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Abstract

Reduced-order models (ROMs) for turbulent combustion rely on identifying a small number of parameters that
can effectively describe the complexity of reacting flows. With the advent of data-driven approaches, ROMs can
be trained on datasets representing the thermo-chemical state-space in simple reacting systems. For low-Mach
flows, the full state vector that serves as a training dataset is typically composed of temperature and chemical
composition. The dataset is projected onto a lower-dimensional basis and the evolution of the complex system
is tracked on a lower-dimensional manifold. This approach allows for substantial reduction of the number of
transport equations to solve in combustion simulations, but the quality of the manifold topology is a decisive
aspect in successful modeling. To mitigate manifold challenges, several authors advocate reducing the state vector
to only a subset of major variables when training ROMs. However, this reduction is often done ad hoc and
without giving detailed insights into the effect of removing certain variables on the resulting low-dimensional
data projection. In this work, we present a quantitative manifold-informed method for selecting the subset of state
variables that minimizes unwanted behaviors in manifold topologies. While many authors in the past have focused
on selecting major species, we show that a mixture of major and minor species can be beneficial to improving the
quality of low-dimensional data representations. The desired effects include reducing non-uniqueness and spatial
gradients in the dependent variable space. Finally, we demonstrate improvements in regressibility of manifolds
built from the optimal state vector subset as opposed to the full state vector.

Keywords: reduced-order modeling; low-dimensional manifold; dimensionality reduction; principal component analysis; non-
linear regression




1. Introduction

Parameterization approaches can be used to com-
press description of complex combustion systems
with many degrees of freedom. Numerous physics-
based parameterization techniques can be found in
the literature [1-3]. An alternative to the physics-
motivated parameterizations is a data-driven ap-
proach, where low-dimensional manifolds (LDMs)
are constructed from the training data representing a
sufficiently wide range of the thermo-chemical state-
space [4, 5]. Linear [4, 6-9] and nonlinear [10, 11]
dimensionality reduction techniques have been used
in the past to find lower-dimensional basis to repre-
sent combustion datasets with fewer parameters.

The success of a given parameterization technique
then depends on the quality of LDM topology. Char-
acteristics of a good parameterization include soft
gradients, as well as uniqueness in dependent vari-
ables [12, 13]. The question of the parameteriza-
tion quality is of particular importance in data-driven
model reduction. Notably, non-uniqueness can be in-
troduced during low-dimensional data projection, re-
sulting in ambiguity in dependent variable values. If
the new manifold parameters are later used as re-
gressors, regression can struggle in regions of non-
uniqueness.

Problems with ill-behaved manifolds can be alle-
viated through appropriate training data preprocess-
ing. The most straightforward strategy is data scaling
[8, 9, 14-16]. Other authors have tackled manifold
challenges by training combustion models on a subset
of the original thermo-chemical state-space variables
[9, 10, 16-21]. A closer look at the variables typ-
ically selected in the literature suggests that authors
create subsets in qualitative ways, taking fuel and oxi-
dizer components and complete combustion products,
with [10, 17-19, 21] or without [9, 16, 17, 20] tem-
perature, and rarely including minor species [19, 20].
Such variable selections are often done ad hoc, with-
out detailed justification for selecting some variables
and discarding another. A notable exception is the
work by Hiremath et al. [22] where an algorithm for
species selection was developed based on minimizing
the reconstruction error from dimensionality reduc-
tion. However, the greedy algorithm proposed in [22]
does not take into account LDM topology. To the au-
thors’ knowledge, no comprehensive assessment con-
cerning the selection and quality of manifolds has
been given, which can have significance when non-
linear regression on manifolds is incorporated into the
reduced-order modeling (ROM) workflow.

Here, we propose a manifold-informed variable
selection strategy to define a meaningful subset of
the original state variables. Using the recently pro-
posed technique to characterize manifold quality [23],
we build an iterative variable selection algorithm that
pays attention to two topological aspects of LDMs:
feature sizes and uniqueness. The state vector sub-
set is thus optimized to result in an improved LDM
topology once the dataset is projected onto a lower-
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Fig. 1: Example two-dimensional PCA projections of (a) the
full state vector, X, and (b) the optimal subset of that state
vector, X g, from a syngas/air flamelet dataset with Level
scaling. Projections are colored by the temperature.

dimensional basis. While in this work we use princi-
pal component analysis (PCA) for generating LDMs,
our approach is not limited to any particular dimen-
sionality reduction technique. The variable selec-
tion algorithm proposed can also work across differ-
ent target manifold dimensionalities. Moreover, the
manifold can be optimized towards efficient model-
ing of an arbitrary set of target dependent variables.
With the appropriately selected state vector subset, we
demonstrate an improved regressibility of manifolds
using kernel regression.

2. Data-driven approach for model reduction

A data-driven approach to obtaining LDM param-
eterizations relies on the availability of training data.
In particular, simulating simple canonical systems al-
lows to obtain the training dataset, which we also refer
to as the thermo-chemical state vector, X € RY XQ,
where N is the number of observations and @ is
the number of state variables. In the present work,
we generate training data from the steady laminar
flamelet model for various fuels: hydrogen [24], syn-
gas [25] and ethylene [26]. We focus on the full
state vector defined as X = [T, Yi,Ya, ..., Yns—ﬂ,
where T’ is the temperature, Y; is the mass fraction of
species ¢ and n is the number of species in the chem-
ical mechanism. For clarity, we will refer to the mass
fraction of a given species by its chemical formula.
Other definitions for the state vector can be adopted
which follow directly from the governing equations
that describe the simulated system [27].

The goal of model reduction is to decrease the
number of governing equations needed to solve in a
simulation. The evolution of the state vector can be
described by the general transport equation written in
the matrix form:

DX’ T, T
DL = v-J +8S°, (1)
where J is the matrix of diffusive fluxes and S is the
source terms matrix. The ROM approach transforms
the state vector, X, to a lower-dimensional basis de-
fined by the matrix of ¢ modes, A € R%*?. In
PCA, the projection onto the new basis is performed



Input Manifold-informed variable selection Output

Iteration 1 Iteration 2
State vector Remove HO, Remove HCO
X =[Xq, X2, ..., Xq] Projecting X Ve N

Target variables

@ =141, 62, ... 6nl

Target manifold
dimensionality v

q L =25.87 L£=2194

L=1711

Iteration 3 Iteration 4
Remove O Remove Hy0

Ve N Ve N Projecting Xg

ni
=15.61 L =15.56

State vector subset
Xs =[X1, X2, ..., Xs]

Fig. 2: Schematic illustration of the manifold-informed variable selection algorithm proposed in this work. The algorithm selects
the subset of the thermo-chemical state vector, optimized with respect to an accurate parameterization of the user-defined target
dependent variables, ¢, using ¢ manifold parameters. At each iteration, cumulative cost over all n target variables is computed
as L =Y 7 ; Ly, and the variable that decreases this cost the most is removed. The output is the optimal state vector subset
corresponding to the minimized cost from all iterations (marked in green). The changing LDM topologies in the middle frame

are shown for a syngas/air flamelet dataset with Level scaling.

as Z = XA. The principal components (PCs), Z,
define the parameterization of a g-dimensional man-
ifold. As long as A is constant in time and space,
Eq. (1) can be replaced by a reduced set of transport
equations for the PCs,

-

B = v s @
where Jz is the matrix of the projected diffusive
fluxes and Sz is the matrix of the projected source
terms (PC source terms). We will refer to the i*"
PC source term as Sz;. There are two more ingre-
dients of the reduced model. First, the PC source
terms need to be parameterized by the new manifold
parameters [4, 28]. Second, it has been a frequent ap-
proach in the literature to obtain nonlinear mappings
between the manifold parameters and the thermo-
chemical state variables that are the desired output of
a simulation [8, 9]. To tackle both aspects, we can
build nonlinear regression models to effectively ap-
proximate any dependent variable, ¢, as ¢ ~ F(Z),
where .7 is a regression function. To date, nonlin-
ear regression techniques such as artificial neural net-
works (ANNs) [10, 29], multivariate adaptive regres-
sion splines (MARS) [7] or Gaussian process regres-
sion (GPR) [8, 9, 16] were used to obtain .%# in the
context of reacting flow simulations.

ROMs can also be trained on a meaningful subset
of the original state variables. Evidence from previ-
ous research suggests that variable selection can have
beneficial effects on the LDM topology [9, 10, 16—
21]. For the original state vector X with @ state vari-
ables, we define Xg € RV XS as the state vector sub-
set, where S < Q. Xg is generated through dis-
carding certain variables (columns) from X. We can
then compute the PCs by projecting X s instead of X
onto the PCA basis. Figure 1 demonstrates how sig-
nificantly LDM topologies can change through data
preprocessing such as variable selection. Figure la
shows an example two-dimensional PCA projection
of the full state vector, X, from a syngas/air com-
bustion dataset. Figure 1b shows a projection when
the optimal subset of state variables, X g, was used

for PCA. Both manifolds are colored by the temper-
ature. In addition, Level scaling is applied on X and
X (various scaling criteria explored in this work are
summarized in the supplementary Table S1). Signifi-
cant non-uniqueness is introduced on the manifold in
Fig. 1a through curling low-temperature observations
into a small region and overlapping them with higher-
temperature observations. Different feature sizes are
observed on both manifolds as well. For instance, the
size of the high-temperature region is increased on
the manifold in Fig. 1b as compared to the manifold
in Fig. 1a. These topological considerations indicate
that modeling a dependent variable such as temper-
ature on the manifold in Fig. 1a can be challenging
due to (1) non-uniqueness and (2) steep gradients of
high-temperature regions over small manifold length
scales. The example from Fig. 1 demonstrates con-
ceptually that adequate choice of state variables for
dimensionality reduction can be beneficial to improv-
ing the LDM topology.

3. Manifold-informed subset of state variables

Preprocessing the training dataset such as scaling
or variable selection, prior to applying dimensionality
reduction, can influence the LDM topology signifi-
cantly. In addition, changing the target manifold di-
mensionality, g, can alter the verdict of what the best
preprocessing strategy is. Thus, there is a need to au-
tomate the preprocessing selection process to produce
optimal LDM topology. Furthermore, when regres-
sion of a set of dependent variables is employed on
a manifold, the reasonable strategy is to “tune” the
manifold towards well representing those variables
specifically.

Instead of relying on knowledge-based selection
of state variables, we propose an approach of a
manifold-informed variable selection which can be
performed a priori at the modeling stage. We de-
velop a backward variable elimination algorithm in
which we iteratively remove variables that decrease
some cost function, £, the most. Figure 2 illus-
trates schematically the proposed algorithm. The
input to the algorithm is the full state vector, X,



the user-selected set of m target dependent vari-
ables that should be assessed on the manifold, ¢ =
[f1, P2, - - ., ¢n], and the target manifold dimension-
ality, g. The output of the algorithm is the state
vector subset, Xs. The middle frame in Fig. 2 il-
lustrates changing LDM topologies when iteratively
eliminating variables from the state vector using the
proposed algorithm. The results are shown for a syn-
gas/air flamelet dataset with Level scaling, where the
full state vector is X = [T, H,, O,, O, OH, H,0,
H, HO,, CO, CO,, HCOJ. The cost function used
here is based on the normalized variance derivative,
D(c), metric [23] and considers the LDM topology as
well as the relevant set of target dependent variables
that should be well-defined on the resulting LDM. For
the i*" dependent variable, D;(c’) quantifies the in-
formation content at various manifold length scales,
o = (amm; Uma:z;>- The cost is defined for the ‘"
dependent variable, ¢;, as

Omax
[,¢i = / PZ‘(U, Upyi) DZ(O')dE, (3)
Omin

where o = o, ; represents the largest feature size in
¢; on a manifold and P;(c, 0p,;) is the penalty func-
tion defined as

Pi(o,0p,:) = |5—5p,i}+~#7 “4)

55l

where tilde denotes a log,,-transformed quantity.
The quantity ||op:|| € (0,1) is a normalized
op,; value, where the normalization is such that
min(||o]]) = 0 and max(||o||) = 1. This normal-
ization introduces a gentle penalty for the size of the
largest feature. A larger value for o ; is desired as it
can indicate that features on a manifold will be well
resolved over regressible length scales. Large values
of 15,-(0) at small o can indicate non-uniqueness in
variable ¢; and we penalize those in particular with
the |5—5p,i | term in the penalty function. For a given
LDM topology, we compute the overall cost from a
set of n target dependent variables, ¢, as a cumula-
tive sum £ = Y .-, L4,. This yields a single cost
value characterizing the LDM topology. LDM topol-
ogy can be optimized with respect to the most impor-
tant variables such as temperature, fuel and oxidizer
components, main products and important radicals.
Dependent variables that are functions of the origi-
nal state variables, such as the PC source terms, Sz,
can be selected as well. Table 1 summarizes the sets
¢ used in this work for each fuel. Sz are the symlog-
transformed PC source terms included in the set of
target variables to force the optimization to also repre-
sent small values of Sz well on a manifold. In Fig. 2,
the cumulative costs are reported for each iteration.
The optimal subset corresponds to the minimum £
from all iterations (marked in green). Notably, in this
example, the cost associated with projecting the full
state vector is significantly higher (£ = 25.9) than
the cost associated with projecting the optimal sub-
set (£ = 15.6). Minimizing £ minimizes unwanted

Table 1: The set of target dependent variables, ¢, selected in
this work for each fuel.

Fuel ¢

Hydrogen Sz, Sz, T, O,, OH, H,0, H,
Syngas Sz, Sz, T, O,, OH, H,0, CO, CO,, H,
Ethylene SZ, SZ, T, 02, OH, Hzo, CO, COz, C2H4

behaviors on manifolds such as non-uniqueness and
small feature sizes (compare with Fig. 1). The pro-
posed algorithm is available in the PCAfo1d Python
library [30]. The supplementary material includes an
example code snippet for running the algorithm on a
combustion dataset.

4. Results and discussion

A few important questions can be posed to moti-
vate subsetting the state vector. Is there a subset of
the state variables that optimally represents the LDM
topology? How is the optimal topology affected by
the choice of target variables that we wish to repre-
sent on the LDM? How do we identify the best data
scaling to represent the target variables on the LDM?
The metric proposed in Eq. (3) provides a quantitative
measure of LDM topology quality for a given set of
target variables to allow us to answer these questions.

4.1. Choice of the target dependent variables, ¢

Different dependent variables are affected differ-
ently by the LDM topology. For instance, overlap-
ping observations on a manifold are only problem-
atic in modeling when there is a variation in a depen-
dent variable’s values across these observations. Fig-
ure 3 demonstrates this visually on an example two-
dimensional PCA projection which is severely folded
over itself. The projection is computed from a syn-
gas/air flamelet dataset with (—1,1) scaling and is
colored by the temperature in Fig. 3a and by the O,
mass fraction in Fig. 3b. The overlap introduced on
the manifold does not impact the temperature variable
greatly, as there is a similar temperature value for ob-
servations that are directly one on top of the other.
The cost associated with the temperature variable for
this projection is L = 1.3. At the same time, the O,
mass fraction exhibits large variation in values across
the overlapping observations. In Fig. 3b we see obser-
vations corresponding to nearly zero mass fractions
being projected directly below observations with high
O, mass fractions. As a result, the cost computed for
the O, variable is higher, Lo, = 1.9. This exam-
ple indicates the impact of target variables selection.
First, we note that some variables (like the tempera-
ture variable in the example shown in Fig. 3a) might
not be effective at detecting non-uniqueness. Second,
the final selection of the state vector subset will de-
pend on which target variables should be well repre-
sented on an optimized manifold.
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Fig. 3: Two-dimensional PCA projection of a syngas/air
flamelet dataset with (—1, 1) scaling colored by (a) the tem-
perature, and (b) the O, mass fraction.

4.2. State vector subset selected by the proposed
algorithm

Table 2 collects results of running the proposed
variable selection algorithm on datasets with various
fuels with the target manifold dimensionality ¢ = 3.
The target variables are selected as per Table 1. We
report cumulative costs associated with generating the
LDM from the full state vector, £, and costs asso-
ciated with selecting an appropriate state vector sub-
set, £(%). The best scaling option (resulting in the
lowest cost) is reported for each data preprocessing
case. The last column shows the state variables se-
lected. In all cases, selecting an appropriate state vec-
tor subset decreased the cumulative cost with respect
to taking the full state vector. The results in Table 2
show that in certain cases, it can be beneficial to re-
move the temperature variable from the state vector.
This is consistent with the results reported in the ex-
isting literature [9, 16, 17, 20]. We further observe
that the chemical species selected by the proposed al-
gorithm are a mixture of major and minor species.
This result differs from the selections typically made
in the literature [9, 10, 16-18, 21]. To justify why our
algorithm might select minor species, in Fig. 4, we
show two-dimensional PCA projections of a subset
syngas/air flamelet dataset with Auto scaling. Both
projections are colored by the corresponding first PC
source term, Sz 1. The manifold seen in Fig. 4a re-
sults from taking the optimal subset of the state vec-
tor, in this case Xs = [T, O,, OH, H, CO, HCO].
The cumulative cost over target dependent variables
(as per Table 1) is £ = 14.1. In Fig. 4b, we show
a two-dimensional projection resulting from the same
subset but with the minor species, H and HCO, mass
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Fig. 4: Two-dimensional PCA projections of a syngas/air
flamelet dataset with Auto scaling resulting from taking (a)
the optimal state vector subset, Xg = [T, O,, OH, H, CO,
HCO], and (b) the same subset but with the minor species, H
and HCO, mass fractions removed. Projections are colored

by the corresponding first PC source term, Sz 1.

fractions removed. We note that the cumulative cost
now increased to £ = 19.8 and the LDM topology
changed significantly. The more severe visible over-
lap on a manifold in Fig. 4b affects the PC source
terms in particular. The individual costs increased be-
tween manifolds in Figs. 4a-b from L£s,, = 1.5 to
4.2 for the first PC source term and from Lyszyz =12
to 4.2 for the second PC source term.

4.3. Effect of variable selection versus data scaling

While the impact of combustion data scaling on
the manifold sensitivity has been studied in [14], we
examine how variable selection in combination with
scaling affects LDM topologies. In Fig. 5, we com-
pare cumulative costs, £, resulting from only scal-
ing the full state vector (black circles) with scaling
and optimal variable selection (red triangles) for a
syngas/air flamelet dataset. The results are reported
for various scaling options (see Table S1). The re-
sulting three-dimensional LDM topologies colored by
the temperature are visualized at the top of the fig-
ure. The best topologies in both cases (correspond-
ing to the lowest £) are highlighted with thick axes.
The highest cost of only scaling the full state vec-
tor (black circles) happens for (0,1) scaling. This
high cost can be understood by looking at the visu-
alized projection. The (0, 1) manifold exhibits sharp
changes in topology and crossing observations which
introduce overlap. On the other hand, a good per-
formance corresponding to the (—1;1) scaling can
be due to the effect of spreading the low-temperature
observations over wider regions, thus increasing fea-

Table 2: Thermo-chemical state-space variables selected by the manifold-informed variable selection algorithm for the target
manifold dimensionality ¢ = 3, using the target variables, ¢, as per Table 1. We report the cumulative cost corresponding to
the manifold obtained from the full state vector, L(F ), and the optimal state vector subset, £(5) . The results are presented for
flamelet datasets with various fuels and for the best scaling option (reported) for each data preprocessing case.

Fuel £, scaling £, scaling  Selected state variables

Hydrogen 12.5, Max 11.0, Auto T, H, H,, O, OH, O,

Syngas 14.6, (—1,1) 13.1, Range 0, OH, H, CO, CO,

Ethylene 16.2, Range 13.6, Auto T, H,, H, O,, OH, H,0, CH;, CO,, HCO, C,H,, C,H,, CH,CO
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Fig. 5: Cumulative costs, £, for three-dimensional PCA projections of a syngas/air flamelet dataset using different scaling
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Fig. 6: Cumulative costs, £, for PCA projections of a syngas/air flamelet dataset with ¢ = 2, 3,4, 5 using different scaling
options. Projections are generated from the full state vector (black circles) and from an optimal subset of the state vector (red
triangles). Markers with an outline highlight the lowest £ for both preprocessing strategies and for each dimensionality q.

ture sizes and reducing non-uniqueness on the result-
ing projection. We observe that costs measured us-
ing the cumulative sum generally drop as we select
an appropriate state vector subset for all scaling op-
tions explored. The same observation holds for hy-
drogen/air and ethylene/air flamelets (see supplemen-
tary Figs. S1-S2). This result indicates that it can be
beneficial to combine scaling with variable selection
as a data preprocessing strategy. Moreover, larger dif-
ferences in cost values between different scaling op-
tions are observed for scaling without (black circles)
than for scaling with (red triangles) variable selec-
tion. This suggests that the optimal state vector sub-
sets yield more homogenized LDM topologies across
changing data scaling option.

4.4. Choice of the manifold dimensionality, q

The cost function can further help guide the choice
of the target manifold dimensionality, g. Figure 6
presents cumulative costs, £, for scaling and scal-
ing with variable selection analogous to Fig. 5 but
across different values of ¢ = 2,3,4,5. In PCA-
based ROM, the value for ¢ also dictates how many
PC source terms need to be computed, e.g. withq = 3
we have three PC source terms (three columns in the
matrix Sz). Thus, for the cumulative costs to be com-
pared on equal basis in Fig. 6 (for the same number n
of target dependent variables), £ is computed with-
out including Sz or Sz in the set ¢. We observe that
the optimal preprocessing settings (markers with an
outline) can change when requesting different man-
ifold dimensionality. The minimal costs for scaling

only happened for VAST scaling when ¢ = 2,3,4
and for Pareto scaling when ¢ = 5; the minimal costs
for scaling with variable selection happened for Auto
scaling when ¢ = 2, 3, for VAST scaling when ¢ = 4
and for Pareto scaling when ¢ = 5. The optimal
subsets can change significantly across different scal-
ings and manifold dimensionalities (see supplemen-
tary Table S2). We also observe that costs generally
drop with an increasing g. This is an expected out-
come, since by increasing ¢ in PCA we add another
orthogonal manifold parameter and, in principle, im-
prove the parameterization quality. Furthermore, a
larger difference in costs is usually observed when
changing ¢ from 2 to 3, than when changing ¢ from 4
to 5. The decreasing behavior of £ with increasing ¢
can be due to the number of manifold parameters be-
coming sufficient to define a quality data parameteri-
zation. While the traditional eigenvalue convergence
analysis in PCA can help select g tied to the variance
explained, the cost function proposed here provides
different information and can guide an optimal choice
for ¢ from the LDM topology perspective.

4.5. Impact on the reduced-order model performance

To assess the impact of the state vector subset on
the generation of ROMs, we can compare the per-
formance of the optimal state vector subset with ran-
domly selected subsets. We generate various three-
dimensional PCA projections of a syngas/air flamelet
dataset preprocessed with Range scaling (the best op-
tion for scaling with variable selection, see Fig. 5)
by randomly selecting subsets of the state variables.
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Fig. 7: Cumulative cost, £, from three PC source terms ver-
sus the average NRMS error from kernel regression of the
same PC source terms for a syngas/air flamelet dataset with
Range scaling. Grey points correspond to three-dimensional
PCA projections of 500 randomly selected state vector sub-
sets. The red triangle represents projection of the optimal
state vector subset and the black circle of the full state vec-
tor.

Figure 7 presents cumulative costs from the three PC
source terms in the linear and symlog space, £ =
Ls, —|—£§Z, versus the average NRMS error from ker-
nel regression prediction of the same three PC source
terms. Throughout this work, we measure NRMS er-
rors on test data only (20% of the data not seen by
the kernel regression model). The figure shows grey
points corresponding to 500 randomly selected state
vector subsets, the red triangle corresponding to the
optimal state vector subset and the black circle cor-
responding to the full state vector. Generally, lower
costs yield better regression results and higher costs
yield higher regression errors (Spearman correlation
between the two axes is 39%). Further, the cost as-
sociated with the optimal subset is lower than costs
for randomly selected subsets and significantly lower
than the cost associated with using the full state vec-
tor. Supplementary Figs. S3-S4 show analogous re-
sults for other fuels with Spearman correlation equal
to 61% for hydrogen fuel and 51% for ethylene fuel.

The optimization of the LDM topology should fa-
cilitate finding a better definition for the regression
function .% and, what follows, a better model for ¢.
We assess the regression performance of all state vari-
ables and the PC source terms using the optimized
manifold parameters as regressors. Figure 8 shows
the NRMS errors from kernel regression of variables
for a syngas/air flamelet dataset. Analogous results
for other fuels can be found in the supplementary ma-
terial (Figs. S5-S6). We report errors associated with
three-dimensional PCA projection of the full state
vector (black circles) with the best (—1,1) scaling
option and of the optimal state vector subset (red tri-
angles) with the best Range scaling option. Variables
highlighted in red are the target variables for this fuel.
We observe that all target variables except OH mass
fraction have lower regression errors when the opti-
mal state vector subset is used. Most importantly,
regression of the first three PC source terms is im-
proved. Worse regression of two state variables, HO,
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Fig. 8: NRMS errors from kernel regression of all state vari-
ables and three PC source terms from a syngas/air flamelet
dataset. The full state vector is scaled with (—1, 1) scaling
and the optimal subset with Range scaling. The variables
highlighted in red are the target dependent variables.

and HCO, can be observed on an optimized manifold.
Since mass fractions of HO, and HCO were not in-
cluded in the target variables, the algorithm had no
means to assess the representation of these variables
on a manifold. Figure 8 shows that regression per-
formance can improve when selecting an appropri-
ate state vector subset as compared to only scaling
the data. Finally, we note that regression techniques
alone require tuning, which was not the main focus
of the present work (e.g. kernel regression is depen-
dent on the type of kernel and the kernel bandwidth).
It is possible that combining our manifold improve-
ment strategies with appropriate regression settings
may yield further improvements in regression results
beyond what we report in this paper.

5. Conclusions

Many factors affect the quality of low-dimensional
data projections. Acting on the original dataset
through data preprocessing, such as scaling or vari-
able selection, can largely impact the quality of the
LDMs. In this work, we propose a manifold-informed
methodology to select an optimal subset of the full
thermo-chemical state vector for training ROMs. The
subset is selected through an optimization algorithm
that pays attention to LDM topology aspects such as
feature size and non-uniqueness. Two main strengths
of the proposed algorithm are: (1) LDM topology can
be optimized for any target dimensionality, and (2)
LDM topology can be optimized with respect to an
arbitrary set of target dependent variables. The latter
is particularly appealing, since only the most impor-
tant dependent variables can be included in the opti-
mization. These can for instance be temperature and
major species, as well as functions of the original vari-
ables required by the ROM. We shed more light on
how the subset selection affects the low-dimensional
data projections. We demonstrate that minor species
(often discarded in the literature), can play an impor-
tant role in achieving the desired LDM quality. While



many ROM efforts have recently focused on PCA as
the dimensionality reduction technique, the method-
ology reported in this work can be easily extended to
other manifold identification techniques.

Finally, we note that sampling observations in
state-space can also affect the LDM quality. Al-
though not explored in this work, tackling data imbal-
ance can be another viable data preprocessing strat-
egy. This is especially true for experimental or DNS
datasets, which can be biased by uneven sample dis-
tributions in various flame regions. By balancing ob-
servations in a dataset, we can help PCA “see” vari-
ances in regions that would otherwise be overlooked
due to high sample densities in other regions. Two
such data balancing strategies can be helpful. First,
an approach that has been introduced in the past is
kernel density weighting of datasets [31, 32], prior to
applying a reduction technique. This approach can
be in fact viewed as data scaling, but in the obser-
vation space, instead of in the variable space. It al-
lows to give more/less importance to individual ob-
servations. The second approach is data sampling,
e.g. through undersampling observations from abun-
dant or over-resolved regions. Techniques such as
DBSCAN or Gaussian mixtures can be employed to
guide the sampling process based on local data den-
sity. With the help of our cost function, manifolds that
result from datasets that have been density-weighted
or re-sampled can be assessed in an analogous way as
we have assessed various scaling criteria and variable
selection in this work. It remains to be seen in fu-
ture studies which observations play crucial role for
achieving desired quality of manifold topologies.
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