied in a body of
literature [5, 6, 10, 16, 11, 22, 23, 24, 20, 27, 26], and is most completely understood only in one
dimensional settings due to an extra conserved quantity

(5) e = ux + � ⇤ ⇢, et + (ue)x = 0,

which allows to directly control ux. For the smooth kernel case this leads to Burgers’ type threshold
condition e0 � 0 to guarantee global existence, see Carrillo et al [5]. For singular communication,
�(r) = 1

r1+↵ , additional parabolic structure leads to regularization and global existence for any
smooth non-vacuous data on T, [11, 22, 23, 24]. In multi-D, small initial data results were proved
in [10, 20, 16].

Topological models presented a new set of challenges from the perspective of regularity theory as
they do not fit directly under any studied class of fractional drift di↵usion equations, see [19, 25].
The one dimensional case has been treated in the same article [21] where global wellposedness was
established in class u 2 H

m+1, ⇢ 2 H
m+↵ for ⌧  ↵.

The primary goal of this paper is to lay a technical foundation for the study of topological
models by establishing local well-posedness for solutions in higher Sobolev classes in arbitrary
spacial dimension n � 1.

Theorem 1.2. Let 0 < ↵ < 2 and ⌧ � 0. For any initial data u0 2 H
m+1(Tn), ⇢0 2 H

m+↵(Tn),
m � m(↵, n), with no vacuum ⇢0(x) > 0 there exists a unique non-vacuous solution to the system

(2)-(3)-(D2) on a time interval [0, T0) where T0 depends on the initial conditions, in the class

u 2 Cw([0, T0), H
m+1) \ L

2([0, T0), H
m+1+↵

2 )

⇢ 2 Cw([0, T0), H
m+↵).

(6)
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Here, Cw stands for weakly continuous functions.
The main technical challenge in proving Theorem 1.2 is the presence of derivative overload in

the continuity equation. In direct energy estimates, it simply takes more derivatives than it can
handle a priori. The natural way to handle this di�culty, as was done in previous works on 1D
case [11, 22, 23, 24, 21], is to consider a multi-dimensional version of the e-quantity given by

e = r · u+ L�⇢,

where L� is the singular alignment operator associated with the topological kernel �:

(7) L�f =

ˆ
Tn
�(x, y)(f(y)� f(x)) dy.

One proceeds to replace the continuity equation with an equation for e. However, unlike in 1D, it
no longer satisfies the pure conservation law (5) due to first, the appearence of extra stresses as in
the metric case, see for example [16], and second, residual terms coming from active dependency
of the kernel on ⇢:

(8) et +r · (ue) = (r · u)2 � Tr(ru)2 + L�t(⇢) + Lr�·(⇢u).

By replacing the (u, ⇢)-system with the new (u, e)-system, we essentially move the overload problem
from transport to those last two residual terms in (8). The advntage is that the latter have more
geometric structure which we handle by developing an ”easing” technique, which allows to transfer
analysis from the bulk of communication region to its boundary or other more regular terms in the
equation.

The second technical ingredient of the proof is to ensure that the membership of the new pair
(u, e) in class H

m+1 ⇥ H
m is in fact equivalent to the original setting of (u, ⇢) being in class

H
m+1 ⇥H

m+↵. This is done by establishing sharp coercivity estimates

(9) kL�fkḢm ⇠ kfk
Ḣm+↵ + lower order terms,

which reflect a seemingly natural fact that L� appears to be of order ↵. This fact, however, is far
from obvious given that the active dependency on the density in � may influence the order of the
operator due to the density being limited it its own class of regularity. In Proposition 3.1 we detail
exactly how the density regularity enters into the equivalence relation (9).

Lastly, we note that the membership of u in L
2([0, T0), H

m+1+↵
2 ) is orginated of course from the

dissipation. A similar dissipative structure can be seen in the continuity equation if written in the
form

(10) ⇢t + u ·r⇢+ e⇢ = ⇢L�⇢.

However, presence of e injects a rough forcing term e⇢ that drives the density out of the expected
smoother class Hm+↵+↵

2 . We therefore cannot ensure a similar membership of ⇢ in this smoother
class.

Taking all the precausions mensioned above into consideration our general strategy in establishing
Theorem 1.2 will be to trace the grand quantity

(11) Ym = kuk2
Ḣm+1 + kek2

Ḣm + k⇢k2
Ḣm + ⇢+ ⇢

�1
,

where ⇢ = min ⇢, ⇢ = max ⇢, and to obtain a short term control over Ym by proving a priori Riccati
type equation

(12)
d

dt
Ym  CY

N

m ,

where N 2 N may be large. Coercivity estimates (9) demonstrate that Ym is equivalent to control-
ling u in H

m+1 and ⇢ in H
m+↵. The actual realization of such a priori estimate presents itself in a

viscousity-regularized system which produces a unique solution via valishing viscosity limit as we
detail in Section 6.



WELL-POSEDNESS OF TOPOLOGICAL MODELS 5

The proof is split between several sections. In Section 2 we set the notation and make elementary
a priori estimates on lower order terms in Ym. Section 3 is entirely devoted to coercivity bounds
on the alignment operator via commutator estimates. Sections 4 and 5 detail a priori estimates on
the u and e equations, respectively. In Section 6 we conclude by finding local solutions via viscous
regularization scheme and establish stability of our a priori estimates under such approximation.

2. Preliminaries

In this section we go through a few quick computations that establish a priori estimates on the
lower order terms in the grand quantity Ym (11), namely, k⇢k2

Ḣm + ⇢+ ⇢
�1.

The bound on k⇢k2
Ḣm follows by a simple classical commutator estimate. Indeed, we have

⇢t + u ·r⇢+ (r · u)⇢ = 0.

So, testing with @2m⇢ we obtain

d

dt
k⇢k2

Ḣm =

ˆ
(r · u)|@m⇢|2 dx�

ˆ
(@m(u ·r⇢)� u ·r@m⇢)@m⇢ dx�

ˆ
@
m((r · u)⇢)@m⇢ dx.

Recalling the classical commutator estimate

(13) k@m(fg)� f@
m
gk2  |rf |1kgk

Ḣm�1 + kfk
Ḣm |g|1,

we obtain, for m >
n

2 ,

d

dt
k⇢k2

Ḣm  |ru|1k⇢k2
Ḣm + kuk

Ḣmk⇢kḢm |r⇢|1 + kuk
Ḣm+1k⇢kḢm |⇢|1  CY

3/2
m .

Next, di↵erentiating the maximum we obtain

d

dt
⇢  |ru|1⇢,

and similarly,
d

dt
⇢
�1  |ru|1⇢�1

.

Thus,
d

dt
(k⇢k2

Ḣm + ⇢+ ⇢
�1) . Y

3
m.

Having these simple bounds out of the way, the main focus now will be on obtaining similar bounds
on the first two components of Ym and ensuring that Ym is comparable with the spaces in which
we are proving local well-posedness.

3. Coercivity bounds on L�

Letting y = x+ z and defining the increment operator �zf(x) = f(x+ z)� f(x) we can rewrite
the operator as

L�f =

ˆ
Tn
�(x, x+ z)�zf(x) dz.(14)

Proposition 3.1. For any su�ciently large m 2 N and 0 < ↵ < 2, ⌧ � 0, there exists a polynomial

pN of degree N = N(m,n,↵, ⌧) 2 N such that the following inequalities hold

kL�fk2
Ḣm . ⇢

�2⌧/n(kfk2
Ḣm+↵ + k⇢k2

Ḣm+↵) + pN (⇢, ⇢�1
, k⇢k

Ḣm�1+↵ , kfk
Ḣ

2+n
2
),

kL�fk2
Ḣm & ⇢

�2⌧/n(kfk2
Ḣm+↵ + k⇢k2

Ḣm+↵)� pN (⇢, ⇢�1
, k⇢k

Ḣm�1+↵ , kfk
Ḣ

2+n
2
).

(15)



6 DAVID N. REYNOLDS AND ROMAN SHVYDKOY

As a consequence of this proposition we obtain control on the key norm k⇢k
Ḣm+↵ , that will

appear in the main estimates on Ym:

(16) k⇢k2
Ḣm+↵ . Y

N

m ,

for some large N 2 N. Indeed, setting f = ⇢ in the above, we find (N may change from line to line)

k⇢k2
Ḣm+↵ . ⇢

2⌧/nkL�⇢k2
Ḣm + pN (⇢, ⇢�1

, k⇢k
Ḣm�1+↵)

 ⇢
2⌧/nkuk2

Ḣm+1 + ⇢
2⌧/nkek2

Ḣm + pN (⇢, ⇢�1
, k⇢k

Ḣm�1+↵)  Y
4
m + pN (⇢, ⇢�1

, k⇢k
Ḣm�1+↵).

Now by the same estimate applied to k⇢k
Ḣm�1+↵ we have

k⇢k2
Ḣm�1+↵  Y

4
m�1 + pN (⇢, ⇢�1

, k⇢k
Ḣm�2+↵).

However, trivially Ym�1 . Ym, for m > 1, and k⇢k
Ḣm�2+↵  k⇢k

Ḣm for all 0 < ↵ < 2 with the
latter being included into the definition of Ym. Hence,

k⇢k2
Ḣm+↵ . Y

4
m + pN (⇢, ⇢�1

, Ym)  Y
N

m ,

and (16) follows.
Conversely, it is clear that k⇢k

Ḣm+↵ controls kL�⇢kḢm by first in (15). So, along with kuk2
Ḣm+1

it controls e. We obtain
Ym ⇠ kuk2

Ḣm+1 + k⇢k2
Ḣm+↵ + ⇢+ ⇢

�1
.

Remark 3.2. Although, as we have just seen, estimate (15) is su�cient to establish control over
k⇢k

Ḣm+↵ , what one can actually prove following our argument below is a somewhat sharper version
of (15) where the dependence on the density ⇢ is of order below m + ↵. Namely, for every " > 0
there exists a c" > 0 such that

kL�fk2
Ḣm . kfk2

Ḣm+↵ + k⇢kN
Ḣm�1+↵kfk2Ḣm�1+↵ + k⇢k2

Ḣmkfk2
Ḣ

2+n
2
+ c"k⇢k2

Ḣm�1+↵+"kfk2
Ḣ

1+n
2
,

kL�fk2
Ḣm & kfk2

Ḣm+↵ � k⇢kN
Ḣm�1+↵kfk2Ḣm�1+↵ � k⇢k2

Ḣmkfk2
Ḣ

2+n
2
� c"k⇢k2

Ḣm�1+↵+"kfk2
Ḣ

1+n
2
.

(17)

Here inequality signs .,& mean up to multiples of ⇢ and ⇢.

As a first step in proving Proposition 3.1 we show a basic coercivity estimate.

Lemma 3.3 (Basic coercivity). For any 0 < ↵ < 2 the following bounds hold

kL�fk22 . ⇢
�2⌧/nkfk2

Ḣ↵ + ⇢
2⌧/n

⇢
�2�4⌧/n|r⇢|21kfk2

Ḣ↵/2 ,

kL�fk22 & ⇢
�2⌧/nkfk2

Ḣ↵ � ⇢
2⌧/n

⇢
�2�4⌧/n|r⇢|21kfk2

Ḣ↵/2 .

(18)

Proof. Let us denote  
⌦(0,z)

⇢(x+ ⇠) d⇠ =
1

|⌦(0, z)|

ˆ
⌦(0,z)

⇢(x+ ⇠) d⇠.

Note that |⌦(0, z)| ⇠ |z|n. In order to remove the x-dependence from the kernel we “freeze” the
coe�cient, meaning replace d with the average value and then replace it with ⇢(x):

L�f(x) = ⇢(x)�⌧/n

ˆ
Tn

h(|z|)
|z|n+↵

�zf(x)dz+

ˆ
Tn

h(|z|)
|z|n+↵

0

B@
1

h�
⌦(0,z) ⇢(x+ ⇠) d⇠

i
⌧/n

� 1

⇢⌧/n(x)

1

CA �zf(x)dz.

The first integral represents the truncated fractional Laplacian ⇤↵, and hence is bounded above
and below by ⇢�⌧/nkfk

Ḣ↵ and ⇢�⌧/nkfk
Ḣ↵ , respectively. In the residual term we estimate

1
h�

⌦(0,z) ⇢(x+ ⇠) d⇠
i
⌧/n

� 1

⇢⌧/n(x)
=
⇢
⌧/n(x)�

h�
⌦(0,z) ⇢(x+ ⇠) d⇠

i
⌧/n

h�
⌦(0,z) ⇢(x+ ⇠) d⇠

i
⌧/n

⇢⌧/n(x)
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and by Taylor expansion,
������
⇢
⌧/n(x)�

" 
⌦(0,z)

⇢(x+ ⇠) d⇠

#
⌧/n
������
 ⇢

⌧/n
⇢
�1

�����⇢(x)�
 
⌦(0,z)

⇢(x+ ⇠) d⇠

�����  ⇢
⌧/n

⇢
�1|r⇢|1|z|.

So, the residual term is bounded by

⇢
⌧/n

⇢
�1�2⌧/n|r⇢|1

ˆ
Tn

h(|z|)
|z|n+↵�1

|�zf(x)|dz.

Estimating the L
2-norm of the remaining integral for ↵ < 1 we get a bound by kfk2 by the

Minkowskii inequality, and for ↵ � 1,
����
ˆ
Tn

h(|z|)
|z|n+↵�1

|�zf(x)|dz
����
2

=

����
ˆ
Tn

h(|z|)
|z|

n
2�"

|�zf(x)|
|z|

n
2+↵�1+"

dz

����
2

 C"

ˆ
Tn

|�zf(x)|2

|z|n+2(↵�1+")
dz.

Integrating in x we obtain  kfk2
Ḣ↵�1+" . In either case, we can increase regularity to kfk

Ḣ↵/2 .
⇤

We now want to lift the base regularity into higher order Sobolev spaces Hm. The natural way
to obtain such estimates is through a commutator

(19) @
m

i L�f = L�@
m

i f + [L�, @
m

i ]f.

The commutator can be expanded by the Leibniz rule,

[L�, @
m

i ]f =
m�1X

l=0

✓
m

l

◆
L
@
(m�l)
i �

@
l

if.

The main term in (19), upon summation over i enjoys the estimates from Lemma 3.3:

nX

i=1

kL�@
m

i fk22 . ⇢
�2⌧/nkfk2

Ḣm+↵ + ⇢
2⌧/n

⇢
�2�4⌧/n|r⇢|21kfk2

Ḣ
m+↵

2
,

nX

i=1

kL�@
m

i fk22 & ⇢
�2⌧/nkfk2

Ḣm+↵ � ⇢
2⌧/n

⇢
�2�4⌧/n|r⇢|21kfk2

Ḣ
m+↵

2
.

(20)

By interpolation and the generalized Young inequality, we further obtain

⇢
2⌧/n

⇢
�2�4⌧/n|r⇢|21kfk2

Ḣ
m+↵

2
 ⇢

2⌧/n
⇢
�2�4⌧/n|r⇢|21kfk2✓m,n,↵

Ḣ
2+n

2
kfk2�2✓m,n,↵

Ḣm+↵

 c"pN (⇢, ⇢�1
, k⇢k

Ḣm�1+↵ , kfk
Ḣ

2+n
2
) + "⇢

�2⌧/nkfk2
Ḣm+↵ .

(21)

The highest term "⇢
�2⌧/nkfk2

Ḣm+↵ for small " can be absorbed into the leading terms in (20). Thus,
we obtain required bounds (15) from the highest term. The rest follows from the following estimate
on the commutator.

Lemma 3.4 (Main commutator estimate). We have the following inequality

(22) k[L�, @
m

i ]fk22 . k⇢kN
Ḣm�1+↵(kfk2

Ḣ
m� 1

2+↵
+ kfk2

Ḣ
m+↵

2
) + (k⇢k2

Ḣm + k⇢k2
Ḣ

m� 1
2+↵

)kfk2
Ḣ

2+n
2
.

for some N = N(m,n,↵, ⌧) 2 N. Here, . means up to a factor of ⇢
a
⇢
�b
.

All the terms on the right hand side of (22) can be treated by interpolation between H
m+↵ and

a lower order metric. A computation similar to (21), thus, readily implies (15).
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Proof. In the course of this proof all inequalities are understood up to a factor of ⇢a⇢�b, where
a, b > 0 may change from line to line. We omit those factors for the sake of brevity.

Let us denote by R(⇢, f) the right hand side of (22).
We denote for short @i = @. To show the commutator is of lower order in f we need obtain

bounds on kL@m�l�@
l
fk22, for l 2 {0, ...,m � 1} but first we expand @

m�l
� using Faa di Bruno’s

Formula.
Writing �(x, y) as �(x, x+ z), we see that the derivatives fall only on the topological part of the

kernel. Thus we have

@
m�l

�(x, x+ z) = |z|�(n+↵�⌧)
h(|z|)@m�l

d
�⌧ (x, x+ z),(23)

@
m�l

d
�⌧ (x, x+ z) = @

m�l

"ˆ
⌦(x,x+z)

⇢(⇠)d⇠

#�⌧/n

= @
m�l[dn(x, x+ z)]�⌧/n

.(24)

Denoting g = d
n and h(g) = g

�⌧/n, then using Faa di Bruno’s Formula gives,

@
m�l

d
�⌧ (x, x+ z) =

X (m� l)!

j1!1!j1j2!2!j2 ...jm�l!(m� l)!jm�l
h
(j1+...+jm�l)(g)

m�lY

k=1

⇣
@
k
g

⌘
jk

(25)

where the sum is over all (m� l)-tuples of integers j = (j1, ..., jm�l) satisfying

1j1 + 2j2 + ...+ (m� l)jm�l = m� l(26)

Any term in the commutator takes the form,

L@m�l�@
l
f(x) =

ˆ
Tn

h(|z|)
|z|n+↵�⌧

@
m�l[d�⌧ (x, x+ z)]�z@

l
f(x)dz.(27)

Then any term in the derivative will take the form

Ij[@
l
f ](x) :=

ˆ
Tn

h(|z|)
|z|n+↵�⌧

Q
m�l

k=1

⇣´
⌦(x,x+z) @

k
⇢(⇠)d⇠

⌘
jk

d⌧+|j|n(x, x+ z)
�z@

l
f(x) dz,(28)

where |j| =
P

m�l

k=1 jk.

Case 0 < ↵ < 1. First, we will look at
´
⌦(x,x+z) @

k
⇢(⇠) d⇠. We estimate it with the use of the

Hardy-Littlewood maximal function:
�����

ˆ
⌦(x,x+z)

@
k
⇢(⇠) d⇠

�����  |z|n 1

|z|n

ˆ
⌦(x,x+z)

|@k⇢(⇠)| d⇠  |z|nM [@k⇢](x),

where

M [g](x) = sup
r>0

1

rn

ˆ
Br(x)

|g(⇠)| d⇠.

So,

|Ij[@lf ](x)| 
m�lY

k=1

(M [@k⇢](x))jk
ˆ
Tn

h(|z|)|�z@lf(x)|
dz

|z|n+↵
.

To estimate the L
2-norm of Ij[@lf ] we pick a set of conjugate exponents pk, q such that

m�lX

k=1

2jk
pk

+
2

q
= 1
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and apply Hölder inequality

kIj[@lf ]k22 
m�lY

k=1

kM [@k⇢]k2jkpk

✓ˆ
Tn

✓ˆ
Tn

h(|z|)|�z@lf(x)|
dz

|z|n+↵

◆
q

dx

◆ 2
q

by the classical Hardy-Littlewood inequality,

.
m�lY

k=1

k@k⇢k2jkpk

✓ˆ
Tn

✓ˆ
Tn

h(|z|)|�z@lf(x)|
dz

|z|n+↵

◆
q

dx

◆ 2
q

.
m�lY

k=1

k@k⇢k2jkpk
k@lfk2

W↵+",q

by the Sobolev embeddings,


m�lY

k=1

k⇢k2jk
Ḣ

k+n( 12� 1
pk

)
kfk2

Ḣ
l+↵+"+n( 12� 1

q )
.

Let us make the following choice of exponents: pk = 2m
k
, q = 2m

l
. Then


m�lY

k=1

k⇢k2jk
Ḣ

k+n
2 (1� k

m )
kfk2

Ḣ
l+↵+"+n

2 (1� l
m )

.

Examining the regularity of the density norms obtained on the last line, we observe that for all
k = 1, . . . ,m� 1 we have

k +
n

2
(1� k

m
)  m� 1 + ↵,

provided m is large enough. So, the whole density product becomes bounded by a lower order term
for all l = 1, . . . ,m� 1:

m�lY

k=1

k⇢k2jk
Ḣ

k+n
2 (1� k

m )
 k⇢kN

Ḣm�1+↵ ,

for some possibly large N (we take the liberty of changing N from line to line in the sequel). When
l = 0, the product above still satisfies the same estimate for all multi-indeces j except one where
k = m, which can only happen if j = (0, . . . , 0, 1) due to the restriction given by (26). In this case
the density term reaches higher order norm k⇢k2

Ḣm .
As to the f -term, we have for l  m� 2

l + ↵+ "+
n

2
(1� l

m
) < m� 1 + ↵,

which contributes the lower order term. So, in this case, given the density estimates above, we have

kIj[@lf ]k22  k⇢kN
Ḣm�1+↵kfk2Ḣm�1+↵ + k⇢k2

Ḣmkfk2
Ḣ

2+n
2
 R(⇢, f), l = 0, . . . ,m� 2.

For future reference let us record the estimate for the particular subcase when l = 0, jm = 0:

(29) kI(j1,...,jm�1,0)[f ]k
2
2  k⇢kN

Ḣm�1+↵kfk2
Ḣ

2+n
2
.

For the remaining case of l = m� 1 we have k = 1, j1 = 1. So, as far as regularity of f ,

m� 1 + ↵+ "+
n

2m
< m+ ↵� 1

2
,

and hence,
kI(1)[@m�1

f ]k22  k⇢k2
Ḣ

1+n
2
kfk2

Ḣ
m+↵� 1

2
 R(⇢, f).
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The obtained estimates cover all the cases, so in summary we have obtained

(30) kL@m�l�@
l
fk22  R(⇢, f).

which proves (22).

Case 1  ↵ < 2. This is a more involved case since for the application of the Gagliardo-Sobolevskii
norm one has to include the next term in the Taylor finite di↵erence of f : �z@lf(x)� z ·r@lf(x).
We therefore add and subtract that term in the formula for Ij[@lf ](x):

Ij[@
l
f ](x) =

ˆ
Tn

h(|z|)
|z|n+↵�⌧

Q
m�l

k=1

⇣´
⌦(x,x+z) @

k
⇢(⇠)d⇠

⌘
jk

d⌧+|j|n(x, x+ z)
[�z@

l
f(x)� z ·r@lf(x)] dz

+

ˆ
Tn

h(|z|)
|z|n+↵�⌧

Q
m�l

k=1

⇣´
⌦(x,x+z) @

k
⇢(⇠)d⇠

⌘
jk

d⌧+|j|n(x, x+ z)
z ·r@lf(x) dz

:= Ij,1[@
l
f ](x) + Ij,2[@

l
f ](x).

The estimate on Ij,1[@lf ] goes in exact same way as in the previous case noting that the Gagliardo-
Sobolevskii definition applies to smoothness exponents away from the interger values, 2 > ↵+" > 1.
In Ij,2[@lf ] we symmetrize first

Ij,2[@
l
f ](x) = r@lf(x) ·

ˆ
Tn

h(|z|)
|z|n+↵�⌧

2

64

Q
m�l

k=1

⇣´
⌦(x,x+z) @

k
⇢(⇠)d⇠

⌘
jk

d⌧+|j|n(x, x+ z)
�

Q
m�l

k=1

⇣´
⌦(x,x�z) @

k
⇢(⇠)d⇠

⌘
jk

d⌧+|j|n(x, x� z)

3

75 z dz

= r@lf(x) ·
ˆ
Tn

h(|z|)
|z|n+↵�⌧

m�lY

k=1

 ˆ
⌦(x,x+z)

@
k
⇢(⇠)d⇠

!
jk
"
d
⌧+|j|n(x, x� z)� d

⌧+|j|n(x, x+ z)

d⌧+|j|n(x, x+ z)d⌧+|j|n(x, x� z)

#
z dz

+r@lf(x) ·
ˆ
Tn

h(|z|)
|z|n+↵�⌧d⌧+|j|n(x, x� z)

2

4
m�lY

k=1

 ˆ
⌦(x,x+z)

@
k
⇢(⇠)d⇠

!
jk

�

�
m�lY

k=1

 ˆ
⌦(x,x�z)

@
k
⇢(⇠)d⇠

!
jk
3

5 z dz

= Ij,2,1[@
l
f ](x) + Ij,2,2[@

l
f ](x).

By a straightforward computation,

|d⌧+|j|n(x, x� z)� d
⌧+|j|n(x, x+ z)|  |r⇢|1|z|⌧+|j|n+1

.

With this at hand we proceed to estimate Ij,2,1[@lf ](x):

|Ij,2,1[@lf ](x)|  |r@lf(x)|
m�lY

k=1

(M [@k⇢](x))jk
ˆ
Tn

h(|z|) dz

|z|n+↵�2
.

Since ↵ < 2, the integral converges. Thus,

kIj,2,1[@lf ]k22 
m�lY

k=1

k@k⇢k2jkpk
k@l+1

fk2q 
m�lY

k=1

k⇢k2jk
Ḣ

k+n( 12� 1
pk

)
kfk2

Ḣ
l+1+n( 12� 1

q )
.

Since l + 1 < l + ↵ + " by further increasing the smoothness of f the estimate blends with the
previous case.
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It remains to estimate Ij,2,2[@lf ](x). To do this we must estimate

m�lY

k=1

 ˆ
⌦(x,x+z)

@
k
⇢(⇠) d⇠

!
jk

�
m�lY

k=1

 ˆ
⌦(x,x�z)

@
k
⇢(⇠) d⇠

!
jk

.

We can rewrite such a di↵erence as
m�lY

k=1

a
jk
k

�
m�lY

k=1

b
jk
k

=
m�lX

k=1

a
j1
1 · · · ajk�1

k�1 (a
jk
k

� b
jk
k
)b

jk+1

k+1 · · · bjm�l

m�l
,

and furthermore,

a
jk
k

� b
jk
k

= (ak � bk)(a
jk�1
k

+ a
jk�2
k

bk + · · ·+ akb
jk�2
k

+ b
jk�1
k

).

We will focus on the main di↵erence ak � bk, while estimating all other terms with the maximal
function like before. We write, letting s = ↵� 1 + " < 1,ˆ

⌦(x,x+z)
@
k
⇢(⇠) d⇠ �

ˆ
⌦(x,x�z)

@
k
⇢(⇠)d⇠ =

ˆ
⌦(0,z)

@
k
⇢(x+ ⇠)� @

k
⇢(x� ⇠) d⇠

=

ˆ
⌦(0,z)

@
k
⇢(x+ ⇠)� @

k
⇢(x� ⇠)

|⇠|
n
pk

+s
|⇠|

n
pk

+s
d⇠ .

 ˆ
⌦(0,z)

|@k⇢(x+ ⇠)� @
k
⇢(x� ⇠)|pk

|⇠|n+spk
d⇠

!1/pk

|z|n+s

:= (Ds,pk@
k
⇢(x))1/pk |z|n+s

,

where
´
Ds,pg(x)dx = kgkp

W s,p . Then we can estimate the di↵erence in the products by

m�lY

k=1

 ˆ
⌦(x,x+z)

@
k
⇢(⇠) d⇠

!
jk

�
m�lY

k=1

 ˆ
⌦(x,x�z)

@
k
⇢(⇠) d⇠

!
jk

(31)

.
m�lX

k=1

m�lY

i=1
i 6=k

(M [@i⇢](x))ji(M [@k⇢](x))jk�1(Ds,pk@
k
⇢(x))1/pk |z||j|n+s

.

Therefore, returning to Ij,2,2[@lf ], we estimate in L
2, using the same Holder conjugates as before,

kIj,2,2[@lf ]k22

.
ˆ
Tn

|r@lf(x)|2
✓ˆ

Tn

h(|z|)
|z|n+↵�1�s

dz

◆2

⇥(32)

⇥

0

B@
m�lX

k=1

m�lY

i=1
i 6=k

(M [@i⇢](x))ji(M [@k⇢](x))jk�1(Ds,pk@
k
⇢(x))1/pk

1

CA

2

dx

. k@l+1
fk2q

0

B@
m�lY

i=1
i 6=k

k@i⇢k2jipi

1

CA k@k⇢k2(jk�1)
pk

k@k⇢k2
W

s,pk

 kfk2
Ḣ

l+1+n( 12� 1
q )

m�lY

i=1
i 6=k

k⇢k2ji
Ḣ

i+n( 12� 1
pk

)
k⇢k2(jk�1)

Ḣ
k+n( 12� 1

pk
)
k⇢k2

Ḣ
k+s+n( 12� 1

pk
)

= kfk2
Ḣ

l+1+n
2 (1� l

m )

m�lY

i=1
i 6=k

k⇢k2ji
Ḣ

i+n
2 (1� i

m )
k⇢k2(jk�1)

Ḣ
k+n

2 (1� k
m )

k⇢k2
Ḣ

k+s+n
2 (1� k

m )
.
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As before let us examine regularity of the density first. In any case when the top j-index vanishes,
jm = 0, so that i, k 2 {1, ...,m� 1} we have

i+
n

2
(1� i

m
)  m� 1 + ↵

k + s+
n

2
(1� k

m
)  m� 1 + ↵,

if m is large enough. So, in this case the entire product of densities is controlled by the lower order
norm:

m�lY

i=1
i 6=k

k⇢k2ji
Ḣ

i+n
2 (1� i

m )
k⇢k2(jk�1)

Ḣ
k+n

2 (1� k
m )

k⇢k2
Ḣ

k+s+n
2 (1� k

m )
 k⇢kN

Ḣm�1+↵ .

This applies in particular for all l = 1, . . . ,m�1 and even in the case l = 0 with j = (j1, ..., jm�1, 0).
Note that this also extends (29) to the entire range of ↵’s, 0 < ↵ < 2.

When k = m which is only attainable at l = 0, jm = 1 case, we are o↵ by ": the product collapses
to only one norm k⇢k2

Ḣm�1+↵+" while the f -term is of low order:

kIj,2,2[f ]k22  k⇢k2
Ḣm�1+↵+"kfk2

Ḣ
1+n

2
 k⇢k2

Ḣ
m� 1

2+↵
kfk2

Ḣ
1+n

2
 R(⇢, f).

Combined with the other j-indeces, the case l = 0 altogether gives the estimate above.
Next, for l = 1, . . . ,m� 2,

l + 1 +
n

2
(1� l

m
)  m� 1 + ↵.

So,
kIj,2,2[f ]k22  kfk2

Ḣm�1+↵k⇢k2Ḣm�1+↵  R(⇢, f).

For the only remaining case l = m� 1, the regularity exponent for f is

m+
n

2m
 m+

↵

2
,

while the density product is of course of lower than m � 1 + ↵ order as elucidated above. So, we
arrive at

kI(1),2,2[@m�1
f ]k22 . k⇢kN

Ḣm�1+↵kfk2
Ḣ

m+↵
2
 R(⇢, f).

⇤

4. A priori estimates on the velocity equation

The goal of this section is to establish a priori bound

(33) @tkuk2
Ḣm+1  CY

N

m .

Let us rewrite the velocity equation as

ut + u ·ru = C�(u, ⇢),

C�(u, ⇢)(x) =
ˆ
Tn
�(x, x+ z)�zu(x)⇢(x+ z) dz = L�(u⇢)� uL�⇢.

Let us apply @m+1 and test with @m+1
u. We have (dropping integrals signs)

@tkuk2
Ḣm+1 = �@m+1(u ·ru) · @m+1

u+ @
m+1C�(u, ⇢) · @m+1

u.

The transport term is estimated using the classical commutator estimate

@
m+1(u ·ru) · @m+1

u = u ·r(@m+1
u) · @m+1

u+ [@m+1
, u]ru · @m+1

u

Then

u ·r(@m+1
u) · @m+1

u = �1

2
(r · u)|@m+1

u|2  |ru|1kuk2
Ḣm+1 ,
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and using (13) for f = u, g = ru, we obtain

|[@m+1
, u]ru · @m+1

u|  |ru|1kuk2
Ḣm+1 .

Thus,
@tkuk2

Ḣm+1  kuk3
Ḣm+1 + @

m+1C�(u, ⇢) · @m+1
u.

In the rest of the argument we focus on estimating the commutator term. So, we expand by the
product rule

(34) @
m+1C�(u, ⇢) =

m+1X

k=k1+k2=0

(m+ 1)!

k1!k2!(m+ 1� k)!
C@m+1�k�(@

k1u, @
k2⇢).

Various term in this expansion will be estimated di↵erently. There is however one end-point term
which provides necessary dissipation :

(35) C�(@m+1
u, ⇢) · @m+1

u  �
⇢

|⇢|⌧/n1
kuk2

Ḣ
m+1+↵

2
.

Note that this particular term eventually guarantees inclusion of the velocity in class L2([0, T0);H
m+1+↵

2 )
as claimed in the statement of the main result.

Case k = 1, . . . ,m. The bulk of the terms can be estimated simultaneously. Those correspond to
the range k = 1, . . . ,m. We start by the standard symmetrization:ˆ
Tn

C@m+1�k�(@
k1u, @

k2⇢) · @m+1
u dx =

ˆ
T2n

�z@
k1u(x)@k2⇢(x+ z)@m+1

u(x)@m+1�k
�(x, x+ z) dz dx

=
1

2

ˆ
T2n

�z@
k1u(x)�z@

k2⇢(x)@m+1
u(x)@m+1�k

�(x, x+ z) dz dx

+
1

2

ˆ
T2n

�z@
k1u(x)@k2⇢(x)�z@

m+1
u(x)@m+1�k

�(x, x+ z) dz dx

= J1 + J2.

In the Faa di Bruno expansion of the kernel @m+1�k
�(x, x + z) we obtain a set of terms, again,

labeled by j = (j1, ..., jm+1�k) with

1j1 + ...+ (m+ 1� k)jm+1�k = m+ 1� k.

With the use of the Hardy-Littlewood maximal function as before we obtain

J1 
X

j

ˆ
T2n

|�z@k1u(x)�z@k2⇢(x)@m+1
u(x)|

m+1�kY

l=1

(M [@l⇢](x))jl
dz

|z|n+↵
dx

We pick a set of exponents qi =
2(m+1)

ki
, pl =

2(m+1)
l

:

1

2
+

1

q1
+

1

q2
+

m+1�kX

l=1

jl

pl
= 1.

We have

J1 
X

j

ˆ
T2n

|�z@k1u(x)|

|z|
n
q1

+↵k
m +"

|�z@k2⇢(x)|

|z|
n
q2

+↵(m�k)
m

|@m+1
u(x)|

|z|
n
2�"

m+1�kY

l=1

(M [@l⇢](x))jl

|z|
njl
pl

dz dx

 kuk
Ḣ

k1+
↵k
m +n

2
m+1�k1

m+1 +"
k⇢k

Ḣ
k2+

↵(m�k)
m +n

2
m+1�k2

m+1
kuk

Ḣm+1

m+1�kY

l=1

k⇢kjl
Ḣ

l+n
2

m+1�l
m+1

.
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Provided m is large enough and " is small enough we have

u : k1 +
↵k

m
+

n

2

m+ 1� k1

m+ 1
+ " < m+ 1 +

↵

2
,

⇢ : k2 +
↵(m� k)

m
+

n

2

m+ 1� k2

m+ 1
< m+ ↵

⇢ : l +
n

2

m+ 1� l

m+ 1
< m+ ↵,

for all k1 + k2 = k, l = 1, ...,m+ 1� k, k = 1, ...,m. Thus,

J1  Y
N

m + "kuk2
Ḣ

m+1+↵
2

(N will change from line to line). Note that the last term can be hidden into dissipation (35).
Moving on to J2,

J2 
X

j

ˆ
T2n

|�z@k1u(x)|
|z|

n
q1

+↵
2 +"

|@k2⇢(x)|
|z|

n
q2

�"

|�z@m+1
u(x)|

|z|
n+↵
2

m+1�kY

l=1

(M [@l⇢](x))jl

|z|
njl
pl

dz dx

 kuk
Ḣ

k1+
↵k
m +n

2
m+1�k1

m+1 +"
k⇢k

Ḣ
k2+

↵(m�k)
m +n

2
m+1�k2

m+1
kuk

Ḣm+1

m+1�kY

l=1

k⇢kjl
Ḣ

l+n
2

m+1�l
m+1

.

We now examine the remaining end-point cases.

Case k = 0. Here we deal with only one term

C@m+1�(u, ⇢) = L
@(m+1)�[u⇢]� uL

@(m+1)�⇢.

In the Faa di Bruno expansion of the kernel, we single out again the case j = (0, ..., 0, 1) from
the rest, because in the rest of the cases j = (j1, ..., jm, 0) we do not have to use the commutator
structure at all. Instead we have by (29), (noting that m ! m+ 1) and the control bound (16),

ˆ
Ij[u⇢] · @m+1

u dx  kIj[u⇢]k22kukḢm+1  pN (k⇢k
Ḣm+↵)ku⇢k2

Ḣ
2+n

2
kuk

Ḣm+1

. 1 + k⇢kN
Ḣm+↵ + kuk8

Ḣ
2+n

2
+ kuk2

Ḣm+1  Y
N

m .

And similarly, ˆ
uIj[⇢] · @m+1

u dx  |u|1kIj[⇢]k22kukḢm+1  Y
N

m .

Let us consider now the more involved term corresponding to j = (0, ..., 0, 1). In this case

ˆ
(Ij[u⇢]� uIj[⇢]) · @m+1

u dx =

ˆ
T2n

h(|z|)
´
⌦(x,x+z) @

m+1
⇢(⇠) d⇠

|z|n+↵�⌧d⌧+n(x, x+ z)
�zu(x)⇢(x+ z)@m+1

u(x) dz dx

after symmetrization,

=
1

2

ˆ
T2n

h(|z|)
´
⌦(x,x+z) @

m+1
⇢(⇠) d⇠

|z|n+↵�⌧d⌧+n(x, x+ z)
�zu(x)�z⇢(x)@

m+1
u(x) dz dx

+
1

2

ˆ
T2n

h(|z|)
´
⌦(x,x+z) @

m+1
⇢(⇠) d⇠

|z|n+↵�⌧d⌧+n(x, x+ z)
�zu(x)⇢(x)�z@

m+1
u(x) dz dx.
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The highest density term su↵ers a derivative overload and needs to be reduced:ˆ
⌦(x,x+z)

@
m+1

⇢(⇠) d⇠ =

ˆ
@⌦(x,x+z)

@
m
⇢(⇠)⌫⇠ d⇠ =

ˆ
@⌦(0,z)

@
m
⇢(x+ ⇠)⌫⇠ d⇠

= |z|n�1
ˆ
@⌦(0,e1)

@
m
⇢ (x+ |z|Uz✓) ⌫✓ d✓

where Uz is the orthogonal transformation mapping e1 to ẑ,

= |z|n�1
ˆ
@⌦(0,e1)

[@m⇢ (x+ |z|Uz✓)� @
m
⇢(x)] ⌫✓ d✓.

We recover one power of z by |�zu|  |z|kruk1 and in the first intergal |�z⇢|  |z|kr⇢k1. Putting
together we estimate the integrals by

 kruk1kr⇢k1
ˆ
@⌦(0,e1)

¨
T2n

h(|z|) |@m⇢ (x+ |z|Uz✓)� @
m
⇢(x)|

|z|
n
2+↵� 1

2

|@m+1
u(x)|

|z|
n
2�

1
2

dz dx d✓

+ kruk1k⇢k1
ˆ
@⌦(0,e1)

¨
T2n

h(|z|) |@m⇢ (x+ |z|Uz✓)� @
m
⇢(x)|

|z|
n
2+

↵
2

|�z@m+1
u(x)|

|z|
n
2+

↵
2

dz dx d✓

 kruk1kr⇢k1kuk
Ḣm+1 + kruk1k⇢k1kuk

Ḣ
m+1+↵

2
(D2↵�1(@

m
⇢) +D↵(@

m
⇢)),

where

Ds(g) =

ˆ
T2n

h(z) |g (x+ |z|Uz✓)� g(x)|2

|z|n+s
dz dx.

By Lemma 7.1 this expression is bounded by the H
s
2 norm. Thus,

(36)

ˆ
(Ij[u⇢]� uIj[⇢]) · @m+1

u dx  "kuk2
Ḣ

m+1+↵
2
+ Y

N

m .

Case k = m + 1. In this case the kernel gets no derivatives, however, we deal with a total of m
terms C�(@lu, @m+1�l

⇢) for l = 0, . . . ,m (note that the case l = m + 1 yields the dissipative term
which has been considered already). Let us consider first the end-point case of l = 0. In this case
the density su↵ers a derivative overload. We apply the following “easing” technique:ˆ

Tn
C�(u, @m+1

⇢) · @m+1
u dx =

¨
T2n

�(x, x+ z)�zu(x)@
m+1

⇢(x+ z)@m+1
u(x) dz dx.

We observe that

@
m+1

⇢(x+ z) = @z@
m

x ⇢(x+ z) = @z(@
m

x ⇢(x+ z)� @
m

x ⇢(x)) = @z�z@
m
⇢(x).

Now we integrate by parts in z:ˆ
Tn

C�(u, @m+1
⇢) · @m+1

u dx =

¨
T2n

@z�(x, x+ z)�zu(x)�z@
m
⇢(x)@m+1

u(x) dz dx +

+

¨
T2n

�(x, x+ z)@u(x+ z)�z@
m
⇢(x)@m+1

u(x) dz dx := J1 + J2.

Let us examine J2 first. By symmetrization,

J2 =

¨
T2n

�z@u(x)�z@
m
⇢(x)@m+1

u(x)� dz dx�
¨

T2n
@u(x)�z@

m
⇢(x)�z@

m+1
u(x)� dz dx := J2,1 + J2,2

J2,1  |r2
u|1

¨
T2n

|�z@m⇢(x)|
dz

|z|n+↵�1
|@m+1

u(x)| dx  |r2
u|1k⇢k

Ḣm�1+↵+"kukḢm+1  Y
N

m ,

J2,2  |ru|1k⇢k
Ḣ

m+↵
2
kuk

Ḣ
m+1+↵

2
 "kuk2

Ḣ
m+1+↵

2
+ Y

N

m .
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As to J1, let is first observe that @z�(x, x+ z) =  (x, x+ z) is antisymmetric,  (x, y) = � (y, x).
Then, by symmetrization we have

J1 =
1

2

¨
T2n

@z�(x, x+ z)�zu(x)�z@
m
⇢(x)�z@

m+1
u(x) dz dx.

Since

@z�(x, x+ z) = �(n+ ↵� ⌧)h(z)
zi

|z|n+↵+2�⌧d⌧
+ h(z)

@z

´
⌦(x,x+z) ⇢(⇠) d⇠

|z|n+↵�⌧d⌧+n
+

@zh(z)

|z|n+↵�⌧d⌧

and noticing that �����@z
ˆ
⌦(x,x+z)

⇢(⇠) d⇠

�����  |⇢|1|z|n�1
,

we can see that this kernel is of order |z|�n�↵�1 up to the usual quantities bounded by Y
N
m . The

one derivative loss is compensated by |�zu(x)|  |z||ru|1. With this at hand we estimate J1:

J1  Y
N

m |ru|1kuk
Ḣ

m+1+↵
2
k⇢k

Ḣ
m+↵

2
 "kuk2

Ḣ
m+1+↵

2
+ Y

N

m .

Let us now examine the rest of the commutators C�(@lu, @m+1�l
⇢) for l = 1, . . . ,m. After

symmetrization we obtain
ˆ
Tn

C�(@lu, @m+1�l
⇢) · @m+1

u dx =
1

2

ˆ
T2n

�z@
l
u(x)�z@

m+1�l
⇢(x)@m+1

u(x)� dz dx+

+

ˆ
T2n

�z@
l
u(x)@m+1�l

⇢(x)�z@
m+1

u(x)� dz dx := J1 + J2.

For J1 we distribute the singularity of the kernel among the three terms

J1 
ˆ
T2n

|�z@lu(x)|
|z|

n
p+

2↵
q +"

|�z@m+1�l
⇢(x)|

|z|
n
q +

2↵
p

|@m+1
u(x)|

|z|
n
2�"

dz dx,

using a Hölder triple
1

p
+

1

q
+

1

2
= 1.

We have

J1  kuk
Ẇ

l+"+2↵
q ,pk⇢k

Ẇ
m+1�l+2↵

p ,qkukḢm+1  kuk
Ḣ

l+"+2↵
q +n( 12� 1

p )k⇢k
Ḣ

m+1�l+2↵
p +n( 12� 1

q )kukḢm+1 .

Choosing p = 2m+1
l

and q = 2 m+1
m+1�l

we verify for all l = 1, . . . ,m

u : l + "+
(m+ 1� l)↵

m+ 1
+

n(m+ 1� l)

2(m+ 1)
< m+ 1 +

↵

2
,

⇢ : m+ 1� l +
l↵

m+ 1
+

ln

2(m+ 1)
< m+ ↵.

We conclude as before

J1  "kuk2
Ḣ

m+1+↵
2
+ Y

N

m .

For J2 the computation is similar:

J2 
ˆ
T2n

|�z@lu(x)|
|z|

n
p+"+↵

2

|@m+1�l
⇢(x)|

|z|
n
q �"

|�z@m+1
u(x)|

|z|
n
2+

↵
2

dz dx  kuk
Ẇ

l+"+↵
2 ,pk⇢kẆm+1�l,q

 kuk
Ḣ

l+"+↵
2 +n( 12� 1

p )k⇢k
Ḣ

m+1�l+n( 12� 1
q )kukḢm+1+↵

2
 "kuk2

Ḣ
m+1+↵

2
+ Y

N

m ,
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where the last line follows by the same choice of p, q and noting that

u : l + "+
↵

2
+

n(m+ 1� l)

2(m+ 1)
 m+ 1

⇢ : m+ 1� l +
ln

2(m+ 1)
 m+ ↵,

for all l = 1, . . . ,m.

5. A priori estimates on the e-equation

Consider the quantity

e = r · u+ L�⇢.

The goal of this section is to show

d

dt
kek2

Ḣm  CY
N

m .

We have,

⇢t +r · (⇢u) = 0

Due to the topological part of the model, the interaction kernel depends on the density ⇢. Therefore
the operator L� does not commute with derivatives. Taking the divergence of the momentum
equation and using the density equation and the e-quantity we get the identity

et +r · (ue) = (r · u)2 � Tr(ru)2 + @t(L�(⇢)) +r · L�(⇢u).

Let us take a closer look the last two terms and work out a more explicit formula. For the time
derivative,

@t(L�(⇢)) = L�(⇢t) + L�t(⇢)

where,

L�t(⇢) := � ⌧
n

ˆ
Tn

h(|z|)
|z|n+↵�⌧

´
⌦(x,x+z) ⇢t(⇠) d⇠

d⌧+n(x, x+ z)
�z⇢(x) dz

=
⌧

n

ˆ
Tn

h(|z|)
|z|n+↵�⌧

´
⌦(x,x+z)r · (⇢u)(⇠) d⇠

d⌧+n(x, x+ z)
�z⇢(x) dz.

Then looking at the divergence we have,

r · L�(⇢u) = L�(r · (⇢u)) + Lr�·(⇢u)

where,

Lr�·(⇢u) =

ˆ
Tn

r�(x, x+ z) · �z(⇢u)(x) dz

= � ⌧
n

ˆ
Tn

h(|z|)
|z|n+↵�⌧

´
⌦(x,x+z)r⇢(⇠) d⇠
d⌧+n(x, x+ z)

· �z(⇢u)(x) dz.

Now using the density equation we see that the first terms in @t(L�(⇢)) and r · L�(⇢u) cancel, and
the equation becomes,

(37) et +r · (ue) = (r · u)2 � Tr(ru)2 + L�t(⇢) + Lr�·(⇢u).
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In order to achieve our estimate we apply @m to (37) and test with @me. Estimating the last two
terms will be the main technical component of this section. So, let us make a few quick comments
as to the remaining terms. Dropping integral signs we have for the transport term

@
m(er · u)@me+ (u ·r@me)@me+ [@m(u ·re)� u ·r@me]@me.

So, it can treated exactly like the similar term in the momentum in the beginning of Section 4. For
@
m[(r · u)2 � Tr(ru)2]@me we have quandratic in ru expression whose L

2-norm breaks into the
product estmate of kukHm+1 |ru|1. We thus can see that all these terms are bounded by Y

3
m.

We now focus solely on the residual alignment term and start with the ”worst” in a sense end
point cases.

End-Case 1. Here we estimate the worst term when all m derivatives fall on the density to form
a derivative of order m+ 1:

I =

ˆ
Tn

"ˆ
⌦(0,z)

@
mr⇢(x+ ⇠) d⇠�z(⇢u)(x)�

ˆ
⌦(0,z)

r(u@m⇢)(x+ ⇠) d⇠�z⇢(x)

#
⇥

⇥ h(|z|)
|z|n+↵�⌧d⌧+n(x, x+ z)

dz.

Integrating by parts inside the integrals we obtain the expressionˆ
@⌦(0,z)

[@m⇢(x+ ⇠)�z(⇢u)(x)� (u@m⇢)(x+ ⇠)�z⇢(x)] · ⌫⇠ d⇠.

Using that �z(⇢u)(x) = �z⇢(x)u(x) + ⇢(x+ z)�zu(x), we write the integrand as

@
m
⇢(x+ ⇠)�z⇢(x)(u(x)� u(x+ ⇠)) + @

m
⇢(x+ ⇠)�z⇢(x)�zu(x) + @

m
⇢(x+ ⇠)⇢(x)�zu(x).

We focus on the last term which is most di�cult. We write

@
m
⇢(x+ ⇠)⇢(x)�zu(x) = @

m
⇢(x+ ⇠)⇢(x)[�zu(x)�ru(x)z] + @

m
⇢(x+ ⇠)⇢(x)ru(x)z.

We focus on the last term. Let us write the integral to be estimated

J =

ˆ
Tn

ˆ
@⌦(0,z)

[@m⇢(x+ ⇠)� @
m
⇢(x)]⇢(x)ru(x)z · ⌫⇠ d⇠

h(|z|)
|z|n+↵�⌧d⌧+n(x, x+ z)

dz.

Changing the variable to ✓ 2 @⌦(0, e1) we obtain

J =

ˆ
@⌦(0,e1)

ˆ
Tn

[@m⇢(x+ |z|Uz✓)� @
m
⇢(x)]⇢(x)ru(x)z · Uz⌫✓

h(|z|)
|z|↵�⌧+1d⌧+n(x, x+ z)

dz d✓.

Let us freeze the coe�cients in the kernel:

J = J1 + J2,

where

J1 =

ˆ
@⌦(0,e1)

⇢
�⌧/n(x)

ˆ
Tn

[@m⇢(x+ |z|Uz✓)� @
m
⇢(x)]ru(x)z · Uz⌫✓

h(|z|)
|z|n+↵+1

dz d✓

J2 =

ˆ
@⌦(0,e1)

ˆ
Tn

[@m⇢(x+ |z|Uz✓)� @
m
⇢(x)]⇢(x)ru(x)z · Uz⌫✓

h(|z|)
|z|n+↵+1

⇥

⇥

0

B@
1

h�
⌦(0,z) ⇢(x+ ⇠) d⇠

i
⌧/n+1

� 1

⇢⌧/n+1(x)

1

CA dz d✓.
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To estimate J1 we further symmetrize in z noting that U�z = �Uz, and so the kernel is even:

J1 =

ˆ
@⌦(0,e1)

⇢
�⌧/n(x)

ˆ
Tn

[@m⇢(x+ |z|Uz✓) + @
m
⇢(x� |z|Uz✓)� 2@m⇢(x)]⇥

⇥ru(x)z · Uz⌫✓
h(|z|)

|z|n+↵+1
dz d✓,

and we estimate

kJ1k2  ⇢
�⌧/n|ru|1

X

i,j,k

�����

ˆ
Tn

[@m⇢(·+ |z|Uz✓) + @
m
⇢(·� |z|Uz✓)� 2@m⇢(·)]h(|z|)ziU

jk
z

|z|n+↵+1
dz

�����
2

 ⇢
�⌧/n|ru|1k⇢k

Ḣm+↵ ,

where the ultimate bound follows from Lemma 7.2.

To estimate J2 we note that a similar estimate from before gives
�������

1
h�

⌦(0,z) ⇢(x+ ⇠) d⇠
i
⌧/n+1

� 1

⇢⌧/n+1(x)

�������
 ⇢

⌧
n+1

⇢
�3� 2⌧

n |r⇢|1|z|.

Therefore by Lemma 7.1

|J2|  ⇢
⌧
n+2

⇢
�3� 2⌧

n |r⇢|1|ru|1
ˆ
@⌦(0,e1)

ˆ
Tn

|@m⇢(x+ |z|Uz✓)� @
m
⇢(x)|

|z|
n
2+↵� 1

2

h(|z|)
|z|

n
2�

1
2

dz d✓

kJ2k2  ⇢
⌧
n+2

⇢
�3� 2⌧

n |r⇢|1|ru|1k⇢k
Ḣ

m+↵� 1
2
.

Now to estimate the first term. The integral we need to estimate is

I = ⇢(x)

ˆ
Tn

ˆ
@⌦(0,z)

@
m
⇢(x+ ⇠) · ⌫⇠ d⇠

[�zu(x)�ru(x)z]h(|z|)
|z|n+↵�⌧d⌧+n(x, x+ z)

dz

= ⇢(x)

ˆ
Tn

ˆ
@⌦(0,e1)

|@m⇢(x+ |z|Uz✓)� @
m
⇢(x)| · Uz⌫✓ d✓

[�zu(x)�ru(x)z]h(|z|)
|z|1+↵�⌧d⌧+n(x, x+ z)

dz

|I|  ⇢|r2
u|1

ˆ
Tn

ˆ
@⌦(0,e1)

h(|z|)|@m⇢(x+ |z|Uz✓)� @
m
⇢(x)|

|z|n+↵�1
d✓ dz.

So estimating in L
2 and applying Lemma 7.1 again, we get,

kIk2  ⇢|r2
u|1k⇢k

Ḣ
m+↵� 1

2
.

Now returning to the first integral in this section, we still need to estimate the first two terms,

I1 =

ˆ
Tn

ˆ
@⌦(0,z)

@
m
⇢(x+ ⇠)�z⇢(x)(u(x)� u(x+ ⇠)) · ⌫⇠ d⇠

h(|z|)
|z|n+↵�⌧d⌧+n(x, x+ z)

dz.

To estimate this we add and subtract @m⇢(x)u(x) in the integrand to get,

I11 = u(x)

ˆ
Tn

ˆ
@⌦(0,z)

(@m⇢(x+ ⇠)� @
m
⇢(x)) · ⌫⇠ d⇠

h(|z|)�z⇢(x)
|z|n+↵�⌧d⌧+n(x, x+ z)

dz,

I12 = �
ˆ
Tn

ˆ
@⌦(0,z)

(@m⇢(x+ ⇠)u(x+ ⇠)� @
m
⇢(x)u(x)) · ⌫⇠ d⇠

h(|z|)�z⇢(x)
|z|n+↵�⌧d⌧+n(x, x+ z)

dz.
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Looking at I11 we include the next term in the Taylor finite di↵erence.

I111 = u(x)

ˆ
Tn

ˆ
@⌦(0,z)

(@m⇢(x+ ⇠)� @
m
⇢(x)) · ⌫⇠ d⇠

h(|z|)[�z⇢(x)� zr⇢(x)]
|z|n+↵�⌧d⌧+n(x, x+ z)

dz,

I112 = u(x)

ˆ
Tn

ˆ
@⌦(0,z)

(@m⇢(x+ ⇠)� @
m
⇢(x)) · ⌫⇠ d⇠

h(|z|)zr⇢(x)
|z|n+↵�⌧d⌧+n(x, x+ z)

dz.

Notice that shifting to @⌦(0, e1) and symmetrizing makes I111 and I112 take the same form as J1

above, so Lemma 7.2 gives

kI11k2  ⇢
⌧/n|r⇢|1|u|1k⇢k

Ḣm+↵

Proceeding the same way for I12 we get

I121 = �
ˆ
Tn

ˆ
@⌦(0,z)

(@m⇢(x+ ⇠)u(x+ ⇠)� @
m
⇢(x)u(x)) · ⌫⇠ d⇠

h(|z|)[�z⇢(x)� zr⇢(x)]
|z|n+↵�⌧d⌧+n(x, x+ z)

dz,

I122 = �
ˆ
Tn

ˆ
@⌦(0,z)

(@m⇢(x+ ⇠)u(x+ ⇠)� @
m
⇢(x)u(x)) · ⌫⇠ d⇠

h(|z|)zr⇢(x)
|z|n+↵�⌧d⌧+n(x, x+ z)

dz.

Shifting to @⌦(0, e1), symmetrizing and using Lemma 7.2 with g = u@
m
⇢ also gives

kI12k2  ⇢
⌧/n|r⇢|1ku@m⇢k

Ḣ↵  ⇢
⌧/n|r⇢|1|u|1k⇢k

Ḣm+↵ .

The second term in the first integral to estimate is

I2 =

ˆ
Tn

ˆ
@⌦(0,z)

@
m
⇢(x+ ⇠) · ⌫⇠ d⇠

h(|z|)�z⇢(x)�zu(x)
|z|n+↵�⌧d⌧+n(x, x+ z)

dz.

We pick up two powers of z from �z⇢(x) and �zu(x) to get

|I2|  |r⇢|1|ru|1
ˆ
⌦(0,e1)

ˆ
Tn

h(|z|)|@m⇢(x+ |z|Uz✓)� @
m
⇢(x)|

|z|n+↵�1
dz d✓.

Applying Holder’s inequality and using Lemma 7.1 we get

kI2k  |r⇢|1|ru|1k⇢k
Ḣ

m+↵� 1
2
.

Now let us look at the other endpoint where all m derivatives fall inside the increment �zf in
the residual terms.

End-Case 2. Here we need to combine terms from Lr�·(⇢u) and L�t(⇢) again.

I =

ˆ
Tn

"ˆ
⌦(0,z)

r · (⇢u)(x+ ⇠)�r⇢(x+ ⇠) · u(x) d⇠
#

h(|z|)�z@m⇢(x)
|z|n+↵�⌧d⌧+n(x, x+ z)

dz.(38)

Expanding r · (⇢u) = r⇢ ·u+⇢(r ·u) we get two terms to be estimated. We focus on the last first.

J =

ˆ
Tn

"ˆ
⌦(0,z)

⇢(x+ ⇠)(r · u)(x+ ⇠) d⇠

#
h(|z|)�z@m⇢(x)

|z|n+↵�⌧d⌧+n(x, x+ z)
dz.

As before we will freeze the coe�cients, splitting this into J = J1 + J2 with,

J1 =
⇢(x)(r · u)(x)
⇢

⌧
n+1(x)

ˆ
Tn

h(|z|)
|z|n+↵

�z@
m
⇢(x) dz

J2 =

ˆ
Tn

h(|z|)
|z|n+↵

0

B@

�
⌦(0,z) ⇢(x+ ⇠)(r · u)(x+ ⇠) d⇠
⇣�

⌦(0,z) ⇢(x+ ⇠) d⇠
⌘ ⌧

n+1
� ⇢(x)(r · u)(x)

⇢
⌧
n+1(x)

1

CA �z@
m
⇢(x) dz.
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The integral in J1 is the truncated fractional Laplacian, so is bounded by ⇢�
⌧
n+1

⇢|ru|1k⇢k
Ḣm+↵ .

Then for J2 we need to control the di↵erence, by adding and subtracting appropriately.

J2,1 =

ˆ
Tn

h(|z|)
|z|n+↵

 
⌦(0,z)

⇢(x+ ⇠)(r · u)(x+ ⇠) d⇠

0

B@
⇢

⌧
n+1(x)�

⇣�
⌦(0,z) ⇢(x+ ⇠) d⇠

⌘ ⌧
n+1

⇣�
⌦(0,z) ⇢(x+ ⇠) d⇠

⌘ ⌧
n+1

⇢
⌧
n+1(x)

1

CA �z@
m
⇢(x) dz

 ⇢
⌧
n+2

⇢
�3� 2⌧

n |ru|1|r⇢|1
ˆ
Tn

h(|z|)
|z|n+↵�1

|�z@m⇢(x)| dz,

for ↵ < 1 estimating in L
2 we get a bound by k⇢k

Ḣm by the Minkowskii inequality, and for ↵ � 1
we get a bound by k⇢k

Ḣm+↵�1+" . Then looking at J2,2 we get,

J2,2 =

ˆ
Tn

h(|z|)
|z|n+↵

 �
⌦(0,z) ⇢(x+ ⇠)(r · u)(x+ ⇠) d⇠ � ⇢(x)(r · u)(x)

⇢
⌧
n+1(x)

!
�z@

m
⇢(x) dz

 ⇢
�1� ⌧

n (|r2
u|1⇢+ |ru|1|r⇢|1)

ˆ
Tn

h(|z|)
|z|n+↵�1

|�z@m⇢(x)| dz,

where we can estimate the integral in the same way as for J2,1. Now we still need to estimate the
first term from expanding r · (⇢u). The term we need to estimate is

J =

ˆ
Tn

"ˆ
⌦(0,z)

r⇢(x+ ⇠) · (u(x+ ⇠)� u(x)) d⇠

#
h(|z|)�z@m⇢(x)

|z|n+↵�⌧d⌧+n(x, x+ z)
dz(39)

|J |  |r⇢|1|ru|1
ˆ
Tn

h(|z|)|�z@m⇢(x)|
|z|n+↵�1

dz

which again is bounded by k⇢k
Ḣm for ↵ < 1 and k⇢k

Ḣm+↵�1+" for ↵ � 1.

We no longer need to combine terms from the two residual terms so we will now proceed to esti-
mate the remainder of the terms from Lr�·(⇢u) and L�t(⇢) individually. First looking at Lr�·(⇢u)
we will estimate some of the higher order terms where all m derivatives hit the density, and then
combine the rest of the intermediary terms in one estimate.

End-Case 3. In the previous case we used u(x)�z@m⇢(x) from �z(u@m⇢(x)) = �zu(x)�z@m⇢(x) +
u(x)�z@m⇢(x) + @

m
⇢(x)�zu(x), we still need to estimate the other two terms.

I1 =

ˆ
Tn

h(|z|)�zu(x)�z@m⇢(x)
|z|n+↵�⌧d⌧+n(x, x+ z)

ˆ
⌦(x,x+z)

r⇢(x) d⇠ dz(40)

|I1|  |ru|1|r⇢|1
ˆ
Tn

h(|z|)|�z@m⇢(x)|
|z|n+↵�1

dz.

Then estimating in L
2 the integral is bounded by k⇢k

Ḣm for ↵ < 1 and k⇢k
Ḣm+↵�1+" for ↵ � 1.

For the second term we need to look at separately for ↵ < 1 and for ↵ � 1. First ↵ < 1,

I2 =

ˆ
Tn

h(|z|)(�zu(x))@m⇢(x)
|z|n+↵�⌧d⌧+n(x, x+ z)

ˆ
⌦(x,x+z)

r⇢(x) d⇠ dz(41)

|I2|  |ru|1|r⇢|1|@m⇢(x)|
ˆ
Tn

h(|z|)
|z|n+↵�1

dz,
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which in L
2 is bounded by k⇢k

Ḣm . For ↵ � 1 we add and subtract the next Taylor term to get
I2 = I21 + I22

I21 =

ˆ
Tn

h(|z|)@m⇢(x)
|z|n+↵�⌧d⌧+n(x, x+ z)

ˆ
⌦(x,x+z)

r⇢(x) d⇠ [�zu(x)� zru(x)] dz,

I22 = ru(x)@m⇢(x)

ˆ
Tn

h(|z|)
|z|n+↵�⌧d⌧+n(x, x+ z)

ˆ
⌦(x,x+z)

r⇢(x) d⇠z dz.

For I21 we use |�zu(x)� zru(x)|  |r2
u|1|z|2 to get

|I21|  |r2
u|1|r⇢|1|@m⇢(x)|

ˆ
Tn

h(|z|)
|z|n+↵�2

dz,

which in L
2 is bounded by k⇢k

Ḣm again. To estimate I22 we symmetrize first and split into two
parts,

I22 = ru(x)@m⇢(x)

ˆ
Tn

h(|z|)
|z|n+↵�⌧

 ´
⌦(x,x+z)r⇢(x) d⇠
d⌧+n(x, x+ z)

�

´
⌦(x,x�z)r⇢(x) d⇠
d⌧+n(x, x� z)

!
z dz

= ru(x)@m⇢(x)

ˆ
Tn

h(|z|)
|z|n+↵�⌧

d
�⌧�n(x, x+ z)

 ˆ
⌦(x,x+z)

r⇢(x) d⇠ �
ˆ
⌦(x,x�z)

r⇢(x) d⇠
!
z dz

+ru(x)@m⇢(x)

ˆ
Tn

h(|z|)
|z|n+↵�⌧

ˆ
⌦(0,z)

r⇢(⇠) d⇠
✓
d
⌧+n(x, x+ z)� d

⌧+n(x, x� z)

d⌧+n(x, x+ z)d⌧+n(x, x� z)

◆
z dz

= I221 + I222.

Now for I221 we notice that a similar computation as before gives,ˆ
⌦(x,x+z)

r⇢(⇠) d⇠ �
ˆ
⌦(x,x�z)

r⇢(⇠) d⇠ . (Ds,p@⇢(x))
1/p|z|n+s

,

where s = ↵� 1 + " < 1, and so n+ ↵� 1� s < n,

|I221|  |ru|1|@m⇢(x)|(Ds,p@⇢(x))
1/p

ˆ
Tn

h(|z|)
|z|n+↵�1�s

dz.

Then using Holder’s inequality in L
2 with 2

p
+ 2

q
= 1 we get,

kI221k22  |ru|21k⇢k2
Ḣ

m+n( 12� 1
q )
k⇢k2

Ḣ
1+s+n( 12� 1

p )
.

Then choosing q = 2m
m�1 and p = 2m gives

⇢ : m+ n

✓
1

2
� 1

q

◆
= m+

n

2m
< m+ ↵,

⇢ : 1 + s+ n

✓
1

2
� 1

p

◆
= 1 + s+

n

2

m� 1

m
< m+ ↵.

For I222 we have already shown how to estimate the di↵erence d
⌧+n(x, x + z) � d

⌧+n(x, x � z) so
we get,

|I222|  |ru|1|@m⇢(x)||r⇢|21
ˆ
Tn

h(|z|)
|z|n+↵�2

dz

kI222k22  |ru|21|r⇢|41k⇢k2
Ḣm .
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End-Case 4. Since @m(⇢u) = @
m�1(⇢@u) + u@

m
⇢, we still need to estimate the term

I0,0[@
m�1(⇢@u)](x) =

ˆ
Tn

h(|z|)
|z|n+↵�⌧

´
⌦(x,x+z)r⇢(⇠) d⇠
d⌧+n(x, x+ z)

�z(@
m�1(⇢@u))(x) dz.(42)

For ↵ < 1 and " so that ↵+ " < 1, we get

|I0,0[@m�1(⇢@u)](x)|  |r⇢|1
ˆ
Tn

h(|z|)
|z|n+↵

|�z(@m�1(⇢@u))(x)| dz

kI0,0[@m�1(⇢@u)]k22  |r⇢|21k⇢@uk2
Ḣm�1+↵+"

 |r⇢|21k⇢k2
Ḣm�1+↵+"kuk2Ḣm+1 .

For ↵ � 1, we again add and subtract the next Taylor term, focus on the second one, and symmetrize

I0,0,2[@
m�1(⇢@u)](x) = r(@m�1(⇢@u))(x)

ˆ
Tn

h(|z|)
|z|n+↵�⌧

 ´
⌦(x,x+z)r⇢(⇠) d⇠
d⌧+n(x, x+ z)

�

´
⌦(x,x�z)r⇢(⇠) d⇠
d⌧+n(x, x� z)

!
z dz

splitting this into two parts

I0,0,2,1[@
m�1(⇢@u)](x) = r(@m�1(⇢@u))(x)⇥

⇥
ˆ
Tn

h(|z|)
|z|n+↵�⌧d⌧+n(x, x+ z)

 ˆ
⌦(x,x+z)

r⇢(⇠) d⇠ �
ˆ
⌦(x,x�z)

r⇢(⇠) d⇠
!
z dz

I0,0,2,2[@
m�1(⇢@u)](x) = r(@m�1(⇢@u))(x)⇥

⇥
ˆ
Tn

h(|z|)
´
⌦(x,x�z)r⇢(⇠) d⇠
|z|n+↵�⌧

✓
1

d⌧+n(x, x+ z)
� 1

d⌧+n(x, x� z)

◆
z dz

and estimating these as before we get,

|I0,0,2,1[@m�1(⇢@u)](x)|  |r@m�1(⇢@u)(x)|(Ds,p@⇢(x))
1/p

ˆ
Tn

h(|z|)
|z|n+↵�1�s

dz

kI0,0,2,1[@m�1(⇢@u)]k22  kr@m�1(⇢@u)k2qk@⇢k2p
 k⇢k2

Ḣ
m+n( 12� 1

p )
kuk2

Ḣ
m+1+n( 12� 1

p )
k⇢k2

Ḣ
1+s+n( 12� 1

q )
.

Choosing q = 2m
m�1 and p = 2m we get

kJ2,1k22  k⇢k4
Ḣm+↵kukḢm+1+ n

2m

 Y
N

m kuk
Ḣm+1 + "kuk2

Ḣ
m+1+↵

2

and for I0,0,2,2[@m�1(⇢@u)](x) we get,

|I0,0,2,2[@m�1(⇢@u)](x)|  |r@m�1(⇢@u)(x)||r⇢|1
ˆ
Tn

h(|z|)
|z|n+↵�2

dz

kI0,0,2,2[@m�1(⇢@u)]k22  |r⇢|21k⇢k2
Ḣmkuk2Ḣm+1 .

End-Case 5. All m derivatives on r�, and l = 0, ...,m� 1. Have to estimate

Ij,l[⇢u](x) =

ˆ
Tn

h(|z|)
|z|n+↵�⌧

ˆ
⌦(x,x+z)

@
lr⇢(⇠) d⇠

Q
m�l

k=1

⇣´
⌦(x,x+z) @

k
⇢(⇠)d⇠

⌘
jk

d⌧+(|j|+1)n
· �z(⇢u)(x) dz

Using the maximal functions we get,

|Ij,l[⇢u](x)| 
m�lY

k=1

(M [@k⇢](x))jkM [@l+1
⇢](x)

ˆ
Tn

h(|z|)
|z|n+↵

|�z⇢u(x)| dz.
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Then using Holder’s inequality with

m�lX

k=1

2jk
pk

+
2

q1
+

2

q2
= 1,

and the Hardy-Littlewood inequality, we get for 0 < ↵ < 1,

kIj,l[⇢u]k22 .
m�lY

k=1

k@k⇢k2jkpk
k@l+1

⇢k2q1k⇢uk
2
W↵+",q2


m�lY

k=1

k⇢k2jk
Ḣ

k+n( 12� 1
pk

)
k⇢k2

Ḣ
l+1+n( 12� 1

q1
)
k⇢uk2

Ḣ
↵+"+n( 12� 1

q2
)
.

Now we choose, for l 6= 0, pk = 2m
k
, q1 =

2m�1
l

, and q2 =
2m(2m�1)

l
. Then we get

⇢ : k + n

✓
1

2
� 1

pk

◆
= k +

n

2
(
m� k

m
)  m+ ↵

for m large enough, for all k = 1, ...,m. Then for l = 1, ...,m� 1,

⇢ : l + 1 + n

✓
1

2
� 1

q1

◆
= l + 1 + n

✓
2m� 1� 2l

2(2m� 1)

◆
 m+ ↵

⇢u : ↵+ "+ n

✓
1

2
� 1

q2

◆
= ↵+ "+

n

2

✓
2m2 �m� l

2m2 �m

◆
< 2 +

n

2

and for l = 0, instead of using the maximal function on r⇢ we simply estimate with |r⇢|1 and
use |�z(⇢u)|  |z|(|r⇢|1|u|1 + ⇢|u|1) to get

|Ij,0[⇢u](x)| 
mY

k=1

(M [@k⇢](x))jk |r⇢|1(|r⇢|1|u|1 + ⇢|ru|1)

kIj,0[⇢u]k22 
mY

k=1

k⇢k2jk
Ḣk |r⇢|

2
1(|r⇢|1|u|1 + ⇢|ru|1)2.

For ↵ � 1 we add and subtract the next Taylor term to get Ij,l[⇢u] = Ij,l,1[⇢u] + Ij,l,2[⇢u]

Ij,l,1[⇢u](x) =

ˆ
Tn

h(|z|)
|z|n+↵�⌧

Q
m�l

k=1

⇣´
⌦(x,x+z) @

k
⇢(⇠) d⇠

⌘
jk

d⌧+(|j|+1)n(x, x+ z)
⇥

⇥
 ˆ

⌦(x,x+z)
@
lr⇢(⇠) d⇠

!
[�z(⇢u)(x)� zr(⇢u)(x)] dz

Ij,l,2[⇢u](x) = r(⇢u)(x)

ˆ
Tn

h(|z|)
|z|n+↵�⌧

ˆ
⌦(x,x+z)

@
lr⇢(⇠) d⇠

Q
m�l

k=1

⇣´
⌦(x,x+z) @

k
⇢(⇠) d⇠

⌘
jk

d⌧+(|j|+1)n(x, x+ z)
z dz.

The argument for Ij,l,1[⇢u] goes just as above, noting again that the Gagliardo-Sobolevskii definition
applies to smoothness exponents away from the integer values, 2 > ↵+ " > 1. Looking at Ij,l,2[⇢u]
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we symmetrize and split further into three parts getting,

Ij,l,2[⇢u](x) = r(⇢u)(x)

ˆ
Tn

h(|z|)
|z|n+↵�⌧

h ˆ
⌦(x,x+z)

@
lr⇢(⇠) d⇠

Q
m�l

k=1

⇣´
⌦(x,x+z) @

k
⇢(⇠) d⇠

⌘
jk

d⌧+(|j|+1)n(x, x+ z)

�
ˆ
⌦(x,x�z)

@
lr⇢(⇠) d⇠

Q
m�l

k=1

⇣´
⌦(x,x�z) @

k
⇢(⇠) d⇠

⌘
jk

d⌧+(|j|+1)n(x, x� z)

i
z dz

= r(⇢u)(x)

ˆ
Tn

h(|z|)
|z|n+↵�⌧

ˆ
⌦(x,x+z)

@
lr⇢(⇠) d⇠

m�lY

k=1

 ˆ
⌦(x,x+z)

@
k
⇢(⇠) d⇠

!
jk

⇥

⇥
⇣
d
�⌧�(|j|+1)n(x, x+ z)� d

�⌧�(|j|+1)n(x, x� z)
⌘
z dz

+r(⇢u)(x)

ˆ
Tn

h(|z|)
|z|n+↵�⌧

ˆ
⌦(x,x+z)

@
lr⇢(⇠) d⇠d�⌧�(|j|+1)n(x, x� z)⇥

⇥

0

@
m�lY

k=1

 ˆ
⌦(x,x+z)

@
k
⇢(⇠) d⇠

!
jk

�
m�lY

k=1

 ˆ
⌦(x,x�z)

@
k
⇢(⇠) d⇠

!
jk
1

A z dz

+r(⇢u)(x)

ˆ
Tn

h(|z|)
|z|n+↵�⌧

m�lY

k=1

 ˆ
⌦(x,x�z)

@
k
⇢(⇠) d⇠

!
jk

d
�⌧�(|j|+1)n(x, x� z)⇥

⇥
 ˆ

⌦(x,x+z)
@
lr⇢(⇠) d⇠ �

ˆ
⌦(x,x�z)

@
lr⇢(⇠) d⇠

!
z dz

= Ij,l,2,1[⇢u](x) + Ij,l,2,2[⇢u](x) + Ij,l,2,3[⇢u](x).

For Ij,l,2,1[⇢u](x) and Ij,l,2,2[⇢u](x) we make the same estimates as before, using

|d⌧+(|j|+1)n(x, x+ z)� d
⌧+(|j|+1)n(x, x� z)|  |r⇢|1|z|⌧+(j+1)n+1

and also applying the Maximal function to
´
⌦(x,x+z)r@

l
⇢(⇠) d⇠  |z|nM [@l+1(⇢)](x) to get,

|Ij,l,2,1[⇢u](x)|  |r(⇢u)|1|r⇢|1M [@l+1
⇢](x)

m�lY

k=1

(M [@k⇢](x))jk⇥

⇥
✓ˆ

Tn

h(|z|)
|z|n+↵�2

dz

◆

kIj,l,2,1[⇢u]k22  |r(⇢u)|21|r⇢|21k@l+1
⇢k2q

m�lY

k=1

k@k⇢k2jkpk

 |r(⇢u)|21|r⇢|21k⇢k2
Ḣ

l+1+n( 12� 1
q )

m�lY

k=1

k⇢k2jk
Ḣ

k+n( 12� 1
pk

)

where we used Holder’s inequality with

m�lX

k=1

2jk
pk

+
2

q
= 1.
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Picking q = 2m
l

and pk = 2m
k

gives

⇢ : l + 1 +
n(m� l)

2m
 m+ ↵,

⇢ : k +
n(m� k)

2m
 m+ ↵.

Then for Ij,l,2,2[⇢u](x) we get

|Ij,l,2,2[⇢u](x)|  |r(⇢u)|1M [@l+1
⇢](x)

m�lX

k=1

m�lY

i=1
i 6=k

(M [@i⇢](x))jiM([@k⇢](x))jk�1(Ds,pk@
k
⇢(x))1/pk⇥

⇥
✓ˆ

Tn

h(|z|)
|z|n+↵�1�s

dz

◆

kIj,l,2,2[⇢u]k22  |r(⇢u)|21k@l+1
⇢k2q

m�lY

i=1
i 6=k

k@i⇢k2jipi
k@k⇢k2(jk�1)

pk
k@k⇢k2

W
s,pk

 |r(⇢u)|21k@l+1
⇢k2

Ḣ
l+1+n( 12� 1

q )

m�lY

i=1
i 6=k

k⇢k2ji
Ḣ

i+n( 12� 1
pi

)
k⇢k2(jk�1)

Ḣ
k+n( 12� 1

pk
)
k⇢k2

Ḣ
k+s+n( 12� 1

pk
)
.

Picking the same Holder conjugates gives

⇢ : l + 1 +
n(m� l)

2m
 m+ ↵

⇢ : k +
n(m� k)

2m
 m+ ↵

⇢ : k + s+
n(m� k)

2m
 m+ ↵

To estimate Ij,l,2,3[⇢u](x) we note that a similar computation as before givesˆ
⌦(x,x+z)

@
lr⇢(⇠) d⇠ �

ˆ
⌦(x,x�z)

@
lr⇢(⇠) d⇠  |z|n+s(Ds,q@

l+1
⇢(x))1/q.

Therefore, again using the maximal function we get,

|Ij,l,2,3[⇢u](x)|  |r(⇢u)|1(Ds,q@
l+1
⇢(x))1/q

m�lY

k=1

(M [@k⇢](x))jk
ˆ
Tn

h(|z|)
|z|n+↵�1�s

dz

kIj,l,2,3[⇢u]k22  |r(⇢u)|21k⇢k2
Ḣ

l+1+s+n( 12� 1
q )

m�lY

k=1

k⇢k2jk
Ḣ

k+n( 12� 1
pk

)
.

Choosing the same Holder conjugates gives,

⇢ : l + 1 + s+
n(m� l)

2m
 m+ ↵,

⇢ : k +
n(m� k)

2m
 m+ ↵.

Intermediary Cases. For all l = 1, ...,m� 1, i = 0, ...,m� l, and k = 1, ...,m� l� i, we have to
estimate
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Ij,i[@
l(⇢u)](x) =

ˆ
Tn

h(|z|)
|z|n+↵�⌧

ˆ
⌦(x,x+z)

@
ir⇢(⇠) d⇠

Q
m�l�i

k=1

⇣´
⌦(x,x+z) @

k
⇢(⇠) d⇠

⌘
jk

d⌧+(|j|+1)n(x, x+ z)
· �z@l(⇢u)(x) dz.

First, for 0 < ↵ < 1, we employ the Maximal functions again to get,

|Ij,i[@l(⇢u)](x)| .
m�l�iY

k=1

⇣
M [@k⇢](x)

⌘
jk

M [@i+1
⇢](x)

ˆ
Tn

h(|z|)
|z|n+↵

|�z@l(⇢u)(x)| dz.

Then estimating in L
2-norm, applying Holder’s inequality with

m�l�iX

k=1

2jk
pk

+
2

q1
+

2

q2
= 1,

and using the Hardy-Littlewood inequality, we get

kIj,i[@l(⇢u)]k22 .
m�l�iY

k=1

k⇢k2jk
Ḣ

k+n( 12� 1
pk

)
k⇢k2

Ḣ
i+1+n( 12� 1

q1
)
k⇢uk2

Ḣ
l+↵+"+n( 12� 1

q2
)
.

Now we choose pk = 2m
k
, q1 =

2m
i
, and q2 =

2m
l
. Provided m is large enough and " is small enough,

⇢ : k +
n

2

✓
m� k

m

◆
 m� 1 + ↵

⇢ : i+ 1 +
n

2

✓
m� i

m

◆
 m+ ↵

⇢u : l + ↵+ "+
n

2

✓
m� l

m

◆
 m+ ↵,

for all l = 1, ...,m� 1, i = 0, ...,m� l, and k = 1, ...,m� l � j.

As before, to extend the argument to include ↵ � 1, we must include the next term in the Taylor
finite di↵erence

Ij,i[@
l(⇢u)](x) =

ˆ
Tn

h(|z|)
|z|n+↵�⌧

Q
m�l�i

k=1

⇣´
⌦(x,x+z) @

k
⇢(⇠) d⇠

⌘
jk

d⌧+(|j|+1)n
⇥

⇥
 ˆ

⌦(x,x+z)
@
ir⇢(⇠) d⇠

!
· [�z@l(⇢u)(x)� zr@l⇢u(x)] dz

+

ˆ
Tn

h(|z|)
|z|n+↵�⌧

ˆ
⌦(x,x+z)

@
ir⇢(⇠) d⇠

Q
m�l�i

k=1

⇣´
⌦(x,x+z) @

k
⇢(⇠) d⇠

⌘
jk

d⌧+(|j|+1)n
· zr@l(⇢u)(x) dz

:= Ij,i,1[@
l(⇢u)](x) + Ij,i,2[@

l(⇢u)](x).
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Again, the estimate on Ij,i,1[@l(⇢u)] goes as before, and for Ij,i,2[@l(⇢u)](x) we symmetrize

Ij,i,2[@
l(⇢u)](x) =

ˆ
Tn

h(|z|)
|z|n+↵�⌧

h ˆ
⌦(x,x+z)

@
ir⇢(⇠) d⇠

Q
m�l�i

k=1

⇣´
⌦(x,x+z) @

k
⇢(⇠) d⇠

⌘
jk

d⌧+(|j|+1)n(x, x+ z)

�
ˆ
⌦(x,x�z)

@
ir⇢(⇠) d⇠

Q
m�l�i

k=1

⇣´
⌦(x,x�z) @

k
⇢(⇠) d⇠

⌘
jk

d⌧+(|j|+1)n(x, x� z)

i
· zr@l(⇢u(x)) dz

= r@l(⇢u)(x)
ˆ
Tn

h(|z|)
|z|n+↵�⌧

ˆ
⌦(x,x+z)

@
ir⇢(⇠) d⇠

m�l�iY

k=1

 ˆ
⌦(x,x+z)

@
k
⇢(⇠) d⇠

!
jk

⇥

⇥
⇣
d
�⌧�(|j|+1)n(x, x+ z)� d

�⌧�(|j|+1)n(x, x� z)
⌘
z dz

+r@l(⇢u)(x)
ˆ
Tn

h(|z|)
|z|n+↵�⌧

ˆ
⌦(x,x+z)

@
ir⇢(⇠) d⇠d�⌧�(|j|+1)n(x, x+ z)⇥

⇥

0

@
m�l�iY

k=1

 ˆ
⌦(x,x+z)

@
k
⇢(⇠) d⇠

!
jk

�
m�l�iY

k=1

 ˆ
⌦(x,x�z)

@
k
⇢(⇠) d⇠

!
jk
1

A z dz

+r@l(⇢u)(x)
ˆ
Tn

h(|z|)
|z|n+↵�⌧

m�l�iY

k=1

 ˆ
⌦(x,x+z)

@
k
⇢(⇠) d⇠

!
jk

d
�⌧�(|j|+1)n(x, x+ z)⇥

⇥
 ˆ

⌦(x,x+z)
@
ir⇢(⇠) d⇠ �

ˆ
⌦(x,x�z)

@
ir⇢(⇠) d⇠

!
z dz

= Ij,i,2,1[@
l(⇢u)](x) + Ij,i,2,3[@

l(⇢u)](x) + Ij,i,2,3[@
l(⇢u)](x).

For Ij,i,2,1[@l(⇢u)](x) and Ij,i,2,2[@l(⇢u)](x) we apply the same estimates as above to get

|Ij,i,2,1[@l(⇢u)](x)|  |r@l(⇢u)(x)|
m�l�iY

k=1

(M [@k⇢](x))jkM [@i+1
⇢](x)

ˆ
Tn

h(|z|) dz

|z|n+↵�2
.

Since ↵ < 2, the integral converges, and

kIj,i,2,1[@l(⇢u)]k22 . k@l+1(⇢u)k2q2k@
i+1
⇢k2q1

m�l�iY

k=1

k@k⇢k2jkpk

 k⇢uk2
Ḣ

l+1+n( 12� 1
q2

)
k⇢k2

Ḣ
i+1+n( 12� 1

q1
)

m�l�iY

k=1

k⇢k2jk
Ḣ

k+n( 12� 1
pk

)
.

Choosing the Holder conjugates as before blends this into the previous case. For Ij,i,2,2[@l(⇢u)](x)
we have,

|Ij,i,2,2[@l(⇢u)](x)|  |r@l(⇢u)(x)|M [@i+1
⇢](x)⇥

⇥
m�l�iX

k=1

m�l�iY

�=1
i 6=k

(M [@�⇢](x))j�(M [@k⇢](x))jk�1(Ds,pk@
k
⇢(x))1/pk

ˆ
Tn

h(|z|)
|z|n+↵�1�s

dz.
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Since ↵ < 1 + s < 2, the integral converges, so for any k = 1, ...,m� l � i,

kIj,i,2,2[@l(⇢u)]k22  k@l+1(⇢u)k2q2k@
i+1
⇢k2q1

m�l�iY

�=1
i 6=k

k@�⇢k2j�p�
k@k⇢k2(jk�1)

pk
k@k⇢k2

W
s,pk

 k(⇢u)k2
Ḣ

l+1+n( 12� 1
q2

)
k⇢k2

Ḣ
i+1+n( 12� 1

q1
)

m�l�iY

�=1
i 6=k

k⇢k2j�
Ḣ

�+n( 12� 1
p�

)
k⇢k2(jk�1)

Ḣ
k+n( 12� 1

pk
)
k⇢k2

Ḣ
k+s+n( 12� 1

pk
)
.

Again choosing the same Holder conjugates as before gives the necessary bound. Now for Ij,i,2,3[@l(⇢u)]
we get,

kIj,i,2,3[@l(⇢u)]k22 . k(⇢u)k2
Ḣ

l+1+n( 12� 1
q2

)
k⇢k2

Ḣ
i+1+s+n( 12� 1

q1
)

m�l�iY

k=1

k⇢k2jk
Ḣ

k+n( 12� 1
pk

)
.

Choosing the same Holder conjugates again gives the desired bound. Therefore we have the neces-
sary bounds for every term in @mLr�·(⇢u).

Now let us examine L�t(⇢). Notice that any term in @mL�t(⇢) takes the form

I =

ˆ
Tn

h(|z|)
|z|n+↵�⌧

ˆ
⌦(x,x+z)

@
ir · (⇢u)(⇠) d⇠

Q
m�l�i

k=1

⇣´
⌦(x,x+z) @

k
⇢(⇠) d⇠

⌘
jk

d⌧+(|j|+1)n(x, x+ z)
�z@

l
⇢(x) dz.

The cases where l = 1, ...,m � 1 are estimated exactly the same as the Intermediary case for
Lr�·(⇢u) above by switching the roles of ⇢u and ⇢ in the increment �z and in the first integral that
contains the gradient.

Similarly the case where l = 0 and i = 0, ...,m� 1 is taken care of by End Case 5. Further, we
have already used the case where l = m during the estimates in End Case 2, and part of the term
l = 0, i = m in End Case 1. Since r@m(⇢u) = r(u@m⇢) +r@m�1(⇢@u) we still have to estimate
the term

J =

ˆ
Tn

h(|z|)
|z|n+↵�⌧

´
⌦(x,x+z)r@

m�1(⇢@u) d⇠

d⌧+n(x, x+ z)
�z⇢(x) dz.

For ↵ < 1 we use |�z⇢(x)|  |r⇢|1|z| and the maximal function to get

|J |  |r⇢|1M [@m(⇢@u)](x)

ˆ
Tn

h(|z|)
|z|n+↵�1

dz

kJk22  |r⇢|21k⇢k2
Ḣmkuk2Ḣm+1 .

For 1  ↵ < 2 we utilize the next Taylor term again and estimate the second of these by sym-
metrizing and splitting into two parts to get,

J2 = r⇢(x)
ˆ
Tn

h(|z|)
|z|n+↵�⌧

´
⌦(x,x+z)r@

m�1(⇢@u) d⇠

d⌧+n(x, x+ z)
z dz

J21 = r⇢(x)
ˆ
Tn

h(|z|)
|z|n+↵�⌧

´
⌦(x,x+z)r@

m�1(⇢@u) d⇠ �
´
⌦(x,x�z)r@

m�1(⇢@u) d⇠

d⌧+n(x, x+ z)
z dz

J22 = r⇢(x)
ˆ
Tn

h(|z|)
|z|n+↵�⌧

ˆ
⌦(x,x�z)

r@m�1(⇢@u) d⇠
�
d
�⌧�n(x, x+ z)� d

�⌧�n(x, x� z)
�
z dz.
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Estimating J21 gives

|J21|  |r⇢|1(Ds,2(@
m(⇢@u)))1/2

ˆ
Tn

h(|z|)
|z|n+↵�1�s

dz

kJ21k22  |r⇢|21k⇢k2
Ḣm+↵kuk2Ḣm+1+s

 Y
N

m kuk2
Ḣm+1 + "kuk

Ḣ
m+1+↵

2
,

where we used Interpolation and Young’s inequality to get the last inequality. Since 1  ↵ < 2 it
is possible to find an s such that s  ↵/2 < 1 for interpolation and 1 + s > ↵ to make the above
integral finite.

For J22 we use the di↵erences in d
�⌧�n to get

|J22|  |r⇢|21M [@m(⇢@u)]

ˆ
Tn

h(|z|)
|z|n+↵�2

dz

kJ22k22  |r⇢|21k⇢k2
Ḣmkuk2Ḣm+1 .

This covers all the terms in @
mL�t(⇢). Recalling that the goal is to bound everything by the

grand quantity Y
N
m , we have shown that

k@m(L�t(⇢) + Lr�·(⇢u))@
m
ek2  Y

N

m .

Combined with the transport terms we have estimated in the beginning we therefore have proved
the desired a priori bound

d

dt
kek2

Ḣm  CY
N

m .

6. Viscous regularization, local existence and uniqueness

To actually produce local solutions we consider viscous regularization of the system

⇢t +r · (u⇢) = "�⇢

ut + u ·ru = C�(u, ⇢) + "�u,
(43)

First, we show that this regularization is su�cient to obtain local solutions via the standard fixed
point argument. Second, we show that such regularization does not interfere with the a priori
estimates we have obtained in the previous sections.

To prove local estimates of smooth solutions to (43) we consider the mild formulation

⇢(t) = e
"t�

⇢0 �
ˆ

t

0
e
"(t�s)�r · (u⇢)(s) ds

u(t) = e
"t�

u0 �
ˆ

t

0
e
"(t�s)�

u ·ru(s) ds+

ˆ
t

0
e
"(t�s)�C�(u, ⇢)(s) ds.

(44)

Let us denote by Z = (⇢, u) the state variable of our system and by T [Z](t) the right hand side
of the mild formulation. In order to apply the stadard fixed point argument we have to show that
T leaves the set C([0, T�,");B�(Z0)) invariant, where B�(Z0) is the ball of radius " around initial
condition Z0, and that it is a contraction. We limit ourselves to showing details for invariance as
the estimates involved there are identical to those required to also prove Lipschitzness.

First we assume that ⇢ has no vacuum: ⇢0(x) � c0 > 0. The metric we are using the same as
before ⇢ 2 Ḣ

m+↵\L
1, u 2 H

m+1. Note that if � > 0 is small enough then for any k⇢�⇢0kḢm+↵ < �

which has the same mass
´
⇢ =

´
⇢0, one obtains

(45) ⇢(x) >
1

2
c0.
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So, let us assume that Z 2 C([0, T�);B�(Z0)). It is clear that ke"t�Z0 � Z0k <
�

2 provided time t

is short enough. The Z has some bound kZk  C. Using that let us estimate the norms under the
integrals. First, recall that k⇤↵e

"t�kL2!L2 . 1
t↵/2 . In the case ↵ � 1, we have

����@
m⇤↵

ˆ
t

0
e
"(t�s)�r · (u⇢)(s) ds

����
2


ˆ

t

0

1

(t� s)↵/2
k@m+1(u⇢)(s)k2 ds


ˆ

t

0

1

(t� s)↵/2
kuk

Ḣm+1k⇢kḢm+↵ ds  C
2
t
1�↵/2

<
�

2
,

provided T� is small enough. In the case ↵ < 1, we combine instead one full derivatives with the
heat semigroup, and the rest @m+↵ gets applied to u⇢, which produces a similar bound.

Moving on to the u-equation, we have
����@

m+1
ˆ

t

0
e
"(t�s)�

u ·ru(s) ds

����
2


ˆ

t

0

1

(t� s)1/2
k@m(u ·ru)(s)k2 ds


ˆ

t

0

1

(t� s)↵/2
kuk

Ḣm+1kukḢm ds  C
2
t
1/2

<
�

2
.

As to the commutator form, for ↵  1 the computation is very similar: we combine one derivative
with the heat semigroup and for the rest we use (15):

k@mC�(u, ⇢)k2  kukNm+↵k⇢kNm+↵ < C
2N

,

and the rest follows as before. When ↵ > 1 we need to use the refined estimate (17). Namely, it
follows from the first in (17) by keeping the highest norms only,

kL�fkḢm . c"k⇢kN
Ḣm�1+↵+"kfkḢm+↵

kL�fkḢm�1 . c"k⇢kN
Ḣm�2+↵+"kfkḢm�1+↵

Therefore, by interpolation, we have an estimate in the fractional space Ḣ
m�1+s for 0 < s < 1:

(46) kL�fkḢm�1+s . k⇢kN
Ḣm�1+↵+"kfkḢm�1+↵+s

Taking s = 2� ↵ yields

(47) kL�fkḢm+1�↵ . k⇢kN
Ḣm�1+↵+"kfkḢm+1 .

Combining ↵ derivatives with the heat, and using the inequality above with " = 1, we obtain
����
ˆ

t

0
⇤↵

e
"(t�s)�⇤m+1�↵C�(u, ⇢)u(s) ds

����
2


ˆ

t

0

1

(t� s)↵/2
[kL�(u⇢)kḢm+1�↵+kuL�(⇢)kḢm+1�↵ ] ds


ˆ

t

0

1

(t� s)↵/2
k⇢kN

Ḣm+↵kukḢm+1 ds  C
2
t
1�↵/2

<
�

2
.

We have proved that kT [Z](t)� Z0k < �, and the proof is complete.
The obtained interval of existence of course depends on " as it enters into all the estimates of

the integrals. In order to conclude the local existence argument we still have to show that our a
priori bound

(48)
d

dt
Ym . Y

N

m

is independent of ". This would allow us to extend T",� to a time dependent on the initial condition
only. Then the classical compactness argument would apply to pass to the limit as " ! 0 in the
same state space (u, ⇢) 2 Cw([0, T ); (Ḣm+↵ \ L

1)⇥H
m+1).
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It is clear that the u-equation will not see the e↵ect of viscous regularization because the term
produced by the energy method is �"k@m+2

uk22. The e-equation, however, will produce several
extra terms:

(49) et +r · (ue) = (r · u)2 � Tr(ru)2 + L�t(⇢) + Lr�·(⇢u)� 2"Lr�r⇢� "L��⇢+ "�e.

After the test, the extra terms become

(50) � "kek2
Ḣm+1 � 2"h@m�1Lr�r⇢, @m+1

ei � "h@m�1L��⇢, @
m+1

ei

 �1

2
"kek2

Ḣm+1 + 8"k@m�1Lr�r⇢k22 + 4"k@m�1L��⇢k22.

Let us observe that the residual two terms present special parts of the expansion of the commutator
we have estimated in Lemma 3.4 for m ! m+ 1. So, from (22) we obtain

k@m�1Lr�r⇢k22 + k@m�1L��⇢k22 . k⇢kN
Ḣm+↵(k⇢k2

Ḣ
m+1

2+↵
+ k⇢k2

Ḣ
m+1+↵

2
)+

+ (k⇢k2
Ḣm+1 + k⇢k2

Ḣ
m+1

2+↵
)k⇢k2

Ḣ
2+n

2
.

Let us recall that we have another "-gain term from viscous regularization:

�"k@m+2
uk2

Ḣm+1 �
1

2
"kek2

Ḣm+1 . �"⇢�2⌧/nk⇢k2
Ḣm+1+↵ + "Y

N

m .

By a computation similar to (21) the residual term can be estimated by

"k@m�1Lr�r⇢k22 + "k@m�1L��⇢k22 .
1

2
"⇢

�2⌧/nk⇢k2
Ḣm+1+↵ + "Y

N

m .

So, the total influence of the viscous term on a priori estimates will be an additional "Y N
m added

to (48) which has no e↵ect.
Having obtained uniformly bounded solutions (u", ⇢") 2 C([0, T );Hm+1 ⇥H

m+↵) on a common
time interval we pass to the w⇤-limit in the top space and strong limit in any lower regularity space
H

m+1�� ⇥H
m+↵��, which guarantees that the limit will actually be weakly continuous in the top

space. This concludes the proof of local existence.
Let us briefly address the uniqueness as it is essentially a straightforward consequence of the

estimates we obtained so far. One assumes that there is a pair of solutions (u0, ⇢0), (u00, ⇢00) in the
same local class (6) sharing the same initial data. Let us note that the kernels being active will
di↵er as well, denote them �

0, �00, respectively. Denote ⇢ = ⇢
0 � ⇢

00, u = u
0 � u

00, � = �
0 � �

00,
e = e

0 � e
00. We write the system for the tripple (u, ⇢, e):

@t⇢+r · (u⇢0) +r · (u00⇢) = 0

ut + u ·ru
0 + u

00 ·ru = C�(u0, ⇢0) + C�00(u, ⇢0) + C�00(u00, ⇢),

et +r · (ue0) +r · (u00e) = r · ur · u0 +r · u00r · u� Tr(ruru
0)� Tr(ru

00ru)

+ @t(L�(⇢
0)) + @t(L�00(⇢)) +r · L�(⇢

0
u
0) +r · L�00(⇢u0) +r · L�00(⇢00u).

(51)

The analysis of this system resembles very closely the analysis we undertook to reach the Riccati
estimate for the grand quantity Ym. We simply note that the u-equation shares the same dissipative
structure with C�00(u, ⇢0) being the princial di↵usion term, albeit with kernel being dependent on
⇢
00 rather than ⇢

0. This discrepancy, however, does not alter the estimate (35), as we assume
no-vacuum for both densities to hold. With the dissipation at hand, the rest of the estimates
repeat those presented above, and it would be impractical to reproduce the entire argument for the
remaining parts of the system (51).
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7. Appendix: variants of intrinsic definitions of a Sobolev space.

In the proof we encountered the following quantity

D↵(g) =

ˆ
T2n

h(z) |g (x+ |z|Uz✓)� g(x)|2

|z|n+↵
dz dx,

where ✓ 2 @⌦(0, e1). It is not essential where exactly ✓ is localted as long as it is uniformly bounded.

Lemma 7.1. Let 0 < ↵ < 2. Then there exists a constant C↵ > 0 such that for all g 2 H
↵/2

one

has

D↵(g)  CskgkḢ↵/2 .

Proof.

ˆ
T2n

h(z) |g (x+ |z|Uz✓)� g(x)|2

|z|n+↵
dz dx =

X

k2Zn

|bg(k)|2
ˆ
Tn

h(z)
��eik·|z|Uz✓ � 1

��2

|z|n+↵
dz.

Since ���eik·|z|Uz✓ � 1
���  min{2, |k||z|}

the splitting of the integral into small scale |z| < 1/|k| and large scale |z| > 1/|k| as in the classical
case, shows that the integral is bounded by |k|↵ which implies the claim. ⇤

Similarly goes the proof of the next lemma.

Lemma 7.2. Let 0 < ↵ < 2. Then there exists a constant C↵ > 0 such that for all g 2 H
↵
one has

�����

ˆ
Tn

[g(·+ |z|Uz✓) + g(·� |z|Uz✓)� 2g(·)]h(|z|)ziU
jk
z

|z|n+↵+1
dz

�����
2

 C↵kgkḢ↵ .

Proof.

�����

ˆ
Tn

[g(·+ |z|Uz✓) + g(·� |z|Uz✓)� 2g(·)]h(|z|)ziU
jk
z

|z|n+↵+1
dz

�����

2

2

=

=
X

k2Zn

|bg(k)|2
�����

ˆ
Tn

(eik·|z|Uz✓ + e
�ik·|z|Uz✓ � 2)

h(|z|)ziU jk
z

|z|n+↵+1
dz

�����

2


X

k2Zn

|bg(k)|2
����
ˆ
Tn

|eik·|z|Uz✓ + e
�ik·|z|Uz✓ � 2| h(|z|)|z|n+↵

dz

����
2

.

The integral is estimated with the use of

|eik·|z|Uz✓ + e
�ik·|z|Uz✓ � 2|  min{3, |z|2|k|2}

and splitting as before into |z| < 1/|k| and |z| > 1/|k|. The result is |k|↵ and the formula
follows. ⇤
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