ON THE STRUCTURE OF LIMITING FLOCKS IN HYDRODYNAMIC
EULER ALIGNMENT MODELS

TREVOR M. LESLIE AND ROMAN SHVYDKOY

ABSTRACT. The goal of this note is to study limiting behavior of a self-organized continuous flock
evolving according to the 1D hydrodynamic Euler Alignment model. We provide a series of quanti-
tative estimates that show how far the density of the limiting flock is from a uniform distribution.
The key quantity that controls density distortion is the entropy H = [ plog pdz, and the measure
of deviation from uniformity is given by a well-known conserved quantity e = v’ + Ly p, where u
is velocity and Ly is the communication operator with kernel ¢. The cases of Lipschitz, singular
geometric, and topological kernels are covered in the study.

1. INTRODUCTION

In this note we continue the study of the long-time behavior of solutions to the following Euler-
alignment model on the torus T = [—m, 7|:

(1) pi + (pu) =0,
() i+ ! = /T Ol 9) (uly) — u(@))p(y) dy = Ly(pu) — uly(p),
where

Lof = /T B y) (f () — F(2)) dy,

and ¢ : T? — [0,00) is a communication kernel. (Here and below, we use primes to denote
spatial derivatives: f’ = 0, f.) This model represents a one-dimensional hydrodynamic analogue of
the Cucker-Smale agent based dynamical system [3, 4], and found application in a wide variety of
subjects, see [8, 14, 1] for recent surveys. The system (1) — (2) is designed to describe the mechanism
of alignment of congregations of agents governed by laws of self-organization with communication
encoded into the kernel ¢. The long time behavior is thus characterized by convergence to a flocking
state, by which we mean alignment to a constant velocity u — @, and stabilization of density to a
traveling wave

(3) p(@,t) = poo(x — t).

Such a result was proved under the strong global communication condition inf ¢ > 0 on the torus,
see [11, 12]; on the open space, exponential alignment and bounded support of density (weak
flocking) was shown under a weaker “fat tail” condition [ (r)dr = co in a variety of settings,
[2, 13, 6]. The case of local kernels, by which we mean purely local protocols, supp ¢ C {|z—y| < R},
remains largely open with the exception of a new class of topological kernels introduced in [9], and
the case of strong communication relative to other initial parameters of the data, [7].
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The multitude of flocking states (3) demonstrates that the Euler alignment system (1) — (2)
supports a variety of self-organization outcomes. However it is hard to predict what that outcome
Poo Will be from initial conditions. Note that @, on the other hand, is uniquely determined by
the ratio of conserved momentum over mass. In this article we propose to study this question
with a less ambitious goal: determine how far the limiting flock po, deviates from the uniform
distribution p = %MO, where M is the total mass. In fact, we consider a more general case when
the convergence (3) is unknown. As a measure of “disorder” of the flock we consider the long time
limit

(4) limsup |p(-,¢) = pllLr(1)-
t—o00

Let us recall that in 1D the Euler alignment system possesses an extra conserved quantity (see
[13, 2, 9])

et + (ue) =0, e=u'+ Lyp,

provided 1 is either of convolution type, 1(z,y) = ¥(x — y), or topological type as defined below.
The physical nature of this quantity has remained elusive, but we will find that it is directly
implicated in quantifying disorder of the flock similar to the topological entropy. More precisely,
we consider the e-quantity per mass of the flock: ¢ = %. Note that ¢ is transported:
(5) q: +uq = 0.

This allows to trace information at any time ¢ back to the initial datum, in particular, ||q(+,t)|lcc =
llgo|loo- The thrust of our main results is to show that the latter is the parameter that controls
deviation from the uniform flock expressed by the limit (4).

Let us set some assumptions. We distinguish two classes of kernels:

e Lipschitz convolution type kernels ¢ € Lip(T) with local communication

(6) ¢($ - y) > AXRO(“’E - y’)a R07)\ > Oa
e Symmetric topological kernels, as introduced in [9]%: here 7 >0, 0 < a < 2,
h(z —y
Y V(.. o) (e — ) > A (o — o)),

= 1z — y| o Td(z, y, )7
where

d(z,y,t) =

/z Y (o) d

The well-posedness theory for the smooth case was developed in [2, 13], and for the singular case in
[5, 10, 11, 12] (geometric kernels, 7 = 0) and [9] (topological kernels, 7 > 0). In the smooth kernel
setting, the threshold condition wuj + ¢ * pg > 0 guarantees global existence, while in the singular
case, one has existence for any data if 7 < a and for small data if 7 > «.

We now state our main results.

Theorem 1.1. Let (p,u) be a smooth solution to the system (1)—(2), with kernel given by either
(6) or (7). Ifeg =0, then

® lo(t) = lzs < er(llpo2)e 2 Fodtorlmlz=t

where ¢y depends only on Ry and My in the Lipschitz case, and co need not depend on ||po||pe~ if
7 < a+ 1 in the topological case.

IWe cite here the first draft of the manuscript [9]; in later versions the authors specialize to the case where 7 = n,
where n is the dimension of the space.
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We note that this result complements the one obtained in [9] for topological case. Namely, if
eo = 0, then in the L*> metric one has a slower algebraic relaxation towards the uniform state:

1
1+t

lp(t) = plize= <

)

as t — oo.

Theorem 1.2. Let (p,u) be a smooth solution to the system (1)—(2), with a Lipschitz kernel v
satisfying (6). Provided ||qol|ree < ||¢||11, one has

Mo|lqol| o= ||9[| zoe
Ro)(1¥]l 2 — llqoll =)’

9 lim su St)—pllp <
9) HOopllp( ) =Pl Nl

where ¢(Rp) is a constant depending only on Ry.

Let us note that the dependence on ||qo|| = is linear for small values. At the same time, the bound
is inversely proportional to the strength A, which shows the stabilizing effect of communication on
the structure of the flock.

Theorem 1.3. Let (p,u) be a smooth solution to (1)—(2), with topological kernel 1. One has the
following bounds for any initial data

_ 1 _ - [P B
limsup [|p(-,#) — pll 2 < § 1Mq+TH‘J0HL°o[(Oé — A M{lgol| L + RyTe7,  0<7<a
t—o0 C)‘ilMO—H”quL"O eXp (1 + AilMa”quL"o) ) T=q,
where ¢ = ¢(Ry, a, 7). And one has the following two bounds

_ 1 _ - e —L
tiwsup (-, )—plps < § O3 Mool flo 7T MG ol + BT <1 e
i A M ol 1= (o = DA MG ol + B2 7> 14a,
under the smallness requirement

)\M—TRT—a
laollzee < =——2—

—

Let us note that for small gp all the bounds are essentially linear in ||go|/r. Other factors
minimize distortions of the flock as well, such as strength of communication A >> 1, or small mass.

Remark 1.4. We actually only need lower bounds on ¢g in the smallness conditions of the Theorems
above. For example, in (9), the quantity ||¢||z1 — ||qo||ze can be replaced with ||¢||;1 + inf go; one
can see this by following the estimates on the density amplitude in Section 2.5. This results in the
slightly relaxed smallness requirement inf gy > —||¢||z1. A similar remark applies to the statement
for topological kernels. However, since our primary interest is in the case where ||qo||z~ is small,
we state our results entirely in terms of ||qo||z, for simplicity.

Note also that in the case of Lipschitz kernels, inf gy > —||¢]/z:1 (with non-strict inequality)
is equivalent to the critical threshold condition (c.f. [2], [10]) that dictates whether the solution
remains globally smooth or blows up in finite time. So the precise version of the smallness condition
we need in order to control the density is almost guaranteed already by the fact that we are working
with globally smooth solutions. The situation is similar for topological kernels in the case 7 > «a:
the smallness condition is precisely the one from the existence theory in [9]. Unlike the case of
Lipschitz kernels, however, it is not known how sharp this condition is for the existence theory for
topological kernels.
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2. PROOFS OF THE RESULTS

Let us recall some preliminary facts before we proceed to the main proofs.

2.1. The Csiszar-Kullback inequality. The main tool in establishing results of this paper is
the use of relative entropy defined by

(10) 7—[:/plogpdm:/plogpdx—Mologﬁ,
T P T

where p = %MO and My = f,ﬂ, p(z) dz is the total mass. The classical Csiszar-Kullback inequality
states

(11) lp = pl7: < dmpH.

Furthermore, by the elementary inequality logz < z — 1, we also have

p __ 112
(12) H</p<—1) dz =5 flo = dll%a
T P

Thus we obtain the two sided bounds

1 _ _ _
(13) = lp =l < pH < llp = pll7=-

T
2.2. Evolution of the entropy. At the heart of the argument is the equation on the entropy (10)
which one obtains testing the continuity equation (1) with log p + 1:

(plog p): = pi(log p+ 1) = —(pu)'(log p + 1)
= —p'(logp+1)u — pu'(log p+ 1)
= —(plog p)'u — (plog p)u’ — pu
= —[u(plog p)]' — pu’ = —[u(plog p)|' — p*q + pLyp.

/

Therefore,

aH  d

a9 G [evpdr=— [ dade= [ w@u)iota) ~ptu)ota) dudy.

Noting that fﬂ. pqgdx = fT edz = 0, we can subtract p from one density in the first integral on the
left hand side. After additionally symmetrizing the last integral we obtain

dH

(15) G = [o=paae=3 [ v@plo) - )l dray.

2.3. Bounds on the dissipation. If our kernels ¢ were global, it would be easy to get a positive
lower bound on the dissipation term:

1) [ vnlplo) = )P dedy > Gafv) [ lole) = pl)l? dedy = 2int 0)llo gl

Since in all our cases we have a non-trivial lower bound on the kernel only near the diagonal
{(z,y) € T?: |z — y| < Ro}, we need a substitute for (16) stated in the following Lemma.

Lemma 2.1. The following inequality holds:

1 _
(17) ! / / p(@) — pla + ) dz dz > e(Ro)lp — 2.
2 Jr |z|<Ro
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Proof. Let x be a nonnegative cutoff function on T with support in Bpg,(0), which is constant on
Bpg, /2 and has integral 1. Then X(0) = 1 and |X(k)| < 1 for all k € Z\{0}. On the other hand, we

have by the Riemann-Lebesgue Lemma that X (k) — 0 as k — oo; therefore we have in fact that
IX(k)| < 1— ¢ for some € > 0 depending only on Ry (k # 0). Define pr,(x) = x * p(x), so that

(p = Pro) (k) = (1 = X(k)p(k).
Consequently

(0= Pry) (K)| = elp(k)|, K €Z, k#0,

~

and p(0) = pg,(0). Thus

lo—plZ:= 3 1) <23 lo — prg) W2 = < 2llp — o 3

keZ\{0} kEZ
By the fact that [, x = 1 and Minkowski, we have

2
o — P22 = H J et ot —ma| < /Mda Io() = o — s dy

// — p(z + 2)[*dz da.
‘Z|<R()

Combining the inequalities above yields

o=tz <=2 [ f —pla+ ) dz da
Z|<R0
taking c¢(Ro) = 2¢? finishes the proof. O
Estimating the dissipation term now becomes trivial:
1 _
(18) 5 /w b(@,y,1)|p(x) — p(y)|* dz dy > e(Ro)v(t)llp — o172,
where

$(t) = inf{y(z,y,1) : |2 — y| < Ro}
Of course, if v is a Lipschitz kernel (6), then

(19) W(t) > A

If v is a topological kernel, then estimating i from below requires a choice, as the topological
distance d(z,y,t) can be bounded above by |z —y|||p(t)|| L, by My, or by some combination of the
two. In general, we have

o0 popt) 5w =)

j — y [ M|l p(t) | 72"
If < a+1, then we can put 7 = 7 to eliminate the density amplitude and obtain a lower bound
on ¥(t) which is obviously uniform in time:

(21) Y(t) = ARy M, T, forallt >0, (7<1+a).

If however 7 > 14 «, then the choice 7 = 7 is no longer compatible with a positive lower bound on
1, since in this case we have a positive power of |z — y| on the right side of (20). In light of this,
we will mostly use the following more general lower bound, which is valid for any 7 > 0.

A
(22) U(t) > —ram —
T RTTMY ()|
Of course, when 7 # 7, additional bounds on the density amplitude are needed in order to obtain
a uniform estimate on 1 (¢). We provide such bounds in Section 2.5.

€ [0,7], t > 0.

€ [0, min{7, 1 + o}],
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It turns out that the choice of 7 € [0, min{1 + «, 7}] in (22) has very little effect on the result of
Theorem 1.3. Eventually, we will set n = 7 or n = 1 + «, simply to clean up some of the exponents
that appear in our bounds; however, we will carry along the n-dependence to show that we don’t
lose any information by making these choices. The only place where the lower bound (21) gives
an advantage over the more general (22) is in the proof of Theorem 1.1. In the case ey = 0, the
bound (22) is uniform in time, with ||po||ze replacing ||p(t)||r. As a result, the constant ¢y from
Theorem 1.1 carries a dependence on [|po||7- If 7 < 1+ «, then we can choose n = 7 (i.e., use
(21) instead of (22)) and eliminate this dependency.

Finally, we note that for the purposes of bounding the density amplitude, using n = 7 in (20)
will be crucial, in contrast to the computations on which (22) depends. Our density bounds will
rely on the full kernel ¥ (x,y,t) rather than just its lower bound () near the diagonal.

2.4. The entropy equation revisited. We now return to the evolution equation (15) and make
estimates; in doing so we will prove Theorem 1.1, and we will reduce the proofs of Theorems 1.2
and 1.3 to proving the relevant bounds on the density amplitude.

In what follows, the constant ¢ = ¢(Ry) depends only on Ry but may change from line to line.
We have

o)z llaollz<llp(-,t) = pllr — e(Ro)b(t)llp(-,t) — o172
|p(t) |zl qol[ Lo v/ 4mpH(E) — c(Ro)ib(£) pH(E)-

H(t) < |
< |
Setting Y = \/ﬁ, we find

Y(t) < llp®)ll=llgoll L v/7p — c(Ro)i(t)pY (t).

Using Gronwall’s lemma we obtain
t
(23) Y(t) < Ypexp <—C(R0)p/ P(s) d3>
0
t t
vl [ ol ew (~crap [ oar) ds

From here, it is easy to prove Theorem 1.1. Indeed, if eg = 0, then the second term in (23) drops
out completely. Furthermore, p satisfies a maximum principle in this case: ||p(t)||zee < ||po|| Lo, sO
% is uniformly bounded below by a constant in all cases: 1(s) > 1.

(1) = pllpr < \/4mpY (t) < /4mpHo exp(—c(Ro)pti))
< \/47r||po—/3||L2 exp(—Acat) < cf|pol 12 exp(—Acat),

where co = ¢(Ro)p(1p/N\). Thus, in the Lipschitz case, co depends only on Ry and Mj. In the
topological case, ¢ depends only on Ry, My, o, and 7 when 7 < 1+ «; if 7 > 1 + o, then ¢
depends additionally on ||pg||zec. This completes the proof of Theorem 1.1.

If ¢ is a Lipschitz kernel or a topological kernel with 7 < 1 4 «, then we know that () is
uniformly bounded below, hence the first term on the right side of (23) vanishes as ¢ — oo. In fact,
the same is true for topological kernels with 7 > 1 + «; this will be apparent once we prove upper
bounds on the density amplitude. We write

t t

@0 s o) — plys < Mollaol= msup [l exp (—C(Ro)ﬁ JRG d¢> ds.
t—o00 t—o0 0 s

If 4 is a Lipschitz kernel, then this estimate becomes simply

g0/l L=
Ac(Ro)

(25) tim sup [lo(- 1) — pllx < S22y o o
t—00 t—o0
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Thus the proof of Theorem 1.2 is reduced to estimating the density amplitude. The situation is
similar for topological kernels. Upon substituting (22) into (24), the usefulness of the following
Lemma becomes apparent:

Lemma 2.2. Suppose f is a positive bounded function on R™ with limsup,_, ., f(t) = L. Letc >0,

6>0. Then
t t c L1+6
li - ——dly ds < —.
mow [ j@o0 (- [ gy} w <t

Proof. Fix e > 0, and Ty so that f(¢t) < L+ ¢ for t > Tj. Since f is bounded, it is clear that

To v,
; f(s)exp{—/s f‘s(l)dl} ds — 0,

as t — 0o. Let us estimate the rest

t to. t c (L +¢)i+d
f(s exp{—/ dl}dsé/ L+¢ exp{—t—s}dsg.
! 0 A W T :
This finishes the proof. O

Applying the Lemma to (24) and (22), we conclude that for any n € [0, min{7, 1 4+ a}], we have

. _ My Ry™ lgollze . -
(26) limsup |[p(-, 1) — pl|p < —22 ol lim sup Hp(t)”fgf .
t—o00 AC(BZO) t—o00

Thus in all cases, all that remains is a large-time bound on the density amplitude.

2.5. Bounds on the Density Amplitude. Throughout our discussion of bounds on the density
amplitude, we will make use of the following differential inequality: If f X (¢) < AX(¢)[B — X(t)],
where A and B are positive constants and X (¢) is a positive function, then

BX(0)

(27) XS X075 (B = X(0) exp(—ABY)"

In particular, limsup,_, . X (t) < B.

2.5.1. Case of Lipschitz kernels. Let p4(t) denote the maximum value of p at time ¢, and let x4
denote the z-value where the maximum is achieved. Then if ||qo|| L~ < |[1]/11, one can get an upper
bound on ||p(t)||r~ by integrating the differential inequality derived below.

C0u(t) = —p (00 (4, 1) = i (0Pala 1) + 1 1) [ vt =)ol = pste) dy

< (lgollzee = [%llL0)p+ () + || o Mopo (2)

- - - [YllLeMo ]
= (I¥llLr = llgollze< ) p+(2) ol — Taolim +(t)

In view of (27) we obtain

[4]| Lo Mo
1912y = ligoll o

limsup [|p(t)] 2= <
t—o00

Plugging into (25) we conclude

Moy||qo| o= |9 || Lo .
Ro)([[4]l.r = llqo]lz=)

lim su “t)—p <
HOopllp( ) =Pl M
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2.5.2. Case of topological kernels with 0 < 7 < «. The case of topological kernels follows the
same strategy as for Lipschitz kernels, with additional technicalities. Note that in order for the
dissipation to compete with the quadratic term gp?, we must choose = 7 in (20); otherwise the
associated power of p; will be less than 2.

For any r € (0, Ry), we have

GO = =0l 0P 4 04(0) [ Wlariws +2)(plas +2,0) = po(0) ds

B ples + 2) — pu (1)
< ol oo (8)2 + AM ™ pe (1) / o) = pelt) g,
r<|z|<Ro ’Z‘

Ro
< |llgollz= - )‘MOT/ s dS] p () + XM T p (8)
T

Ar— et 0
= - p+(t) )
M (r) — M¢lqol|

= MG I — ol Tos (0 [

where in the last line we have written I(r) for the integral fTRO 571797 ds. Thus,
< )\TflfaJr'r MO

= A(r) = Mg lqoll e

We choose r > 0 that minimizes the right hand side, hence,

AT
(28) (1) = M5 laoll o= = 75—

lim sup [ p(t)]| .~
t—o00

and consequently

_ pol=at T

= AI(r) = M llgol| e
Note that the choice (28) amounts to putting

lim sup ||p(t)|| Lo =(1+a—71)Myr L.
t—o00

__1
(29) (A+a—1)(a=7)A  Mllgollze + RG]) =7, 1<«
7" =

Ry exp(—1 = A"'M{ [lqollze), T=a
The large time upper bound on p then becomes

1 1
' (1+a—7)"" a7 My[(a — DN M|l qollz + Ry Yo7, 7 <a
lim sup [Jo(t) 2 <
t—00

MoRoexp (1 4+ A Mol <) , o
Plugging into (26) we obtain
M1+T o B -~ s
%[(a — DA M ||qol| e + RG] e, T<a

(30) liltnsupllp(-,t) —pll < —

—00 MItT o _
W%exp [(1+T—77)(1+)\ 1Mg|]q0HLoo)], T =q.
We choose n = 7 to obtain the bound in Theorem 1.3.

2.5.3. Case of topological kernels with o < 7 < o+ 1. In the case above, where 7 < «a, a key step
in the argument was to use the fact that I(r) — +oc as r — 07. This is what allowed us to bound
p in terms of ||qo||re, regardless of the size of go. If @ < 7 < o+ 1, then I(0) is finite; therefore,
we need a smallness condition on ||gp||z in order for the above argument to give an upper bound
on the density, similar to the case of Lipschitz kernels. In particular, we need

ATEMG o]l e < 1(0) = Rg™/(1 — a).
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If this is the case, then it follows that there exists ro > 0 such that I(rg) = A1 M7 ||qo||L=~ and
I(r) > A"t M{||qo|| L for r € (0,70). The value of this r¢ is given by
5 % =Ry — (1 — a)A T M{ ||go| | pee.
If
1= (L a - DR — (r— A M ol o] = (14 @ — ),
then clearly r € (0,7g). Furthermore, this formula agrees with that given in (29) (for 7 < /), so by
the same manipulations as before, we have

TflfaJrTMO
I(r) = A=t M{ ol o

1 _ gy 1
= (L+a—7) "7 Mo[Ry ™™ — (1 — a)A " Mg ol =] 7=

limsup || p(¢)|| e < = (1+a—7)Myr™?
t—o00

Plugging this into (26) we obtain
- _ My ™7\ qol| o
1lmsup”p(7t) _pHLl < ! 14+7—m °
fmee ARGe(Ro, o, 7)[(a = T)AT M [lqo| Lo + RG] 7

Once again, we choose n = 7 to obtain the bound in Theorem 1.3.

2.5.4. Case of topological kernels with 7 > a4+ 1. When 7 > a + 1, we still require
(31) AT M Nlgol| = < 1(0) = RG™*/(7 — «)

in order to get an upper bound on the density. However, our initial estimate on the time derivative
of p4(t) needs minor adjustments, since the power 1+ o — 7 associated to the geometric part of
the kernel is no longer positive:

d -7
po®) < ol (0 + AN (0) [
dt |z|<Ro
< [laollze = AMGTL(O)] pi (87 + ARG 7MY (1
AR, M,
— t
A (0) - Mg faolie

plas + 2,1) = pi(t)

2o dz

ZDMJHW—MﬂmMMU[

Our long-time bound becomes
ARG My (r — )Ry Mo
A(0) = Mol R~ = (1 — a)A~ M |lqoll e

(32) lim sup [|p(t)|| = <
t—o00

Plugging into (26) yields

My ™7\ qol| o
ARG e(Ro, 0, )[R = (7 = a) A~ Mg lgol| <] T
which gives the inequality of Theorem 1.3 when n =1+ a.

limsup||p(-,t) — pll 1 <
t—o00
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