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Microjoenia are obligate symbionts of termites. The genus was erected in 1892 for small 

cells with many flagella that insert near, but not directly from, the cell apex, and an 

axostyle that can protrude from the cell posterior. Although ultrastructural studies have 

been carried out on three Microjoenia species to date, no molecular data have been directly 

attributed to any species. Microjoenia are classified within the parabasalian class 

Spirotrichonymphea, which is characterized by flagellar bands that emerge near the cell 

apex and proceed posteriorly in a right-handed helix. In Microjoenia, however, the flagellar 

bands are very short and proceed longitudinally or with a weakly observable helix. In this 

study, we have amplified and sequenced the 18S ribosomal RNA gene from individually 

isolated Microjoenia cells from Reticulitermes and Hodotermopsis hosts as part of an 

ongoing effort to understand the phylogeny of Spirotrichonymphea and their coevolution 

with termites. In our 18S rRNA gene phylogeny, Microjoenia forms the sister lineage to 

Spirotrichonympha, though many other evolutionary relationships within 

Spirotrichonymphea remain unresolved. 
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Introduction

“Lower” termites (all termite families except the apical Termitidae) harbor wood-degrading 

symbiotic protists belonging to Parabasalia and Oxymonadida (Preaxostyla) in their hindguts 

(Brune 2014; Chouvenc et al. 2021). This digestive symbiosis began in the common ancestor of 

termites and their sister lineage, the wood-feeding roach Cryptocercus, roughly 175 million years 

ago, and has led to codiversification of hosts and symbionts (Bourguignon et al. 2015; Bucek et 

al. 2019; Ohkuma et al. 2009). Today, there are approximately 800 “lower” termite species, each 

of which harbors a characteristic set of protist symbiont species (Krishna et al. 2013; Yamin 

1979). These obligately symbiotic protist species pose special challenges for study because they 

are very difficult, if not impossible, to maintain in culture. 

Most of the termite symbiotic protist genera were described between 1881 and the mid-

20th century from light microscopic data (Brugerolle and Lee 2000). Termite symbiotic protists 

tend to have much larger and more complex cells than those of their non-termite relatives 

(Čepička et al. 2017; Hampl 2017). However, morphological characteristics such as large cell 



size, multiplied flagella, and multiplied nuclei have evolved convergently, according to 

molecular phylogenies (Gile et al. 2011; Gile and Slamovits 2012; Noda et al. 2012). Although 

ultrastructural and molecular studies have gradually built a higher-level systematic framework, 

roughly half of the described genera still lack molecular data, hampering our understanding of 

their diversity, systematics, and coevolutionary history with their hosts (Čepička et al. 2017; 

Hampl 2017).

Protist species of lower termites are highly host-specific. In some cases, they have 

parallel phylogenies to those of their hosts (Harper et al. 2009; James et al. 2013; Noda et al. 

2007, 2018), and several parabasalian genera are restricted to a single termite host family. For 

example, Pseudotrichonympha is only found in Rhinotermitidae while Devescovina and 

Calonympha are only known from the Kalotermitidae (Yamin 1979). Together, these 

observations indicate a tight coevolutionary relationship between termite-associated protists and 

their hosts, in agreement with the vertical inheritance of protists by proctodeal trophallaxis (anal 

feeding). Host relationships can be useful for clarifying protist symbiont taxonomy. For example, 

the genus Spirotrichonympha, once thought to be widespread across termite families, was shown 

to be polyphyletic, with each separate clade consisting of symbionts of a single termite family 

(Brugerolle 2006; Gile et al. 2018; Jasso-Selles et al. 2017; Taerum et al. 2020). The objective of 

this study was to determine the molecular phylogenetic position of the previously 

uncharacterized termite symbiont genus Microjoenia in order to better understand relationships 

among termite-specific protist genera and their coevolution with termites. 

The genus Microjoenia was erected in 1892 for Microjoenia hexamitoides, a symbiont of 

Reticulitermes lucifugus (then called Termes lucifugus) (Grassi 1892). Its morphology was later 

described more fully as a small, oval-shaped cell with an axial rod that protrudes from the 

posterior end, an anteriorly positioned nucleus, and many flagella originating from the apical 

portion of the cell but not the anterior extremity (Grassi 1917; Grassi and Sandias 1894). 

Microjoenia had been thought to show characteristics of both Joenia (Cristamonadida), by 

bearing many flagella at the cell anterior, and the distantly related Trichonympha 

(Trichonymphida), by having a bald spot, or operculum, at the extreme apex ( Grassi 1917; 

Grassi and Sandias 1894). This combination of characteristics has led to a turbulent taxonomic 

history. Microjoenia has been considered a young form of Trichonympha (Leidy 1881), or a 

young form of Spirotrichonympha (Duboscq and Grassé 1928), or a genus of uncertain position 



within the Lophomonadida (Brugerolle and Lee 2000). More recently, ultrastructural studies 

demonstrated that the flagella of Microjoenia arise from very short, longitudinal to slightly 

spiraling bands, confirming its Spirotrichonymphea affinities (Brugerolle 2001). Note that while 

Spirotrichosomidae (Trichonymphida, Parabasalia) also feature spiraling rows of flagella, they 

emerge from bilaterally symmetrical rostral structures characteristic of Trichonymphida, and 

their flagellar bands form a left-handed helix (Carpenter et al. 2010; Radek et al. 2018), thus 

excluding Microjoenia. The simple, tubular axostyle links Microjoenia specifically with 

Spironympha (Brugerolle 2005; Brugerolle and Bordereau 2006), another genus that currently 

lacks molecular data. 

There are eight described species of Microjoenia, nearly all from Reticulitermes host 

species in Europe or North America (Brown 1930; Brugerolle 2001, 2005; Cutler 1920; Duboscq 

and Grassé 1928; Grassé 1952; Grassi 1892) (Table 1). The type species, Microjoenia 

hexamitoides, was described from Reticulitermes lucifugus in Sicily (Grassi 1892). One species 

inhabiting Reticulitermes hesperus was described as a distinct genus, Torquenympha, but was 

later synonymized with Microjoenia (Brown 1930; Yamin 1979). The non-Reticulitermes hosts 

include Porotermes grandis (Stolotermitidae, possibly a synonym of P. adamsoni) ( Brugerolle 

2001; Hill 1933), Archotermopsis wroughtoni (Archotermopsidae) (Cutler 1920), and 

Hodotermopsis sjostedti (Archotermopsidae) (Brugerolle 2005). Because the symbiont 

community of H. sjostedti bears close resemblance to those of Reticulitermes spp., likely due to 

horizontal symbiont transfer, the presence of Microjoenia in both host genera is not surprising 

(Kitade 2004). In this study, we have used a combination of single cell PCR and fluorescence in 

situ hybridization (FISH) to determine the molecular identity of Microjoenia species from 

Reticulitermes flavipes, Reticulitermes tibialis, and Hodotermopsis sjostedti.

Results and Discussion

Identification of Microjoenia

In the hindguts of Hodotermopsis sjostedti, Reticulitermes tibialis, Reticulitermes flavipes, and 

Reticulitermes lucifugus, we observed small cells (< 20 μm in length) with the morphological 

characteristics of Microjoenia (Fig. 1). These cells were sub-spherical to pyriform, bore many 

flagella near the apical end of the cell but not on the cell apex itself, and often had a posteriorly 



protruding axostyle. These morphological features are similar to those of Spironympha, except 

that Spironympha cells are larger and the flagella arise from bands that spiral further around the 

apical portion of the cell (Koidzumi 1921). In Microjoenia, the flagella arise from similar bands, 

but the bands are short and do not complete a spiral turn around the cell (Brugerolle 2005; 

Brugerolle and Bordereau 2006). We also used protargol staining to visualize the subcellular 

features of Microjoenia from H. sjostedti. A darkly stained nucleus, darkly stained parabasal 

bodies arranged in a crown, and a faintly stained, tube-like axostyle are recognized, which are 

typical morphological features of this genus (Brugerolle and Lee 2000; Grassé 1952) (Fig. 1C-

D). 

In order to determine the molecular phylogenetic position of Microjoenia, we used a 

single-cell PCR approach. We isolated 7 single cells and 6 pools of 2-6 cells each from H. 

sjostedti, R. flavipes, and R. tibialis (we were unsuccessful with single cells from R. lucifugus) 

and amplified and sequenced their 18S rRNA genes (Table 2). These cells ranged in length from 

6-17 μm, but we targeted the smallest cells with Microjoenia morphology in order to avoid 

isolating small Spironympha cells, which can look superficially similar to Microjoenia in live 

material. It is likely that other Microjoenia cells in our samples exceeded 17 μm in length, given 

that previous reports from H. sjostedti and Reticulitermes spp. indicated cell lengths of 20 μm 

(Brugerolle 2005; Brugerolle and Bordereau 2006; Grassé 1952). All new sequences from 

Microjoenia cells clustered together in a moderately supported clade sister to Spirotrichonympha 

(Fig. 2). Within this clade were several supported subclades and several previously published 

sequences from termite guts. 

Microjoenia from H. sjostedti

The H. sjostedti symbiont sequences formed two clades, one that included the previously 

sequenced clone HsS1 (AB032236) while the other included HsS2 (AB032237). Both HsS1 and 

HsS2 were obtained from the small cell fraction after differential centrifugation of H. sjostedti 

hindgut contents and were considered to derive from either Microjoenia or Holomastigotes 

(Ohkuma et al. 2000). A later ultrastructural study described Microjoenia minima from H. 

sjostedti (Brugerolle 2005) and speculated that its 18S rRNA gene sequence was likely to match 

either the HsS1 or HsS2 clones (Brugerolle 2005). Our new single cell data indicate that both 

HsS1 and HsS2 derive from Microjoenia cells, and their distinct positions in our phylogeny, 



separated by Asian Reticulitermes symbionts, suggest that these represent two distinct species. 

We were unable to detect morphological differences that might distinguish these two species. 

Likewise, the ultrastructural methods employed in the description of M. minima would have been 

unable to distinguish between two species, and therefore the description of M. minima was likely 

based on data from cells of both phylotypes (Brugerolle 2005). 

To confirm the molecular identity of Microjoenia, we also carried out FISH using a probe 

designed from clone M1 from a previously generated library of amplified 18S rRNA gene 

sequences obtained by whole gut RT-PCR of H. sjostedti (Fig. 3). The M1 sequence belongs to 

the same subclade of Microjoenia as HsS2, and the probe matches both HsS1 and HsS2 

sequences. In agreement with our single cell PCR data, the 6FAM-tagged Microjoenia-specific 

probe hybridized to small cells with the morphological characteristics of Microjoenia, while the 

Texas Red-tagged general eukaryotic probe hybridized to a range of cell types (Fig. 3).

Microjoenia from Reticulitermes

Sequences from North American and European Reticulitermes symbionts formed a clade to the 

exclusion of those from H. sjostedti and the Asian Reticulitermes spp. This European/North 

American clade included, as its deepest branch, sequences from Reticulitermes hesperus and 

Reticulitermes okanaganensis that were amplified from Spirotrichonympha cell isolates but 

branched separately (Gile et al. 2018). It is now clear that these were contaminating sequences 

from Microjoenia cells. In the case of R. hesperus, they might represent either Microjoenia 

ratcliffei or Microjoenia (=Torquenympha) octoplus, which were both described from this host. 

Also within this clade, R. flavipes symbionts branched in three places, though only two were 

supported clades. Sequences from the cell PES6 (collected in New Jersey, USA) formed a 

supported clade with the previously published U17508, which was amplified from the gut 

contents of R. flavipes collected in Woods Hole, Massachusetts, USA (Gunderson et al. 1995). 

Sequences from PES9 and PES24 formed an additional supported clade while sequences from 

the cells FPS10 and FPS21 branched separately. Although our R. flavipes sequences suggest that 

there should be two or three Microjoenia species present, only one has been described so far: M. 

fallax from R. flavipes (formerly known as R. santonensis) collected in France (Grassé 1952). 

This symbiont was initially considered a young form of the Spirotrichonympha cells in this host 

(Duboscq and Grassé 1928). Finally, sequences from R. tibialis symbiont cells RDAM and 



RDCM clustered together near the R. flavipes symbiont cells FPS10 and FPS21, but neither their 

monophyly nor their sister relationship with the FPS10 and FPS21 cells were supported. No 

species of Microjoenia from R. tibialis have been named or formally described to date. 

Evolution of Spirotrichonymphea

The sequences reported here from Microjoenia cells demonstrate that Microjoenia is a valid 

genus, not a life cycle stage of Spirotrichonympha. In particular, the symbionts of R. hesperus 

demonstrate this, because sequences from isolated cells of both Spirotrichonympha and 

Microjoenia have been determined from this host. Furthermore, H. sjostedti harbors Microjoenia 

but no true Spirotrichonympha, which appears to be restricted to Reticulitermes hosts (Gile et al. 

2018). Spirotrichonympha cincta, reported to be the only Spirotrichonympha in H. sjostedti, 

branches separately (AB032226, Fig. 2), and should be placed in a new genus (Brugerolle 2005). 

The sequences reported here from Microjoenia cells also support the inclusion of this genus 

within Spirotrichonymphea, in agreement with ultrastructural characteristics, as opposed to the 

earlier suggested affinity to the “lophomonads” (Cristamonadida, formerly Lophomonadida) ( 

Brugerolle 2001; Brugerolle and Bordereau 2006; Brugerolle and Lee 2000). 

Currently a family-level taxonomy is lacking for Spirotrichonymphea. Because of the 

lack of morphotype-linked molecular data and the difficulty of establishing monophyletic 

families on the basis of ultrastructural data, recent classification schemes have lumped all 

Spirotrichonymphea genera into a single family, Holomastigotoididae (Čepička et al. 2010, 

2017). Gradually, molecular data have been improving the situation. The placement of true 

Spirotrichonympha (i.e., from Reticulitermes hosts) was determined (Gile et al. 2018), and 

Spirotrichonympha species from Coptotermes and Heterotermes hosts were split out into the 

reinstated Cononympha (Jasso-Selles et al. 2017, 2020), while Spirotrichonympha from 

Paraneotermes was split into the new genus Cuppa (Taerum et al. 2020). Additionally, the 18S 

rRNA gene sequences of Holomastigotes were determined (Taerum et al. 2019) and a new genus 

Fraterculus was established (Taerum et al. 2020). In total, there are now 7 Spirotrichonymphea 

genera with directly attributed molecular data (Cononympha, Cuppa, Fraterculus, 

Holomastigotes, Holomastigotoides, Microjoenia, and Spirotrichonympha), and 6 described 

genera for which molecular data are still lacking (Micromastigotes, Rostronympha, 

Spiromastigotes, Spironympha, Spirotrichonymphella, and Uteronympha). Unfortunately, 18S 



rRNA gene sequences seem to be insufficient for determining inter-generic relationships in 

Spirotrichonymphea. Here, we recovered a sister relationship between Microjoenia and 

Spirotrichonympha, and the Paraneotermes symbionts Cuppa and Fraterculus also have a 

supported sister relationship (Fig. 2), but other relationships remain unresolved. Future studies 

should characterize additional Spirotrichonymphea genera with additional phylogenetic markers. 

Another interesting question for future studies would be whether the Microjoenia species 

described from P. grandis and A. wroughtoni are truly Microjoenia. In this study, we did not 

acquire a sequence from the type species, M. hexamitoides, from its type host, R. lucifugus, but 

we did acquire Microjoenia single cell sequences from three related host species which all 

formed a clade (Fig. 2), and the Microjoenia cells we observed in R. lucifugus had very similar 

morphology to the sequenced cells (Fig. 1F). Therefore, it is quite likely that the type species (M. 

hexamitoides) from the type host (R. lucifugus) would branch with the other Reticulitermes 

symbionts, as was the case for Holomastigotes elongatum from its type host (also R. lucifugus) 

(Taerum et al. 2019). While H. sjostedti is not closely related to Reticulitermes, it shares many of 

the same symbiont genera, likely due to horizontal symbiont transfer (Kitade 2004). If the 

Microjoenia symbionts of P. grandis and A. wroughtoni were found to branch with true 

Microjoenia, they would be the first symbionts from hosts other than Reticulitermes and H. 

sjostedti to branch in the Holomastigotes/Spirotrichonympha/Microjoenia portion of the 

Spirotrichonymphea phylogeny (Fig. 2). Perhaps they will instead branch separately, in which 

case they should be transferred to a new genus (or genera), as was the case for 

Spirotrichonympha symbionts from non-Reticulitermes hosts (Gile et al. 2018; Jasso-Selles et al. 

2017; Taerum et al. 2020). 

Methods

Termite collections: Hodotermopsis sjostedti was collected in Tam Dao (Vietnam), R. flavipes in New 

Jersey (USA), R. lucifugus in Corsica (France), and R. tibialis in Arizona (USA). The identities of these 

same termite collections were confirmed previously by molecular barcoding using the mitochondrial 16S 

rRNA gene (Taerum et al. 2019) and voucher specimens for all but R. lucifugus were deposited in the 

Hasbrouck Insect Collection at Arizona State University (ASUHIC) under accessions ASUHIC0095054-

ASUHIC0095056 (Taerum et al. 2019). Additionally, H. sjostedti was collected in Kagoshima (Japan) for 

protargol staining and FISH (this study).



Protist observation and sequencing: Hindguts of termite workers were dissected from live 

termites and macerated in Ringer’s solution (8.5 g NaCl, 0.20 g KCl, 0.20 g CaCl2, 0.10 g NaHCO3 per 

liter, HiMedia Laboratories). Live Microjoenia cells were viewed using an AxioImager upright compound 

microscope and photographed using an AxioCam 503 monochrome camera (Zeiss). Protargol-stained 

cells were prepared as previously described (Honigberg and Davenport 1954; Kitade et al. 1997) and 

imaged on an Olympus BX-63 compound microscope. 

Individual Microjoenia cells were observed on a Zeiss AxioVert inverted compound microscope, 

photographed using an Axiocam 105 color camera (Zeiss), and isolated using hand-drawn glass 

capillaries. Each isolated Microjoenia cell was washed twice in fresh Ringer’s solution and ejected into a 

0.5 ml tube for DNA extraction using the MasterPure DNA Purification Kit (Epicentre, Madison, 

Wisconsin, USA) following the manufacturer’s protocol except purified DNA was resuspended in 5 µl of 

TE buffer. The 18S rRNA gene was amplified from purified DNA from isolated single cells using a 

nested PCR approach, using outer primers SpiroF1/R1 and inner primers GGF/GGR as previously 

described (Jasso-Selles et al. 2017; Taerum et al. 2019). PCR products were ligated into the pCR 4-TOPO 

vector using the TOPO TA Cloning Kit and cloned with the One Shot TOP10 chemically competent E. 

coli (Invitrogen, Carlsbad, California, USA), following the manufacturer’s protocols. Inserts from 

positive transformant colonies were amplified using standard sequencing primers M13F and M13R, 

purified using the GeneJet PCR purification kit (ThermoFisher, Waltham, MA, USA), and sequenced on 

both strands using an Applied Biosystems 3730 capillary sequencer (Applied Biosystems, Waltham, 

Massachussetts, USA). Two representative sequences from each isolated cell were selected for detailed 

phylogenetic analyses and were submitted to GenBank under accession numbers MZ663673-MZ663698.

Fluorescence in-situ hybridization: Previously, we obtained a large clone library of 18S rRNA 

gene sequences amplified by RT-PCR from the hindgut of H. sjostedti (unpublished data). Several of 

these were expected to belong to Spirotrichonymphea. In order to identify the genus Microjoenia, a probe 

specific for the sequence M1 was designed (HsM1-FAM: GACCCCACCCGTAGATGT), and we carried 

out fluorescence in-situ hybridization (FISH) as described previously (Noda et al. 2003, 2018). Briefly, 

termite gut contents were fixed in 4% paraformaldehyde. Fixed cells were then spotted onto a silane-

coated glass slide (Matsunami Glass, Osaka, Japan), dehydrated in ethanol, and incubated in hybridization 

solution (0.9 M NaCl and 0.1 M Tris-HCl) containing fluorescently labeled probes at 48 ºC for 2 h. 

Specimens were then washed for 20 min in a washing buffer (0.2 M NaCl and 0.1 M Tris-HCl) at 48 ºC, 

mounted using a Fluoro-Keeper antifade reagent (Nacalai Tesque, Kyoto, Japan), and observed under an 

Olympus BX-63 epifluorescence microscope. The Microjoenia-specific probe was tagged with 6-

carboxyfluorescein (6-FAM), while the general eukaryotic probe Euk1190: 

GGRCATCACRGACCTGTTAT was tagged with Texas Red (Amann et al. 1995; Ohkuma et al. 2000).



Phylogenetic analyses: Parabasalian 18S rRNA gene clone sequences from isolated single cells 

were trimmed of vector and sequences from both strands of each clone were assembled using Geneious 

R9 (Kearse et al. 2012). New 18S rRNA gene sequences were aligned with representatives of all 

previously published Spirotrichonymphea species and environmental clades using MAFFT v. 7.205 

(Katoh and Standley 2013) with iterative refinement using the G-INS-i option. Ambiguously aligned sites 

were removed by eye in AliView (Larsson 2014). Preliminary analyses including all new and published 

Spirotrichonymphea sequences. Final analyses used a reduced alignment with all Cononympha spp. and 

Holomastigotoides bigfooti sequences removed, after noting that these sequences failed a chi-square test 

of base composition carried out in IQ-TREE v. 1.6.12 web server (Nguyen et al. 2015, Trifinopoulos et al. 

2016). The reduced alignment had a final size of 77 taxa and 1,420 sites. 

Maximum Likelihood (ML) and Bayesian phylogenetic analyses were performed using IQ-TREE 

v. 1.6.12 (Nguyen et al. 2015) and MrBayes v. 3.2.6 (Ronquist et al. 2012) respectively. ML analyses 

used the TIM3e+R3 model as specified by ModelFinder implemented in IQ-TREE (Kalyaanamoorthy et 

al. 2017), which was considered the best fit for the data under the Bayesian Information Criterion (the 

best fit model under both the Akaike and Corrected Akaike Information Criteria was GTR+F+R3). 

Support for nodes was assessed from 1,000 ultrafast bootstrap replicates (Hoang et al. 2018). Bayesian 

analyses were carried out under the GTR model with four evolutionary rate categories approximated by a 

gamma distribution. Two independent chains, sampled once every 100 generations, were run until they 

converged (the average standard deviation of partition frequency values between the chains dropped 

below 0.01). Convergence was reached after 240,000 generations. The first 25% of trees were then 

discarded as burn-in and majority rule consensus trees were computed from the remaining 3602 trees 

from both runs. Support at nodes is given by posterior probabilities. 
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Tables

Figure Legends

Figure 1. Light micrographs of Microjoenia. A. Microjoenia sp. from Reticulitermes tibialis. 

Note the diagnostic distribution of flagella near the cell apex but not on the apical pole. The 

posteriorly protruding axostyle is barely visible beyond the plane of focus of this specimen. 

Differential interference contrast (DIC) optics. B-D. Microjoenia sp. from Hodotermopsis 

sjostedti, displaying anteriorly positioned flagella and bare apical pole. B. DIC optics. C-D. 

Protargol-stained specimens, brightfield optics. The parabasal bodies (dictyosomes with 

associated fibers) are visible as short, darkly staining granules surrounding the cell apex. Nucleus 



(n) and axostyle (ax) are indicated. E. Microjoenia sp. from Reticulitermes flavipes, DIC. F. 

Microjoenia sp. from Reticulitermes lucifugus, DIC. Scale bars = 10 μm.

Figure 2. Maximum likelihood phylogeny of Spirotrichonymphea 18S rRNA gene sequences 

with outgroup Tritrichomonadida. Cononympha sequences are not included due to anomalous 

base frequencies. New Microjoenia sequences determined in this study are indicated by bold 

type. Support for nodes is given when equal to or greater than 90% ultrafast bootstrap support 

and greater than 0.95 Bayesian posterior probability. Filled circles at nodes indicate full support, 

i.e., 100/1.0. Images of isolated cells are inset at right and labeled with their cell code that 

corresponds to the clone names in the tree. Scale bars = 10 μm. 

Figure 3. Fluorescence detection of Microjoenia sp. from Hodotermopsis sjostedti. The HsM1-

specific probe, labeled with 6FAM (green) and the general eukaryotic probe, labeled with Texas 

Red (red), were used simultaneously. A-C. Images taken from a slide region including 

Pyrsonympha cells (elongated, top left and bottom middle), Trichomonoides trypanoides 

(arrows), and M. minima (arrowheads). A. Green wavelength filter, 6FAM label is only applied 

to one cell. B. Red wavelength filter, TexasRed label is applied to all protist cells. C. Phase 

contrast micrograph. The cell that was labeled in A bears multiple flagella near its apex and a 

protruding axostyle at its posterior, confirming the identification of Microjoenia. D-F. Images 

taken from another slide region, with filters and phase contrast imaging as for A-C. D. Green 

wavelength filter, 6FAM label is only applied to two small cells. E. Red wavelength filter, 

TexasRed label is applied to all protist cells. F. Phase contrast micrograph. Cells that were 

labeled in D are very small (<10 μm). Scale bars = 20 μm.
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Table 1. Species of Microjoenia.

Species Host Reference

M. fallax
Reticulitermes flavipes (= R. 
santonensis)

Grassé 1952, Brugerolle & 
Bordereau 2006 emended

M. hexamitoides Reticulitermes lucifugus Grassi 1892
M. octoplus 
(=Torquenympha octoplus) Reticulitermes hesperus Brown 1930
M. ratcliffei Reticulitermes hesperus Brown 1930
M. pyriformis Reticulitermes hageni Brown 1930
M. anterodepressa Porotermes grandis Brugerolle 2001
M. minuta Hodotermopsis sjostedti Brugerolle 2005
M. axostylis Archotermopsis wroughtoni Cutler 1920



Table 2. Host collections, cell isolations, and sequenced clones.

Cell code Host species Host locality
Number of 
cells

Number of 
clones 
sequenced

RDAM-242 Reticulitermes tibialis Wolf Creek, Prescott, Arizona, USA (34.4548, -112.4848) 4 3
RDCM Reticulitermes tibialis Wolf Creek, Prescott, Arizona, USA (34.4548, -112.4848) 4 1
FPS-21 Reticulitermes flavipes Eagle Rock Reservation, New Jersey, USA (40.8114, -74.2385) 1 5
FPS-10 Reticulitermes flavipes Eagle Rock Reservation, New Jersey, USA (40.8114, -74.2385) 1 5
PES-9 Reticulitermes flavipes Eagle Rock Reservation, New Jersey, USA (40.8114, -74.2385) 6 5
PES-24 Reticulitermes flavipes Eagle Rock Reservation, New Jersey, USA (40.8114, -74.2385) 3 7
PES-6 Reticulitermes flavipes Eagle Rock Reservation, New Jersey, USA (40.8114, -74.2385) 1 5

HOD4-682
Hodotermopsis 
sjostedti Tam Dao National Park, Vietnam (21.4564, 105.61) 2 7

HOD7-J
Hodotermopsis 
sjostedti Tam Dao National Park, Vietnam (21.4564, 105.61) 2 8

HS2
Hodotermopsis 
sjostedti Tam Dao National Park, Vietnam (21.4564, 105.61) 1 8

HS13
Hodotermopsis 
sjostedti Tam Dao National Park, Vietnam (21.4564, 105.61) 1 4

HS14
Hodotermopsis 
sjostedti Tam Dao National Park, Vietnam (21.4564, 105.61) 1 7

M1 (clone)
Hodotermopsis 
sjostedti Kagoshima, Japan whole gut N/A


