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Microjoenia are obligate symbionts of termites. The genus was erected in 1892 for small
cells with many flagella that insert near, but not directly from, the cell apex, and an
axostyle that can protrude from the cell posterior. Although ultrastructural studies have
been carried out on three Microjoenia species to date, no molecular data have been directly
attributed to any species. Microjoenia are classified within the parabasalian class
Spirotrichonymphea, which is characterized by flagellar bands that emerge near the cell
apex and proceed posteriorly in a right-handed helix. In Microjoenia, however, the flagellar
bands are very short and proceed longitudinally or with a weakly observable helix. In this
study, we have amplified and sequenced the 18S ribosomal RNA gene from individually
isolated Microjoenia cells from Reticulitermes and Hodotermopsis hosts as part of an
ongoing effort to understand the phylogeny of Spirotrichonymphea and their coevolution
with termites. In our 18S rRNA gene phylogeny, Microjoenia forms the sister lineage to
Spirotrichonympha, though many other evolutionary relationships within

Spirotrichonymphea remain unresolved.

Key words: Coevolution; Metamonada; symbiosis; termite.

Introduction

“Lower” termites (all termite families except the apical Termitidae) harbor wood-degrading
symbiotic protists belonging to Parabasalia and Oxymonadida (Preaxostyla) in their hindguts
(Brune 2014; Chouvenc et al. 2021). This digestive symbiosis began in the common ancestor of
termites and their sister lineage, the wood-feeding roach Cryptocercus, roughly 175 million years
ago, and has led to codiversification of hosts and symbionts (Bourguignon et al. 2015; Bucek et
al. 2019; Ohkuma et al. 2009). Today, there are approximately 800 “lower” termite species, each
of which harbors a characteristic set of protist symbiont species (Krishna et al. 2013; Yamin
1979). These obligately symbiotic protist species pose special challenges for study because they
are very difficult, if not impossible, to maintain in culture.

Most of the termite symbiotic protist genera were described between 1881 and the mid-
20th century from light microscopic data (Brugerolle and Lee 2000). Termite symbiotic protists
tend to have much larger and more complex cells than those of their non-termite relatives

(Cepicka et al. 2017; Hampl 2017). However, morphological characteristics such as large cell



size, multiplied flagella, and multiplied nuclei have evolved convergently, according to
molecular phylogenies (Gile et al. 2011; Gile and Slamovits 2012; Noda et al. 2012). Although
ultrastructural and molecular studies have gradually built a higher-level systematic framework,
roughly half of the described genera still lack molecular data, hampering our understanding of
their diversity, systematics, and coevolutionary history with their hosts (Cepic¢ka et al. 2017;
Hampl 2017).

Protist species of lower termites are highly host-specific. In some cases, they have
parallel phylogenies to those of their hosts (Harper et al. 2009; James et al. 2013; Noda et al.
2007, 2018), and several parabasalian genera are restricted to a single termite host family. For
example, Pseudotrichonympha is only found in Rhinotermitidae while Devescovina and
Calonympha are only known from the Kalotermitidae (Yamin 1979). Together, these
observations indicate a tight coevolutionary relationship between termite-associated protists and
their hosts, in agreement with the vertical inheritance of protists by proctodeal trophallaxis (anal
feeding). Host relationships can be useful for clarifying protist symbiont taxonomy. For example,
the genus Spirotrichonympha, once thought to be widespread across termite families, was shown
to be polyphyletic, with each separate clade consisting of symbionts of a single termite family
(Brugerolle 2006; Gile et al. 2018; Jasso-Selles et al. 2017; Taerum et al. 2020). The objective of
this study was to determine the molecular phylogenetic position of the previously
uncharacterized termite symbiont genus Microjoenia in order to better understand relationships
among termite-specific protist genera and their coevolution with termites.

The genus Microjoenia was erected in 1892 for Microjoenia hexamitoides, a symbiont of
Reticulitermes lucifugus (then called Termes lucifugus) (Grassi 1892). Its morphology was later
described more fully as a small, oval-shaped cell with an axial rod that protrudes from the
posterior end, an anteriorly positioned nucleus, and many flagella originating from the apical
portion of the cell but not the anterior extremity (Grassi 1917; Grassi and Sandias 1894).
Microjoenia had been thought to show characteristics of both Joenia (Cristamonadida), by
bearing many flagella at the cell anterior, and the distantly related Trichonympha
(Trichonymphida), by having a bald spot, or operculum, at the extreme apex ( Grassi 1917;
Grassi and Sandias 1894). This combination of characteristics has led to a turbulent taxonomic
history. Microjoenia has been considered a young form of Trichonympha (Leidy 1881), or a

young form of Spirotrichonympha (Duboscq and Grassé 1928), or a genus of uncertain position



within the Lophomonadida (Brugerolle and Lee 2000). More recently, ultrastructural studies
demonstrated that the flagella of Microjoenia arise from very short, longitudinal to slightly
spiraling bands, confirming its Spirotrichonymphea affinities (Brugerolle 2001). Note that while
Spirotrichosomidae (Trichonymphida, Parabasalia) also feature spiraling rows of flagella, they
emerge from bilaterally symmetrical rostral structures characteristic of Trichonymphida, and
their flagellar bands form a left-handed helix (Carpenter et al. 2010; Radek et al. 2018), thus
excluding Microjoenia. The simple, tubular axostyle links Microjoenia specifically with
Spironympha (Brugerolle 2005; Brugerolle and Bordereau 2006), another genus that currently
lacks molecular data.

There are eight described species of Microjoenia, nearly all from Reticulitermes host
species in Europe or North America (Brown 1930; Brugerolle 2001, 2005; Cutler 1920; Duboscq
and Grass¢ 1928; Grassé 1952; Grassi 1892) (Table 1). The type species, Microjoenia
hexamitoides, was described from Reticulitermes lucifugus in Sicily (Grassi 1892). One species
inhabiting Reticulitermes hesperus was described as a distinct genus, Torquenympha, but was
later synonymized with Microjoenia (Brown 1930; Yamin 1979). The non-Reticulitermes hosts
include Porotermes grandis (Stolotermitidae, possibly a synonym of P. adamsoni) ( Brugerolle
2001; Hill 1933), Archotermopsis wroughtoni (Archotermopsidae) (Cutler 1920), and
Hodotermopsis sjostedti (Archotermopsidae) (Brugerolle 2005). Because the symbiont
community of H. sjostedti bears close resemblance to those of Reticulitermes spp., likely due to
horizontal symbiont transfer, the presence of Microjoenia in both host genera is not surprising
(Kitade 2004). In this study, we have used a combination of single cell PCR and fluorescence in
situ hybridization (FISH) to determine the molecular identity of Microjoenia species from

Reticulitermes flavipes, Reticulitermes tibialis, and Hodotermopsis sjostedti.

Results and Discussion

Identification of Microjoenia

In the hindguts of Hodotermopsis sjostedti, Reticulitermes tibialis, Reticulitermes flavipes, and
Reticulitermes lucifugus, we observed small cells (< 20 pm in length) with the morphological
characteristics of Microjoenia (Fig. 1). These cells were sub-spherical to pyriform, bore many

flagella near the apical end of the cell but not on the cell apex itself, and often had a posteriorly



protruding axostyle. These morphological features are similar to those of Spironympha, except
that Spironympha cells are larger and the flagella arise from bands that spiral further around the
apical portion of the cell (Koidzumi 1921). In Microjoenia, the flagella arise from similar bands,
but the bands are short and do not complete a spiral turn around the cell (Brugerolle 2005;
Brugerolle and Bordereau 2006). We also used protargol staining to visualize the subcellular
features of Microjoenia from H. sjostedti. A darkly stained nucleus, darkly stained parabasal
bodies arranged in a crown, and a faintly stained, tube-like axostyle are recognized, which are
typical morphological features of this genus (Brugerolle and Lee 2000; Grassé 1952) (Fig. 1C-
D).

In order to determine the molecular phylogenetic position of Microjoenia, we used a
single-cell PCR approach. We isolated 7 single cells and 6 pools of 2-6 cells each from H.
sjostedti, R. flavipes, and R. tibialis (we were unsuccessful with single cells from R. lucifugus)
and amplified and sequenced their 18S rRNA genes (Table 2). These cells ranged in length from
6-17 um, but we targeted the smallest cells with Microjoenia morphology in order to avoid
isolating small Spironympha cells, which can look superficially similar to Microjoenia in live
material. It is likely that other Microjoenia cells in our samples exceeded 17 um in length, given
that previous reports from H. sjostedti and Reticulitermes spp. indicated cell lengths of 20 um
(Brugerolle 2005; Brugerolle and Bordereau 2006; Grassé 1952). All new sequences from
Microjoenia cells clustered together in a moderately supported clade sister to Spirotrichonympha
(Fig. 2). Within this clade were several supported subclades and several previously published

sequences from termite guts.

Microjoenia from H. sjostedti

The H. sjostedti symbiont sequences formed two clades, one that included the previously
sequenced clone HsS1 (AB032236) while the other included HsS2 (AB032237). Both HsS1 and
HsS2 were obtained from the small cell fraction after differential centrifugation of H. sjostedti
hindgut contents and were considered to derive from either Microjoenia or Holomastigotes
(Ohkuma et al. 2000). A later ultrastructural study described Microjoenia minima from H.
sjostedti (Brugerolle 2005) and speculated that its 18S rRNA gene sequence was likely to match
either the HsS1 or HsS2 clones (Brugerolle 2005). Our new single cell data indicate that both

HsS1 and HsS2 derive from Microjoenia cells, and their distinct positions in our phylogeny,



separated by Asian Reticulitermes symbionts, suggest that these represent two distinct species.
We were unable to detect morphological differences that might distinguish these two species.
Likewise, the ultrastructural methods employed in the description of M. minima would have been
unable to distinguish between two species, and therefore the description of M. minima was likely
based on data from cells of both phylotypes (Brugerolle 2005).

To confirm the molecular identity of Microjoenia, we also carried out FISH using a probe
designed from clone M1 from a previously generated library of amplified 18S rRNA gene
sequences obtained by whole gut RT-PCR of H. sjostedti (Fig. 3). The M1 sequence belongs to
the same subclade of Microjoenia as HsS2, and the probe matches both HsS1 and HsS2
sequences. In agreement with our single cell PCR data, the 6FAM-tagged Microjoenia-specific
probe hybridized to small cells with the morphological characteristics of Microjoenia, while the

Texas Red-tagged general eukaryotic probe hybridized to a range of cell types (Fig. 3).

Microjoenia from Reticulitermes

Sequences from North American and European Reticulitermes symbionts formed a clade to the
exclusion of those from H. sjostedti and the Asian Reticulitermes spp. This European/North
American clade included, as its deepest branch, sequences from Reticulitermes hesperus and
Reticulitermes okanaganensis that were amplified from Spirotrichonympha cell isolates but
branched separately (Gile et al. 2018). It is now clear that these were contaminating sequences
from Microjoenia cells. In the case of R. hesperus, they might represent either Microjoenia
ratcliffei or Microjoenia (=Torquenympha) octoplus, which were both described from this host.
Also within this clade, R. flavipes symbionts branched in three places, though only two were
supported clades. Sequences from the cell PES6 (collected in New Jersey, USA) formed a
supported clade with the previously published U17508, which was amplified from the gut
contents of R. flavipes collected in Woods Hole, Massachusetts, USA (Gunderson et al. 1995).
Sequences from PES9 and PES24 formed an additional supported clade while sequences from
the cells FPS10 and FPS21 branched separately. Although our R. flavipes sequences suggest that
there should be two or three Microjoenia species present, only one has been described so far: M.
fallax from R. flavipes (formerly known as R. santonensis) collected in France (Grass¢ 1952).
This symbiont was initially considered a young form of the Spirotrichonympha cells in this host

(Duboscq and Grassé 1928). Finally, sequences from R. tibialis symbiont cells RDAM and



RDCM clustered together near the R. flavipes symbiont cells FPS10 and FPS21, but neither their
monophyly nor their sister relationship with the FPS10 and FPS21 cells were supported. No

species of Microjoenia from R. tibialis have been named or formally described to date.

Evolution of Spirotrichonymphea

The sequences reported here from Microjoenia cells demonstrate that Microjoenia is a valid
genus, not a life cycle stage of Spirotrichonympha. In particular, the symbionts of R. hesperus
demonstrate this, because sequences from isolated cells of both Spirotrichonympha and
Microjoenia have been determined from this host. Furthermore, H. sjostedti harbors Microjoenia
but no true Spirotrichonympha, which appears to be restricted to Reticulitermes hosts (Gile et al.
2018). Spirotrichonympha cincta, reported to be the only Spirotrichonympha in H. sjostedti,
branches separately (AB032226, Fig. 2), and should be placed in a new genus (Brugerolle 2005).
The sequences reported here from Microjoenia cells also support the inclusion of this genus
within Spirotrichonymphea, in agreement with ultrastructural characteristics, as opposed to the
earlier suggested affinity to the “lophomonads” (Cristamonadida, formerly Lophomonadida) (
Brugerolle 2001; Brugerolle and Bordereau 2006; Brugerolle and Lee 2000).

Currently a family-level taxonomy is lacking for Spirotrichonymphea. Because of the
lack of morphotype-linked molecular data and the difficulty of establishing monophyletic
families on the basis of ultrastructural data, recent classification schemes have lumped all
Spirotrichonymphea genera into a single family, Holomastigotoididae (Cepicka et al. 2010,
2017). Gradually, molecular data have been improving the situation. The placement of true
Spirotrichonympha (i.e., from Reticulitermes hosts) was determined (Gile et al. 2018), and
Spirotrichonympha species from Coptotermes and Heterotermes hosts were split out into the
reinstated Cononympha (Jasso-Selles et al. 2017, 2020), while Spirotrichonympha from
Paraneotermes was split into the new genus Cuppa (Taerum et al. 2020). Additionally, the 18S
rRNA gene sequences of Holomastigotes were determined (Taerum et al. 2019) and a new genus
Fraterculus was established (Taerum et al. 2020). In total, there are now 7 Spirotrichonymphea
genera with directly attributed molecular data (Cononympha, Cuppa, Fraterculus,
Holomastigotes, Holomastigotoides, Microjoenia, and Spirotrichonympha), and 6 described
genera for which molecular data are still lacking (Micromastigotes, Rostronympha,

Spiromastigotes, Spironympha, Spirotrichonymphella, and Uteronympha). Unfortunately, 18S



rRNA gene sequences seem to be insufficient for determining inter-generic relationships in
Spirotrichonymphea. Here, we recovered a sister relationship between Microjoenia and
Spirotrichonympha, and the Paraneotermes symbionts Cuppa and Fraterculus also have a
supported sister relationship (Fig. 2), but other relationships remain unresolved. Future studies
should characterize additional Spirotrichonymphea genera with additional phylogenetic markers.
Another interesting question for future studies would be whether the Microjoenia species
described from P. grandis and A. wroughtoni are truly Microjoenia. In this study, we did not
acquire a sequence from the type species, M. hexamitoides, from its type host, R. lucifugus, but
we did acquire Microjoenia single cell sequences from three related host species which all
formed a clade (Fig. 2), and the Microjoenia cells we observed in R. lucifugus had very similar
morphology to the sequenced cells (Fig. 1F). Therefore, it is quite likely that the type species (M.
hexamitoides) from the type host (R. lucifugus) would branch with the other Reticulitermes
symbionts, as was the case for Holomastigotes elongatum from its type host (also R. lucifugus)
(Taerum et al. 2019). While H. sjostedti is not closely related to Reticulitermes, it shares many of
the same symbiont genera, likely due to horizontal symbiont transfer (Kitade 2004). If the
Microjoenia symbionts of P. grandis and A. wroughtoni were found to branch with true
Microjoenia, they would be the first symbionts from hosts other than Reticulitermes and H.
sjostedti to branch in the Holomastigotes/Spirotrichonympha/Microjoenia portion of the
Spirotrichonymphea phylogeny (Fig. 2). Perhaps they will instead branch separately, in which
case they should be transferred to a new genus (or genera), as was the case for
Spirotrichonympha symbionts from non-Reticulitermes hosts (Gile et al. 2018; Jasso-Selles et al.

2017; Taerum et al. 2020).

Methods

Termite collections: Hodotermopsis sjostedti was collected in Tam Dao (Vietnam), R. flavipes in New
Jersey (USA), R. lucifugus in Corsica (France), and R. tibialis in Arizona (USA). The identities of these
same termite collections were confirmed previously by molecular barcoding using the mitochondrial 16S
rRNA gene (Taerum et al. 2019) and voucher specimens for all but R. lucifugus were deposited in the
Hasbrouck Insect Collection at Arizona State University (ASUHIC) under accessions ASUHIC0095054-
ASUHIC0095056 (Taerum et al. 2019). Additionally, H. sjostedti was collected in Kagoshima (Japan) for
protargol staining and FISH (this study).



Protist observation and sequencing: Hindguts of termite workers were dissected from live
termites and macerated in Ringer’s solution (8.5 g NaCl, 0.20 g KCl, 0.20 g CaCl,, 0.10 g NaHCO; per
liter, HiMedia Laboratories). Live Microjoenia cells were viewed using an Axiolmager upright compound
microscope and photographed using an AxioCam 503 monochrome camera (Zeiss). Protargol-stained
cells were prepared as previously described (Honigberg and Davenport 1954; Kitade et al. 1997) and
imaged on an Olympus BX-63 compound microscope.

Individual Microjoenia cells were observed on a Zeiss AxioVert inverted compound microscope,
photographed using an Axiocam 105 color camera (Zeiss), and isolated using hand-drawn glass
capillaries. Each isolated Microjoenia cell was washed twice in fresh Ringer’s solution and ejected into a
0.5 ml tube for DNA extraction using the MasterPure DNA Purification Kit (Epicentre, Madison,
Wisconsin, USA) following the manufacturer’s protocol except purified DNA was resuspended in 5 pl of
TE buffer. The 18S rRNA gene was amplified from purified DNA from isolated single cells using a
nested PCR approach, using outer primers SpiroF1/R1 and inner primers GGF/GGR as previously
described (Jasso-Selles et al. 2017; Taerum et al. 2019). PCR products were ligated into the pCR 4-TOPO
vector using the TOPO TA Cloning Kit and cloned with the One Shot TOP10 chemically competent E.
coli (Invitrogen, Carlsbad, California, USA), following the manufacturer’s protocols. Inserts from
positive transformant colonies were amplified using standard sequencing primers M13F and M13R,
purified using the GeneJet PCR purification kit (ThermoFisher, Waltham, MA, USA), and sequenced on
both strands using an Applied Biosystems 3730 capillary sequencer (Applied Biosystems, Waltham,
Massachussetts, USA). Two representative sequences from each isolated cell were selected for detailed
phylogenetic analyses and were submitted to GenBank under accession numbers MZ663673-MZ663698.

Fluorescence in-situ hybridization: Previously, we obtained a large clone library of 18S rRNA
gene sequences amplified by RT-PCR from the hindgut of H. sjostedti (unpublished data). Several of
these were expected to belong to Spirotrichonymphea. In order to identify the genus Microjoenia, a probe
specific for the sequence M1 was designed (HsM1-FAM: GACCCCACCCGTAGATGT), and we carried
out fluorescence in-situ hybridization (FISH) as described previously (Noda et al. 2003, 2018). Briefly,
termite gut contents were fixed in 4% paraformaldehyde. Fixed cells were then spotted onto a silane-
coated glass slide (Matsunami Glass, Osaka, Japan), dehydrated in ethanol, and incubated in hybridization
solution (0.9 M NaCl and 0.1 M Tris-HCI) containing fluorescently labeled probes at 48 °C for 2 h.
Specimens were then washed for 20 min in a washing buffer (0.2 M NaCl and 0.1 M Tris-HCI) at 48 °C,
mounted using a Fluoro-Keeper antifade reagent (Nacalai Tesque, Kyoto, Japan), and observed under an
Olympus BX-63 epifluorescence microscope. The Microjoenia-specific probe was tagged with 6-
carboxyfluorescein (6-FAM), while the general eukaryotic probe Euk1190:
GGRCATCACRGACCTGTTAT was tagged with Texas Red (Amann et al. 1995; Ohkuma et al. 2000).



Phylogenetic analyses: Parabasalian 18S rRNA gene clone sequences from isolated single cells
were trimmed of vector and sequences from both strands of each clone were assembled using Geneious
R9 (Kearse et al. 2012). New 18S rRNA gene sequences were aligned with representatives of all
previously published Spirotrichonymphea species and environmental clades using MAFFT v. 7.205
(Katoh and Standley 2013) with iterative refinement using the G-INS-i option. Ambiguously aligned sites
were removed by eye in AliView (Larsson 2014). Preliminary analyses including all new and published
Spirotrichonymphea sequences. Final analyses used a reduced alignment with all Cononympha spp. and
Holomastigotoides bigfooti sequences removed, after noting that these sequences failed a chi-square test
of base composition carried out in IQ-TREE v. 1.6.12 web server (Nguyen et al. 2015, Trifinopoulos et al.
2016). The reduced alignment had a final size of 77 taxa and 1,420 sites.

Maximum Likelihood (ML) and Bayesian phylogenetic analyses were performed using IQ-TREE
v. 1.6.12 (Nguyen et al. 2015) and MrBayes v. 3.2.6 (Ronquist et al. 2012) respectively. ML analyses
used the TIM3e+R3 model as specified by ModelFinder implemented in IQ-TREE (Kalyaanamoorthy et
al. 2017), which was considered the best fit for the data under the Bayesian Information Criterion (the
best fit model under both the Akaike and Corrected Akaike Information Criteria was GTR+F+R3).
Support for nodes was assessed from 1,000 ultrafast bootstrap replicates (Hoang et al. 2018). Bayesian
analyses were carried out under the GTR model with four evolutionary rate categories approximated by a
gamma distribution. Two independent chains, sampled once every 100 generations, were run until they
converged (the average standard deviation of partition frequency values between the chains dropped
below 0.01). Convergence was reached after 240,000 generations. The first 25% of trees were then
discarded as burn-in and majority rule consensus trees were computed from the remaining 3602 trees

from both runs. Support at nodes is given by posterior probabilities.
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Figure Legends

Figure 1. Light micrographs of Microjoenia. A. Microjoenia sp. from Reticulitermes tibialis.
Note the diagnostic distribution of flagella near the cell apex but not on the apical pole. The
posteriorly protruding axostyle is barely visible beyond the plane of focus of this specimen.
Differential interference contrast (DIC) optics. B-D. Microjoenia sp. from Hodotermopsis
sjostedti, displaying anteriorly positioned flagella and bare apical pole. B. DIC optics. C-D.
Protargol-stained specimens, brightfield optics. The parabasal bodies (dictyosomes with

associated fibers) are visible as short, darkly staining granules surrounding the cell apex. Nucleus



(n) and axostyle (ax) are indicated. E. Microjoenia sp. from Reticulitermes flavipes, DIC. F.

Microjoenia sp. from Reticulitermes lucifugus, DIC. Scale bars = 10 um.

Figure 2. Maximum likelihood phylogeny of Spirotrichonymphea 18S rRNA gene sequences
with outgroup Tritrichomonadida. Cononympha sequences are not included due to anomalous
base frequencies. New Microjoenia sequences determined in this study are indicated by bold
type. Support for nodes is given when equal to or greater than 90% ultrafast bootstrap support
and greater than 0.95 Bayesian posterior probability. Filled circles at nodes indicate full support,
i.e., 100/1.0. Images of isolated cells are inset at right and labeled with their cell code that

corresponds to the clone names in the tree. Scale bars = 10 pm.

Figure 3. Fluorescence detection of Microjoenia sp. from Hodotermopsis sjostedti. The HsM1-
specific probe, labeled with 6FAM (green) and the general eukaryotic probe, labeled with Texas
Red (red), were used simultaneously. A-C. Images taken from a slide region including
Pyrsonympha cells (elongated, top left and bottom middle), Trichomonoides trypanoides
(arrows), and M. minima (arrowheads). A. Green wavelength filter, 6FAM label is only applied
to one cell. B. Red wavelength filter, TexasRed label is applied to all protist cells. C. Phase
contrast micrograph. The cell that was labeled in A bears multiple flagella near its apex and a
protruding axostyle at its posterior, confirming the identification of Microjoenia. D-F. Images
taken from another slide region, with filters and phase contrast imaging as for A-C. D. Green
wavelength filter, 6FAM label is only applied to two small cells. E. Red wavelength filter,
TexasRed label is applied to all protist cells. F. Phase contrast micrograph. Cells that were
labeled in D are very small (<10 um). Scale bars =20 pum.
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Table 1. Species of Microjoenia.

Species Host Reference
Reticulitermes flavipes (= R.  Grassé 1952, Brugerolle &
M. fallax santonensis) Bordereau 2006 emended
M. hexamitoides Reticulitermes lucifugus Grassi 1892
M. octoplus
(=Torquenympha octoplus)  Reticulitermes hesperus Brown 1930
M. ratcliffei Reticulitermes hesperus Brown 1930
M. pyriformis Reticulitermes hageni Brown 1930
M. anterodepressa Porotermes grandis Brugerolle 2001
M. minuta Hodotermopsis sjostedti Brugerolle 2005

M. axostylis

Archotermopsis wroughtoni

Cutler 1920



Table 2. Host collections, cell isolations, and sequenced clones.

Number of
Number of clones
Cell code Host species Host locality cells sequenced
RDAM-242 Reticulitermes tibialis Wolf Creek, Prescott, Arizona, USA (34.4548, -112.4848) 4 3
RDCM Reticulitermes tibialis Wolf Creek, Prescott, Arizona, USA (34.4548, -112.4848) 4 1
FPS-21 Reticulitermes flavipes  Eagle Rock Reservation, New Jersey, USA (40.8114, -74.2385) 1 5
FPS-10 Reticulitermes flavipes  Eagle Rock Reservation, New Jersey, USA (40.8114, -74.2385) 1 5
PES-9 Reticulitermes flavipes  Eagle Rock Reservation, New Jersey, USA (40.8114, -74.2385) 6 5
PES-24 Reticulitermes flavipes  Eagle Rock Reservation, New Jersey, USA (40.8114, -74.2385) 3 7
PES-6 Reticulitermes flavipes  Eagle Rock Reservation, New Jersey, USA (40.8114, -74.2385) 1 5
Hodotermopsis
HOD4-682 sjostedti Tam Dao National Park, Vietnam (21.4564, 105.61) 2 7
Hodotermopsis
HOD7-J sjostedti Tam Dao National Park, Vietnam (21.4564, 105.61) 2 8
Hodotermopsis
HS2 sjostedti Tam Dao National Park, Vietnam (21.4564, 105.61) 1 8
Hodotermopsis
HS13 sjostedti Tam Dao National Park, Vietnam (21.4564, 105.61) 1 4
Hodotermopsis
HS14 sjostedti Tam Dao National Park, Vietnam (21.4564, 105.61) 1 7
Hodotermopsis
M1 (clone) sjostedti Kagoshima, Japan whole gut  N/A



