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Exact polarization energy for clusters of
contacting dielectrics†

Huada Lian *a and Jian Qin *b

The induced surface charges appear to diverge when dielectric particles form close contacts. Resolving

this singularity numerically is prohibitively expensive because high spatial resolution is needed. We show

that the strength of this singularity is logarithmic in both inter-particle separation and dielectric

permittivity. A regularization scheme is proposed to isolate this singularity, and to calculate the exact

cohesive energy for clusters of contacting dielectric particles. The results indicate that polarization

energy stabilizes clusters of open configurations when permittivity is high, in agreement with the

behavior of conducting particles, but stabilizes the compact configurations when permittivity is low.

1 Introduction

The cohesive energy of particle clusters stabilized by electro-
static interactions1–3 depends on the dielectric permittivities of
both the particles and the medium. Permittivity quantifies the
density of dipoles induced by externally applied electric fields,
which is proportional to polarization in the linear regime.
When the permittivity contrast between the particles and the
medium is high, as is often the case, the polarizations from the
two sides of the interface do not fully compensate each other,
resulting in the accumulation of induced surface charges.

Resolving the surface charges is needed to evaluate the
electrostatic interactions among particles in close proximity,
and is challenging because polarization is intrinsically a many-
body effect, depending on the positions of all particles. For
instance, careful measurements in colloidal suspensions have
shown that the inter-particle force is non-additive, which is at
least partially due to the polarization effect.4 In another set of
experiments on metallic nanoparticles, it has been found that
the aggregation of multiple particles surrounding a charged
particle can be stabilized by the polarization effect alone.3,5

More dramatic demonstration of such polarization effects is
found in the so-called like-charge attraction caused by the
strong polarization effect, for particles of large size or permit-
tivity ratios.6–8

Computational methods, such as the boundary element
method,9 the spectral methods10,11 and the image method,12

have been developed to account for this polarization effect. In
practice, these methods all need to evaluate the induced surface
charge densities in one form or another, and have been successfully
applied to study a wide range of problems involving the aggregation
of polarizable particles.13–15 However, when particles are in
close proximity, the surface charge densities apparently diverge
because the electric field in the narrow gap region is strong
even for a small difference in the electrostatic potentials of
particles. This is analogous to the divergent lubrication force
between approaching solid particles in the Stokesian regime.16

Resolving these apparently diverging charge densities requires
a high spatial resolution or a large number of image charges
that becomes computationally prohibitive for nearly touching
particles.9,17 For conductors like metalic particles, the func-
tional form of the divergent charge density has been identified,
which was used to isolate the singularity obscuring numerical
calculations and obtain the exact energy and force for contact-
ing particles.5 For dielectric particles, the question remains
unsolved.

2 Surface charges on two spheres
near contact

In this section, we investigate the diverging behavior of the
surface charge densities on dielectrics separated by a small
distance. First, the origin of this divergence for the limiting
case of contacting conductors is briefly reviewed. Then, the
analysis is generalized to dielectrics to demonstrate the role of
both the small separation and the dielectric permittivity.

2.1 Surface charges on contacting conductors

To reveal these singular surface charges, one may consider two
conducting particles separated by a small gap, as sketched in Fig. 1.
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The points on the two surfaces separated by the minimum
distance, or gap distance h, are referred to as contact points. The
surface charge density is proportional to the strength of the normal
component of electric field on surfaces, according to Gauss’s law.
When h is small, the electric field lines in the gap region are nearly
parallel to the line connecting the two contact points. The strength
of the electrical field is, in turn, proportional to the difference in the
surface electrical potentials. This relation between the surface
potential and the electrical field is analogous to that between the
longitudinal velocities of converging particles and the transverse
velocity of squeezed fluid velocity in the lubrication theory.16

To calculate the surface charge density, both the surface
potentials and the vertical separations are needed. Since con-
ductors are equipotential, the surface potentials can be set to V
and 0 respectively. The vertical separation depends on the
radial distance r, and can be expressed within the Derjaguin
approximation as h + r2/a, where a is the harmonic average of
radii of curvature a1 and a2 at the two contact points, i.e., a�1 =
(a1
�1 + a2

�1)/2. Here, the spherical apexes are assumed for
simplicity, but more general curvatures can be treated similarly.
Consequently, the field strength at radius r is E(r) = V/(h + r2/a),

and the charge density sðrÞ ¼ 1

4p
EoutV=ðhþ r2=aÞ on the top

surface, where Eout is the medium permittivity. Integrating s(r)
for r from 0 to R0, where R0 is a cutoff of order a, results in the
singular part of the surface charge

Qs ¼
VEout
4p

ðR0

0

dr
2pr

hþ r2=a
’ VEouta

4
ln

a

h

� �
: (1)

The unity in the logarithmic term is dropped because R0 C a c h.
Further, the difference between R0 and a is neglected because it
only leads to a constant shift. Eqn (1) shows how surface charges of
the upper surface become singular as the gap distance decreases.
That of the lower surface is also singular, but of opposite sign. In
the limit h - 0, the energy does not blow up because the potential
difference V vanishes once particles form contact.

The ratio of the singular charge Qs and the potential
difference V gives the singular part of the capacitance cs = Eout
a ln(a/h)/4, which has been found previous for spherical
dimers.6,8 The above analysis shows that this singular capaci-
tance is local. Thus, the same singularity applies to non-
spherical particles, and for aggregates of multiple particles.
This fact has been employed to find the exact energy for
clusters of contacting, conducting particles.5 In this work, the
full capacitance array is first numerically calculated for an
ensemble of conducting particles at finite but small separa-
tions. The singular contribution is then subtracted, leaving a
regular part that can be extrapolated to h = 0. Finally, when the
singular and regular part are pieced together, the variation of
energy with separation is obtained.

2.2 Surface charges on contacting dielectrics

For the dielectric case, a straightforward generalization of the
above treatment fails, because the particles are not equipoten-
tial. The potential difference DV(r) needed to evaluate the
charge density in eqn (1) can not be fully specified by the
potential difference between the contact points DV(0). The
variation of DV(r) with r in the gap region is expected to be
quadratic, but the curvature is unknown a priori. In an early
and analogous work on the thermal conduction of composite
materials, Batchelor et al.18 noticed that the potential distribu-
tion, which determines the surface charges, is itself dominated
by the contribution from the surface charges nearby, so that a
self-consistent treatment is needed.

To illustrate this point, we consider the dielectric dimer case
in Fig. 1. The following analysis can be applied to the cases with
arbitrary source of free charges and under external electrostatic
fields. Let f1(r) and f2(r) be the surface potentials of the two
particles with dielectric permittivity E1 and E2, respectively. The
net surface charges density, denoted by si(r) with i = 1, 2, is the
sum of the respective free charges density and the induced
bound charges density. The surface potential fi(r) can be
calculated by integrating the coulombic potential of the respec-
tive surface charges. Near the contact point, we have

fiðrÞ ¼ ~Vi þ
1

2pEi

ð1
0

dr0
ð2p
0

dy0
r0siðr0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ r02 � 2rr0 cos y0
p : (2)

Here, Ṽi are the contributions to the surface potential from the
surface charges outside the contact region. The integral are
those from the surface charges in the contact region. The

prefactor is
1

2p
(instead of

1

4p
) because of the well-known jump

condition for surface potentials.19 The distance at denominator
is approximated using that for the flat surface, which leads to
negligible error because only the contact region is of concern.
The upper bound is set to infinity for convenience; as we shall
see below, the singular surface charge density dies off rapidly
outside the contact region.

The surface charge density si(r) in eqn (2) are related to the
potential difference, DV(r) � f1(r) � f2(r). By analogy to the
conductor case, the electric field is approximately vertical and
its magnitude is DV(r)/(h + r2/a). Then applying Gauss’s law, we

Fig. 1 Surface charges between two particles separated by a small dis-
tance h. The separation of two surfaces at a radial distance r from the
contact points can be approximated by h + r2/a, where a � 2/(a1

�1 + a2
�1).

The permittivity of the medium is Eout . Surfaces of conducting particles are
equipotential with potential set to V and 0. Surfaces of dielectric particles,
with permittivities E1 and E2, have different surface potential distributions
f1(r) and f2(r), respectively.
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get the charge density on the top surface

s1ðrÞ ¼ Eout 1� Er;1�1
� � DVðrÞ

hþ r2=a
; Er;1 �

E1
Eout

; (3)

where Er;1 is the permittivity ratio between the particle and the
medium. The charge density s2 is given similarly, but with a
negative sign. Substituting the charge densities to eqn (2) and
taking the difference gives an integral equation for DV(r). The
dependence on the unknown, Ṽ1 � Ṽ2, can be factored out by
introducing an auxiliary, f (r) � 1 � DV(r)/(Ṽ1 � Ṽ2), which
satisfies

f ðrÞ ¼ Er;1�1 þ Er;2�1

2p

ð1
0

dr0
1� f ðr0Þ
hþ r02=a

4r0

rþ r0
KðxÞ: (4)

Here the integral over the azimuthal angle has been replaced
with the complete elliptic function of the first kind K(x), where

x � 4rr0

ðrþ r0Þ2. When E1 ¼ E2, eqn (4) reduces to Batchelor’s

original result, eqn (4.5) in ref. 18. Since f (r) is proportional
to the contribution from the surface charges in the contact
region, we see that it is dominated by particles with lower
permittivity. When both permittivities approach infinity, we
have f (r) = 0 and DV(r) =Ṽ1 � Ṽ2, which is identical to the
expression for the conductors discussed above. More general
cases are discussed below.

The solution to eqn (4) is uniquely determined by the
normalized distance h/a and the average permittivity ratio,
Er � 2/(Er;1

�1 + Er;2
�1). As shown by Batchelor,18 eqn (4) can be

non-dimensionalized to

f ðrÞ ¼ 1

p

ð1
0

dr0
1� f ðr0Þ
lþ r02

4r0

rþ r0
KðxÞ (5)

in which r � rEr/a and l � hEr
2/a. The numerically solved f (r)

for a few representative l values are shown in Fig. 2a. For large
gap distance, with l c 1, f (r) is nearly uniform, as expected.
For smaller l values, f (r) decreases from f (0) with r mono-
tonically. The difference in electric potential at the contact
points is proportional to 1 � f (0). The value of f (0) increases
as h decreases, and reaches unity at h = 0, ensuring that the
surface potential is continuous at the contact point. The varia-
tion of f (r) obtained from the above local analysis is confirmed
by directly solving the full potential distribution for dielectric
dimers (inset, Fig. 2a).

Similar to eqn (1) for the conductor case, the singular part of
surface charges on particle 1 is given, with R0 being the
regularizing cutoff of order a, by

Qs;1 ¼
ð ~V1 � ~V2ÞEout

4p
1� Er;1�1
� �ðR0

0

dr
2pr 1� f ðrÞ½ �
hþ r2=a

(6)

The dependence on the dielectric permittivity appears in the
prefactor 1 � 1/Er;1 and in f (r). The singular surface charge Qs,2

on the particle 2 is given analogously, but with a negative sign.
However, because of the dependence on the dielectric permit-
tivity, Qs,2 and Qs,1 do not add up to zero. The first term in the
square bracket gives the same ln(a/h) singular contributions as

eqn (1). The second term represents the correction due to
dielectric screening.

The singular capacitance defined by c1(h)� Qs,1/(Ṽ1� Ṽ2) also has
these two contributions. In the non-dimensionalized form, it reads

c1ðhÞ ¼
1� Er;1�1

4
aEout ln

a

h
� P lð Þ

� �
;

PðlÞ �
ð1
0

dr
2r

lþ r2
f ðrÞ:

(7)

In the last term, the upper bound is set to infinity because f (r) decays
rapidly (as lnr/r, ref. 18). The dielectric correction is contained in the
term P(l), which depends on permittivity Er and relative gap distance
h/a through the combination l = hEr

2/a. The behavior of P(l) is derived
from that of f (r). For l c 1, P(l) is vanishingly small, so the
capacitance is dominated by ln(a/h), the characteristic behavior of
conductors. On the other hand, when l- 0, the leading contribution
to P(l) is�lnl, which cancels exactly the ln(a/h) dependence, leaving a
term 2lnEr that diverges instead with the average permittivity. Further,
we note that c1(h) approaches the conductor limit for Er c 1.

The difference in contact charges between dielectric and
conductor cases is solely contained in P(l). For intermediate
separation, c1(h) shows a singular ln(a/h) dependence that is
similar to the conductor behavior. However, as long as Er is
finite, this logarithmic behavior will eventually be cut off by

Fig. 2 (a) Variation of surface potential f (r) along the radial direction for
l = 0, 0.5, 1.0, 10.0 and 1000. The inset shows the normalized potential
difference for spherical dimer with a minimum separation h = 0.1a and
parameters (Qi, Ei, ai): (1, 100, 1) and (�1, 10, 2). Dots are numerically solved
by a spectral method in bispherical coordinate11 and the solid line is
proportional to 1 � f (r). (b) The singular capacitance c1 is presented as a
function of normalized gap distance h/a and relative permittivity Er.
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contribution from P(l) at sufficiently small separation. Therefore,
unlike the conductor case, the contact capacitance for dielectrics
is finite at h = 0, and approaches a constant proportional to 2 ln Er.
Physically, the logarithmic h-dependence originates from the
accumulated polarization charges at the interface. It is cut off
for dielectrics because the potential difference, which gives rise to
the polarization charge, is self-consistently determined by the
latter. The weaker polarization effect for dielectrics eventually can
not keep up with the needed potential difference for producing
the polarization charge. The variations of c1 with h and Er are
shown in Fig. 2b. The crossover can be estimated by setting l =
hEr

2/a = 1. The logarithmic divergence, although being cut at small
gap separation, still plagues numerical calculations in practice.20

This type of crossover behavior has been confirmed in a study
on dielectric spherical dimers using the image method.21 The
limiting value of the capacitance 2 ln Er as well as the crossover is
also consistent with the analytically known result between a con-
ducting sphere and a dielectric plane.22 However, unlike these two
work on dimer particles, Batchelor’s result is strictly local, suggest-
ing that the same type of singularity as represented by eqn (7) is
applicable to all contact region in cluster of multiple dielectric
particles, irrespective of the particle shape. In the following, we
show that, the approach for treating the singularity arising from the
contact between two dielectrics can be used to obtain the energy of
a cluster of dielectrics, yielding the exact contact energy and
distance-dependence with modest numerical cost.

3 Capacitance matrix of a cluster of
dielectrics

To calculate the energy of a cluster of charged dielectrics, the
constitutive relation connecting particles’ net charges and
mean potentials by a capacitance matrix is investigated and
analyzed in the close contact condition.

We consider the cluster consisting of n dielectric spheres.
Given the free charge distribution rf(r), the potential f is
governed by Poisson’s equation r�E(r)rf = �rf(r)/Eout, where
Eout is the medium permittivity. The (relative) material permit-
tivity E(r) is set to Er � Ein=Eout inside particles and unity in the
medium. Although the general charge distribution poses no
added difficulty, for simplicity, we focus on the case when only
the uniform free surface charges are present on particles’
surfaces. In such case, the system energy can be written as
surface integrals of the product of the free surface charge and
the surface potential over all surfaces. Furthermore, when the
free surface charge distribution is uniform, the energy reduces
to the sum of the product of the total charge and the average
surface potential. Therefore, we denote the set of net charges
on particles by Q, i.e. the monopolar moment of rf(r) on each
particle, and mean surface potentials by V. The net charges and
the mean potentials are linearly related, i.e.,

Q = CV, (8)

where C is an n � n ‘‘capacitance array’’. In this notation, the
total energy can be expressed as e ¼ 1

2
Q � C�1 �Q. For

convenience, the total energy presented below is always normal-
ized by the self-energy of a single isolated sphere with the radius a
and a net charge q, q2/(8pEouta). We note that this formulation
applies to arbitrary particle shapes and cluster configurations. If
the free surface charge distribution is non-uniform or any external
excitation exists, a multipole expansion of surface charge in terms
of dipole, quadrupole etc. is needed. The constitutive relation
eqn (8) and the quadratic expansion to energy can be generalized
to include the contribution from these higher-order multipoles
and external electric fields. For the purpose of demonstrating how
the contact singularity is isolated, we focus on the case of the
uniform free surface charge distribution.

3.1 Singular capacitance from contacts

Our method for dielectrics is an extension to our earlier work
on conductors.5 Because the conductors are equipotential, the
mean potential is also the surface potential at every point on
the surface. Since the capacitance C in eqn (8) contains two
types of contributions, one type dominated by close contacts
between neighboring particles, and the other type from the
remaining interactions from all particles, we decompose the
capacitance C as follows

Q = (csL + H) V. (9)

Here, csðhÞ ¼
aEout
4

lnða=hÞ is the singular capacitance for con-
ductors derived above (assuming that all gap distances are h).
Since cs becomes significant only for small gaps, the entries in
the array L are nonvanishing only for closely neighboring
particles. Specifically, if particle i and j form a close contact,
we set the entries Lij = Lji= �1. The diagonal entry Lii equals the
number of close neighbors of the particle i. All other entries of
L are set to zero. The singular capacitance L as defined here is
the same as the adjacency matrix representing the connectivity
of clusters (see ref. 5 for explicit examples). In practice, for a
given cluster configuration, we first numerically solve the full
capacitance array C at finite but small h values, then subtract
from C the singular term cs(h)L, to get the regular capacitance
H. The h-dependence of this regular capacitance is then fitted
to a straight line when h is small, allowing us to obtain the full
h-dependence for the capacitance array C and, consequently,
the full h-dependence of energy, down to h = 0.

Generalizing eqn (9) to dielectrics requires two nontrivial
modifications. First, the decomposition in eqn (9) is valid
because the potential of the conductors can be used to evaluate
the contact potential difference. But dielectrics are not equipo-
tential, and the surface potential at the contact points Ṽi

generally differ from the average potential Vi by a numerical
factor that depends on the dielectric permittivity and the
cluster configuration. Its variation with gap distance h is weak,
and approaches a constant as h - 0. So we generalize eqn (9) to

Q ¼ ~LþH
� �

V ; ~Lij �
1� Er;j�1

Vj

~V
ðiÞ
j cij ; iaj;

PN
k¼1

~V
ðkÞ
j cjk; i ¼ j:

8>><
>>:

(10)

Above, the superscript ‘(i)’ in Ṽ(i)
j indicates that the contact
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potential is evaluated on the particle j at the contact formed
with the particle i. The singular capacitance cij is given from

eqn (7) by cij ¼
Eoutaij
4

ln
aij

hij
� PðlijÞ

� �
, which depends on the

mean radius of curvature a, gap distance h, and l value
evaluated for the particle pair i and j. From the definition, it
is clear that L̃ is generally not symmetric, which however
reduces to the (symmetric) form identical to eqn (9) in the
conductor limit, since Ṽ(i)

j = Vj for all contacts on the particle j.
Second, it turns out that the contact potentials exhibit

strong dependence on the second order and more distant
neighbors, because the dielectric screening is comparatively
weak (see Fig. 4 below). Therefore, to ensure rapid convergence
of the correct contact potentials, our construction of the
adjacency array L̃ contains all pairs of particles. Fortunately,
as we shall see below, this construction requires no extra
computation other than evaluating the surface potentials at
additional contact points.

3.2 Numerical determination of regular part H

In order to identify the regular part H using eqn (10), we
numerically compute the full capacitance matrix C(h) and all
the contact potentials Ṽ(i)

j , for a range of small but nonzero h
values. We used the boundary element method (BEM) imple-
mented in the package COPSS20 to solve Poisson’s equation.
The solution is expressed in terms of the induced bound
(polarization) charges sb, which satisfies the following bound-
ary integral equation,

1þ Er
2

sb þ ð1� ErÞEout Eb þ Efð Þ � n̂ ¼ 1� Er
2

sf : (11)

Above, the electric field strength at the surface due to induced
bound charge sb and free charges sf are expressed as surface
integrals (a = b, f),

Ea ¼
1

4pEout

ð
dS0

r� r0

jr� r0j3saðr
0Þ: (12)

By our convention, the surface normal n̂ points outward. For
clusters of multiple particles, it is understood that different
particles may have different values of permittivity Er. Eqn (11) is
linear in sb and sf. After discretization, the bound charge is
obtained by inverting the coefficient array. The apparent diver-
gent diagonal entries while discretizing the surface integral
eqn (12) can be re-parameterized to reproduce the correct self-
energy. Further numerical details can be found in ref. 9. In all
calculations by BEM presented in this work (the dimer example
used the exact series expansion11), we meshed each spherical
surface into 17342 triangular patches such that mesh size is
about 0.03a.

In general, for a cluster of n particles, n separate numerical
calculations with n independent charge vectors Q are needed to
determine the full capacitance matrix C. The computational
cost can be reduced by imposing the symmetry of the cluster
configuration. Subtracting from C the singular contribution L̃
is expected to give the h-dependence of the regular part H.
However, unlike the conductor case, where the coefficient to

the logarithmic term is exactly known, the singular capacitance
L̃ for dielectrics depends on the calculated contact potentials
Ṽ(i)

j , which is susceptible to the numerical precision and what is
meant by ‘contact point’ on a surface mesh. In practice, we vary
the gap distance h and compute a few trial values of contact
potentials, then select the one that ensures the difference Hij(h) =
Cij � L̃ij converges linearly with h as h - 0 for all the entries.

4 Results

The regularization scheme is illustrated in three examples to
obtain the energy of various clusters of dielectric particles. The
nature and the impact of the contact singularity in clusters of
dielectrics are investigated.

4.1 Dimer of identical dielectric spheres

The first example is a dimer of identical dielectric spheres. It is the
simplest example for demonstrating the effects of interfacial
polarization.6,10,11,23 Except a study on the interaction between a
conducting sphere and a dielectric plane,22 very few past work
tried to evaluate the energy at small separation, presumably due to
the difficulty of resolving the aforementioned contact singularity.
Therefore, we analyzed the polarization effect for dielectric dimers
in close contact, verified the singular behavior in eqn (7), and
showed that eqn (10) yields the full h-dependence of energy. We
studied both symmetric (Q = (q, q)) and asymmetric (Q = (q, �q))
cases, for a range of permittivity values (1 r Er r 106). The energy
at h = 0 is presented as a function of relative permittivity, which
agrees with the exact result (see ESI†) found using the tangent-
sphere coordinate.

For the asymmetric case, interfacial polarization enhances
the inter-particle attraction. To illustrate this effect, we subtract
the energy of two isolated spheres from that of a dimer, then
plot it against the gap distance in Fig. 3, for three representative
values of Er: 10,102 and 104. In absence of the polarization
effect, the energy curves would exhibit no dependence on Er,
and appear flat over this narrow range of h/a values. As Er is
increased from 1, we confirm the expected, stronger distance
dependence, as h - 0. In particular, for the case of Er = 104, an
apparent logarithmic dependence on h is seen in Fig. 3a, which
is precisely the singularity revealed in eqn (7) and is stronger
for higher permittivity values. On the other hand, when the
permittivity Er is decreased, this logarithmic dependence is cut
off at an increasingly larger separation and becomes almost
invisible when Er = 10.

The normalized energy difference, as shown in Fig. 3a,
evaluated at h = 0, is show in Fig. 3b for different Er values.
This contact energy represents the energy gain for bringing two
particles from infinity to contact. In terms of the normalizing
energy unit, q2/(8pEouta), its value is �1 without the polarization
effect, and becomes more negative as Er increases, eventually
reaching �2 at Er = N.5 The contribution from the polarization
effect for Er \ 100 is comparable to the coulombic attraction
alone. Moreover, we notice a slow convergence of contact
energy for permittivities Er \ 103, owing to the weak ln Er

2
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dependence in the contact capacitance, i.e. eqn (7) at h = 0.
Finally, we affirm our results obtained from eqn (10), by
comparing the contact energies to the exact analytical results
(ESI†).

For the symmetric case, the interfacial polarization weakens
the inter-particle repulsion, which is seen from the h-dependence
of dimer energy. However, by symmetry, the potential difference
in the gap region vanishes and thus no logarithmic behavior is
observed in Fig. 3c. The energy scales linearly with h and a
straightforward extrapolation gives the contact energy for all
permittivity values plotted in Fig. 3d. A much weaker polarization
effect is found. Even for the conductor case, only about 10%
contact energy can be attributed to polarization effects. The contact
energies converge for Er \ 100, and reach 2(1/ln 2 � 1) C 0.88, in
agreement with Maxwell’s result24 for the conducting dimers. As for
the asymmetric case, the full Er-dependence matches the analytical
calculation (ESI†). To conclude this example, we note that the
symmetric case is a peculiar example where the contact singularity
is strictly absent. For all other charge ratios, using the decomposi-
tion in eqn (10) to isolate the strong h-dependence is necessary.

4.2 A cluster of 8 dielectric spheres

The second example concerns the energy of 8 identical spheres
placed at the vertices of a cube, which illustrates the importance
of the second order contact for dielectric clusters. As discussed
above, the singular capacitance L̃ in eqn (10) contains not only
contributions from the nearest neighbors, but also those from
the second-order and higher order neighbors. Therefore, a
sphere at a vertex of a cube forms a secondary contact with its
3 plane diagonal vertices, and a third order contact with the body
diagonal vertex. Even though the higher order contributions are
minor, because at such large separation, these contacts cease to
be singular, keeping the second order contribution is essential
for obtaining the correct linear scaling of the regular capacitance
with gap distance h shown in Fig. 4a.

As in the dimer case, these regularized capacitance allow us
to evaluate the energy at arbitrarily small gap distance. Fig. 4b
shows the normalized energies when only one particle is

charged, for which all the energetic contributions come from
the interfacial polarization. Comparing the results from BEM
and our regularization schemes containing varying order of
contact contributions, it is clear that keeping the higher order
singular contribution is necessary for correctly evaluating the
energy for h/a u 0.05. In contrast, no such terms are needed for
the conducting case.

4.3 Energetic stability of clusters of dielectric spheres

The third example is our main result on the energy of clusters,
from which the cohesive energy is obtained by subtracting the
self-energy of particles at infinite separation. We considered two
limiting configurations: the most extended one with all spheres
arranged along a straight line (string), and the most compact one
with all spheres posited at the vertices of the platonic solids
(polyhedron). In our earlier work on the conducting spheres,5 the
charges are allowed to flow freely between contacting spheres.
The energy of polyhedron packing is found to be lower than that
of the string packing at a finite separation. However, as the
gap distance decreases, the polarization effects due to contact
singularity become increasingly relevant, which ultimately makes
the string packing to be energetically more favorable than the
polyhedron packing. For the dielectric cases, we show that the
weakened contact singularity causes another crossover between
the relative stability of string-like and polyhedral packings.

Fig. 3 Electrostatic energy of a pair of identical spheres. (a and b):
Asymmetric charges Q = (q, �q). (c and d): Symmetric charges Q =
(q, q). In (b and d), dots are numerical results obtained using our proposed
method, and curves are exact results obtained using the tangent-sphere
coordinate (ESI†).

Fig. 4 (a) Variation of entry H11 in the regular capacitance array against
separation. The results for the other entries are provided in Fig. S3 (ESI†). (b)
Variation of electrostatic energy against separation for dielectric spheres
with Er = 100 placed on cubic vertices, where one sphere is charged.
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As the previous example, to highlight the polarization
effects, a unit charge q is placed on one sphere. For symmetric
polyhedron packing, this charged sphere is arbitrarily chosen.
For the string packing, we considered two extreme placings: at
one end (string-1) and in the middle (string-2). For each particle
configuration and charge assignment, we considered two
scenarios: charge transfer between contacting particles is per-
mitted (Fig. 5a) and prohibited (Fig. 5b).

When inter-particle charge transfer is permitted, while
maintaining uniform charge distribution on each individual
particle, the energy can be calculated using Q�C�1�Q/2.5 Mini-
mizing this energy subject to the constraint of constant total
charge q, the optimal charge assignment is found to be Qe = qC�

u/Ce, where u � (1, 1, � � �, 1) and Ce �
Pn
i;j¼1

Cij . This implies that

the optimal charge Qe produces identical average surface
potentials for all the particles, which generalizes the ‘equipo-
tential’ concept for conductors. Correspondingly, the mini-
mized energy is given by q2/(2Ce), where the mean
capacitance Ce weakly depends on the dielectric permittivity.
In this scenario, there is no need to differentiate string-1 and
string-2 configurations. The energies of string and polyhedron
configurations at h = 0 are plotted in Fig. 5a, for Er = 10 and 500.
For all configurations, the energy decreases with the cluster size
n monotonically since the redistributed surface charges are
further apart. The dependence on permittivity is surprisingly
weak, and the size-dependence is nearly indistinguishable from
that of the conductor case.5 Two curves are obtained by treating
the cluster as a single conductor respectively, whose capacitance
scales with the length scale of the cluster, i.e., n1/3 for the
polyhedron packing and n/ln(n) for the string packing.5 The
extended string packing has a lower cohesive energy because its
effective capacitance is higher than that of the compact poly-
hedron packing.

More interesting behavior is found (Fig. 5b) when charge
transfer is prohibited. The dependence on permittivity is
evident for all three cases: string-1, string-2, and polyhedron.
To better visualize energies of string-2 and polyhedron packing,
energies of string-1 is presented in Fig. S4 (ESI†). The energy is
lower for the cluster with higher permittivity, because the
polarization effect is stronger. The energy of string-2 is lower
than that of string-1 for identical n, because the charged particles
in the middle of the string can polarize the particles in two half
strings. Further, the energies for both string-1 and string-2
configurations saturate as the cluster size grows beyond n \

12 because the polarization effect is short-ranged, which con-
trasts the size-dependence of energy in Fig. 5a. To assess the
relative stability of compact or extended configurations, we then
only need to focus on the string-2 and the polyhedron cases.

Our results indicate that the relative energetic stability
depends on the permittivity. For Er = 10, the energy of the
polyhedron packing is lower than the string-2 packing, which is
opposite to the characteristic result for conductors shown in
Fig. 5a. Therefore, we expect a crossover from a stable compact
packing to a stable open packing at intermediate permittivity
values. This is indeed the case shown for Er = 500, whereby the

energies of compact and open configurations closely trace each
other, and the relative energetic stability changes at n = 4 and
n = 8 respectively. As Er is further increased, the energy curves of
corresponding configuration will converge to those in Fig. 5a,
reversing the relative stability of open and compact packings.

5 Conclusion

In summary, we generalized our previous work on conducting
particles,5 and developed a scheme to resolve the singular
contact charges between touching dielectric spheres, which
regularizes the full capacitance array by isolating the singular
contributions, i.e., eqn (10). Using this scheme, we obtain the
cohesive energies for dielectric clusters at zero separation
containing up to n = 20 particles, which is difficult to resolve
with brutal force numerical calculations. Our results show that
the shape of stable clusters formed from dielectric particles
depends on the permittivity ratio Er: open clusters is more
stable for large Er, and compact clusters is more stable for
small Er.

Fig. 5 Size dependence of electrostatic energy e for string-like and
polyhedral configurations, with fixed total charge. (a) Charge transfer is
permitted. Dashed curve: e = (2/n)1/3/(2 ln 2), the energy for polyhedral
configurations of conducting spheres.5 Solid curve: e = ln(2na/r0)/[n ln 2
ln(2a/r0)], the energy for a conducting cylinder of the same volume with
length L = 2na and radius r0 = 0.816a.25 (b) Charge transfer is prohibited.
The total charge q resides on the middle particle of the string (string-2)
and an arbitrary vertex of polyhedron (polyhedron). Lines in (b) are guide
for the eye.

Soft Matter Paper

Pu
bl

is
he

d 
on

 0
1 

A
ug

us
t 2

02
2.

 D
ow

nl
oa

de
d 

by
 S

ta
nf

or
d 

L
ib

ra
ri

es
 o

n 
9/

29
/2

02
2 

5:
29

:4
9 

PM
. 

View Article Online

https://doi.org/10.1039/d2sm00245k


6418 |  Soft Matter, 2022, 18, 6411–6418 This journal is © The Royal Society of Chemistry 2022

Our scheme is applicable to systems with arbitrary charge
distribution, packing geometry (including periodic lattices), and
asymmetric interfaces that have different permittivities and radii
of curvature on the contacting particles. Although the examples
presented here all contain uniform free surface charges (i.e., mono-
polar particles), adapting the scheme to contacting dipolar dielectric
particles is straightforward.26 The generalization to multipolar
particles will allow the study of the effect of charge regulation27

on contacting dielectrics. Therefore, our scheme can be applied to
study the thermodynamics and electrokinetics of colloids, where the
contact of charged particles is ubiquitous. However, for particles
suspended in ionic solutions, more efforts are needed to incorpo-
rate the effects of ionic screening and the packing of polar solvents
in the confined gap region.28,29 In addition, the role of polarization
in the stability of particulate aggregates remains to be quantified
experimentally. To put our results into tests, it is advantageous to
examine the aggregates formed from particles with high permittiv-
ity, such as BaTiO3, suspended in low permittivity liquids, such as
apolar organic liquids. On the theory side, at the heart of our
scheme is the contact singularity, which resembles those encoun-
tered in the study of thermal conduction18 and momentum trans-
port across a narrow gap.30

Author contributions

H. L. and J. Q. designed research; H. L. performed all calculations;
H. L. and J. Q. analyzed data; H. L. and J. Q. wrote the manuscript.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This research has been supported by the National Science
Foundation CAREER Award through DMR-1846547, and by
the startup fund from the Department of Chemical Engineering
at the Stanford University.

Notes and references

1 J. Kolehmainen, A. Ozel, Y. Gu, T. Shinbrot and
S. Sundaresan, Phys. Rev. Lett., 2018, 121, 124503.

2 V. Lee, S. R. Waitukaitis, M. Z. Miskin and H. M. Jaeger, Nat.
Phys., 2015, 11, 733.

3 E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O’Brien and
C. B. Murray, Nature, 2006, 439, 55.

4 J. W. Merrill, S. K. Sainis and E. R. Dufresne, Phys. Rev. Lett.,
2009, 103, 138301.

5 J. Qin, N. W. Krapf and T. A. Witten, Phys. Rev. E, 2016,
93, 022603.

6 A. Russell, P. R. Soc. Lond. A-Conta., 1909, 82, 524.
7 J. Qin, J. Li, V. Lee, H. Jaeger, J. J. de Pablo and K. F. Freed,

J. Colloid Interface Sci., 2016, 469, 237–241.
8 J. Lekner, P. Roy. Soc. A-Math. Phy., 2012, 468, 2829.
9 K. Barros, D. Sinkovits and E. Luijten, J. Chem. Phys., 2014,

140, 064903.
10 E. B. Lindgren, A. J. Stace, E. Polack, Y. Maday, B. Stamm

and E. Besley, J. Comput. Phys., 2018, 371, 712.
11 H. Lian and J. Qin, Mol. Syst. Des. Eng., 2018, 3, 197.
12 J. Qin, J. J. de Pablo and K. F. Freed, J. Chem. Phys., 2016,

145, 124903.
13 M. Shen, H. Li and M. O. De La Cruz, Phys. Rev. Lett., 2017,

119, 138002.
14 K. Barros and E. Luijten, Phys. Rev. Lett., 2014, 113, 017801.
15 Z. M. Sherman, D. Ghosh and J. W. Swan, Langmuir, 2018,

34, 7117.
16 L. G. Leal, Advanced Transport Phenomena: Fluid Mechanics

and Convective transport Processes, Cambridge University
Press, 2007.

17 Z. Gan, S. Jiang, E. Luijten and Z. Xu, SIAM Journal on
Scientific Computing, 2016, 38, B375–B395.

18 G. K. Batchelor and R. W. O’Brien, P. Roy. Soc. A-Math. Phy.,
1977, 355, 313.

19 O. D. Kellogg, Foundations of Potential Theory, Courier
Corporation, 1953.

20 X. Jiang, J. Li, X. Zhao, J. Qin, D. Karpeev, J. Hernandez-
Ortiz, J. J. de Pablo and O. Heinonen, J. Chem. Phys., 2016,
145, 064307.

21 L. Poladian, Q. J. Mech. Appl. Math., 1988, 41, 395.
22 S. V. Kalinin, E. Karapetian and M. Kachanov, Phys. Rev. B:

Condens. Matter Mater. Phys., 2004, 70, 184101.
23 J. D. Love, Q. J. Mech. Appl. Math., 1975, 28, 449.
24 J. C. Maxwell, A Treatise on Electricity and Magnetism, Clar-

endon Press, Oxford, 1873.
25 J. D. Jackson, Classical Electrodynamics, John Wiley & Sons,

1999.
26 H. Lian, Doctoral dissertation, Stanford University, 2021.
27 T. Curk and E. Luijten, Phys. Rev. Lett., 2021, 126, 138003.
28 M. H. Motevaselian and N. R. Aluru, ACS Nano, 2020, 14,

12761–12770.
29 S. V. Siryk, A. Bendandi, A. Diaspro and W. Rocchia, J. Chem.

Phys., 2021, 155, 114114.
30 R. H. Davis, J. A. Schonberg and J. M. Rallison, Phys. Fluids

A, 1989, 1, 77.

Paper Soft Matter

Pu
bl

is
he

d 
on

 0
1 

A
ug

us
t 2

02
2.

 D
ow

nl
oa

de
d 

by
 S

ta
nf

or
d 

L
ib

ra
ri

es
 o

n 
9/

29
/2

02
2 

5:
29

:4
9 

PM
. 

View Article Online

https://doi.org/10.1039/d2sm00245k



