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Abstract. The goal of this note is to study limiting behavior of a self-organized continuous flock
evolving according to the 1D hydrodynamic Euler Alignment model. We provide a series of quanti-
tative estimates that show how far the density of the limiting flock is from a uniform distribution.
The key quantity that controls density distortion is the entropy H =

R
⇢ log ⇢ dx, and the measure

of deviation from uniformity is given by a well-known conserved quantity e = u0 + L ⇢, where u
is velocity and L is the communication operator with kernel  . The cases of Lipschitz, singular
geometric, and topological kernels are covered in the study.

1. Introduction

In this note we continue the study of the long-time behavior of solutions to the following Euler-
alignment model on the torus T = [�⇡,⇡]:

(1) ⇢t + (⇢u)0 = 0,

(2) ut + uu0 =

Z

T
 (x, y)(u(y)� u(x))⇢(y) dy = L (⇢u)� uL (⇢),

where

L f :=

Z

T
 (x, y)(f(y)� f(x)) dy,

and  : T2
! [0,1) is a communication kernel. (Here and below, we use primes to denote

spatial derivatives: f 0 = @xf .) This model represents a one-dimensional hydrodynamic analogue of
the Cucker-Smale agent based dynamical system [3, 4], and found application in a wide variety of
subjects, see [8, 14, 1] for recent surveys. The system (1) – (2) is designed to describe the mechanism
of alignment of congregations of agents governed by laws of self-organization with communication
encoded into the kernel  . The long time behavior is thus characterized by convergence to a flocking
state, by which we mean alignment to a constant velocity u ! ū, and stabilization of density to a
traveling wave

(3) ⇢(x, t) ! ⇢1(x� tū).

Such a result was proved under the strong global communication condition inf  > 0 on the torus,
see [11, 12]; on the open space, exponential alignment and bounded support of density (weak
flocking) was shown under a weaker “fat tail” condition

R1  (r) dr = 1 in a variety of settings,
[2, 13, 6]. The case of local kernels, by which we mean purely local protocols, supp ⇢ {|x�y| 6 R},
remains largely open with the exception of a new class of topological kernels introduced in [9], and
the case of strong communication relative to other initial parameters of the data, [7].
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The multitude of flocking states (3) demonstrates that the Euler alignment system (1) – (2)
supports a variety of self-organization outcomes. However it is hard to predict what that outcome
⇢1 will be from initial conditions. Note that ū, on the other hand, is uniquely determined by
the ratio of conserved momentum over mass. In this article we propose to study this question
with a less ambitious goal: determine how far the limiting flock ⇢1 deviates from the uniform
distribution ⇢̄ = 1

2⇡M0, where M0 is the total mass. In fact, we consider a more general case when
the convergence (3) is unknown. As a measure of “disorder” of the flock we consider the long time
limit

(4) lim sup
t!1

k⇢(·, t)� ⇢̄kL1(T).

Let us recall that in 1D the Euler alignment system possesses an extra conserved quantity (see
[13, 2, 9])

et + (ue)0 = 0, e = u0 + L ⇢,

provided  is either of convolution type,  (x, y) =  (x� y), or topological type as defined below.
The physical nature of this quantity has remained elusive, but we will find that it is directly
implicated in quantifying disorder of the flock similar to the topological entropy. More precisely,
we consider the e-quantity per mass of the flock: q = e

⇢ . Note that q is transported:

(5) qt + uq0 = 0.

This allows to trace information at any time t back to the initial datum, in particular, kq(·, t)k1 =
kq0k1. The thrust of our main results is to show that the latter is the parameter that controls
deviation from the uniform flock expressed by the limit (4).

Let us set some assumptions. We distinguish two classes of kernels:

• Lipschitz convolution type kernels  2 Lip(T) with local communication

(6)  (x� y) > ��R0(|x� y|), R0,� > 0;

• Symmetric topological kernels, as introduced in [9]1: here ⌧ > 0, 0 < ↵ < 2,

(7)  (x, y, t) =
h(x� y)

|x� y|1+↵�⌧d(x, y, t)⌧
, h(x� y) > ��R0(|x� y|),

where

d(x, y, t) =

����
Z y

x
⇢(z, t) dz

���� .

The well-posedness theory for the smooth case was developed in [2, 13], and for the singular case in
[5, 10, 11, 12] (geometric kernels, ⌧ = 0) and [9] (topological kernels, ⌧ > 0). In the smooth kernel
setting, the threshold condition u00 +  ⇤ ⇢0 > 0 guarantees global existence, while in the singular
case, one has existence for any data if ⌧ 6 ↵ and for small data if ⌧ > ↵.

We now state our main results.

Theorem 1.1. Let (⇢, u) be a smooth solution to the system (1)–(2), with kernel given by either

(6) or (7). If e0 = 0, then

(8) k⇢(t)� ⇢̄kL1 6 c1(k⇢0kL2)e��c2(R0,M0,↵,⌧,k⇢0kL1 )t,

where c2 depends only on R0 and M0 in the Lipschitz case, and c2 need not depend on k⇢0kL1 if

⌧ 6 ↵+ 1 in the topological case.

1We cite here the first draft of the manuscript [9]; in later versions the authors specialize to the case where ⌧ = n,
where n is the dimension of the space.
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We note that this result complements the one obtained in [9] for topological case. Namely, if
e0 = 0, then in the L1 metric one has a slower algebraic relaxation towards the uniform state:

k⇢(t)� ⇢̄kL1 . 1
p
1 + t

,

as t ! 1.

Theorem 1.2. Let (⇢, u) be a smooth solution to the system (1)–(2), with a Lipschitz kernel  
satisfying (6). Provided kq0kL1 < k kL1, one has

(9) lim sup
t!1

k⇢(·, t)� ⇢̄kL1 6 M0kq0kL1k kL1

�c(R0)(k kL1 � kq0kL1)
,

where c(R0) is a constant depending only on R0.

Let us note that the dependence on kq0kL1 is linear for small values. At the same time, the bound
is inversely proportional to the strength �, which shows the stabilizing e↵ect of communication on
the structure of the flock.

Theorem 1.3. Let (⇢, u) be a smooth solution to (1)–(2), with topological kernel  . One has the

following bounds for any initial data

lim sup
t!1

k⇢(·, t)� ⇢̄kL1 6
(

c��1M1+⌧
0 kq0kL1 [(↵� ⌧)��1M ⌧

0 kq0kL1 +R⌧�↵
0 ]

1
↵�⌧ , 0 6 ⌧ < ↵

c��1M1+⌧
0 kq0kL1 exp

�
1 + ��1M ⌧

0 kq0kL1
�
, ⌧ = ↵,

where c = c(R0,↵, ⌧). And one has the following two bounds

lim sup
t!1

k⇢(·, t)�⇢̄kL1 6
(

c��1M1+⌧
0 kq0kL1 [(↵� ⌧)��1M ⌧

0 kq0kL1 +R⌧�↵
0 ]

1
↵�⌧ ↵ < ⌧ < 1 + ↵

c��1M1+⌧
0 kq0kL1 [(↵� ⌧)��1M ⌧

0 kq0kL1 +R⌧�↵
0 ]↵�⌧ ⌧ > 1 + ↵,

under the smallness requirement

kq0kL1 <
�M�⌧

0 R⌧�↵
0

⌧ � ↵
.

Let us note that for small q0 all the bounds are essentially linear in kq0kL1 . Other factors
minimize distortions of the flock as well, such as strength of communication � >> 1, or small mass.

Remark 1.4. We actually only need lower bounds on q0 in the smallness conditions of the Theorems
above. For example, in (9), the quantity k kL1 � kq0kL1 can be replaced with k kL1 + inf q0; one
can see this by following the estimates on the density amplitude in Section 2.5. This results in the
slightly relaxed smallness requirement inf q0 > �k kL1 . A similar remark applies to the statement
for topological kernels. However, since our primary interest is in the case where kq0kL1 is small,
we state our results entirely in terms of kq0kL1 , for simplicity.

Note also that in the case of Lipschitz kernels, inf q0 > �k kL1 (with non-strict inequality)
is equivalent to the critical threshold condition (c.f. [2], [10]) that dictates whether the solution
remains globally smooth or blows up in finite time. So the precise version of the smallness condition
we need in order to control the density is almost guaranteed already by the fact that we are working
with globally smooth solutions. The situation is similar for topological kernels in the case ⌧ > ↵:
the smallness condition is precisely the one from the existence theory in [9]. Unlike the case of
Lipschitz kernels, however, it is not known how sharp this condition is for the existence theory for
topological kernels.
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2. Proofs of the results

Let us recall some preliminary facts before we proceed to the main proofs.

2.1. The Csiszár-Kullback inequality. The main tool in establishing results of this paper is
the use of relative entropy defined by

(10) H =

Z

T
⇢ log

⇢

⇢̄
dx =

Z

T
⇢ log ⇢ dx�M0 log ⇢̄,

where ⇢̄ = 1
2⇡M0 and M0 =

R
T ⇢(x) dx is the total mass. The classical Csiszár-Kullback inequality

states

(11) k⇢� ⇢̄k2L1 6 4⇡⇢̄H.

Furthermore, by the elementary inequality log x 6 x� 1, we also have

(12) H 6
Z

T
⇢

✓
⇢

⇢̄
� 1

◆
dx = ⇢̄�1

k⇢� ⇢̄k2L2 .

Thus we obtain the two sided bounds

(13)
1

4⇡
k⇢� ⇢̄k2L1 6 ⇢̄H 6 k⇢� ⇢̄k2L2 .

2.2. Evolution of the entropy. At the heart of the argument is the equation on the entropy (10)
which one obtains testing the continuity equation (1) with log ⇢+ 1:

(⇢ log ⇢)t = ⇢t(log ⇢+ 1) = �(⇢u)0(log ⇢+ 1)

= �⇢0(log ⇢+ 1)u� ⇢u0(log ⇢+ 1)

= �(⇢ log ⇢)0u� (⇢ log ⇢)u0 � ⇢u0

= �[u(⇢ log ⇢)]0 � ⇢u0 = �[u(⇢ log ⇢)]0 � ⇢2q + ⇢L ⇢.

Therefore,

(14)
dH

dt
=

d

dt

Z

T
⇢ log ⇢ dx = �

Z

T
⇢2q dx�

Z

T2
 (x, y)(⇢(x)� ⇢(y))⇢(x) dx dy.

Noting that
R
T ⇢q dx =

R
T e dx = 0, we can subtract ⇢̄ from one density in the first integral on the

left hand side. After additionally symmetrizing the last integral we obtain

(15)
dH

dt
= �

Z

T
(⇢� ⇢̄) ⇢q dx�

1

2

Z

T2
 (x, y)|⇢(x)� ⇢(y)|2 dx dy.

2.3. Bounds on the dissipation. If our kernels  were global, it would be easy to get a positive
lower bound on the dissipation term:

(16)

Z

T2
 (x, y)|⇢(x)� ⇢(y)|2 dx dy > (inf  )

Z

T2
|⇢(x)� ⇢(y)|2 dx dy = 2(inf  )k⇢� ⇢̄k2L2 .

Since in all our cases we have a non-trivial lower bound on the kernel only near the diagonal
{(x, y) 2 T2 : |x� y| < R0}, we need a substitute for (16) stated in the following Lemma.

Lemma 2.1. The following inequality holds:

(17)
1

2

Z

T

Z

|z|<R0

|⇢(x)� ⇢(x+ z)|2 dz dx > c(R0)k⇢� ⇢̄k2L2 .
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Proof. Let � be a nonnegative cuto↵ function on T with support in BR0(0), which is constant on
BR0/2 and has integral 1. Then b�(0) = 1 and |b�(k)| < 1 for all k 2 Z\{0}. On the other hand, we
have by the Riemann-Lebesgue Lemma that b�(k) ! 0 as k ! 1; therefore we have in fact that
|b�(k)| 6 1� " for some " > 0 depending only on R0 (k 6= 0). Define ⇢̄R0(x) = � ⇤ ⇢(x), so that

(⇢� ⇢̄R0)
b(k) = (1� b�(k))b⇢(k).

Consequently
|(⇢� ⇢̄R0)

b(k)| > "|b⇢(k)|, k 2 Z, k 6= 0,

and b⇢(0) = b̄⇢R0
(0). Thus

k⇢� ⇢̄k2L2 =
X

k2Z\{0}
|b⇢(k)|2 6 "�2

X

k2Z
|(⇢� ⇢̄R0)

b(k)|2 = "�2
k⇢� ⇢̄R0k

2
L2 .

By the fact that
R
T � = 1 and Minkowski, we have

k⇢� ⇢̄R0k
2
L2 =

����
Z

T
�(y)(⇢(·)� ⇢(·� y)) dy

����
2

L2

6
Z

|y|<R0

k⇢(·)� ⇢(·� y)k2L2 dy

=

Z

T

Z

|z|<R0

|⇢(x)� ⇢(x+ z)|2 dz dx.

Combining the inequalities above yields

k⇢� ⇢̄k2L2 6 "�2
Z

T

Z

|z|<R0

|⇢(x)� ⇢(x+ z)|2 dz dx;

taking c(R0) = 2"2 finishes the proof. ⇤
Estimating the dissipation term now becomes trivial:

(18)
1

2

Z

T2
 (x, y, t)|⇢(x)� ⇢(y)|2 dx dy > c(R0) (t)k⇢� ⇢̄k2L2 ,

where
 (t) = inf{ (x, y, t) : |x� y| < R0}.

Of course, if  is a Lipschitz kernel (6), then

(19)  (t) > �.

If  is a topological kernel, then estimating  from below requires a choice, as the topological
distance d(x, y, t) can be bounded above by |x� y|k⇢(t)kL1 , by M0, or by some combination of the
two. In general, we have

(20)  (x, y, t) > ��R0(|x� y|)

|x� y|1+↵�⌘M⌘
0 k⇢(t)k

⌧�⌘
L1

, ⌘ 2 [0, ⌧ ], t > 0.

If ⌧ 6 ↵+ 1, then we can put ⌘ = ⌧ to eliminate the density amplitude and obtain a lower bound
on  (t) which is obviously uniform in time:

(21)  (t) > �R�1�↵+⌧
0 M�⌧

0 , for all t > 0, (⌧ 6 1 + ↵).

If however ⌧ > 1+↵, then the choice ⌘ = ⌧ is no longer compatible with a positive lower bound on
 , since in this case we have a positive power of |x � y| on the right side of (20). In light of this,
we will mostly use the following more general lower bound, which is valid for any ⌧ > 0.

(22)  (t) > �

R1+↵�⌘
0 M⌘

0 k⇢(t)k
⌧�⌘
L1

⌘ 2 [0,min{⌧, 1 + ↵}],

Of course, when ⌘ 6= ⌧ , additional bounds on the density amplitude are needed in order to obtain
a uniform estimate on  (t). We provide such bounds in Section 2.5.
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It turns out that the choice of ⌘ 2 [0,min{1 + ↵, ⌧}] in (22) has very little e↵ect on the result of
Theorem 1.3. Eventually, we will set ⌘ = ⌧ or ⌘ = 1+↵, simply to clean up some of the exponents
that appear in our bounds; however, we will carry along the ⌘-dependence to show that we don’t
lose any information by making these choices. The only place where the lower bound (21) gives
an advantage over the more general (22) is in the proof of Theorem 1.1. In the case e0 = 0, the
bound (22) is uniform in time, with k⇢0kL1 replacing k⇢(t)kL1 . As a result, the constant c2 from
Theorem 1.1 carries a dependence on k⇢0k

⌧�⌘
L1 . If ⌧ 6 1 + ↵, then we can choose ⌘ = ⌧ (i.e., use

(21) instead of (22)) and eliminate this dependency.
Finally, we note that for the purposes of bounding the density amplitude, using ⌘ = ⌧ in (20)

will be crucial, in contrast to the computations on which (22) depends. Our density bounds will
rely on the full kernel  (x, y, t) rather than just its lower bound  (t) near the diagonal.

2.4. The entropy equation revisited. We now return to the evolution equation (15) and make
estimates; in doing so we will prove Theorem 1.1, and we will reduce the proofs of Theorems 1.2
and 1.3 to proving the relevant bounds on the density amplitude.

In what follows, the constant c = c(R0) depends only on R0 but may change from line to line.
We have

Ḣ(t) 6 k⇢(t)kL1kq0kL1k⇢(·, t)� ⇢̄kL1 � c(R0) (t)k⇢(·, t)� ⇢̄k2L2

6 k⇢(t)kL1kq0kL1
p

4⇡⇢̄H(t)� c(R0) (t)⇢̄H(t).

Setting Y =
p
H, we find

Ẏ (t) 6 k⇢(t)kL1kq0kL1
p
⇡⇢̄� c(R0) (t)⇢̄Y (t).

Using Grönwall’s lemma we obtain

(23) Y (t) 6 Y0 exp

✓
�c(R0)⇢̄

Z t

0
 (s) ds

◆

+
p
⇡⇢̄kq0kL1

Z t

0
k⇢(s)kL1 exp

✓
�c(R0)⇢̄

Z t

s
 (⌧) d⌧

◆
ds.

From here, it is easy to prove Theorem 1.1. Indeed, if e0 ⌘ 0, then the second term in (23) drops
out completely. Furthermore, ⇢ satisfies a maximum principle in this case: k⇢(t)kL1 6 k⇢0kL1 , so
 is uniformly bounded below by a constant in all cases:  (s) >  .

k⇢(·, t)� ⇢̄kL1 6
p
4⇡⇢̄Y (t) 6

p
4⇡⇢̄H0 exp(�c(R0)⇢̄t )

6
p

4⇡k⇢0 � ⇢̄kL2 exp(��c2t) 6 ck⇢0kL2 exp(��c2t),

where c2 = c(R0)⇢̄( /�). Thus, in the Lipschitz case, c2 depends only on R0 and M0. In the
topological case, c2 depends only on R0, M0, ↵, and ⌧ when ⌧ 6 1 + ↵; if ⌧ > 1 + ↵, then c2
depends additionally on k⇢0kL1 . This completes the proof of Theorem 1.1.

If  is a Lipschitz kernel or a topological kernel with ⌧ 6 1 + ↵, then we know that  (t) is
uniformly bounded below, hence the first term on the right side of (23) vanishes as t ! 1. In fact,
the same is true for topological kernels with ⌧ > 1 + ↵; this will be apparent once we prove upper
bounds on the density amplitude. We write

(24) lim sup
t!1

k⇢(·, t)� ⇢̄kL1 6 M0kq0kL1 lim sup
t!1

Z t

0
k⇢(s)kL1 exp

✓
�c(R0)⇢̄

Z t

s
 (⌧) d⌧

◆
ds.

If  is a Lipschitz kernel, then this estimate becomes simply

(25) lim sup
t!1

k⇢(·, t)� ⇢̄kL1 6 kq0kL1

�c(R0)
lim sup
t!1

k⇢(t)kL1 .
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Thus the proof of Theorem 1.2 is reduced to estimating the density amplitude. The situation is
similar for topological kernels. Upon substituting (22) into (24), the usefulness of the following
Lemma becomes apparent:

Lemma 2.2. Suppose f is a positive bounded function on R+
with lim supt!1 f(t) = L. Let c > 0,

� > 0. Then

lim sup
t!1

Z t

0
f(s) exp

⇢
�

Z t

s

c

f �(l)
dl

�
ds 6 L1+�

c
.

Proof. Fix " > 0, and T0 so that f(t) < L+ " for t > T0. Since f is bounded, it is clear that
Z T0

0
f(s) exp

⇢
�

Z t

s

c

f �(l)
dl

�
ds ! 0,

as t ! 1. Let us estimate the rest
Z t

T0

f(s) exp

⇢
�

Z t

s

c

f �(l)
dl

�
ds 6

Z t

T0

(L+ ") exp

⇢
�(t� s)

c

(L+ ")�

�
ds 6 (L+ ")1+�

c
.

This finishes the proof. ⇤

Applying the Lemma to (24) and (22), we conclude that for any ⌘ 2 [0,min{⌧, 1 + ↵}], we have

(26) lim sup
t!1

k⇢(·, t)� ⇢̄kL1 6 M⌘
0R

1+↵�⌘
0 kq0kL1

�c(R0)
lim sup
t!1

k⇢(t)k1+⌧�⌘L1 .

Thus in all cases, all that remains is a large-time bound on the density amplitude.

2.5. Bounds on the Density Amplitude. Throughout our discussion of bounds on the density
amplitude, we will make use of the following di↵erential inequality: If f Ẋ(t) 6 AX(t)[B �X(t)],
where A and B are positive constants and X(t) is a positive function, then

(27) X(t) 6 BX(0)

X(0) + (B �X(0)) exp(�ABt)
.

In particular, lim supt!1X(t) 6 B.

2.5.1. Case of Lipschitz kernels. Let ⇢+(t) denote the maximum value of ⇢ at time t, and let x+
denote the x-value where the maximum is achieved. Then if kq0kL1 < k kL1 , one can get an upper
bound on k⇢(t)kL1 by integrating the di↵erential inequality derived below.

d

dt
⇢+(t) = �⇢+(t)u

0(x+, t) = �⇢+(t)
2q(x+, t) + ⇢+(t)

Z

T
 (x+ � y)(⇢(y, t)� ⇢+(t)) dy

6 (kq0kL1 � k kL1)⇢+(t)
2 + k kL1M0⇢+(t)

= (k kL1 � kq0kL1)⇢+(t)


k kL1M0

k kL1 � kq0kL1
� ⇢+(t)

�
.

In view of (27) we obtain

lim sup
t!1

k⇢(t)kL1 6 k kL1M0

k kL1 � kq0kL1
.

Plugging into (25) we conclude

lim sup
t!1

k⇢(·, t)� ⇢̄kL1 6 M0kq0kL1k kL1

�c(R0)(k kL1 � kq0kL1)
.
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2.5.2. Case of topological kernels with 0 6 ⌧ 6 ↵. The case of topological kernels follows the
same strategy as for Lipschitz kernels, with additional technicalities. Note that in order for the
dissipation to compete with the quadratic term q⇢2, we must choose ⌘ = ⌧ in (20); otherwise the
associated power of ⇢+ will be less than 2.

For any r 2 (0, R0), we have

d

dt
⇢+(t) = �q(x+, t)⇢+(t)

2 + ⇢+(t)

Z
 (x+, x+ + z)(⇢(x+ + z, t)� ⇢+(t)) dz

6 kq0kL1⇢+(t)
2 + �M�⌧

0 ⇢+(t)

Z

r<|z|<R0

⇢(x+ + z, t)� ⇢+(t)

|z|1+↵�⌧
dz

6

kq0kL1 � �M�⌧

0

Z R0

r
s�1�↵+⌧ ds

�
⇢+(t)

2 + �r�1�↵+⌧M1�⌧
0 ⇢+(t)

= [�M�⌧
0 I(r)� kq0kL1 ]⇢+(t)


�r�1�↵+⌧M0

�I(r)�M ⌧
0 kq0kL1

� ⇢+(t)

�
,

where in the last line we have written I(r) for the integral
R R0

r s�1�↵+⌧ ds. Thus,

lim sup
t!1

k⇢(t)kL1 6 �r�1�↵+⌧M0

�I(r)�M ⌧
0 kq0kL1

.

We choose r > 0 that minimizes the right hand side, hence,

(28) �I(r)�M ⌧
0 kq0kL1 =

�r⌧�↵

1 + ↵� ⌧
,

and consequently

lim sup
t!1

k⇢(t)kL1 6 r�1�↵+⌧M0

�I(r)�M ⌧
0 kq0kL1

= (1 + ↵� ⌧)M0r
�1.

Note that the choice (28) amounts to putting

(29) r =

8
<

:

�
(1 + ↵� ⌧)[(↵� ⌧)��1M ⌧

0 kq0kL1 +R⌧�↵
0 ]

�� 1
↵�⌧ , ⌧ < ↵

R0 exp(�1� ��1M ⌧
0 kq0kL1), ⌧ = ↵.

The large time upper bound on ⇢ then becomes

lim sup
t!1

k⇢(t)kL1 6

8
<

:
(1 + ↵� ⌧)1+

1
↵�⌧M0[(↵� ⌧)��1M ⌧

0 kq0kL1 +R⌧�↵
0 ]

1
↵�⌧ , ⌧ < ↵

M0R0 exp
�
1 + ��1M ⌧

0 kq0kL1
�
, ⌧ = ↵.

Plugging into (26) we obtain

(30) lim sup
t!1

k⇢(·, t)� ⇢̄kL1 6

8
>><

>>:

M1+⌧
0 kq0kL1

�R⌘0c(R0,↵,⌧)
[(↵� ⌧)��1M ⌧

0 kq0kL1 +R⌧�↵
0 ]

1+⌧�⌘
↵�⌧ , ⌧ < ↵

M1+⌧
0 kq0kL1

�R2⌘
0 c(R0,↵,⌧)

exp
⇥
(1 + ⌧ � ⌘)(1 + ��1M ⌧

0 kq0kL1)
⇤
, ⌧ = ↵.

We choose ⌘ = ⌧ to obtain the bound in Theorem 1.3.

2.5.3. Case of topological kernels with ↵ < ⌧ < ↵ + 1. In the case above, where ⌧ 6 ↵, a key step
in the argument was to use the fact that I(r) ! +1 as r ! 0+. This is what allowed us to bound
⇢ in terms of kq0kL1 , regardless of the size of q0. If ↵ < ⌧ < ↵ + 1, then I(0) is finite; therefore,
we need a smallness condition on kq0kL1 in order for the above argument to give an upper bound
on the density, similar to the case of Lipschitz kernels. In particular, we need

��1M ⌧
0 kq0kL1 < I(0) = R⌧�↵

0 /(⌧ � ↵).
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If this is the case, then it follows that there exists r0 > 0 such that I(r0) = ��1M ⌧
0 kq0kL1 and

I(r) > ��1M ⌧
0 kq0kL1 for r 2 (0, r0). The value of this r0 is given by

r⌧�↵0 = R⌧�↵
0 � (⌧ � ↵)��1M ⌧

0 kq0kL1 .

If
r⌧�↵ = (1 + ↵� ⌧)[R⌧�↵

0 � (⌧ � ↵)��1M ⌧
0 kq0kL1 ] = (1 + ↵� ⌧)r⌧�↵0 ,

then clearly r 2 (0, r0). Furthermore, this formula agrees with that given in (29) (for ⌧ < ↵), so by
the same manipulations as before, we have

lim sup
t!1

k⇢(t)kL1 6 r�1�↵+⌧M0

I(r)� ��1M ⌧
0 kq0kL1

= (1 + ↵� ⌧)M0r
�1

= (1 + ↵� ⌧)1�
1

⌧�↵M0[R
⌧�↵
0 � (⌧ � ↵)��1M ⌧

0 kq0kL1 ]
1

↵�⌧

Plugging this into (26) we obtain

lim sup
t!1

k⇢(·, t)� ⇢̄kL1 6 M1+⌧
0 kq0kL1

�R⌘
0c(R0,↵, ⌧)[(↵� ⌧)��1M ⌧

0 kq0kL1 +R⌧�↵
0 ]

1+⌧�⌘
⌧�↵

.

Once again, we choose ⌘ = ⌧ to obtain the bound in Theorem 1.3.

2.5.4. Case of topological kernels with ⌧ > ↵+ 1. When ⌧ > ↵+ 1, we still require

(31) ��1M ⌧
0 kq0kL1 < I(0) = R⌧�↵

0 /(⌧ � ↵)

in order to get an upper bound on the density. However, our initial estimate on the time derivative
of ⇢+(t) needs minor adjustments, since the power 1 + ↵ � ⌧ associated to the geometric part of
the kernel is no longer positive:

d

dt
⇢+(t) 6 kq0kL1⇢+(t)

2 + �M�⌧
0 ⇢+(t)

Z

|z|<R0

⇢(x+ + z, t)� ⇢+(t)

|z|1+↵�⌧
dz

6
⇥
kq0kL1 � �M�⌧

0 I(0)
⇤
⇢+(t)

2 + �R�1�↵+⌧
0 M1�⌧

0 ⇢+(t)

= [�M�⌧
0 I(0)� kq0kL1 ]⇢+(t)


�R⌧�1�↵

0 M0

�I(0)�M ⌧
0 kq0kL1

� ⇢+(t)

�
.

Our long-time bound becomes

(32) lim sup
t!1

k⇢(t)kL1 6 �R⌧�1�↵
0 M0

�I(0)�M ⌧
0 kq0kL1

=
(⌧ � ↵)R⌧�1�↵

0 M0

R⌧�↵
0 � (⌧ � ↵)��1M ⌧

0 kq0kL1
.

Plugging into (26) yields

lim sup
t!1

k⇢(·, t)� ⇢̄kL1 6 M1+⌧
0 kq0kL1

�R⌘(⌧�1�↵)
0 c(R0,↵, ⌧)[R

⌧�↵
0 � (⌧ � ↵)��1M ⌧

0 kq0kL1 ]1+⌧�⌘
,

which gives the inequality of Theorem 1.3 when ⌘ = 1 + ↵.
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