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Abstract. This work concerns finite free complexes with finite length homol-
ogy over a commutative noetherian local ring R. The focus is on complexes
that have length dimR, which is the smallest possible value, and in particular
on free resolutions of modules of finite length and finite projective dimension.
Lower bounds are obtained on the Euler characteristic of such short complexes
when R is a strict complete intersection, and also on the Dutta multiplicity,
when R is the localization at its maximal ideal of a standard graded algebra
over a field of positive prime characteristic. The key idea in the proof is the
construction of a suitable Ulrich module, or, in the latter case, a sequence of
modules that have the Ulrich property asymptotically, and with good conver-
gence properties in the rational Grothendieck group of R. Such a sequence is
obtained by constructing an appropriate sequence of sheaves on the associated
projective variety.
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1. Introduction

This paper investigates various questions about multiplicities of modules over
(commutative noetherian) local rings, the most basic of which is:

For a given local ring R, what is the smallest possible length of a
nonzero R-module having finite projective dimension?
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This question is only interesting for Cohen-Macaulay rings: If R is not Cohen-
Macaulay, then every nonzero module of finite projective dimension has infinite
length; this is by Roberts’ New Intersection Theorem [31]. On the other hand,
when R is Cohen-Macaulay and x := x1, . . . , xd form a system of parameters for
R, the R-module R/(x) has finite projective dimension and its length satisfies

`R(R/(x)) � e(R)

where e(R) denotes the Hilbert-Samuel multiplicity of R. In fact, at least when
the residue field of R is infinite, equality holds when x is chosen to be su�ciently
general. This leads us to conjecture:

Conjecture 1. For a local ring R, every nonzero R-module M of finite projective
dimension satisfies `RM � e(R).

One measure of its di�culty is that it implies the still open Lech’s conjecture [23],
recalled in Section 8, at least for Cohen-Macaulay rings; see [25, Chapter V].

It is not hard to verify Conjecture 1 when dim(R)  1; see Example 3.3. It also
holds trivially when R is regular, for then e(R) = 1. For an arbitrary local ring
the conjecture holds when the module M is extended from a module over a regular
ring: if A ! R is a finite flat map of local rings with A regular, N is a finitely
generated A-module, and M = R⌦A N , then `RM � e(R).

Nearly all cases in which we can establish Conjecture 1 for a local ring R, it is be-
cause R admits an Ulrich module: a nonzero maximal Cohen-Macaulay R-module
U whose Hilbert-Samuel multiplicity, e(U), equals its minimal number of genera-
tors, ⌫R(U); this is the smallest possible value for the multiplicity. For instance, in
Theorem 4.6 we prove the following result. Here E(R) denotes the Grothendieck
group of finitely generated R-modules modulo numerical equivalence, extended to
R; see Section 4 for details. Moreover �R

i (M) is the ith Betti number of M .

Theorem 1. If R admits an Ulrich module U whose class [U ] in E(R) is a multiple
of [R], then for each R-module M of finite length and finite projective dimension

✓
dimR

i

◆
`RM � �

R
i (M)e(R)

for all i. In particular, Conjecture 1 holds for R.

A local ring R is a strict complete intersection if its associated graded ring
grm(R) is a complete intersection. Every strict complete intersection is a complete
intersection; the converse holds for hypersurfaces, but fails if the codimension is
at least two. It follows from a result of Backelin, Herzog, and Ulrich [15] that the
hypothesis of Theorem 1 holds whenever R is a strict complete intersection. Thus
Conjecture 1 holds for all such rings and, in particular, for all hypersurfaces.

Previously, Avramov, Buchwietz, Iyengar and Miller [2, Section 1] established
lower bounds on the Loewy length of modules of finite projective dimension. One
of their results is that if R is a strict complete intersection of codimension c, then

``RM � e(R)� c+ 1 .

In particular, `RM � e(R)�c+1, which also verifies Conjecture 1 for hypersufaces.
It is an open question whether every Cohen-Macaulay ring admits a nonzero

Ulrich module. This appears to be a rather di�cult problem; in any case, known
examples are rare. However, for many arguments involving Ulrich modules what
is needed is not an actual Ulrich module, but rather just a class in the real vector
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space E(R) with suitable properties. In detail, we say that a nonzero class ↵ in
E(R) is a lim Ulrich point if it is a positive linear combination of terms of the form

lim
n!1

[Un]

⌫R(Un)

where (Un)n>0 is a lim Ulrich sequence of R-modules; that the limit above exists
is an additional constraint. We refer the reader to 5.10 for the precise definition of
lim Ulrich sequences, but, heuristically, it means that the modules in the list have
the Ulrich property asymptotically.

For instance, the conclusion of Theorem 1 remains valid if, instead of requiring
that [R] = 1

r [U ] in E(R) for some integer r and Ulrich module U , we have merely
that [R] is a lim Ulrich point in E(R).

Lim Ulrich sequences appear to be more common than Ulrich modules. In par-
ticular, the second author has shown that every standard graded algebra over a
perfect field of positive characteristic admits a lim Ulrich sequence of modules. We
revisit the construction of such sequence in Sections 6 and 7, approaching them
from a more geometric, and hence simpler, point of view.

In particular, we introduce the notion of a “lim Ulrich sequence of sheaves” on
a projective scheme over a field. We prove a lim Ulrich sequence of sheaves gives
rise to a lim Ulrich sequence of graded modules over the associated homogeneous
coordinate ring; see Theorem 6.7. Moreover, in Theorem 7.15 we establish that
every projective scheme over an infinite, perfect field of positive characteristic p

admits a lim Ulrich sequence of sheaves. These two results recover the second
author’s construction of lim Ulrich sequence of modules over such rings. We hope
that our results on lim Ulrich sequence of sheaves prove to be of wider interest;
for instance, in a forthcoming paper we intend to use them to study the cone of
cohomology tables of coherent sheaves on projective schemes.

To summarize, if R is the localization of a standard graded k-algebra A at its
homogeneous maximal ideal, where k is a perfect field of positive characteristic,
then R admits a lim Ulrich sequence (Un)n>0. Moreover, we are able to analyze the
associated sequence of points in the Grothendieck group E(R). Alas, this sequence
fails to establish that [R] is a lim Ulrich point. It is therefore not possible to deduce
Conjecture 1 using this sequence of modules.

Rather, we prove that [R]d 2 E(R) is a lim Ulrich point, where [R]d is the d-th
component of [R] with respect to the weight decomposition of E(R) induced by
the action of Frobenius. This leads to the result below where �1(M) denotes the
Dutta multiplicity of M .

Theorem 2. If R is the localization at its homogeneous maximal ideal of a standard
graded algebra over a field of positive characteristic, and M is a finitely generated
R-module M of finite length and finite projective dimension, then

✓
dimR

i

◆
�1(M) � �

R
i (M)e(R)

for all i. In particular, �1(M) � e(R).

One has �1(M) = `R(M) when R is a complete intersection, and more generally
when R is numerically Roberts, and also when M is the localization of a finitely
generated graded module. This connects the theorem above to Theorem 1.
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Theorem 2 is in turn subsumed in Theorem 3 below that applies also to non
Cohen-Macaulay rings. As mentioned earlier, when R is not Cohen-Macaulay ev-
ery nonzero module of finite projective dimension has infinite length, and so our
investigations for such rings focus instead on “short complexes supported on the
maximal ideal”. This term refers to a non-exact complex of finite free R-modules
of the form

F := 0 �! Fdim(R) �! · · · �! F1 �! F0 �! 0 ,

such that Hi(F ) has finite length for all i. The adjective “short” comes from the
fact that the length of any finite free complex with nonzero finite length homology is
at least dimR; this is the New Intersection Theorem. When R is Cohen-Macaulay,
such a short complex is necessarily the resolution of the module H0(F ), and thus
we are back in our original context.

For any finite free complex F with finite length homology, let �(F ) denote its
Euler characteristic. When R has positive characteristic p and ' : R ! R is the
Frobenius endomorphism, the Dutta multiplicity of F is

�1(F ) := lim
n!1

�(('⇤)n(F ))

pn dim(R)
.

Theorem 2 extends to non Cohen-Macaulay rings as follows; see Corollary 7.2.

Theorem 3. If R is the localization at its homogeneous maximal ideal of a standard
graded algebra over a field of positive characteristic, and F is a short complex
supported on the maximal ideal, then

✓
dimR

i

◆
�1(F ) � �i(F )e(R)

for all i. In particular, �1(F ) � e(R).

Emboldened by this theorem, we pose:

Conjecture 2. For a local ringR, every short complex F supported on the maximal
ideal satisfies

�1(F ) � e(R) .

We close this introduction with a few remarks. First, Conjecture 2 implies
Lech’s conjecture; see Proposition 8.3. Second, Roberts [32] has constructed short
complexes F supported on the maximal ideal of a certain local ring such that
�(F ) < 0. Therefore Conjecture 2 cannot hold with the usual Euler characteristic
� in place of the Dutta multiplicity �1.

Finally, Yhee [36] has recently constructed two-dimensional, complete, local do-
mains R that admit no lim Ulrich sequences. The existence of such rings points to
a limitation of the central technique used in this paper for addressing Conjectures
1 and 2. Nevertheless, both conjectures hold for Yhee’s examples. These topics are
also discussed in Section 8.

Acknowledgements. Our thanks to a referee for comments and corrections on an ear-
lier version of this manuscript, and to Yhee for sharing a preliminary version of [36].
The authors were partly supported by National Science Foundation grants DMS-
2001368 (SB), DMS-1901672 and FRG DMS-1952366 (LM), and DMS-1901848
(MW). LM was also partly supported by a fellowship from the Sloan Foundation.
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2. Mulitiplicities and finite projective dimension

In this section we recall basic definitions and results concerning multiplicities and
finite free complexes. We take the book of Bruns and Herzog [9] as our standard
reference for this material. Throughout (R,m, k) is a local ring with maximal ideal
m and residue field k. Set d := dimR. Given a finitely generated R-module M , set

⌫R(M) := rankk(M/mM) ;

this is the size of a minimal generating set for M . The Krull dimension of M is
denoted dimR M .

2.1. The key invariant in this work is the (modified) multiplicity ed(�), defined on
the category of finitely generated R-modules by the formula:

ed(M) := d! lim
n!1

`R(M/mn
M)

nd
,

where `R(�) denotes length. When there is no cause of confusion we write e(R)
instead of ed(R). It is a consequence of a theorem of Hilbert and Serre that ed(M)
is a nonnegative integer. Moreover, ed(M) = 0 if and only if dimR M < dimR. An
important property of the multiplicity is that it is additive on short exact sequence;
see [9, Corollary 4.7.7] for details.

In a few places we need also the multiplicty of M , defined by

e(M) := (dimR M)! lim
n!1

`R(M/mn
M)

ndimR M
.

One has e(M) = ed(M) if and only if dimR M = dimR.

2.2. Given a sequence r := r1, . . . , rn we write K(r;M) for the Koszul complex on
r with coe�cients in M , and Hi(r;M) for its homology module in degree i. When
r is a multiplicity system for M , meaning that `R(M/rM) is finite, the lengths of
all the Koszul homology modules are finite, and in this case one sets

�(r;M) :=
X

i

(�1)i`R Hi(r;M) .

If r := r1, . . . , rd generate a minimal reduction of m, in the sense of [9, Re-
mark 4.6.9], then

(2.3) ed(M) = �(r;M) .

This result follows from the work of Auslander and Buchsbaum, and Serre [9,
Theorem 4.7.6 and Corollary 4.6.10]. Such minimal reductions exist when the
residue field k is infinite, so in this case one can compute the multiplicity as an
Euler characteristic; see Corollary 4.5 for a version that covers all local rings.

In the same vein when k is infinite, there exist elements r in m that form a
system of parameters for M and satisfy

e(M) = �(r;M) .

When in addition M is Cohen-Macaulay any system of parameters for M is a
regular sequence and hence for a sequence r as above one gets that

e(M) = `R(M/rM) .
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2.4. Let M be a finitely generated R-module. With I := annR M , the annihilator
ideal of M , and gradeR M denoting the longest regular sequence in I, one has

depthR� dimR M  gradeR M  height I  dimR� dimR M  proj dimR M .

For a proof, see [3, (2.3) and (2.4)]. The rightmost inequality is useful only when
proj dimR M is finite, and then it is the Intersection Theorem of Peskine and
Szpiro [28, §1], proved in full generality by Roberts as a consequence of his New In-
tersection Theorem; see 2.6. When proj dimR M is finite the equality of Auslander
and Buchsbaum reads

proj dimR M = depthR� depthR M .

A finitely generated R-module M is said to be perfect if

gradeR M = proj dimR M .

It is immediate from the inequalities in 2.4 that when the ring R is Cohen-Macaulay,
an R-module M is perfect if and only if it Cohen-Macaulay and of finite projective
dimension. Conversely if R has a nonzero module of finite length and finite pro-
jective dimension, then R is Cohen-Macaulay. This is a consequence of the New
Intersection Theorem, recalled below; see 2.6.

2.5. We write Fm(R) for the category of finite free R-complexes, that is to say,
bounded complexes of finitely generated free R-modules, with finite length homol-
ogy. The Euler characteristic of such an F is the integer

�R(F ) :=
X

i

(�1)i`R Hi(F ) .

For any integer i, the ith Betti number of F is

�
R
i (F ) := rankk Tor

R
i (k, F ) .

When F is minimal, that is to say, d(F ) ✓ mF , one has �R
i (F ) = rankR Fi. Set

�
R(F ) :=

X

i

�
R
i (F ) ,

this is the total Betti number of F .

2.6. Consider F in Fm(R) of the form

0 �! Fn �! · · · �! F0 �! 0

and with H0(F ) 6= 0. The New Intersection Theorem proved by Roberts [31, 32]
states that n � dimR. In what follows we say F is a short complex in Fm(R)
to indicate that it is a finite free complex as above with n = dimR. When R is
Cohen-Macaulay this is tantamount to saying that F is the free resolution of a finite
length R-module, namely, H0(F ).

For any complex F in Fm(R) as above and R-module U one has

depthR U = dimR� sup{i | Hi(F ⌦R U) 6= 0} .

This is a particular instance of the depth sensitivity of complexes in Fm(R); see,
for example, [17, Corollary 6.4]. In particular Hi(F ⌦R U) = 0 for i � 1 when U is
maximal Cohen-Macaulay.
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2.7. Let ' : (R,m) ! (S, n) be a flat local map with mS = n. It is easy to check
from definitions that e(S) = e(R). Equally, for any F 2 Fm(R) it is easy to verify
that the complex S ⌦R F is in Fn(S), and there is an equality

�
S
i (S ⌦R F ) = �

R
i (F ) for each i.

Moreover �(S ⌦R F ) = �(F ). Given any extension of fields k ! l, there exists
a flat local extension S of R as above whose residue field is l; see, for example,
[7, Appendice 2]. This, and the discussion in the previous paragraph, often allow
us to reduce the problem on hand to the case where the residue field of R is infinite.

3. Euler characteristics of short complexes

Let (R,m, k) be a local ring and set d := dimR. We shall be interested in those
rings R with the property that the Euler characteristic of any short complex F in
Fm(R), in the sense of 2.6, satisfies inequalities:

(3.1)

✓
d

i

◆
�R(F ) � �

R
i (F )e(R) for each 0  i  d .

If R is Cohen-Macaulay, F has homology only in degree 0 so �R(F ) = `R(H0(F )).
Thus Conjecture 1 is the case i = 0 of the inequalities above.

The inequalities in (3.1) do not always hold: Roberts [32, §4] has constructed F

as above with negative Euler characteristic. However when R is Cohen-Macaulay,
the negativity of the Euler characteristic cannot arise as an obstruction, and we
do not know if the inequalities above hold for this class of rings. They are easy to
verify when R is regular. The main result of this section, Theorem 3.8, is that they
hold also when R is a strict complete intersection. A stronger result holds when R

is a standard graded ring and F is a complex of graded R-modules. This will be
dealt with in forthcoming work; see also Corollary 7.2 and 7.3.

We begin with some general observations. For i = 0 the inequality (3.1) reads

�R(F ) � �
R
0
(F )e(R) .

Taking the sum over i in (3.1) yields an inequality

�R(F ) � �
R(F )

2d
e(R) .

The third author [34] proved that when R is complete intersection with char k 6= 2,
or when R is Cohen-Macaulay and contains a field of positive characteristic p � 3,
then any F 2 Fm(R) with H(F ) 6= 0 satisfies

(3.2) �
R(F ) � 2d

|�R(F )|P
i `R Hi(F )

.

For now we record a simple example where these inequalities hold.

Example 3.3. If dimR  1, then (3.1) holds for all short complexes in Fm(R).
Indeed, we can assume any such F is minimal, and so has the form

0 �! R
a ���! R

a �! 0 .

with �(Ra) ✓ mR
a. With det(�) denoting the determinant of �, from [12, Lemma

A.2.6] one gets the first equality below

�(F ) = �(K(det(�);R)) = e(det(�), R) � e(ma
, R) = a · e(R) .

The second equality is from (2.3). The inequality holds because det(�) is in ma.
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It will be helpful to consider all finitely generated R-modules U with the property
that for any short complex F in Fm(R) and integer 0  i  d one has

(3.4)

✓
d

i

◆
�R(F ⌦R U) � �

R
i (F )ed(U) .

Observe that (3.1) is the case U = R. Here is a simple observation.

Lemma 3.5. Let F be a short complex in Fm(R). If an R-module W admits a
finite filtration with subquotient modules satisfying (3.4) for F , then so does W .

Proof. Let U1, . . . , Un be the subquotients of the filtration in the hypothesis. Ev-
idently dimR W � dimR Uj for each j, so the additivity of multiplicity [9, Corol-
lary 4.7.7] yields the last equality below:

✓
d

i

◆
�(F,W ) =

X

i

✓
d

i

◆
�R(F,Uj)

�
X

j

�
R
i (F )ed(Uj)

= �
R
i (F )ed(W ) .

The first equality is by the additivity of Euler characteristics and the inequality
holds by hypothesis. ⇤

The proof suggests working in the Grothendieck group on R. We pick up on this
theme in the ensuing sections. Next we introduce a class of modules for which the
inequalities in (3.4) hold.

Ulrich modules. For any finitely generated maximal Cohen-Macaulay R-module
M there is an inequality

ed(M) � ⌫R(M) .

See, for example, [8, Proposition 1.1]. An Ulrich module is a maximal Cohen-
Macaulay R-module U with ed(U) = ⌫R(U). When the residue field of R is infinite,
this condition is equivalent to: there exists a system of parameters x for R with

K(x;U) ' U/mU ;

in particular, xU = mU . In fact, when U is Ulrich any generic choice of x has
these properties. This characterization becomes helpful once we make the following
observation which is immediate from the discussion in 2.7.

3.6. If U is an Ulrich R-module and (R,m) ! (S, n) is a flat local map such that
mS = n, then the S-module S ⌦R U is Ulrich.

Proposition 3.7. Ulrich modules satisfy (3.4) for all short complexes in Fm(R).

Proof. Let U be an Ulrich module and F a short complex in Fm(R). Given 2.7 and
3.6, we can inflate the residue field of R if necessary to ensure that it is infinite.
There then exists a sequence r := r1, . . . , rd, where d = dimR, such that the
sequence r is regular on U and U/rU ⇠= k

e(U). One has quasi-isomorphisms

K(r;F ⌦R U) ' F ⌦R K(r;U) ' F ⌦R k
e(U) ' (F ⌦R k)e(U)

Therefore one gets equalities

`R Hi(r;F ⌦R U) = �
R
i (F )e(U) .
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On the other hand, since U is maximal Cohen-Macaulay Hi(F ⌦RU) = 0 for i � 1,
as discussed 2.6, so that one has quasi-isomorphisms

F ⌦R U ' H0(F ⌦R U) ⇠= H0(F )⌦R U .

This yields a quasi-isomorphism

K(r;F ⌦R U) ' K(r; H0(F )⌦R U) .

From these computations we get

�
R
i (F )e(U) = `R Hi(r;F ⌦R U)

= `R Hi(r; H0(F )⌦R U)


✓
d

i

◆
`R(H0(F )⌦R U)

=

✓
d

i

◆
�R(F ⌦R U) .

This is the desired inequality. ⇤

A local ring (R,m) is a strict complete intersection if its associated graded ring
grm(R) is complete intersection. For example, every hypersurface is a strict com-
plete intersection. Another example is the localization of a standard graded com-
plete intersection at its homogenous maximal ideal.

Theorem 3.8. When R is a strict complete intersection local ring, any nonzero
finite length R-module M of finite projective dimension satisfies

✓
d

i

◆
`R(M) � �

R
i (M)e(R) for each 0  i  d .

In particular, `R(M) � (�R(M)/2d) · e(R).

Proof. The hypothesis on R implies that there exists a positive integer s such that
the free module R

s has a finite filtration whose subquotients are Ulrich modules;
this is implicit in [15, §2]; see also [25, Theorem V.28]. Thus Proposition 3.7 and
Lemma 3.5 imply that (3.4) holds for U := R

s and the minimal free resolution F

of M . Given the equalities

�R(F ⌦R R
s) = s · `R(M) and e(Rs) = s · e(R) ,

the desired result follow. ⇤

Next we prove the following result about perfect modules. This is connected to
Lech’s conjecture; we postpone that discussion to Section 8.

Proposition 3.9. Let R be a local ring with infinite residue field. If each short
complex in Fm(R) satisfies (3.1) for i = 0, then any perfect R-module M satisfies

e(M) � ⌫R(M) · e(R) .

If (3.1) holds for all i, then

e(M) � �
R(M)

2d�dimR(M)
· e(R) .
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Proof. Set c := dimR(M). Since the residue field of R is infinite, there exists a
system of parameters r := r1, . . . , rc for M such that e(M) = �(K ⌦R M), where
K is the Koszul complex on r; see (2.3). Let G be a minimal free resolution of M .
Since M is perfect the length of G equals d� c. It follows that K ⌦R G is a short
complex in Fm(R). Thus the hypothesis yields the inequality below:

e(M) = �(K ⌦R G) � ⌫R(H0(K ⌦R G)) · e(R) = ⌫R(M)e(R) .

The equality on the left holds because K ⌦R G ' K ⌦R M , whereas the equality
on the right holds because H0(K ⌦R G) = M/rM . This justifies the first claim.

In the same vein, if (3.1) holds for each i then
✓
d

i

◆
e(M) � �

R
i (K ⌦R G)e(R) .

Summing these gives 2de(M) � �
R(K ⌦R G)e(R). Since

�
R(K ⌦R G) = �

R(K)�R(G) = 2c�R(M)

the desired inequality follows. ⇤

3.10. We have already noted that the inequalities in (3.1) do not hold for all local
rings. They can also fail if we allow complexes that are not short. For example, let
G be any short complex in Fm(R) with H(G) 6= 0, choose an element r 2 m, and
let F be the mapping cone of the map G

r�! G. It is easy to see that F is a finite
free complex of length d+ 1 satisfying H(F ) 6= 0 and �(F ) = 0.

In a di↵erent direction, it is of interest to consider versions of (3.1) where the
Euler characteristic of F is replaced by the length of its homology module, H(F ).
This becomes relevant only when R is not Cohen-Macaulay. We have not much to
say about this at the moment, except that here too the corresponding inequalities
can fail for complexes that are not short; see [18] for similar phenomena.

Indeed, if R is a complete intersection of codimension c and K the Koszul com-
plex on a minimal list of generators of m, then H1(K) ⇠= k

c and there is an isomor-
phism of k-algebras

H(K) ⇠= ⇤k⌃H1(K) ;

see [9, Theorem 2.3.9]. Therefore `R H(K) = 2c. On the other hand the multiplicity
of R can be much larger; for example, when

R := k[x1, . . . , xn]/(x
d1
1
, . . . , x

dc
c )

one has e(R) = d1 · · · dc, which can be arbitrarily larger than 2c.

4. Grothendieck groups

In this section we introduce Grothendieck groups of modules and related con-
structions. These play a crucial role in the remainder of this work. As before
(R,m, k) will be a local ring and d := dimR.

4.1. Let G0(R) be the Grothendieck group of finitely generated R-modules. Let
Km

0
(R) be the Grothendieck group of the category of finite free complexes with finite

length homology, Fm(R), modulo the exact complexes; see [13]. Given a finitely
generated R-module U and a complex L in Fm(R), set

hL,Ui := �(L⌦R U) =
X

i

(�1)i`R Hi(L⌦R U) .
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It induces a pairing on Grothendieck groups

h�,�i : Km
0
(R)⌦Z G0(R) �! Z .

We write G0(R) for G0(R) modulo the subgroup of those classes ↵ in G0(R) such
that h�,↵i = 0 on Km

0
(R). This is the Grothendieck group of R modulo numerical

equivalence. Likewise we write Km
0
(R) for the quotient of Km

0
(R) by classes � for

which h�,�i = 0. Abusing notation a bit we write

h�,�i : Km
0
(R)⌦Z G0(R) �! Z

also for the induced pairing.
For an abelian group A we set AR = A⌦Z R. In the sequel it will be convenient

to work with the R-vector spaces

E(R) := G0(R)R and K(R) := Km
0
(R)R .

One has an induced pairing of R-vector spaces:

h�,�i : K(R)⌦R E(R) �! R .

Each of the induced maps

E(R)! HomR(K(R),R) and K(R)! HomR(E(R),R)

is injective by construction. In particular, the pairing is perfect when the R-vector
space E(R) is finite dimensional. Kurano [20, Theorem 3.1] has proved that E(R)
is finite dimensional whenever R contains Q as a subring, or is essentially of finite
type over a field, Z, or a complete discrete valuation ring. This applies in particular
to the rings we consider in Section 6 onwards.

In what follows, the following set of primes in R will play a crucial role:

⇤(R) := {p 2 SpecR | dim(R/p) = dimR} .

The assignment [M ] 7! (`RpMp)p2⇤(R) induces an R-linear map

(4.2) G0(R)R �! R⇤(R)

This map is onto since it sends the collection {[R/p]}p2⇤(R) to a basis of R⇤(R).
Moreover the kernel is generated by classes of the form [R/p] with dim(R/p) < d.

The following result is implicit in the proof of [20, Proposition 3.7].

Proposition 4.3. For any R-linear map � : R⇤(R) ! R, the composition of the
map (4.2) with � coincides with h↵,�i for some class ↵ in Km

0
(R)R.

Proof. Let p1, . . . , pl be the element in ⇤(R). Pick elements x1, . . . , xl such that
xi 62 pi and xi 2 pj for all j 6= i. Evidently the element y1 :=

P
i xi is not in any

of the pj and so we may extend it to a system of parameters y1, . . . , yd for R. For
any positive integers s := s1, ..., sl, the elements

xs, y2, . . . , yd where xs =
X

i

x
si
i ,

also form a system of parameters for R, as can be verified by going modulo pj for
each j. Let Ks be the Koszul complex on the sequence above and consider the map

hKs,�i : G0(R)R �! R .
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As with any Koszul complex on a system of parameters, this map kills [R/p] when-
ever dim(R/p) < d and hence it factors through the map (4.2). Thus it determines
a map R⇤(R) �! R given by the tuple of integers

vs := (hKs, R/p1i, . . . , hKs, R/pli) .
We verify that the collection of all such tuples vs, as the s vary over Zl

>1
, span Rl.

Note that v1,...,1 is a tuple of strictly positive integers since hK1,...,1,�i computes
multiplicity with respect to an m-primary ideal. Suppose

v1,...,1 = (a1, . . . , al) with ai � 1.

For any i the sequence xs, y2, . . . , yd is xsi
i , y2, . . . yd modulo pi, so one has

hKs, R/pii = sihK1,...,1, R/pii .
Therefore vs = (s1a1, . . . , sdad). The result now follows easily. ⇤

Here is one application of the preceding result.

Corollary 4.4. The map (4.2) factors through E(R).

Proof. If � 2 G0(R)R is numerically equivalent to 0 then Proposition 4.3 proves
that � goes to zero under the composition of (4.2) with any map � : R⇤(R) ! R
and hence it maps to 0 under (4.2) itself. ⇤

The next application concerns the multiplicity ed(�) from 2.1.

Corollary 4.5. The map ed(�) : G0(R)R ! R coincides with h↵,�i for some class
↵ in Km

0
(R)R. In particular it induces a map of R-vector spaces

ed(�) : E(R) �! R .

Proof. When the residue field of R is infinite, the Koszul complex on a minimal
generating set for a minimal reduction of m does the job; see (2.3). In general, the
local expression of the multiplicity [9, Corollary 4.7.8] means that ed(�) factors
through the map (4.2), so Proposition 4.3 gives the desired result. Given this,
Corollary 4.4 implies that ed(�) factors through E(R). ⇤

These observations and constructions allow one to extend the proof of Lemma 3.5
to deduce the result below.

Theorem 4.6. If [R] is a positive R-linear combination in E(R) of classes of Ulrich
modules, then (3.1) holds for all short complexes in Fm(R). ⇤

Here are some simple examples where the hypothesis of the preceding result
hold. The existence of Ulrich modules in these situation was recorded already in
[8]; our only contribution is to observe that they generate the class of the ring in
the Gronthendieck group.

Example 4.7. The hypothesis of Theorem 4.6 holds when dimR  1, and also
when R is a Cohen-Macaulay local ring of minimal multiplicity.

Indeed if dimR = 0 the residue field k is evidently an Ulrich module and [R] =
`(R) · [k] in G0(R).

Suppose dimR = 1 and set S := R/�mR. This is a one-dimensional Cohen-
Macaulay local ring, with maximal ideal n := mS. The ideal ne(S)�1 is an Ulrich
module for S, by [8, Lemma 2.1], and hence also for R; this can be verified easily.
Since h�, ki = 0 on Km

0
(R) we get that [k] = 0 in E(R) and hence, viewing S/ne(R)�1
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an R-module, one gets that [S/ne(R)�1] = 0. It follows that [ne(R)�1] = [S] in E(R).
It remains to note that [�mR] = 0 as well, so [S] = [R], as desired.

Let R be Cohen-Macaulay of minimal multiplicity; by the discussion above,
we can assume d � 1. The R-module U := ⌦d(k) is an Ulrich R-module; see
[8, Proposition 2.5]. By the definition of U there is an exact sequence

0 �! U �! R
nd�1 �! · · · �! R

n1 �! R �! k �! 0.

Since h�, ki = 0 on Km
0
(R) it follows that in [U ] = a[R] in G0(R) for some a � 0.

It remains to observe that a � 1 since the rank of U is nonzero.

4.8. The hypothesis of Theorem 4.6 holds also when R is a strict complete in-
tersection, for in that case R

s has a finite filtration whose subquotients are Ulrich
modules; this fact was key to proving Theorem 3.8. This raises the question whether
for any complete intersection ring the class of Ulrich modules spans [R] in E(R).
However, it is not even known that such an R has an Ulrich module.

If R is a complete intersection of even dimension with an isolated singularity. It
has been conjectured by Dao and Kurano [11, Conjecture 3.2(1)] that E(R) is one
dimensional as a real vector space. If this conjecture holds, then by Theorem 4.6, the
existence of a single (nonzero) Ulrich module U implies that any short R-complex
in Fm(R) satisfies (3.1).

4.9. We topologize the R-vector space E(R) by giving it the weakest topology for
which every R-linear map E(R) ! R is continuous, where R has the Euclidean
topology. This is the usual Euclidean topology when E(R) is finite dimensional.
We topologize G0(R)R in the same way; with these topologies the quotient map
G0(R)R ! E(R) is continuous.

If (↵n)n>0 is a convergent sequence in E(R) (or in G0(R)R) with limit ↵, then

hF,↵i = lim
n!1

hF,↵ni for F in Fm(R).

Our interest is in sequences with ↵n = [Mn]/⌫R(Mn), where the Mn are nonzero
finitely generated R-modules.

4.10. Let R be a local ring of positive characteristic p, with perfect residue field,
and such that the Frobenius endomorphism

' : R �! R

is finite. We write '⇤ for restriction of scalars along '; the notation is in line with
the one from algebraic geometry. Viewed as a functor on the category of R-modules,
'⇤ has as left adjoint the base change functor

'
⇤(M) := R

' ⌦R M ,

where R' denotes R viewed as an R-R bimodule with the canonical left action and
right action via '.

Since ' is finite '⇤ induces a Z-linear map on G0(R); we denote this also '⇤.
On the other hand, '⇤ induces a Z-linear map on Km

0
(R), also denoted '

⇤. By the
projection formula, for ↵ 2 Km

0
(R) and � 2 G0(R) one has

h'⇤(↵),�i = h↵,'⇤(�)i .
Given this adjunction it is clear that '⇤ and '⇤ induce maps

'
⇤ : K(R) �! K(R) and '⇤ : E(R) �! E(R) ,

and that these are adjoint to each other in the sense above.
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4.11. We remain in the framework of 4.10. For each integer i � 0 set

G0(R)(i)R = {↵ 2 G0(R)R | '⇤(↵) = p
i
↵}

the eigenspace of '⇤ with eigenvalue p
i. The result below is implicit in [21, §2]; see

also [29, Lemma 4]. The subset ⇤(R) ✓ SpecR is as in (4.2).

Lemma 4.12. For R as in 4.10 there is an internal direct sum decomposition

G0(R)R =
dM

i=0

G0(R)(i)R .

Moreover the assignment [M ] 7! (`RpMp)p2⇤(R) induces an isomorphism

G0(R)(d)R
⇠=��! R#⇤(R)

.

We write [M ]i for the image of [M ] in G0(R)(i)R . We will encounter modules M
that satisfy the following condition: There exists a nonzero integer m such that

(4.13) `Rp(Mp) = m · `(Rp) for each p 2 ⇤(R).

In this case dimM = dimR and ed(M) = m · e(R); see [9, Corollary 4.7.8]. Exam-
ples include modules M of nonzero finite rank. When (4.13) holds one has

(4.14) [M ]d =
ed(M)

e(R)
[R]d .

The result below will be used in the proof of Theorem 7.1.

Lemma 4.15. Let R be as in 4.10 and let M be a finitely generated R-module. If
ed(M) 6= 0, then in G0(R)R one has

lim
n!1

'
n
⇤ (M)

ed('n
⇤ (M))

=
[M ]d
ed(M)

.

When in addition M satisfies (4.13) the limit above equals [R]d/e(R).

Proof. One has ed('n
⇤ (M)) = p

nd
ed(M), since ed(�) factors through G0(R)(d)R ; see

the proof of Corollary 4.5. This fact and Lemma 4.12 yield the first equality below:

lim
n!1

'
n
⇤ (M)

ed('n
⇤ (M))

= lim
n!1

[M ]0 + · · ·+ p
nd[M ]d

pnded(M)
=

[M ]d
ed(M)

.

For the second one, note that for any ↵ in G0(R)R and sequence (an)n>0 of nonzero
integers converging to 1, the sequence (↵/an)n>0 converges to 0 in G0(R)R.

The last part of the statement is now immediate from (4.14). ⇤

4.16. As noted earlier, the endomorphism '⇤ on G0(R)R descends to E(R). Thus
the decomposition in Lemma 4.12 induces an analogous decomposition on E(R). It
follows from Corollary 4.4 that the isomorphism in op. cit. induces isomorphisms

G0(R)(d)R
⇠=��! E(R)(d)

⇠=��! R#⇤(R)
.

Another remark: While we have introduced these decompositions only in the con-
text of 4.10, they exist in great generality, covering also rings not necessarily of
positive characteristic, using the Riemann-Roch isomorphism; see [12].
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4.17. Let R be a local ring of positive characteristic p. The Dutta multiplicity of
a complex F in Fm(R) is

�1(F ) := lim
n!1

�(('⇤)n(F ))

pnd
.

When R! S is flat map with mS the maximal ideal of S, then it is easy to verify
that ('⇤)n(S ⌦R F ) ⇠= S ⌦R ('⇤)n(F ), and it follows that �1(F ) = �1(S ⌦R F ).
Given this remark and 2.7, we can assume that R is complete and k is algebraically
closed when computing Dutta multiplicities. This puts us in the context of 4.10, and
in this case the following expression for the Dutta multiplicity is well-known [32, §5],
and can be deduced easily from Lemma 4.15.

(4.18) �1(F ) = hF, [R]di .
Since �(F ) = hF, [R]i the Dutta multiplicity is the Euler characteristic of F when-
ever [R] = [R]d in E(R). This is the case, for example, when R is a complete
intersection ring, and more generally when R is numerically Roberts; see [20, §6].

5. Lim Cohen-Macaulay and lim Ulrich sequences

This section concerns the notion of a lim Ulrich sequence of modules intro-
duced in [24]. Building on this, we introduce a notion of lim Ulrich point in the
Grothendieck group modulo numerical equivalence. Our interest in such points is
explained by Theorem 5.16 that derives bounds on intersection multiplicities and
Betti numbers from the existence of such points.

Throughout R will be a local ring and we set d := dimR.

5.1. We say that a sequence (Un)n>0 of finitely generated R-modules is a lim
Cohen-Macaulay sequence if each Un is nonzero, and for any short complex F in
Fm(R) one has

(5.2) lim
n!1

`R(Hi(F ⌦R Un))

⌫R(Un)
= 0 for i � 1.

The definition is from [6,16,24], with the caveat that in these sources the complexes
F are restricted to be Koszul complexes on systems of parameters. These are
equivalent notions. In fact, in checking whether a given sequence of modules is lim
Cohen-Macaulay it su�ces to test that condition (5.2) holds when F is a Koszul
complex on a single system of parameters. This result is due to Bhatt, Hochster,
and Ma [6,16], and appears as Lemma 5.7 below.

The observation below will be useful in the proof of Lemma 5.7 and in many of
the later arguments.

Lemma 5.3. Let (W (n))n>0 be a sequence of R-complexes, (vn)n>0 a sequence of
positive integers, and s an integer such that

lim
n!1

`R Hi(W (n))

vn
= 0 for all i 6= s.

Then for any finite free complex P and integer i the following equality holds:

lim sup
n!1

`R Hi(P ⌦R W (n))

vn
= lim sup

n!1

`R Hi�s(P ⌦R Hs(W (n)))

vn
.

The corresponding equality involving lim inf also holds.



16 IYENGAR, MA, AND WALKER

In what follows it will be expedient to use the shorthand

(5.4) hi(X) := `R Hi(X)

for any R-complex X and integer i.

Proof of Lemma 5.3. The argument is a reduction to the following special case: If
the limit of the sequence (hi(W (n))/vn)n>0 is 0 for each i, then

lim
n!1

hi(P ⌦R W (n))

vn
= 0 for all i.

This can be verified by a simple induction on the number of nonzero terms in P .
Set W

0(n) := ⌧>sW (n), the good truncation of W (n) below s; see [35, 1.2.7].
Consider the induced exact sequence of complexes

(5.5) 0 �!W
0(n) �!W (n)

⇡��!W
00(n) �! 0 .

By construction Hi(⇡) is an isomorphism in degrees i  s� 1 and Hi(W 00(n)) = 0
for i � s. Thus hypotheses yields

lim
n!1

hi(W 00(n))

vn
= 0 for each i.

Then the already establish part of the result implies that

lim
n!1

hi(P ⌦R W
00(n))

vn
= 0 for each i.

Tensoring (5.5) with P and taking homology yields for each i an exact sequence

Hi+1(P ⌦R W
00(n))! Hi(P ⌦R W

0(n))! Hi(P ⌦R W (n))! Hi(P ⌦R W
00(n))

It follows from these computations that

(5.6) lim sup
n!1

hi(P ⌦R W
0(n))

vn
= lim sup

n!1

hi(P ⌦R W (n))

vn

for each integer i. Observe also that by construction of (5.5) one has

Hi(W
0(n)) ⇠=

(
0 for i < s

Hi(W (n)) for i � s.

Given this information and the equality (5.6) we can replace W (n) by W
0(n) and

assume the W (n)i = 0 for i < s and all n. Then consider the exact sequence

0 �! V (n) �!W (n) �! ⌃s Hs(W (n)) �! 0

where the map on the right is the canonical surjection and V (n) is its kernel. Thus

Hi(V (n)) ⇠=

(
0 for i = s

Hi(W (n)) for i 6= s.

The hypotheses implies that the limit of the sequence (hi(V (n))/vn)n>0 is 0 for
each i. Then the already establish part of the result implies that

lim
n!1

hi(P ⌦R V (n))

vn
= 0 for each i.
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Given this one can argue as before to deduce the first equality below.

lim sup
n!1

hi(P ⌦R W (n))

vn
= lim sup

n!1

hi(P ⌦R ⌃s Hs(W (n)))

vn

= lim sup
n!1

hi�s(P ⌦R Hs(W (n)))

vn

This is the desired equality involving lim sup; the one for lim inf can be verified in
exactly the same way. ⇤

Here is the promised result about lim Cohen-Macaulay sequences, from [6]. We
give a proof for the benefit of the first and third authors.

Lemma 5.7. A sequence (Un)n>0 of finitely generated R-modules is lim Cohen-
Macaulay if (5.2) holds for the Koszul complex on a single system of parameters
for R.

Proof. Suppose (5.2) holds for K(r;R), the Koszul complex on a system of pa-
rameters r := r1, . . . , rd for R. We first verify that it also holds K(ra1

1
, . . . , r

ad
d ;R)

for any integers ai � 1. To this end it su�ces to verify that if (5.2) holds for
K(ra

1
, r>2;R) for some a � 1, then it also holds for K(ra+1

1
, r>2;R).

Let D denote the derived category of R. The composition of maps R
ra1�! R

r1�! R

induces an exact triangle

K(ra
1
;R) �! K(ra+1

1
;R) �! K(r1;R)

in D, and hence an exact triangle

K(ra
1
, r>2;Un) �! K(ra+1

1
, r>2;Un) �! K(r;Un) .

Thus for each integer i there is an inequality

`R Hi(r
a+1

1
, r>2;Un)  `R Hi(r

a
1
, r>2;Un) + `R Hi(r;Un) .

The desired result follows.
Let F be an R-complex with `R H(F ) finite. In particular the kernel of the

natural map R ! HomD(F, F ) is primary to the maximal ideal of R. By the
discussion in the previous paragraph one can find a system of parameters r in this
kernel with the property that (5.2) holds for K := K(r).

Since r annihilates HomD(F, F ) the natural map K⌦F ! ⌃d
F of R-complexes

has a section in D. This fact does not require r to be a system of parameters, only
that it annihilates HomD(F, F ), and can be verified by an induction on the length
of the sequence r. The case of length one is immediate from the exact triangle

F
r1��! F �! K(r1;F ) �! ⌃F

for since the map on the left is zero in D, the triangle above splits, that is to say,
the map on the right has a section. Replacing F by K(r1;F ) and using induction
yields the desired statement. In this step one has to use the fact that r annihilates
HomD(K(r1;F ),K(r1;F )); see [1, §3], or [5, 1.5.3].

From the preceding discussion we deduce that Hj(F ⌦RUn) is a direct summand
of Hj+d(F ⌦R K ⌦R Un) for each integer i. It thus su�ces to verify that for any
short complex F in Fm(R) and i � d+ 1 one has

lim
n!1

hi(F ⌦R K ⌦R Un)

⌫R(Un)
= 0 .
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Here we are using the shorthand introduced in (5.4). AsK satisfies (5.2), Lemma 5.3
applied with W (n) = K ⌦R Un and P = F yields

lim sup
n!1

hi(F ⌦R K ⌦R Un)

⌫R(Un)
= lim sup

n!1

hi(F ⌦R H0(K ⌦R Un))

⌫R(Un)

for each i. It remains to note that when i � d + 1 the terms of the limit on the
right hand side are all zero since F is a short complex. ⇤

Here is a simple consequence of the preceding result. The proof is straightforward
so it is omitted; see [24, Lemma 2.3].

Corollary 5.8. If (Un)n>0 be a lim Cohen-Macaulay sequence of R-modules and
R! S is an flat local map with artinian closed fiber, then the sequence of S-modules
(S ⌦R Un)n>0 is lim Cohen-Macaulay. ⇤
Lemma 5.9. Let (Un)n>0 be a lim Cohen-Macaulay sequence. One has inequality

lim inf
n!1

ed(Un)

⌫R(Un)
� 1 .

Proof. Given Corollary 5.8 and the fact that both ed(�) and ⌫R(�) are unchanged
when we extend the residue field, we can assume that the residue field of R is
infinite. Let K be the Koszul complex on a minimal generating set for a minimal
reduction of m. For each integer n one has

`R H0(K ⌦R Un) � ⌫R(Un) .

This justifies the inequality below; the first equality is by (2.3):

lim inf
n!1

ed(Un)

⌫R(Un)
= lim inf

n!1

�(K ⌦R Un)

⌫R(Un)
= lim inf

n!1

`R H0(K ⌦R Un)

⌫R(Un)
� 1 .

The second equality is by the lim Cohen-Macaulay condition. ⇤
The preceding result motivates the definition below from [24].

5.10. A sequence (Un)n>0 of R-modules is a lim Ulrich sequence if it is lim Cohen-
Macaulay and satisfies

(5.11) lim
n!1

ed(Un)

⌫R(Un)
= 1 .

This bundles two conditions in one: the limit should exist and it should be 1.
If a nonzero R-module U is maximal Cohen-Macaulay, respectively, Ulrich, then

the sequence with Un = U for all n is lim Cohen-Macaulay, respectively, lim Ulrich.
In particular lim Ulrich sequences exist when dimR  1; see Example 4.7. Moreover
if (Un)n>0 is a lim Ulrich sequence of R-modules and (R,m)! (S, n) is a flat local
map with mS = n, then the sequence of S-modules (S ⌦R Un)n>0 is lim Ulrich.
This is immediate from Corollary 5.8 and 2.7.

5.12. An element of E(R) is a lim Ulrich point if it is in the strictly positive real
cone spanned by points of the form

lim
n!1

[Un]

⌫R(Un)
,

where the sequence (Un)n>0 is lim Ulrich and the limit exists. A lim Cohen-
Macaulay point has the obvious meaning.
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For later use we record the observation that if E(R) has a lim Cohen-Macaulay
point and R ! S is a flat map with artinian closed fiber, then E(S) has a lim
Cohen-Macaulay point; this is immediate from Corollary 5.8. The same holds for
lim Ulrich points if also mS = n, where m and n are the maximal ideals of R and
S, respectively.

If (Un)n>0 is a lim Cohen-Macaulay sequence and the sequence ([Un]/⌫R(Un))
converges in E(R), say to a point ↵, then

(5.13) hF,↵i = lim
n!1

�(F,Un)

⌫R(Un)
= lim

n!1

`R H0(F ⌦R Un)

⌫R(Un)

for any short complex F in Fm(R). The first equality holds because of the conver-
gence, whereas the second one is a consequence of (5.2). It will also be useful to
note that if the sequence (Un) is lim Ulrich then

(5.14) ed(↵) = lim
n!1

ed(Un)

⌫R(Un)
= 1 .

The second equality is from (5.11).
By the discussion above if ↵ is a lim Cohen-Macaulay point in E(R) then hF,↵i >

0 for any short complex F in Fm(R) with H(F ) nonzero; in particular 0 cannot be
a lim Cohen-Macaulay point.

Lemma 5.15. If (Un)n>0 is a lim Cohen-Macaulay sequence, then for any short
complex F in Fm(R) one has

`R H0(F ) � lim sup
n!1

hF,Uni
⌫R(Un)

� lim inf
n!1

hF,Uni
⌫R(Un)

� ⌫R H0(F ) .

Thus if E(R) is finite dimensional (Un/⌫R(Un)) has convergent subsequence.

Proof. Since F satisfies (5.2) one gets an equality

lim sup
n!1

hF,Uni
⌫R(Un)

= lim sup
n!1

h0(F ⌦R Un)

⌫R(Un)
,

and similarly for the lim inf. It remains to observe that there are inequalities

h0(F )⌫R(Un) � h0(F ⌦R Un) � ⌫R(H0(F ))⌫R(Un) .

These hold because H0(F ⌦R Un) = H0(F ) ⌦R Un, and for any R-modules H,U

there are surjections

H ⌦R R
⌫R(U) ⇣ H ⌦R U ⇣ (H/mH)⌦k (U/mU) .

This justifies the stated inequalities.
When E(R) is finite dimensional, its topology is the Euclidean one, and it is dual

to K(R). Since the classes of the complexes F in Fm(R) span K(R), the already
established part of the result means that (Un/⌫R(Un)) is bounded in the Euclidean
metric. Then the stated assertion is now clear. ⇤

The proof of the next result follows that of Proposition 3.7.

Theorem 5.16. Let (R,m, k) be a local ring. If ↵ is a lim Ulrich point in E(R),
then for any short complex F in Fm(R) and integer i there is an inequality

✓
d

i

◆
hF,↵i � �

R
i (F )ed(↵) where d = dimR.

In particular 2dhF,↵i � �R(F )ed(↵).
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Proof. By definition, ↵ is a positive linear combination of elements of the form

lim
n!1

[Un]

⌫R(Un)

with (Un) a lim Ulrich sequence. Since both hF,�i and ed(�) are additive on E(R)
we can suppose that ↵ is an element of the form above. Thus by (5.11) the desired
result is that ✓

d

i

◆
hF,↵i � �

R
i (F ) .

Moreover, by the discussion in 5.10, expanding k if necessary, we can pick a system
of parameters r that generates a minimal reduction for m. Let K be the Koszul
complex on r so that ed(M) = �(K⌦RM) for any finitely generated R-module M ;
see (2.3). We estimate the limiting behavior of the sequence

hi(K ⌦R F ⌦R Un)

⌫R(Un)

in two ways. These estimates are obtained by repeated application of Lemma 5.3
with vn = ⌫R(Un) and s = 0, and di↵erent choices of W (n) and P .

For one thing, since (Un) is a lim Cohen-Macaulay sequence we can apply it with
W (n) = F ⌦R Un to get the first equality below:

lim sup
n!1

hi(K ⌦R F ⌦R Un)

⌫R(Un)
= lim sup

n!1

hi(K ⌦R H0(F ⌦R Un))

⌫R(Un)

 lim sup
n!1

✓
d

i

◆
h0(F ⌦R Un)

⌫R(Un)

=

✓
d

i

◆
hF,↵i .

The inequality holds because K is a finite free complex, of rank
�d
i

�
in degree i.

The second equality is by (5.13).
On the other hand noting that K⌦R F ⌦R Un

⇠= F ⌦RK⌦R Un as R-complexes
and reversing the roles of F and K in the first step of the argument above yields

lim sup
n!1

hi(K ⌦R F ⌦R Un)

⌫R(Un)
= lim sup

n!1

hi(F ⌦R H0(K ⌦R Un))

⌫R(Un)

= lim sup
n!1

hi(F ⌦R Un/rUn)

⌫R(Un)

Consider the exact sequences

(5.17) 0 �! mUn

rUn
�! Un

rUn
�! Un

mUn
�! 0

From this sequence and (5.11) it follows that

lim
n!1

`R(mUn/rUn)

⌫R(Un)
= 0 .

Therefore Lemma 5.3, now applied with W (n) = mUn/rUn and P := F yields

lim sup
n!1

hi(F ⌦R (mUn/rUn))

⌫R(Un)
= 0
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for all i. Feeding this information back into the exact sequence (5.17) gives for each
integer i the first equality below

lim sup
n!1

hi(F ⌦R Un/rUn)

⌫R(Un)
= lim sup

n!1

hi(F ⌦R Un/mUn)

⌫R(Un)

= lim sup
n!1

hi(H(F ⌦R k)⌦k Un/mUn)

⌫R(Un)

= �
R
i (F )

In summary one gets that

lim sup
n!1

hi(K ⌦R F ⌦R Un)

⌫R(Un)
= �

R
i (F ) .

Combining this with the upper bound
�d
i

�
hF,↵i for the limit obtained earlier yields

the desired inequality. ⇤

The corollary below, which extends Theorem 4.6, is our main motivation for
considering lim Ulrich points.

Corollary 5.18. Let F be a short complex in Fm(R). If [R] is a lim Ulrich point
in E(R), then the inequalities in (3.1) hold for �(F ).

When the ring R is as in 4.10 and the class [R]d in E(R) is a lim Ulrich point,
then the analogues of (3.1) for �1(F ) hold.

Proof. These assertions are immediate from Theorem 5.16, once we observe that
�(F ) = hF, [R]i; for the second we need that �1(F ) = hF, [R]di from (4.18). ⇤

Even if the class of R is not a lim Ulrich point, just the existence of lim Ulrich
points yields interesting estimates on Euler characteristics of short complexes.

Corollary 5.19. When E(R) has a lim Ulrich point, for any short complex F in
Fm(R) and integer i there is an inequality

✓
d

i

◆
`R H0(F ) � �

R
i (F ) where d = dimR.

In particular 2d`R H0(F ) � �
R(F ).

Proof. This is immediate from Lemma 5.15 and Theorem 5.16, given (5.14). ⇤

Combining the inequality in the result above with (3.2), when it applies, yields

2d`R H0(F ) � �
R(F ) � 2d

|�R(F )|
`R H(F )

.

When F is a free resolution of a nonzero finite length R-module M , this reads

2d`R(M) � �
R(F ) � 2d .

We record another application of Lemma 5.3, which recovers [24, Lemma 2.9],
and leads to the material presented in the next section. While the hypothesis
is rather stringent, in the graded context one can run the argument given below
degreewise yielding a much stronger result. This is the essential idea in the proof
of Theorem 6.7, which is why we bring this up.
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Lemma 5.20. If (Un)n>0 is a sequence of nonzero R-modules such that for each
integer i  d� 1 one has

lim
n!1

`RHi
m(Un)

⌫R(Un)
= 0

then the sequence (Un) is lim Cohen-Macaulay.

Proof. For each F in Fm(R) one has a quasi-isomorphism

F ⌦R Un ' F ⌦R R�m(Un) .

Thus applying Lemma 5.3 with Wn = R�m(Un) and vn = ⌫R(Un) yields for any
integer i an equality

lim sup
n!1

hi(F ⌦R Un)

vn
= lim sup

n!1

hi+d(F ⌦R Hd
m(Un))

vn
.

When F is a short complex the homology modules on the right are zero whenever
i � 1. This completes the proof. ⇤

5.21. Let k be a field and A a standard graded k-algebra, that is to say, A0 = k

and A is finitely generated as a k-algebra by its component A1 of degree one. Let
m := A>1 be the homogenous maximal ideal of A. Set R := Am; this is a local ring
with maximal ideal mR, and residue field k. Set d := dimR = dimA.

Given a finitely generated graded A-module M , we write ed(M) for the multi-
plicity with respect to the m. It can be computed as so:

ed(M) = (d� 1)! lim
n!1

rankk(Mn)

nd�1
.

In this context Fm(A) will be assumed to consist of graded free modules, with
di↵erentials respective the grading, and homology of finite rank over k. A short
complex is to have length d. A sequence (Un)n>0 of finitely generated graded A-
module is lim Cohen-Macaulay if (5.2) holds for each short complex F in Fm(A);
the sequence is lim Ulrich when in addition (5.11) holds.

Proposition 5.22. Let (Un)n>0 be a sequence of finitely generated graded A-
modules.

(1) If (5.2) holds for the Koszul complex on a single homogenous system of pa-
rameters for A, then the given sequence is lim Cohen-Macaulay.

(2) The given sequence is lim Cohen-Macaulay if and only if the sequence of
R-modules ((Un)m)n>0 is lim Cohen-Macaulay.

(3) The given sequence is lim Ulrich if and only if the sequence of R-modules
((Un)m)n>0 is lim Ulrich.

Proof. For any finitely generated graded R-module M one has equalities

⌫A(M) = ⌫R(Mm) and ed(M) = ed(Mm) .

These facts will be used in the argument without further comment.
(2) Let F be a short complex in Fm(A). The A-modules Hi(F ⌦A Un) are m-

torsion, so the natural localization map is an isomorphism:

(5.23) Hi(F ⌦A Un)
⇠=��! Hi(F ⌦A Un)m ⇠= Hi(Fm ⌦R (Un)m) .

In particular the localization map Hi(F )! Hi(Fm) is an isomorphism, so that Fm is
a short complex in Fm(R). It follows that if the sequence of R-modules ((Un)m)n>0
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is lim Cohen-Macaulay, then so is the sequence of A-modules (Un)n>0. This settles
the “if” part in (2).

Let a be a homogenous system of parameters for A; their images in R, which
we also denote a, are a system of parameters for R. Given this fact and the
isomorphisms (5.23), it follows that when (5.2) holds for (Un)n>0 and the Koszul
complexK(a;A), then (5.2) holds for ((Un)m)n>0 and the Koszul complexK(a;R).
Then Lemma 5.7 implies that the sequence ((Un)m)n>0 is lim Cohen-Macaulay.
This settles the “only if” part of (2) and, given the “if” part, also (1).

(3) is now clear, given the equalities above. ⇤

6. Lim Ulrich sequences of sheaves

Throughout this section k is an infinite field, A a standard graded k-algebra; see
5.21. Set d := dimA; we assume d � 2 to avoid unimportant special cases. Set

X := Proj(A) and c := dimX = d� 1 .

In this section we introduce lim Ulrich sequences of sheaves on X and relate these
to lim Ulrich sequences of A-modules. This is used to recover a construction, due to
the second author, of lim Ulrich sequences on A, when k has positive characteristic;
see Theorem 7.15. We begin by recalling some basic facts about sheaves on X.

6.1. For any coherent sheaf F on X we set

�⇤(F) := �t2Z H
0(X,F(t))

viewed as a graded A-module in the usual way. We shall be interested in coherent
sheaves F that satisfy the following condition:

(6.2) H0(X,F(t)) = 0 for t⌧ 0.

This is equivalent to the condition that �⇤(F) is finitely generated as an A-module.
The following alternative characterization that will be useful in the sequel: When
dimX � 1, a coherent sheaf F on X satisfies (6.2) if and only if

depth
Ox

Fx � 1 for all closed points x 2 X,

see [14, Corollaire 1.4]. In the remainder of this section F will be a sheaf satisfying
condition (6.2). Its Euler characteristic is

�(F) :=
X

i

(�1)ihi(X,F) where h
i(X,F) := rankk H

i(X,F) .

The Hilbert polynomial of F is a polynomial hF(z) with rational coe�cients with

hF(t) = �(F(t)) for all t 2 Z.

This is a polynomial of degree at most c and the coe�cient in degree c is ed(�⇤(F))/c!.
Thus the cth di↵erence of hF(t) is ed(�⇤(F)) so that

ed(�⇤(F)) =
X

06i,j6c

(�1)i+j

✓
c

j

◆
h
i(X,F(t� j)) .

In particular since the righthand side is independent of t we get

(6.3) ed(�⇤(F)) =
X

06i,j6c

(�1)i+j

✓
c

j

◆
h
i(X,F(�j)) .
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6.4. An Ulrich sheaf on X is a nonzero coherent sheaf F such that hi(X,F(t)) = 0
except possibly when

(6.5) i = 0 and t � 0, or i = c and t  �c� 1 .

Sometimes it is convenient to view these conditions in terms of the total cohomology

h
⇤(X,F(t)) :=

X

i

h
i(X,F(t)),

and as function of t, namely: F is Ulrich if and only if for each t one has

h
⇤(X,F(t)) =

8
><

>:

h
0(X,F(t)) when t � 0

h
c(X,F(t)) when t  �c� 1

0 otherwise.

When X = Pc
k a sheaf F is Ulrich if and only if it is isomorphic to a direct sum

of copies of OX . For a general X, let

⇡ : X ! Pc
k

be a finite linear projection; the linearity condition is that ⇡⇤OPc
k
(1) = OX(1). Such

a projection exists because k is infinite. Then a coherent sheaf F on X is Ulrich
precisely when ⇡⇤F is an Ulrich sheaf on Pc

k, that is to say, a direct sum of copies
of OPc

k
. This is a direct consequence of the projection formula

Hi(X,F(t)) ⇠= Hi(Pc
k,⇡⇤F(t)) .

We propose the following definition.

6.6. A lim Ulrich sequence of sheaves on X is a sequence (Fn)n>0 of coherent
sheaves on X for which the following properties hold:

(1) h
0(X,Fn) 6= 0 for all n� 0;

(2) There exists an integer t0 such that h0(X,Fn(t)) = 0 for t  t0 and all n;
(3) There exists an integer t1 such that h>1(X,Fn(t)) = 0 for t � t1 and all n;
(4) Except possibly when i = 0 and t � 0, or i = c and t  �c� 1, one has

lim
n!1

h
i(X,Fn(t))

h0(X,Fn)
= 0 .

The range of values of i and t arising in (4) is precisely the one from (6.5).

The next result explains our interest in this notion; Lemma 5.20 is a precursor.

Theorem 6.7. Let k be an infinite field, A a standard graded k-algebra, and set
X := Proj(A). If (Fn)n>0 is a lim Ulrich sequence of sheaves on X, then the
sequence of graded A-modules (�⇤(Fn))n>0 is lim Ulrich.

Proof. Set Un := �⇤(Fn), viewed as a graded A-module. We write Un,t for its
component in degree t. Condition 6.6(2) implies that Un,t = 0 for t  t0. In
particular the A-module Un is finitely generated; see the discussion below (6.2).

The lim Ulrich condition on the sequence (Un)n>0 involves ⌫A(Un), whereas the
lim Ulrich condition on (Fn)n>0 is in terms of h0(X,Fn), that is to say, rankk(Un,0).
We begin by comparing these numbers: One has

⌫A(Un) = rankk Coker(A1 ⌦k Un ! Un)

� rankk Coker(A1 ⌦k Un,�1 ! Un,0)

� h
0(X,Fn)� rankk(A1)h

0(X,Fn(�1)) .
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Thus from 6.6(4) one obtains

(6.8) lim inf
n!1

⌫A(Un)

h0(X,Fn)
� 1 .

This observation will be of use later on. At the end we prove that this limit is 1.
We verify that the sequence (Un)n>0 is lim Cohen-Macaulay by mimicking the

argument from Lemma 5.20. The advantage will be that since we are in the graded
case, we can focus on one (internal) degree at a time. To that end recall that
Hi

m(Un), the local cohomology of Un at the homogeneous maximal ideal m := A>1

of A, acquires a grading from Un. We write Hi
m(Un)t for the component in degree

t. This can be computed in terms of the sheaf cohomology of Fn as follows:

Hi
m(Un)t ⇠=

(
0 i = 0, 1

Hi�1(X,Fn(t)) i � 2 .

See, for example, [19, Corollary 6.2], noting that since Un = �⇤(Fn), the sheafifica-
tion of Un is Fn. Combining this observation with condition 6.6(3) yields

(6.9) Hi
m(Un)t = 0 for t � t1 and all i and n,

whereas 6.6(4) yields

(6.10) lim
n!1

rankk H
i
m(Un)t

h0(X,Fn)
= 0 for i 6= d and all t.

At this point we have hypotheses akin to those in Lemma 5.20. In the rest of the
proof it will be convenient to extend the use of notation 5.4 to the graded context:
Given a complex W of graded A-modules, set

hi,t(W ) := rankk Hi(W )t .

Fix a homogeneous system of parameters a := a1, . . . , ad of A and let K be the
Koszul complex on this sequence. For any complex X of graded A-modules we
write hi,t(a;W ) for hi,t(K ⌦A W ).

We verify (5.2) for F = K, which entails (Un)n>0 is lim Cohen-Macaulay; see
Lemma 5.7. As in Lemma 5.20 we use the quasi-isomorphism

K(a;Un) ' K(a; R�m(Un)) ,

to transfer information we have on local cohomology modules to Koszul homology.
For a start, given Un,t = 0 for t  t0 and (6.9), for each n and i one has

(6.11) hi,t(a;Un) = 0 for t  t0 and t � t1 + |a|,
where |a| := |a1| + · · · + |ad|. This can be proved by a simple spectral sequence
argument or through a claim akin to the one below, analogous to Lemma 5.3.
Caveat: W (n) is the nth term of a sequence and is not to be confused with a twist.

Claim. Let (W (n))n>0 be a sequence of A-complexes of graded modules, (vn)n>0

a sequence of nonzero integers, and s an integer such that

lim
n!1

hi,t(W (n))

vn
= 0 for all i 6= s and all t.

Then for all i and t one has

lim sup
n!1

hi,t(a;W (n))

vn
= lim sup

n!1

hi�s,t(a; Hs(W (n)))

vn
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The proof is similar to that of Lemma 5.3 and is omitted. Given (6.10) we can
apply the claim with W (n) = R�m(Un) and vn = h

0(X,Fn), to obtain

lim
n!1

hi,t(a;Un)

h0(X,Fn)
= lim

n!1

hi+d,t(a; H
d
m(Un))

h0(X,Fn)
= 0 for i � 1 and all t.

By (6.11) the Koszul homology modules are zero outside the range t0 < t < t1+ |a|,
so the preceding computation yields

lim
n!1

hi(a;Un)

h0(X,Fn)
= 0 for i � 1.

Combining this with (6.8) we deduce

lim
n!1

hi(a;Un)

⌫A(Un)
= 0 for i � 1.

Thus the sequence (Un)n>0 is lim Cohen-Macaulay as claimed.
To verify that the sequence is lim Ulrich, it remains to verify (5.11). Applying

(6.3) to each Un and applying property 6.6(4) yields

lim
n!1

ed(Un)

h0(X,Fn)
=

X

06i,j6c

lim
n!1

(�1)i+j

✓
c

j

◆
h
i(X,Fn(�j))
h0(X,Fn)

= 1 .

Recalling (6.8) we obtain

lim sup
n!1

ed(Un)

⌫A(Un)
 1 .

Combining this inequality with (5.9) we deduce that the limit above equals 1, as
desired. This completes the proof. ⇤
6.12. In the preceding proof we first verified that the sequence (�⇤(Fn))n>0 is
lim Cohen-Macaulay using only conditions (1)–(3) in 6.6 and the following part of
condition (4): For 1  i  c� 1 and each t, and for i = 0 and t = �1, one has

lim
n!1

h
i(X,Fn(t))

h0(X,Fn)
= 0 .

One might thus call such a sequence (Fn)n>0 a lim Cohen-Macaulay sequence.

7. Graded rings in positive characteristic

In this section we use Theorem 6.7 to recover and extend results of the second
author [24, Theorem 3.5] on the existence of lim Ulrich sequences over standard
graded rings defined over a field of positive characteristic.

Theorem 7.1. Let k be a field of positive characteristic, infinite and perfect, and
R the localization of a standard graded k-algebra at its homogenous maximal ideal.
There exists a lim Ulrich sequence of R-modules (Un)n>0 such that

lim
n!1

[Un]

⌫R(Un)
=

[R]d
e(R)

in E(R), for d := dimR.

The proof of this result is given towards the end of this section. One of the key
steps in it is the construction of a lim Ulrich sequence of sheaves over the projective
variety defined by the graded ring in question; see Theorem 7.15. For now we record
the following consequence for Dutta multiplicities, recalled in 4.17.
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Corollary 7.2. Let k be a field of positive characteristic and R the localization of
a standard graded k-algebra at its homogenous maximal ideal. Any short complex
F in Fm(R) satisfies

✓
dimR

i

◆
�1(F ) � �

R
i (F )e(R) for each i.

Proof. We can assume k is algebraically closed; see 2.7 and 4.17. Then [R]d is a
lim Ulrich point in E(R), by Theorem 7.1, so Corollary 5.18 applies. ⇤

7.3. Let k be as in Theorem 7.1 and A a standard graded k-algebra. If F is a short
complex of finite free graded A-modules, with H(F ) of finite length, then

�(F ) = �1(F ) = �1(Fm)

where the first equality can be proved along the lines of that of [27, Theorem 2.3].
The second equality is a simple verification. Thus Corollary 7.2 yields lower bounds
on �(F ).

Cohomology on (P1

k)
c. Let k be a field (with no further restrictions), c a positive

integer, and consider the c-fold product of the projective line:

Z := (P1

k)
c
.

We will need to compute the cohomology of certain sheaves on Z. To that end we
recollect some basic results in this topic; for further details see, for example, [10].

Let k[x,y] := k[x1, y1; . . . ;xc, yc] be the Zc-graded ring where xi and yi are of
multidegree (0, . . . , 1, . . . 0), where 1 is in the ith spot. Each multigraded k[x,y]-
module determines a coherent sheaf on Z. In particular for any c-tuple a :=
(a1, . . . , ac) there is a coherent sheaf OZ(a) on Z associated to the k[x,y]-module
k[x,y](a). The functor assigning finitely generated multigraded modules to coher-
ent sheaves on Z is exact, and every coherent sheaf arises via this construction.
Each finitely generated multigraded k[x,y]-module admits a resolution of length at
most 2c by direct sums of twists of k[x,y]. Thus for each coherent sheaf N there is
an exact sequence of the form

0 �! F2c �! · · · �! F0 �! N �! 0 ,

where each Fi is a direct sum of copies of OZ(a) for various choices of c-tuples a.
The cohomology of OZ(a) is determined by the isomorphism

(7.4) H⇤(Z,OZ(a)) ⇠= H⇤(P1

k,OP1
k
(a1))⌦k · · ·⌦k H⇤(P1

k,OP1(ac))

of graded k-vector spaces and the computation

h
i(P1

k,OP1
k
(a)) =

8
><

>:

a+ 1 if i = 0 and a � 0

�a� 1 if i = 1 and a  �2
0 otherwise.

Therefore for any integer a one gets

(7.5) h
⇤(P1

k,OP1(a)) = |a+ 1| .
These computations lead in the usual way to the following analog of the Serre
vanishing theorem for projective spaces. In what follows given a := (a1, . . . , ac)
and b = (b1, . . . , bc) in Zc we write b � a to indicate that bi � ai for each i and
write a� 0 to indicate that each ai � 0 for each i.
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Lemma 7.6. For any coherent sheaf N on Z one has

Hi(Z,N(a)) = 0 for a� 0 and i � 1.

Proof. It follows from the computations above that the desired result holds for
sheaves of the form O(a). The general case follows since any coherent sheaf N has
a finite resolution by direct sum of sheaves of this form; see Lemma 5.3. ⇤
7.7. The function HilbN defined by

HilbN(a) :=
X

i

(�1)ihi(Z,N(a)) for a 2 Zc,

is a polynomial in c-variables, called the Hilbert polynomial of N. It has the form

HilbN(z1, . . . , zc) = rank(N)z1 · · · zc + lower degree terms.

This can be deduced from the fact that N has a finite resolution consisting of twists
of O and the following computation

HilbO(a)(z1, . . . , zc) =
Y

i

(zi + ai + 1) ,

which is immediate from (7.4). Moreover, by Serre vanishing one has

HilbN(a) = h
0(Z,N(a)) for a� 0.

Given an integer t and a positive integer p set

(7.8) bn(t) := ((t+ 1)pn, . . . , (t+ c)pn) for n � 0 .

In what follows the asymptotic behavior bn(t) with respect to t and n will be
important. Observe that given any a 2 Z, there exists an integer t0  0 such that
bn(t)  a for all t  t0 and all n. In the same vein, there exists an integer t1 � 1
such that bn(t) � a for all t � t1 and all n. Moreover bn(t) � a for all t � 0 and
n� 0 and bn(t)  a for all t  �c� 1 and n� 0.

The next two results are intended for use in the proof of Theorem 7.15, which
may explain their odd appearance. Figure 1 is a visual guide to the statements.
Parts (1), (2), and (3) correspond to regions A, B, and C, respectively.

Lemma 7.9. Let N be a coherent sheaf on Z with H0(Z,N(a)) = 0 for a⌧ 0.

(1) There exists an integer t0 such that for bn(t) as in (7.8) one has

H0(Z,N(bn(t))) = 0 for t  t0 and n � 0.

(2) There exists an integer t1 such that

Hi(Z,N(bn(t))) = 0 for t � t1, i � 1, and n � 0.

(3) One has

Hi(Z,N(bn(t))) = 0 for t � 0, i � 1, and n� 0.

Proof. (1) By hypothesis, there exists a 2 Zc such that H0(Z,N(a0))) = 0 for all
a0  a. Choose t0 such that bn(t)  a for all t  t0 and all n � 0, so that

H0(Z,N(bn(t))) = 0 .

This justifies (1).
(2) By Serre vanishing, Lemma 7.6, there exists b 2 Zc such that Hi(Z,N(b0)) =

0 for b0 � b and i � 1. Choose t1 such that bn(t) � b for all t � t1 and all n. Then

Hi(Z,N(bn(t))) = 0
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Figure 1. Visual guide to Lemmas 7.9 and 7.10.
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t
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t1
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t0

�c� 1
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The value of the cell in coordinate (i, t) is hi(Z;N (bn(t))/pnc.

Region A is 0 because of the depth condition on N .

Region B is 0 for each n by Serre vanishing.

Region C is 0 for n � 0, again by Serre vanishing.

Region D is 0 in the limit as n ! 1; this requires a computation.

Region E is 0 in the limit as n ! 1; this step uses Grothendieck-Serre duality.

In the limit only the two strips in gray survive.
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for t � t1, i � 1, and all n � 0. This justifies (2).
(3) One has bn(t) � b0 for all t � 0 and n � 0, where b0 is as in the previous

paragraph, and hence (3) holds. ⇤
Parts (1) and (2) in the statement below correspond to regions D and E, respec-

tively, in Figure 1. Observe that the conclusions below concern limits; that these
limits exist is part of the assertion.

Lemma 7.10. Let N be a coherent sheaf on Z with H0(Z,N(a)) = 0 for a⌧ 0.

(1) For all integers t and bn(t) as in (7.8) one has

lim
n!1

h
⇤(Z,N(bn(t)))

pnc
= rank(N)|(t+ 1) · · · (t+ c)|

In particular the limit is zero when �c  t  �1.
(2) When t  �c� 1 and i  c� 1 one has

lim
n!1

h
i(Z,N(bn(t)))

pnc
= 0 .

Proof. We begin by proving (1) when t � 0; this corresponds to the region C in
Figure 1. In this case it follows from Lemma 7.9(3) that for n� 0 one has

h
⇤(Z;N(bn(t))) = h

0(Z;N(bn(t))) = HilbN(bn(t)) .

Given the description of bn(t) from (7.8) it follows that for n� 0 one has

HilbN(bn(t)) = rank(N)(t+ 1) · · · (t+ c)pnc + (terms with p
s for s < nc.)

Combining the two observations above yields

lim
n!1

h
⇤(Z,N(bn(t)))

pnc
= rank(N)(t+ 1) · · · (t+ c) .

This is the desired result.
Suppose �c  t  �1; this corresponds to the region D in Figure 1. For any

a 2 Zc, from (7.4) and (7.5) one gets

h
⇤(Z,O(a)(bn(t))) = h

⇤(Z,O(bn(t) + a)) =
cY

i=1

|(t+ i)pn + ai + 1| .

The constraint on t means that the coe�cient of p
n in one of the terms in the

product is zero, so the highest power of p that appears is p(n�1)c. It follows that

lim
n!1

h
⇤(Z,O(a)(bn(t)))

pnc
= 0 .

Since N has a finite resolution by direct sum of sheaves of the form O(a) for a the
stated vanishing holds also for N.

We verify (1) for t  �c � 1 and (2) simultaneously. We are now discussing
region E in Figure 1. The canonical sheaf on Z is O(�2, . . . ,�2), so setting

dn(t) = �bn(t)� (2, . . . , 2)

and applying Grothendieck-Serre duality we get

Hi(Z,N(bn(t)))
_ ⇠= Hc�i(Z,RHomOZ (N,OZ)(dn(t)))

The cohomology sheaves of RHomZ(N,OZ) are the coherent sheaves

Ej := ExtjZ(N,OZ) for 0  j  c.
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Observe that since t  �c � 1 the c-tuple dn(t) � 0 for n � 0, so arguing as for
(1) in the case t � 0 we get

lim
n!1

h
⇤(Z,Ej(dn(t)))

pnc
= lim

n!1

HilbEj (dn(t)))

pnc
.

From the description of dn(t), for n� 0 we get that

HilbEj (dn(t)) = rank(Ej)(�t� 1) · · · (�t� c)pnc + (terms with p
s for s < nc.)

The preceding computations yield

lim
n!1

h
⇤(Z,Ej(dn(t)))

pnc
= rank(Ej)(�t� 1) · · · (�t� c) .

When j � 1 the sheaf Ej has rank 0 and the limit above is zero. Given this it is
easy to see—see also Lemma 5.3—that

lim
n!1

h
c�i(Z,RHomZ(N,OZ)(dn(t)))

pnc
= lim

n!1

h
c�i(Z,E0(dn(t)))

pnc
.

In particular when i  c� 1 the terms in the limit on the righthand side are 0 for
n� 0, again by Serre vanishing. From this observation and the Grothendieck-Serre
duality isomorphism above one gets

lim
n!1

h
i(Z,N(bn(t)))

pnc
= 0 for i  c� 1.

This settles (2). Moreover the same tokens give

lim
n!1

h
⇤(Z,N(bn(t)))

pnc
= lim

n!1

HilbE0(dn(t))

pnc

= rank(E0)(�t� 1) · · · (�t� c)

It remains to observe that E0 = Hom(N,OZ) so its rank equals rankN. ⇤
In the rest of this section we return to the context of Theorem 7.1.

7.11. Let k be an infinite field, perfect of positive characteristic p, and let A be a
standard graded k-algebra. We will assume in addition that d := dimA � 2. This
puts us in the context of Section 6 and we adopt the notation from there:

X := Proj(A) and c := dimX = d� 1

We write ' : X ! X for the Frobenius map. Since k is perfect this is a finite
morphism. We fix maps

(7.12) X
⇡��! Pc

k
⇢ �� Z := (P1

k)
c
,

where ⇡ is a finite linear projection, which exists because k is infinite, and ⇢ is a
finite flat map such that ⇢

⇤(OPc
k
(1)) = OZ(1, . . . , 1). For example, ⇢ could be the

map given quotienting by the action of the symmetric group Sc on Z. For each
non-negative integer n consider the line bundle on Z given by

Ln := OZ(p
n
, 2pn, . . . , cpn)

We will also need a coherent sheaf on X with special properties.

7.13. Let M be a coherent sheaf on X such that the following conditions hold:

(1) H0(X,M(t)) = 0 for t⌧ 0;
(2) The sheaf ⇡⇤M on Pc

k has positive rank;
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With M such a sheaf, and notation as above, we construct the sequence of sheaves
on X specified by

(7.14) Un(M) := '
n
⇤ (M⌦ ⇡

⇤
⇢⇤(Ln)) .

The result below is the first step in the proof of Theorem 7.1.

Theorem 7.15. With X and M as above, the sequence (Un(M))n>0 of sheaves on
X given in (7.14) is a lim Ulrich sequence.

Proof. Set Un := Un(M) and N := ⇢
⇤
⇡⇤M; this is a sheaf on Z. Since ⇢ is flat the

hypotheses on M imply that N is locally of positive depth at all closed points, and
has positive rank; see the discussion in 6.1.

It will be convenient to introduce, as in (7.8), the c-tuple

bn(t) := ((t+ 1)pn, . . . , (t+ c)pn) ,

for n � 0 and all t, as in (7.8).

Claim. For any integers n, t and i there is an equality

h
i(X,Un(t)) = h

i(Z;N(bn(t))) .

Indeed, since '
⇤(OX(t)) ⇠= OX(pt) the projection formula for ' yields

Un(t) = '
n
⇤ (M⌦ ⇡

⇤
⇢⇤(Ln))(t) ⇠= '

n
⇤ (M⌦ ⇡

⇤
⇢⇤(Ln)(p

n
t)) .

Since k is perfect, for any coherent sheaf G on X one has Hi(X,'⇤G) ⇠= Hi(X,G).
Therefore from the isomorphism above one gets the first isomorphism below

Hi(X,Un(t)) ⇠= Hi(X,M⌦ (⇡⇤
⇢⇤Ln)(p

n
t))

⇠= Hi(Pc
k,⇡⇤(M)⌦ ⇢⇤Ln(p

n
t)) .

The second isomorphism holds by the the projection formula for ⇡ and its linearity.
The stated claim now follows from the projection formula for ⇢ and the fact that,
by construction, ⇢ is flat, with ⇢

⇤OPc
k
(1) ⇠= OZ(1, . . . , 1)

Given the claim above and the computations on Z made earlier, it is easy to
check that (Un)n>0 is a lim Ulrich sequence of sheaves. Indeed, Lemma 7.9(3) and
Lemma 7.10(1) imply

lim
n!1

h
0(X,Un(0))

pnc
= lim

n!1

h
⇤(X,Un(0))

pnc
= (rankN)c! .

Since rankN > 0 condition 6.6(1) follows.
Conditions 6.6(2) and 6.6(3) follow from parts (1) and (2) of Lemma 7.9, respec-

tively. Lastly, to verify 6.6(4) for the sequence (Un)n>0, we verify that

lim
n!1

h
i(Z;N(bn(t)))

pnc
= 0

for all i, t, except when i = 0 and t � 0, and when i = c and t  �c � 1. When
t � 0 this is by Lemma 7.9(3), whereas when t  �1 the desired vanishing is a
consequence of Lemma 7.10. This completes the proof. ⇤

Next we describe a map that mediates the passage between coherent sheaves on
X and R-modules.
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7.16. Let A and X be as in 7.11 and R := Am, the localization of A at its homo-
geneous maximal ideal. The functor

F 7! �n>0(F)m

from coherent sheaves on X to finitely generated R-modules yields an R-linear map

� : G0(X)R �! G0(R)R .

Observe that when the A-module �⇤(F) is finitely generated, its class of �⇤(F) in
G0(A)R is the same as that of �n>0(F), and hence �(F) = �⇤(F)m. This is because
the class of k in G0(A) is torsion, given our assumption that dimA � 2.

We write '⇤ for the pushforward of the Frobenius map on X and also for that
on A and R; the one in use will be clear from the context. The result below records
the compatibility of � with '⇤, and with cap product, \, which is induced by the
tensor product of coherent sheaves.

Lemma 7.17. The following statements hold.

(1) There is an equality '⇤ � � = p · � � '⇤ as maps from G0(X)R to G0(R)R.
(2) With ⇡ : X ! Pc

k the map from (7.12), there is an equality

�(↵ \ ⇡
⇤(�)) = �(↵) · rank� ,

for any ↵ in G0(X)R and � in K0(Pc
k)R.

Proof. The arguments uses the fact for any coherent sheaf F on X the class [F]�
[F(�1)] in G0(X) is in the kernel of the map �.

(1) Fix a coherent sheaf F on X. If M is a finitely generated graded A-module
whose sheafification is F, then '⇤(F(i)) is the sheafication of the abelian group
�j2ZMi+jp, viewed as an A-module via the Frobenius endomorphism of A. Given
this observation, in G0(R)R one gets

'⇤�(F) =
p�1X

i=0

�'⇤(F(i))

To justify (1) it remains to verify that for any ↵ in G0(X)Q and integer i one has

�'⇤(↵(i)) = �'⇤(↵) .

In verifying this equality we may assume i = 1. Moreover the element

1 + [O(1)] + · · ·+ [O(p� 1)]

is a unit in K0(X)R, by [35, Chapter II, Proposition 8.8.4], and G0(X)R is a K0(X)R-
module. Therefore we may assume

↵ = (1 + [O(1)] + · · ·+ [O(p� 1)])�

for some class �. Hence

'⇤(↵� ↵(1)) = '⇤((1� [O(p)])�) = '⇤(�)� '⇤(�(p)) = '⇤(�)� '⇤(�)(1)

where the last equality uses the projection formula. Now apply � to conclude

�('⇤(↵� ↵(1)) = 0

and hence that �('⇤(↵)) = �('⇤(↵(1)), as desired.
(2) This holds because K0(Pc)R is generated by the classes of twists of OPc

k
. ⇤

We are now ready to prove the result announced at the start of this section.
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Proof of Theorem 7.1. Let A be a standard graded k-algebra as postulated in the
statement, with homogenous maximal ideal m, so R = Am. With d := dimA  1
the desired result is contained in Example 4.7. So we assume d � 2.

We keep the notation from 7.11; in particular, X := Proj(A). The first step is
to get a lim Ulrich sequence of R-modules by applying Theorem 7.15. This result
takes as input a coherent sheaf M on X satisfying the conditions in 7.13. For what
follows, we need a bit more from M: Since A is graded, its associated primes are
homogenous. Consider the set ⇤(A) of minimal primes of A defining components
of dimension d. Let M be the sheaf on X obtained by sheafifying the A-module

M

p2⇤(A)

(A/p)`(Ap) .

Since the module is finitely generated M is coherent.

Claim. The sheaf M satisfies the conditions in 7.13, the A-module M := �⇤(M) is
finitely generated, and the R-module Mm satisfies condition (4.13).

Indeed, as dim(A/p) � 2 for p 2 ⇤(A), the sheaf M is locally of positive depth
at each closed point, so condition (1) of 7.13 holds; equivalently, the A-module M

is finitely generated; see 6.1. Moreover

dim⇡⇤M = dimM = dimX = dimPc
k

where the first and last equalities hold because ⇡ is finite, and the second holds by
the choice of M . Thus ⇡⇤M has positive rank, so satisfying condition (2) of 7.13.

Finally, by the construction of M there is a natural map of A-modules

M

p2⇤(A)

(A/p)`(Ap) �!M .

This map is one-to-one, because the module on the left has positive depth, and
its cokernel has finite length. Now it is a simple computation to check that the
R-module Mm satisfies (4.13).

For each n � 0, let Un be the sheaf on X constructed as in (7.14) with M as
defined above and consider the R-module:

Un := �⇤(Un)m .

Theorem 7.15 yields that (Un)n>0 is a lim Ulrich sequence of sheaves on X, and
then Theorem 6.7 yields that the sequence of A-modules (�⇤(Un))n>0 is lim Ulrich.
It remains to invoke Proposition 5.22(3) to conclude that the sequence of R-modules
(Un)n>0 is lim Ulrich.

Next we verify the following equality:

lim
n!1

[Un]

⌫R(Un)
=

[R]d
e(R)

.

We do so by passing to X and using the observations from 7.16.
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Recall the construction of the sheave Un from (7.14). The rank of ⇢⇤(Ln) is c!
and hence so is the rank of ⇡⇤

⇢⇤(Ln). Given this and using Lemma 7.17 one gets:

p
n[Un] = p

n
�[Un]

= p
n
�['n

⇤ (M⌦ ⇡
⇤
⇢⇤(Ln))]

= '
n
⇤�[M⌦ ⇡

⇤
⇢⇤(Ln))]

= c!'n
⇤ (�[M])

= c!['n
⇤ (Mm)]

From this equality one gets the second equality below:

lim
n!1

[Un]

⌫R(Un)
= lim

n!1

[Un]

ed(Un)

= lim
n!1

['n
⇤ (Mm)]

ed('n
⇤ (Mm))

=
[R]d
e(R)

The first equality is by (5.11), for the sequence (Un) is lim Ulrich. The last one is
by Lemma 4.15, which can applied given the claim from earlier in this proof. ⇤

8. Lech’s conjecture revisited

Corollary 7.2 leads us to propose the following:

Conjecture 8.1. Let R be a complete local ring. If F is a short complex in Fm(R),
then �1(F ) � e(R).

We are no longer assuming R contains a field of positive characteristic, so we have
to recall what Dutta multiplicity is in this generality: The ring R, being complete,
is a quotient of a regular local ring, so one has the Riemann-Roch isomorphism

⌧ : G0(R)Q
⇠=��! A⇤(R)Q =

dM

i=0

Ai(R)Q

where the target is the rational Chow group of R. Here d = dimR as usual. The
map ⌧ is hard to describe in general, except for the component in degree d, for
Ad(R)Q has a basis consisting of classes [V (R/p)], for p 2 ⇤(R) as in (4.2), and

⌧d : G0(R)Q �! R#⇤(R) is induced by M 7! (`RpMp)p2⇤(R).

Compare with Lemma 4.12. Writing [R]d for inverse image of ⌧d(R), the Dutta
multiplicity of F in Fm(R) is

�1(F ) := hF, [R]di

where h�,�i is the usual pairing; see 4.1. Usually, the Dutta multiplicity is defined
using the action of Km

0
(R) on the Chow group but the form above is better suited

for our approach; see [22, 29,32] for details.
We are going to prove that Conjecture 8.1 implies Lech’s conjecture [23]:

8.2. Lech’s conjecture: Given a flat local map R! S one has e(R)  e(S).
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We refer to [24, 26] for a discussion on the history and current state of this
conjecture, recording only that in [24] it is verified when R is standard graded. A
key step in the proof is the construction of lim Ulrich sequences. Later in this section
we exhibit rings that have no lim Ulrich sequences, but for which Conjecture 8.1
holds. The result below suggests an alternative approach to Lech’s conjecture.

Proposition 8.3. If Conjecture 8.1 holds for all complete local rings, then Lech’s
conjecture holds.

Proof. Let R! S be a flat local map. A standard reduction allows one to assume
R is a complete local domain, S is complete with algebraically closed residue field,
and dim(S) = dim(R); see [26, Lemma 2.2]. Then one has a Cohen factorization:

R �! T ⇣ S = T/J .

where R ! T is flat with regular closed fiber; see [4, Theorem 1.1]. In particular,
e(R) = e(T ) and the ideal J of T is perfect; see [26, Lemma 3.5]. Moreover all
the fibers of R ! T are complete intersections; see Tabaâ [33, Théorème 2]. In
particular, since each minimal prime p of J contracts to 0 in R, it follows that the
local ring Tp

⇠= Tp/(p \ R)Tp is a complete intersection for every minimal prime p
of J .

The residue field of T is infinite so we can pick elements x := x1, . . . , xd in T

that form part of a system of parameters on T and whose images in S generate a
minimal reduction of its maximal ideal, say n. Let P be a minimal T -free resolution
of S. Since J is perfect the length of P is equal to h := height(J).

Set n := dim(T ) = d + h and F := K(x;T ) ⌦T P ; observe that this is a short
complex in Fn(T ). Conjecture 8.1 yields �1(F ) � e(T ) = e(R). Moreover, since
x generates a minimal reduction of n in S, we know that �(F ) = e(S). Thus to
complete the proof it su�ces to verify:

Claim. With notation as above, we have �(F ) = �1(F ).

The assignment M 7!
P

i(�1)i[Hi(P ⌦T M)] induces a map

P \ � : G0(T ) �! G0(S) .

Consider the multiplicity
ed(�) : G0(S) �! Z ;

see Corollary 4.5. We claim that there are equalities

�(F ) = ed(P \ [T ]) and �1(F ) = ed(P \ [T ]n) .

Indeed, both equalities are special cases of the more generality equality

ed(P \ �) = hF,�i on G0(T ).

This holds because for any finitely generated T -module M one has equalities

hF,Mi = �(F ⌦R M)

= �(K(x;T )⌦T P ⌦T M)

=
X

i

(�1)i�(K(x; Hi(P ⌦T M)))

=
X

i

(�1)ied(Hi(P ⌦T M))

= ed(P \M) .
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Let ⇤ denote the minimal primes of S defining its components of maximal di-
mension. Since ed(�) factors through the localization map

G0(S) �!
M

p2⇤

G0(Sp)

it su�ces to verify that for each minimal prime p of S one has

(P \ [T ])p = (P \ [T ]n)p in G0(Sp).

The Riemann-Roch map ⌧ commutes with localization, in that we have a commu-
tative diagram

G0(T )Q A⇤(T )Q

G0(Tp)Q A⇤(Tp)Q

⌧
⇠=

⌧p
⇠=

where the map on the right has a degree shift by h� n; see [12, Theorem 18.3 and
§20.1]. Therefore one gets equalities

([T ]n)p = ⌧
�1

p (⌧n([T ])p) = ⌧
�1

p (⌧h([Tp])) = [Tp]h .

This leads to following computation where the last one is clear from the definition:

(P \ [T ]n)p = Pp \ [Tp]h = Pp \ [Tp] = (P \ [T ])p

The second equality holds because [Tp]h = [Tp], for Tp is a complete intersection
ring; see [30, Proposition 12.4.4(2)], and also [12, Corollary 18.1.2]. This completes
the proof of the claim and hence of the desired result. ⇤

Non-existence of lim Ulrich sequences. Recently Yhee [36] has constructed
local rings that do not possess lim Ulrich sequences. In the following paragraphs
we state a version of her results that suits us, referring to [36] for the more general
statements and proofs. Our main goal here is to verify that Conjecture 8.1 holds
for these rings nevertheless.

8.4. Let R be a local ring. As in [24], a sequence (Un)n>0 of finitely generated R-
modules is said to be a weakly lim Cohen-Macaulay sequence if each Un is nonzero,
and for some system of parameters r := r1, . . . , rd of R one has

lim
n!1

�1(K(r;Un))

⌫R(Un)
= 0,

where �1(K(r;Un)) :=
Pd

i=1
(�1)i�1

`RHi(r;Un) is the first Euler characteristic of
Koszul complex K(r;Un). If in addition (5.11) holds, then (Un)n>0 is said to be a
weakly lim Ulrich sequence.

It is clear from the definitions 5.1, 5.10 and 8.4 that any lim Cohen-Macaulay
sequence is weakly lim Cohen-Macaulay, and that any lim Ulrich sequence is weakly
lim Ulrich. In [24], it is proved that the existence of weakly lim Ulrich sequences
implies Lech’s conjecture, and it is asked whether every complete local domain
of positive characteristic admits a lim Ulrich or weakly lim Ulrich sequence [24,
Question 3.9]. Following [36], we describe a ring for which no such sequence exists.



38 IYENGAR, MA, AND WALKER

8.5. Let k be a field and S := k[|x, y]], the ring of formal power series over k in
indeterminates x, y. Then S is a local ring with maximal ideal n := (x, y). Choose
an n-primary ideal J and set

R := k + J ✓ S

Then R is a local k-subalgebra of S, with maximal ideal m := J . Moreover S/R

has finite length, so S is module-finite over R.

The following result follows from [36, Remark 3.7 and Theorem 5.1].

Theorem 8.6. With notation as in 8.5, if J is not generated by a system of
parameters of S, then R does not have weakly lim Ulrich sequence. ⇤

Although the ring R defined in 8.5 has no weakly lim Ulrich sequences, Conjec-
ture 8.1 holds for that ring.

Proposition 8.7. Let R be as in 8.5. Each short complex F in Fm(R) satisifes

�1(F ) � e(R) .

Proof. One has that e(R) = e(J, S), so the desired result is that �1(F ) � e(J, S).
Since R is a complete local domain of dimension two one has �1(F ) = �(F ); see
[20, Proposition 3.7]. Moreover as an R-module S/R ⇠= (x, y)S/J and hence the
classes of S and R coincide in G0(R)Q. It follows that

�1(F ) = �(F ) = �(S ⌦R F ) .

Set G := S ⌦R F . Evidently this is a short S-complex, and since S is regular, in
particular Cohen-Macaulay, G has homology only in degree 0, that is to say, it is
a minimal free resolution of H0(G). So we have to verify the following: Given the
minimal free resolution of an S-module M of finite length:

G := 0 �! S
c �! S

b �! S
a �! 0

where the di↵erential on G satisfies d(G) ✓ JG, then `SM � e(J, S).
When a = 1, so that M is cyclic, we are in a situation where the Hilbert-Burch

theorem applies and G has the form

G := 0 �! S
b�1 d��! S

b (s1...sb)�����! S �! 0

where s := s1, . . . , sb are the minors of size b� 1 of a matrix representing d. When
b = 2 the sequence s1, s2 is regular, which gives the second equality below:

`SM = `S(S/(s1, s2)) = e((s1, s2), S) � e(J, S) ,

The other (in)equalities are clear. This settles the case b = 2. When b � 3, as
d(Sb�1) ✓ JS

b it follows that (s) ✓ J
b�1. Therefore we get

`SM = `S(S/(s)) � `S(S/J
b�1) � 1

2
e(Jb�1

, S) =
(b� 1)2

2
e(J, S)

where the second inequality is Lech’s inequality [23, Theorem 3]. This is the desired
estimate for b � 3.

When a � 2, one has

`SM � 2`S(S/J) � e(J, S)

where the second inequality again by Lech’s inequality, now applied to J . ⇤
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[7] N. Bourbaki, Éléments de mathématique. Algèbre commutative. Chapitres 8 et 9, Springer,

Berlin, 2006 (French). Reprint of the 1983 original. MR2284892
[8] Joseph P. Brennan, Jürgen Herzog, and Bernd Ulrich, Maximally generated Cohen-Macaulay

modules, Math. Scand. 61 (1987), no. 2, 181–203, DOI 10.7146/math.scand.a-12198.
MR947472

[9] Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, 2nd ed., Cambridge Studies in
Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1998. MR1251956

[10] David A. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4
(1995), no. 1, 17–50. MR1299003

[11] Hailong Dao and Kazuhiko Kurano, Hochster’s theta pairing and numerical equivalence, J.
K-Theory 14 (2014), no. 3, 495–525, DOI 10.1017/is014006030jkt273. MR3349324

[12] William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Gren-
zgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and
Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-
Verlag, Berlin, 1998. MR1644323
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Sér. I Math. 298 (1984), no. 18, 437–439 (French, with English summary). MR750740

[34] Mark E. Walker, Total Betti numbers of modules of finite projective dimension, Ann. of Math.
(2) 186 (2017), no. 2, 641–646, DOI 10.4007/annals.2017.186.2.6. MR3702675

[35] Charles A. Weibel, The K-book, Graduate Studies in Mathematics, vol. 145, American Math-
ematical Society, Providence, RI, 2013. An introduction to algebraic K-theory. MR3076731

[36] Farrah C. Yhee, Ulrich modules and weakly lim Ulrich sequences do not always exist, available
at https://arxiv.org/abs/2104.05766.

Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA
Email address: iyengar@math.utah.edu

Department of Mathematics, Purdue University, 150 N. University street, IN 47907
Email address: ma326@purdue.edu

Department of Mathematics, University of Nebraska, Lincoln, NE 68588, U.S.A.
Email address: mark.walker@unl.edu

https://arxiv.org/abs/2005.02338
https://arxiv.org/abs/2104.05766

	1. Introduction
	2. Mulitiplicities and finite projective dimension
	3. Euler characteristics of short complexes
	4. Grothendieck groups
	5. Lim Cohen-Macaulay and lim Ulrich sequences
	6. Lim Ulrich sequences of sheaves
	7. Graded rings in positive characteristic
	8. Lech's conjecture revisited
	References

