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ABSTRACT

Shape plays a fundamental role in biology. Traditional phenotypic analysis methods measure some features but
fail to measure the information embedded in shape comprehensively. To extract, compare and analyse this informa-
tion embedded in a robust and concise way, we turn to topological data analysis (TDA), specifically the Euler char-
acteristic transform. TDA measures shape comprehensively using mathematical representations based on algebraic
topology features. To study its use, we compute both traditional and topological shape descriptors to quantify the
morphology of 3121 barley seeds scanned with X-ray computed tomography (CT) technology at 127 ym resolu-
tion. The Euler characteristic transform measures shape by analysing topological features of an object at thresholds
across a number of directional axes. A Kruskal-Wallis analysis of the information encoded by the topological signa-
ture reveals that the Euler characteristic transform picks up successfully the shape of the crease and bottom of the
seeds. Moreover, while traditional shape descriptors can cluster the seeds based on their accession, topological shape
descriptors can cluster them further based on their panicle. We then successfully train a support vector machine to
classify 28 different accessions of barley based exclusively on the shape of their grains. We observe that combining
both traditional and topological descriptors classifies barley seeds better than using just traditional descriptors alone.
This improvement suggests that TDA is thus a powerful complement to traditional morphometrics to comprehen-
sively describe a multitude of ‘hidden’ shape nuances which are otherwise not detected.

KEYWORDS: Data science; Euler characteristic transform; Mathematical biology; Shape; Topological data
analysis

1. INTRODUCTION commensurate with the thoroughness and speed with which genomes
There is a discrepancy between the information embedded in biologi- ~ can be sequenced. High-throughput phenotyping has enabled us to
cal forms that we can discern with our senses versus that which we can ~ collect large amounts of phenotyping data (Andrade-Sanchez et al.
quantify. Methods to comprehensively quantify phenotype are not ~ 2013; Araus and Cairns, 2014; Tanabata et al. 2012); nonetheless,
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we are not maximizing the information extracted from the data we
collect.

One framework for extracting information embedded within data
is to consider its shape. From a morphological perspective, the form
of biological organisms is both data and literal shape simultaneously.
Landmark-based approaches based on Procrustean superimposition
(Bookstein 1997) and Fourier-based decomposition of closed outlines
(Kuhl and Giardina 1982; Lestrel 1997) comprise traditional morpho-
metric methods. These approaches measure shape comprehensively,
but their use case can be narrow. Landmark-based approaches reduce
the shape information to a relatively small and possibly subjective col-
lection of points, which can be further restricted if there are no obvious
homologous landmarks across all samples. Fourier-based outlines are
limited to the analysis of 2D images and are not suitable for inputs in
higher dimensions. We thus turn to topology, the mathematical disci-
pline that studies shape in a more abstract sense.

Topological data analysis (TDA) is a set of tools that arise from the
perspective that all data have shape and that shape is data (Amézquita
et al. 2020; Lum et al. 2013; Munch 2017). TDA treats the data as if
made of elementary building blocks: points, edges, squares and cubes,
referred to as 0-, 1-, 2- and 3-dimensional ‘cells) respectively (Fig. 1A).
A collection of cells is referred to as a ‘cubical complex’ or complex,
for short.

Cubical complexes are both a natural and consistent way to rep-
resent image data (Kovalevsky 1989). Given a greyscale image, we
follow a strategy similar to the study by Wagner et al. (2012) to con-
struct a cubical complex: a nonzero pixel will correspond to a vertex
in our complex. If two pixels are adjacent—in the four-neighbourhood
sense—we say that there is an edge between the corresponding ver-
tices in the complex. If 4 pixels in the image form a 2 x 2 square, we
will consider a square in our complex between the corresponding 4
vertices (Fig. 1A). Additionally, for the 3D image case, if 8 voxels—the
3D equivalent of pixels—make a 2 x 2 x 2 cube, we will draw a cube in
our complex between the corresponding 8 vertices.

TDA seeks to describe the shape of our data based on the number
of relevant topological features found in the corresponding complex.
For instance, the complex in Fig. 1A has two distinct, separate pieces
coloured in blue and red, respectively, formally referred to as ‘con-
nected components’ This complex also has eight edges forming the
outline of a square without an actual red block filling it—edges thick-
ened for emphasis—this is referred to as a ‘loop. In higher dimensions,
we could also consider hollow blocks containing ‘voids. We can even
go a step further and summarise these topological features with a single
value known as the ‘Euler characteristic) represented by the Greek let-
ter y, defined for voxel-based images as

X = # (connected components) — # (loops) + #(voids).

The Euler characteristic is a topological invariant; that is, it will
remain unchanged under any smooth transformation applied to our
shape. The well known but surprising Euler-Poincaré formula states
that x can be computed easily as

X = #(Vertices) — #(Edges) + #(Faces) — #(Cubes).

This equivalence can be seen in the cubical complex in Fig.
1A, where

X = 20 vertices — 22 edges + 3 faces

= 2 connected components — 1 loop 4- 0 voids = 1.

The Euler characteristic by itself might be too simple. Nonetheless,
we can extract more information out of our data-based complex if we
think of it as a dynamic object that grows in number of vertices, edges
and faces across time. As our complex grows, we may observe signifi-
cant changes in y. The changes in y can be thought as a topological sig-
nature of the shape, referred to as an ‘Euler characteristic curve (ECC)’
The growth of the complex is defined by a ‘filter function’ which assigns
a real number value to each voxel. For reasons discussed later, we will
focus on directional filters which assign to each voxel its height as if
measured from a fixed direction.

As an example, consider the cubical complex of a barley seed and
the direction corresponding to the adaxial-abaxial axis (Fig. 1B).
Voxels at the top of the seed will be assigned the lowest values, while
voxels at the bottom will obtain the highest values. We then consider
32 equispaced, increasing thresholds t; < £, < -+ < 3, which define
32 different slices of equal thickness along the adaxial-abaxial axis. We
start by computing the Euler characteristic of the first slice, that is, all
the voxels with filter value less than f1. Next we aggregate the second
slice, which are all the voxels with filter value less than f;, and recom-
pute the Euler characteristic. We repeat the procedure for the 32 slices.
For instance in Fig. 1C, we observe that we started with scattered vox-
els which are thought of as many connected components which may
explain the high Euler characteristic values. As we keep adding slices,
we connect most of the stray voxels into fewer but larger connected
components, and simultaneously, we might have created loops as seen
in f4 and f6. This merging of connected components, and formation
and closing of loops might explain the fluctuation of the Euler charac-
teristic between positive and negative values. Finally, after more than
half of the slices have been considered, at 14, we observe that no new
loops are formed, and every new voxel will simply be part of the single
connected component. Thus, the Euler characteristic remains constant
at 1. The ECC is precisely the sequence of different Euler characteris-
tic values as we add systematically individual slices along the chosen
direction.

To get a better sense of how the Euler characteristic changes overall,
we can compute several ECCs corresponding to different directional
filters. For example, in Fig. 1D we choose three directions in total cor-
responding to the proximal-distal, medial-lateral and adaxial-abaxial
axes, respectively. Each filter produces an individual ECC, which we
later concatenate into a unique large signal known as the ECT.

There are two important reasons to use ECT over other TDA
techniques. First, the ECT is computationally inexpensive, since it is
based on successive computations of the Euler characteristic, which
is simply an alternating sum of counts of cells. This inexpensiveness is
especially relevant as we are dealing with thousands of extremely high-
resolution 3D images. Assuming that we have already treated the image
as a cubical complex, we can compute a single ECC in linear time with
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Figure 1. Extracting topological shape signatures from barley seeds. (A) A binary image (left) is treated as a cubical complex (right).
This cubical complex has two connected components, 1 loop, 0 voids. The distinct connected components are coloured in blue and
red, respectively. The loop is emphasised with thicker edges. (B) The barley seeds were aligned so that their proximal-distal, medial-
lateral and adaxial-abaxial axes correspond to the X,Y,Z-axes in space. (C) Example of an Euler characteristic curve (ECC) as we
filter the barley seed across the adaxial-abaxial axis (depicted as a solid, green line) through 32 equispaced thresholds. (D) The Euler
characteristic transform (ECT) consists of concatenating all the ECCs corresponding to all possible directions. In this example, we
concatenate three ECCs corresponding to the X,Y,Z directions, represented by the solid lines, respectively.

respect to the number of voxels in the image (Richardson and Werman  to use the ECT is its provable invertibility and statistical sufficiency.
2014). We can thus compute the ECT of a S0 000-voxel seed scanwith ~ As proved by Turner et al. (2014), and later extended separately by
150 directions in less than 2 s on a traditional PC. The second reason  Curry et al. (2018) and Ghrist et al. (2018), if we compute all possible

2202 4oquieydag Bz UO Josn saueiqi Alisieniun a1els ueBIydIn Aq G/ LySH9/E€0q.IP/ L /o1l /s)ue|dodiisul/wod dno olwapeoe//:sd)y Wolj papeojumod



4« Amézquita et al.

directional filters we would have sufficient information to reconstruct
the original shape. Moreover, this ECT is a sufficient statistic that effec-
tively summarises all information regarding shape. Although there are
infinite possible directional filters, there is ongoing research into defin-
ing a sufficient finite number of directions such that we can effectively
reconstruct shapes based solely on their finite ECT (Belton et al. 2020;
Betthauser 2018; Curry ef al. 2018; Fasy et al. 2019). Nonetheless,
a computationally efficient reconstruction procedure for large 3D
images remains elusive.

Another computational ~consideration is the fact that
the ECT produces a vector of topological information of
#(directions) x #(thresholds) dimensions, which is usually above
2000 dimensions. In general, high-dimensional vectors tend to pro-
duce distorted prediction and regression results (Képpen 2000), and
it is advised to denoise and summarise these vectors by using differ-
ent dimension reduction techniques. One such standard technique is
principal component analysis (PCA), which seeks to project the high-
dimensional vectors unto the orthogonal directions that capture the
greatest variability of the data. These linear directions are referred to as
the ‘principal components’ of the data. Sometimes, the data cannot be
properly summarised as a collection of lines. A more flexible approach
is to consider ‘kernel PCA (KPCA)’ (Scholkopf ef al. 1998), an ‘non-
linear’ alternative. By specifying a ‘kernel function), we can instead pro-
ject the high-dimensional samples unto the polynomial, trigonometric
or circular curves that capture the most variance of the data. A com-
pletely different dimension reduction strategy is the ‘uniform mani-
fold approximation and projection (UMAP)’ (Mclnnes et al. 2020),
which also draws several ideas from TDA. Intuitively, UMAP seeks to
project the high-dimensional data unto a low-dimensional space while
preserving the most prominent topological local features. That is, if
the original data contains large connected components, wide loops
and ample voids, its low-dimensional UMAP projection should also
exhibit several connected components, loops and voids. If two sample
points are in the same connected component in the high-dimensional
space, these two should remain in the same cluster when projected to
the low-dimensional space.

Here we show the use of ECTs to correctly summarize the shape of
barley seeds as a proof of concept. We scanned a collection of barley
panicles comprising 28 different accessions with X-ray CT technol-
ogy at 127 pm resolution. These scans were later digitally processed
to isolate 3121 individual grains, and their morphology was quanti-
fied using both traditional and topological shape descriptors. We then
explored both qualitatively and quantitatively the descriptiveness of
these measurements. To aid both assessments, we used KPCA and
UMARP separately to aggressively reduce the dimension of the tradi-
tional and ECT vectors. We observe that traditional shape descriptors
tend to cluster seeds based on their accession, while KPCA-reduced
topological shape descriptors tend to cluster them based on panicles.
UMAP-reduced topological descriptors balance both approaches and
draw shape distinctions at both accession and spike level. This in turn
shows that KPCA and UMAP draw from different pieces of ECT infor-
mation. This observation suggests that the ECT effectively summarises
both spike-specific and accession-specific morphological information
which can be then highlighted with an appropriate dimension reduc-
tion technique. To quantify the descriptor correctness, we trained a

support vector machine (SVM) to determine the accession of indi-
vidual grains based on their shape alone. Our experiments show that
SVMs perform better whenever topological information is taken into
account, which suggests that the ECT measures shape that is ‘hidden’
from traditional shape descriptors.

2. MATERIALS AND METHODS

We selected 28 barley accessions with diverse spike morphologies and
geographical origins for our analysis (Harlan and Martini 1929, 1936,
1940). In November of 2016, seeds from each accession were stratified
at 4 °C on wet paper towels for a week and germinated on the bench at
room temperature. Four-day-old seedlings were transferred into pots in
triplicate and arranged in a completely randomised design in a green-
house. Day length was extended throughout the experiment using arti-
ficial lighting—minimum 16 h light/8 h dark. After the plants reached
maturity and dried, a single spike was collected from each replicate for
scanning at Michigan State University. The scans were produced using
the North Star Imaging X3000 system and the included efX software,
with 720 projections per scan, with 3 frames averaged per projection.
The data was obtained in continuous mode. The X-ray source was set to
a voltage of 75 kV, current of 100 pA and focal spot size of 7.5 pym. The
3D reconstruction of the spikes was computed with the ef X-CT soft-
ware, obtaining a final voxel size of 127ym. The intensity values for all
raw reconstructions were standardised as a first step to guarantee that
the air and the barley material had the same density values across all
scans. Next, the air and debris were thresholded out, and awns digitally
pruned (Fig. 2A-D). Finally, the seed coat of the caryopses was digi-
tally removed, leaving only the embryo and endosperm due to their
high water content (Fig. 2E). We did not have enough resolution in
the raw scans to distinguish clearly the endosperm from the embryo.
Hereafter, we will refer to these embryo-endosperm unions simply as
seeds. Thus, we digitally isolated all the seeds and obtained a collection
of 3438 seeds in total. Due to the large volume of data, we used an
in-house scipy-based python script to automate the image processing
pipeline for all panicles and grains.

To make the collection of different directional filters comparable
across seeds, all the seeds were aligned with respect to their first three
principal components. Since all the seeds are oblong in shape, this
PCA-based alignment corresponds to the proximal-distal, medial-lat-
eral and adaxial-abaxial axes, respectively (Figs 1B and 2F). The ori-
entation of the principal components is arbitrary with every run, so
we did keep track of the crease and the tip of seed and flipped the axes
accordingly so that the tip would always be located as the rightmost
point of the image and the crease would always point north. With this
uniform alignment, we were able to measure the length, width, heights,
surface area and volume of each seed (Fig. 2G). We also computed the
convex hull for each seed and measured its surface area and volume, as
well as the ratios with respect to seed surface area and volume. In total,
11 different traditional shape descriptors were measured. Damaged
and incomplete seeds (Fig. 2H) were removed by evaluating allom-
etry plots along their best linear fits and residuals (Fig. 2I). Points with
residuals four times larger than the standard deviation were deemed
as outliers and the associated seed was manually examined further.
Outliers usually corresponded to either defective seeds—which
were discarded—or to a cluster of seeds that failed to be individually

2202 4oquieydag Bz UO Josn saueiqi Alisieniun a1els ueBIydIn Aq G/ LySH9/E€0q.IP/ L /o1l /s)ue|dodiisul/wod dno olwapeoe//:sd)y Wolj papeojumod



height
A

Raw seeds: Area vs Vol

G Transverse plane

height
B

Longitudinal plane

Jength

Raw seeds: Width vs Vol

45

10.0

~4.0

5 95 £
< 90
=) 53.5
o )

85 -

3.0 i
8.0 = |inear fit L4 = |inear fit
9 10 11 12 85 9.0 95 10.0 105 11.0 11.5 12.0
log(Vol) log(Vol)
Raw seeds: Height vs Vol Raw seeds: Length vs Vol

3.8 48

36 46
T34 g4

=

2 c42
032 3
=) 4.0
830 g

28 38

=== linear fit 3.6 === |inear fit

2.6

85 9.0 95 100 105 11.0 11.5 12.0
log(Vol)

85 9.0 95 10.0 105 11.0 11.5 12.0
log(Vol)

200-

a
o

No. of seeds
S
o

50-

Measuring the shape of barley using topology ~ «

Lateral plane

width

Parental seed distribution

Image M Clean Ml Defective
- g @ ©
s 33 2565 S 8 3 Sh
= o2y S8 %0 sS&= [
Q 2 [} © c O._ ]
e S 58c028z6cc35023C8S35080EE
0ao=sS> 0 >80 CO4QECUQ)~—3_06%CQU)§
O VL= g7 rco5ST5053=2S% G- o
< g <sW Ooof‘I“ J,Qg 3 En £=
[SF51 %(D g @) Dﬂ_ﬁ S

S

Barley Genotype

Figure 2. Barley image processing. The morphology measurements were extracted from 3D voxel-based images of the barley
panicles. Before any analysis was done, the (A) raw X-ray CT scans of the panicles had their (B) densities normalised, (C) air and
other debris removed, and awns pruned. (D) After automating these image processing steps, we could finally work with a large
collection of clean, 3D panicles. (E) An extra digital step segmented the individual seeds—embryo and endosperm—for each
barley spike. The left shows the original raw scan, the centre shows the isolated seed, while the right side shows part of the coat
that was removed while segmenting. (F) The seeds were aligned according to their principal components, which allowed us to
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segmented. In the latter case, we repeated our image processing scripts
with more aggressive parameters to segment the seeds and re-exam-
ined the result. A final visual assessment of the remaining images was
conducted to ensure the removal of all damaged seeds. These outliers
did not represent a significant portion of the seeds of any accession
(Fig. 2J). In total, we obtained 3121 cleanly segmented seeds. Every
accession is represented on average by 111 seeds, with +42 seeds as
standard deviation. All the accession numbers are within 2 SD from
this empirical mean (Supporting Information—Fig. S1; Table 1).

As a proof of concept, we explored how topological descriptors
varied as we varied both the number of different directions and the
number of uniformly spaced thresholds. In total, for every seed we
computed the ECT considering 74, 101, 158 and 230 different direc-
tions. We emphasised directions toward the seed’s crease, which cor-
respond to directions close to both north and south poles (Figs 1B and
3). For each direction, we produced ECCs with 4, 8, 16, 32 and 64
thresholds.

Recall that the ECT is a record of how topology changes at every
single slice taken at every direction (Fig. 1C). We performed Kruskal-
Wallis one-way analyses (Kruskal and Wallis 1952) to determine
whether the Euler characteristic inter-accession variance was signifi-
cantly different from the intra-accession variance at a particular slice
and direction. This way, we observed which parts of the seed anatomy
were of particular relevance to the ECT. Accessions and individual
spikes were both considered as possible classes when performing the
Kruskal-Wallis tests. These results follow a conservative 107" false
discovery rate after considering a multiple test Benjamini-Hochberg
correction (Benjamini and Hochberg 1995).

For every seed, we computed a very high-dimensional vector of
topological information, usually above 2000 dimensions, which were
later reduced in dimension independently with KPCA and UMAP to
prevent high-dimensionality distortions. A non-linear KPCA with a
o = 1 Laplacian kernel reduced the ECT dimension based on its larg-
est source of variance. UMAP on the other hand was used to preserve
the prominent, high-dimensional topological features of the ECT in
an unsupervised fashion. We fixed the use of 50 nearest neighbours,
0.1 minimum distance and Manhattan distance as the rest of key
UMARP hyperparameters. For all dimension reduction techniques, the
ECT dimension was reduced to just 2, 3, 6, 12 and 24 dimensions. We
focused on an aggressive two-dimensional reduction for visualisation
purposes both with KPCA and UMAP.

To evaluate the descriptiveness, we trained three non-linear SVM
with radial kernel ¢ = 0.1 (Burges 1998) to characterise and predict
the seeds from 28 different accessions based on three different col-
lections of descriptors: traditional, topological and combining both
traditional and topological descriptors. In every case, the descriptors
were centred and scaled to variance 1 prior to classification. Given that
SVM is a supervised learning method, we partitioned our data into
training and testing sets. In our case, we randomly sampled 75% of the

seeds from every accession as our training data set, labelled according

to their accession. The remaining 25% was used to test the accuracy of
our prediction model. We repeated this SVM setup 100 times and con-
sidered the average accuracy and confusion matrices as final results.
This was done for all possible combinations of directions, thresholds
and dimensionality reductions mentioned above. The SVM was our
classifier of choice since it is quick to train and it does not require vast
amounts of training data to produce reasonable results.

3. RESULTS

Topological and combined shape descriptors tend to produce more
accurate shape-based classification results, provided that the ECT is
computed with sensible parameters and an adequate dimension reduc-
tion technique. The best SVM classification results were yielded by top-
ological and combined shape descriptors based on a 2568-dimensional
ECT—158 directions and 16 thresholds (Supporting Information—
Fig. S3). Based on the highest F classification scores, these high-
dimensional vectors were best parsed after being reduced to just two
dimensions with KPCA, or to 12 dimensions with UMAP. Hereafter,
the rest of topology-related results are based on these specific choice of
directions, thresholds and dimensionality reduction.

A Kruskal-Wallis one-way analysis of the ECT vectors, combined
with a Benjamini-Hochberg correction admitting a 107 FDR, reveals
5SS features that explain the most of inter-accession variance (Fig. 4A).
The most accession-discerning slices and directions correspond to the
north and south poles (Fig. 4B). As discussed in the seed alignment
heuristics in the Methods, these pole directions in turn correspond to
the morphology of the crease and the bottom of the seed (Fig. 4C).
Similar results were observed when analysing for the most spike-
discerning directions (Supporting Information—Fig. S4). In other
words, the topological shape descriptors do measure the crease and
bottom shape of the seed, a morphological feature not explicitly meas-
ured by our traditional setting.

Turning back to the traditional shape descriptors, these share simi-
lar distributions across the 28 accessions, provided they are all centred
and scaled to variance 1 (Fig. SA). Kruskal-Wallis analyses suggest that
the seed length, surface area and volume-related measures explain the
most inter-accession variance (Supporting Information—TFig. SSA,B).
Reducing the descriptors to a 2D representation with PCA suggests
that these traditional descriptors tend to group the seeds based on their
accession (Fig. SB). These two components explain 84.0% of the total
variance, with the first principal component explaining a considerable
72.2% alone. A similar grouping-by-accession behaviour was observed
whenever we reduced the traditional shape descriptors to two dimen-
sions with UMAP instead. KPCA dimension reduction did not yield
insightful results.

Topological shape descriptors on the other hand can provide a
more spike-specific morphology encoding, depending on the dimen-
sion reduction technique used to parse the ECT. KPCA summarises
the topological information as a loop, with sharply defined clusters
corresponding to seeds from individual spikes (Fig. 6A). On the

(G) measure a number of traditional shape descriptors. (H) Incomplete or broken seeds were later removed from the data set.
(I) These defective seeds were identified by manually examining the outliers of different allometry plots. Outliers depicted as red
triangles. (J) The total number of clean and defective seeds measured from each accession. Defective seeds were not concentrated

in a particular accession.
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Table 1. Sample size of seed scans used for each individual accession. N equals the number of panicles from which seeds are

derived.

Accession N Seeds Accession N Seeds Accession N Seeds
Algerian 3 144 Golden Pheasant 3 89 Minia 3 112
Alpha 3 90 Good Delta 3 126 Multan 1 S0
Arequipa 3 110 Han River 2 71 Oderbrucker 3 194
Atlas 3 132 Hannchen 3 89 Orel 3 74
California Mariout 3 189 Horn 3 98 Palmella Blue 3 59
Club Mariout 3 173 Lion 3 116 Sandrel 2 96
Everest 3 128 Lyallpur 3 115 Trebi 2 119
Flynn 3 78 Maison Carree 3 146 White Smyrna 3 S8
Glabron 3 114 Manchuria 3 167 Wisconsin Winter 1 25

Meloy 3 159
Total 83 3121 Mean 111.5 Standard dev. 422
9 Parallels 9 Parallels 13 Parallels 19 Parallels
8 Meridians: 11 Meridians: 12 Meridians: 12 Meridians:

74 directions

101 directions

r—
La—a A,
A,

158 directions 230 directions

Figure 3. Directions chosen to compute the ECT. The sphere was split into a equispaced fixed number of parallels and meridians in

each case. The directions were the taken from the intersections.

other hand, the UMAP projection produces a large, round cluster.
Notice that seeds of different spikes tend to lie on different locations,
while these locations overlap partially for spikes of the same acces-
sion (Fig. 6B). This behaviour suggests that UMAP dimension reduc-
tion tries to balance both spike-specific and accession-specific shape
features.

Another round of Kruskal-Wallis analyses on the combined shape
descriptors reinforce the idea that traditional descriptors cluster based
on accession, KPCA-reduced topological descriptors do so based on
spike, while UMAP-reduced ones provide a balanced clustering. The
most inter-accession variance is explained predominantly by the tra-
ditional shape descriptors, with just a few topological features as com-
plement (Supporting Information—Fig. SSA,B). However, most of
the inter-spike variance is predominantly captured by the dimension-
reduced topological descriptors. The first two KPCA components
do explain most of this inter-spike variance, which agrees with the
tight panicle clusters seen before (Fig. 6; Supporting Information—
Fig. S5C). On the other hand, UMAP distributes regularly the spike
variance across most of its components, complemented by a few tra-
ditional shape descriptors (Supporting Information—Fig. SSD). In
other words, traditional shape descriptors capture accession-specific
shape features, KPCA highlights spike-specific features and UMAP
provides a balance between both of them.

‘When evaluating quantitatively the descriptiveness of these cluster
differences, we observed that topological shape descriptors are able to
produce much better SVM classification results than traditional shape
descriptors (Table 2). Using exclusively traditional descriptors, the
machine is able to correctly determine the grain variety roughly 57% of
the time. For comparison, by simply randomly guessing the variety, we
would expect to be correct just 1/28 x 100=4% of the time. The classi-
fication could not be improved by reducing the dimension of the tradi-
tional vector (Supporting Information—Fig. S2). If we use exclusively
topological shape descriptors instead, the machine can classify different
accessions with more than 75% accuracy. These results depend on the
dimension reduction technique of choice (Supporting Information—
Fig. S3A). We observe that KPCA provides a powerful two-dimensional
summary of the ECT, which later can be used to predict grain accession
with 85% classification accuracy. This accuracy diminishes considerably
as more nonlinear principal components are considered. This drop of
classification performance can be offset by combining the KPCA sum-
mary with traditional shape descriptors, which keep the classification
accuracy above 70% (Supporting Information—Fig. S3B).

The two-dimensional UMAP summary (Fig. 6B) exhibits diffi-
culties and discerning accessions, where classification accession does
not go above 25%. Nonetheless, if a 12-dimension UMAP summary
is considered, it is possible to classify accessions with 75% accuracy
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Figure 4. Relevant ECT directions and slices. (A) We examine the inter-accession and intra-accession variance differences of the
Euler characteristic for each direction and threshold. A Kruskal-Wallis analysis combined with a Benjamini-Hochberg multiple
test correction suggests a handful of particularly discerning slices across accessions. (B) These directions and thresholds are

mostly concentrated around the poles, and (C) correspond to the seed’s crease and bottom morphology. Colours bear no special

meaning.

using exclusively topological information. Moreover, these UMAP-
summary classification results can be further improved by combining
them with traditional shape descriptors, where classification accuracy
goes beyond 88%. The ECT thus captures important morphological
patterns that can be complemented by size features which are provided
by the traditional shape descriptors.

Additionally, for both KPCA and UMAP cases, a small P-value
produced by Friedman tests (Friedman 1937) suggests that the three
SVM classifiers, corresponding to the three sets of shape descriptors,
are statistically different. Since we are comparing only three classifiers
at a time, we can rely better on a Quade post hoc pairwise test (Quade
1979) as suggested by Conover (1998; Table 3).

4. DISCUSSION
Traditional morphometrics has been used to reveal fundamental
trends in morphological changes across space and time in ancient
cereal grains (Bouby 2001; Tanno and Willcox 2012). Historical
evidence shows that barley seeds became smaller as the crop moved
from Mediterranean climates to Northwest Europe due to colder
temperatures and higher sunlight variance, shedding insight on
the timeline of barley domestication in Central Asia (Motuzaite

Matuzeviciute et al. 2018). Similarly, grains became rounder and the
spikes more compact as they moved to higher altitude sites in Nepal
(Fuller and Weisskopf 2014). Differences are more subtle if we com-
pare accessions originating from similar regions and time periods.
Geometric morphometrics (GMM) has provided a more quantita-
tive characterisation of the grains. For example, GMM can success-
fully tell apart barley grains from einkorn ( Triticum monococcum) and
emmer (Triticum dicoccum) accessions (Bonhomme et al. 2017); it
can be used to distinguish two-row versus six-row barley seeds (Ros
etal. 2014), and it can establish unique morphological characteristics
of land races to deduce their possible historical origins (Wallace et al.
2019).

Morphometrics has a number of drawbacks with respect to X-ray
CT images. GMM requires homologous points and, although 3D
and higher dimensional analysis is possible, it is usually applied to 2D
images (Dryden and Mardia 2016). Further, a geometric framework is
limited to the relationship of data points to each other. We thus turn
to topology. In recent years, TDA has produced promising results in
diverse biological problems, like histological image analysis (Qaiser
et al.2019), viral phylogenetic trees description (Chan et al. 2013) and
identification of active-binding sites in proteins (Kovacev-Nikolic et al.
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Distribution of traditional traits across all parental seeds
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Figure 5. Distribution of traditional shape descriptors. (A) Distribution of 6 of the 11 traditional seed shape descriptors across the
3121 seeds. These measurements were first centred at 0 and scaled to have variance 1. (B) Plot of the first 2 principal components
of the 11 shape descriptors. The first PC describes more than 70% of the total variance. Different marker and colour indicate seeds
from different spikes.
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2-dim KPCA of all ECTs (158 directions, 16 thresholds)

KPCA 2 (0.032%)
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2-dim unsupervised UMAP of all ECTs (158 directions, 16 thresholds)

Algerian
B

Alpha
gt

Arequipa
TR,

CA Mariout

Club Mariout
T

UMAP 2

Maison Carree

Y

Figure 6. Dimension reduction of the ECT vectors. The ECT can produce a high-dimensional topological signature for each seed.
To better visualise this topological information, we can reduce it to just two dimensions with (A) kernel PCA or (B) unsupervised
UMAP. The seeds of individual accessions are highlighted in every frame. Different marker and colour indicate seeds from

different spikes.
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Table 2. SVM classification accuracy of barley seeds from 28 different founding lines after 100 randomised training and testing
sets. Since we are in a multi-class classification setting we first computed the precision, recall and F scores for each founding line.
Later, we computed the weighted average for each score, where the weight depended on the number of test seeds for each of the

barley lines. Observe that the use of either topological or combined descriptors outperforms the use of exclusively traditional

descriptors.
Shape descriptors Dimension reduction No. of dims Scores (weighted average + standard deviation)
Precision Recall F,

Traditional * 11 0.58 £0.050 0.58+0.016 0.57£0.016
Topological KPCA 2 0.88 £0.031 0.87+0.010 0.87+0.011
Topological UMAP 12 0.75 +£0.047 0.75+0.016 0.74+0.016
Combined KPCA 13 0.73 £0.052 0.72 £0.017 0.71+£0.017
Combined UMAP 23 0.89 £0.028 0.89 £0.010 0.89 £0.010

Asterisk indicates not applicable.

Table 3. Small Friedman and Quade post hoc P-values (using t-distribution approximation with Bonferroni correction) suggest
that different descriptors produce statistically different SVM results.

ECT + KPCA ECT + UMAP

Friedman test P-value 1.4x107° Friedman test P-value 4.4x107"°
Traditional Topological Traditional Topological

Topological 1.8x 10" * Topological 8.0x 107 *

Combined 59x%x10°° 44x10™ Combined 44x1078 7.8 x 107

Asterisk indicates not applicable.

2016). In plant biology, the Euler characteristic has been used success-
fully to define the morphospace of more than 180,000 leaves from seed
plants (Li et al. 2018), and to characterise the shape of apple leaves
(Migicovsky et al. 2018) and the 3D structure of grapevine inflores-
cences (Li et al. 2019).

The PCA of the traditional shape descriptors tends to group seeds
based on accession as the largest source of variance. This observa-
tion is further supported by the Kruskal-Wallis analyses of variance
(Supporting Information—Fig. S5). The Euler characteristic however
encodes additional important shape information missed by traditional
descriptors. We observe that the topological shape descriptors provide
better classification than the traditional shape descriptors (Table 2).
Recall that we can mathematically prove that the ECT captures all the
shape information, to the point that a finite topological signature can
be used to reconstruct the original object (Curry et al. 2018; Fasy et al.
2019). This vast amount of information is best parsed with dimension
reduction techniques, which highlight different morphology features
encoded by the ECT. The biggest source of variation encoded by the
ECT, rendered through KPCA, are individual panicles. This high
degree of spike distinction may ignore underlying shape similarities
between panicles of the same accession. In contrast, with UMAP we
reduce the ECT’s dimensionality taking into account overall topology
and geometry and produce a clustering that balances both panicle-
specific nuances with more general accession-based traits. This acces-
sion versus panicle balance is further aided by combining traditional
and UMAP-reduced descriptors. In other words, the ECT is capable of
capturing both panicle- and accession-specific morphological descrip-
tors, but different dimension reduction techniques emphasise some

nuances over others. The addition of traditional shape descriptors aids
accession-based clustering, by supplying size-related measurements.

The majority of the accessions studied are more easily distin-
guished with the topological lens but not with traditional measures,
with few exceptions (Fig. 7). Exceptions like Hannchen, Han River and
Palmella Blue have slightly distinctive traditional trait distributions, so
seed size does matter and it is important to take it into account (Fig.
SA). At the same time, we observe accessions such as Alpha, Glabron,
Minia and Wisconsin Winter, that are poorly differentiated with tradi-
tional information but report considerably higher classification accura-
cies whenever using topological information. When looking at a more
robust dimension reduction technique like UMADP, classification accu-
racy is increased when combined with size-related information.

An exploration on the directions used to compute the ECT reveals
that the shape of the crease and bottom discriminate accessions the
most (Fig. 4). These features are not directly measured with our tradi-
tional setting. By analysing inter- vs. intra-accession variance of a large
number of ECT axes and thresholds, we effectively isolate complex
morphological features responsible for distinguishing selected groups.
Going forward, there are a number of topics to explore with respect to
the implementation of this novel approach. How are the results affected
and what is the computationally feasibility, for instance, if we pick uni-
formly randomly distributed directions—or according to any other
probability distribution—instead of polar-biased ones. Although the
ECT comprehensively measures the information content of an object,
different dimension reduction techniques highlight different aspects
of that shape information (Fig. 6). A more systematic exploration of
other dimension reduction algorithms, and classification techniques
afterward is warranted moving forward.
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Figure 7. SVM classification results for individual accessions. (A) Results when using a KPCA 2-dimension reduced topological
vector. Accessions ordered according to their classification accuracy determined by the topological shape descriptors. (B) Results
when using a UMAP 12-dimension reduced topological vector. Accessions ordered according to their classification accuracy

determined by the combined shape descriptors.

The Euler characteristic is a simple yet powerful way to reveal fea-
tures not readily visible to the naked eye. There is ‘hidden’ morphologi-
cal information that traditional and geometric morphometric methods
are missing. The Euler characteristic, and Topological Data Analysis in
general, can be readily computed from any given image data, which
makes it a versatile tool to use in a vast number of biology-related appli-
cations. TDA provides a comprehensive framework to detect and com-
pare morphological nuances, nuances that traditional measures fail to
capture and that remain unexplored using simple geometric methods.
In the specific case of barley seeds presented here, these ‘hidden’ shape
nuances provide enough information to not only characterise specific
accessions, but the individual spikes from which seeds are derived. Our
results suggest a new exciting path, driven by morphological informa-
tion alone, to explore further the phenotype-genotype relationship.

5. SOFTWARE AND DATA AVAILABILITY
The processed and cleaned barley panicles and barley seeds X-ray CT
3D reconstructions can be found in the Dryad repository https://doi.
org/10.5061/dryad.rxwdbrvo3.

All of our code is available at the https://github.com/amezqui3/
demeter/ repository. This includes the image processing pipeline to
clean the raw scans and segment the seeds (python), the computation
of the ECTs (python) and the SVM classification and analysis (R).
A collection of Jupyter notebook tutorials is also provided in order to
ease the usage and understanding of the different components of the
data processing and data analysing pipelines.

SUPPORTING INFORMATION

The following additional information is available in the online version
of this article.—

Figure S1. Distribution of the 3121 seeds according to their accession.
The seed number values as in Table 1 have empirical mean j1 = 111.46
and empirical standard deviation 0 = 42.21. A normal distribution
with these parameters is drawn on top of the histogram. Observe that
all the accession seed numbers are within two standard deviations.
Figure S2. Classification results for traditional shape descriptors. After
centring and scaling the traditional shape descriptors, we used PCA
to reduce their dimension and then performed an SVM classification
with these dimension-reduced vectors. We observe that the highest
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classification F scores correspond to the use of almost all the tradi-
tional dimensions.

Figure $3. Classification results for combined and topological shape
descriptors computed for different choices of parameters. To evaluate
the ECT descriptiveness, we sought to use these ECT vectors to classify
28 different barley accessions based solely on seed morphology. The
ECT was computed for different number of directions and thresholds.
These high-dimensional vectors were later reduced to different num-
ber of dimensions using both KPCA and UMAP. Observe that both
dimension reduction techniques summarise the ECT information in
very different ways, as evidenced by the different SVM classification
F1 scores when using (A) exclusively topological information or (B)
combining both topological and traditional seed shape descriptors.
Figure S4. Relevant ECT directions and slices. (A) We examine the
inter- and intra-spike variance differences of the Euler characteristic
for each direction and threshold. A Kruskal-Wallis analysis combined
with a Benjamini-Hochberg multiple test correction suggests a num-
ber of discerning slices across accessions. (B) These directions and
thresholds are mostly concentrated around the poles, similar to the
case of inter- and intra-accession variance case (Fig. 4).

Figure S5. Relevant combined descriptors. Dimension-reduced topo-
logical vectors were concatenated with traditional shape descriptors to
produce combined descriptors. Kruskal-Wallis analyses reveal which
descriptors explain the most inter-accession variance when the ECT
was reduced in dimension with (A) KPCA, and (B) UMAP. Similar
analyses also reveal which features contribute the most to inter-spike
variance when the ECT vector was reduced with (C) KPCA and
(D) UMAP.
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