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Abstract

We introduce an energy stable, high-order-accurate finite difference approximation of the dy-
namic, pure bending Kirchhoff plate equations for complex geometries and spatially variable
properties. We utilize the summation-by-parts (SBP) framework to discretize the biharmonic
operator with variable coefficients, with attention given to free and clamped boundary condi-
tions and corner conditions. Energy conservation is established by combining SBP boundary
closures with weak enforcement of the boundary and interface conditions using a penalty
(simultaneous approximation term, SAT) technique. Then we couple the plate equations to
the shallow water equations to study flexural-gravity wave propagation, and prove that the
semi-discrete system of equations is self-adjoint. We demonstrate the stability and accuracy
properties of the method on curvilinear multiblock grids using the method of manufactured
solutions. The method, which we provide in an open-source code, is then used to model
ocean wave interactions with the Thwaites Glacier and Pine Island Ice Shelf in the Amundsen
Sea off the coast of West Antarctica.
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1. Introduction

In this work, we consider numerical solution for pure bending of plates in complex ge-
ometries with spatially variable coefficients. The equations are based on the Kirchhoff-Love
model of isotropic plates, which is a two-dimensional mathematical model for flexure and
bending stresses in a thin plate for which the plate thickness is much smaller than the plate
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dimensions. This plate model is an extension of the one-dimensional Euler-Bernoulli beam
model. The governing equation of the pure bending of plates is a linear partial differential
equation (PDE) that is fourth order in two-dimensional space and second order in time.

The main motivation for our work is to study the impact of long wavelength ocean waves
(storm swell, tsunamis, infragravity waves, and even tidal forcing) on ice shelves. Recent
studies, some of which are based on data from broadband seismic arrays in Antarctic ice
shelves, reveal the extent of flexure caused by ocean waves, which in some cases has been
linked to the growth of rifts, fractures, and even break-up of ice shelves [18], [5], [4], [20].

Quantitative model-based studies of this problem are based on the hydroelastic frame-
work for ice shelves originally developed by [9], [10], and which is widely applied in the
sea ice community [8]. In this framework, the ice shelf is modeled as a thin elastic plate
floating on an inviscid, incompressible fluid layer (the ocean). While the governing equa-
tions can be solved analytically in very simple geometries, numerical solution is required for
spatially variable properties (including variable water depth and ice thickness) and complex
geometries in map view. Most models restrict attention to a 2D vertical cross-section, with
the governing equations solved using eigenfunction expansions and related semi-analytical
methods [8, 33, 31, 25], the finite element method [27, 11, 13] , and the finite difference
method [23]. Of particular note is the extension of this work into 3D by [32] to account for
the spatially variable ice thickness and complex geometries characteristic of real ice shelves.
Most of these studies utilize the shallow water approximation for the ocean, though this
limits application to long period waves [12].

In this study, we utilize the high-order, summation-by-parts finite difference method to
solve the 2D (map view) problem with variable coefficients and complex geometries, thereby
extending earlier work using similar difference operators [23]. In general, high-order finite
difference methods are very powerful for wave-propagation problems involving propagation
over many wavelengths due to excellent numerical dispersion properties [15]. The major
drawbacks of high-order finite difference methods are handling complex geometries and ob-
taining a stable boundary treatment.

The summation-by-parts-simultaneous-approximation-term (SBP-SAT) method is a ro-
bust and well-proven framework for solving well-posed initial boundary value problems. This
method utilizes spatial-derivative operators that satisfy a summation-by-parts (SBP) prop-
erty [16] with boundary conditions implemented using a penalty technique known as the
the simultaneous-approximation-term (SAT) method [6]. Among the growing literature us-
ing SBP-SAT methods, we highlight review articles [34, 7] and a few recent studies on wave
propagation involving second-order PDEs with variable coefficients arising in continuum me-
chanics [28, 1, 2]. While the SBP-SAT method has primarily been used for first and second
derivatives in space, it has recently been extended to third and fourth derivatives [22], [24],
[23], but only in either 1D or on Cartesian grids. An important extension, which we pursue
here, is to extend this work to curvilinear, multiblock grids, in the specific context of the
variable coefficient plate equation coupled to the variable coefficient shallow water equation.

The rest of the paper is organized as follows. Section 2 introduces our notational con-
ventions and Section 3 covers the plate equation. We introduce SBP operators in Section 4,
and combine them with proper SATs to construct energy-stable self-adjoint schemes for the
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plate equation with free boundary conditions combined with corner conditions and clamped
boundary conditions in Section 6. In Section 5, interface SATs for grid-block couplings are
derived. In Section 7, we couple the plate equation to the shallow water equation to model
the interaction of ice shelves with ocean waves. In Section 8, we present numerical experi-
ments, starting with a convergence study using the method of manufactured solutions. We
then apply the method to study wave-ice shelf interactions in the Amundsen Sea region of
West Antarctica, which contains the Thwaites Ice Shelf Tongue and Pine Island Glacier.
Lastly, we conclude with summaries in Section 9.

2. Notation conventions

In this work, we consider scalar, vector, and tensor fields in Rd (with d = 2 in most
cases), with summation implied over repeated subscript indices, e.g.,

uivi =
dX

i=1

uivi. (1)

The L
2 inner product for bounded domains ⌦ 2 Rd is

(u, v)⌦ =

Z

⌦

uv d⌦ (2)

and for integrals over a surface @⌦, we write

(u, v)@⌦ =

Z

@⌦

uv dS, (3)

which is a bilinear form.
When multiple boundary segments are present, we introduce a superscript ↵, defining

C
↵ as subsets of @⌦ such that

S
↵ C

↵ = @⌦ and two adjacent segments meet at one point.
Let us call it a corner point. Then C

↵ denotes the smooth segment between beginning and
ending corner points C↵

0 and C
↵
1 , respectively (see Fig. 1b).

The integrals inherit the summation convention too, i.e.,

(ui, vi)X =
dX

i=1

(ui, vi)X , (4)

where X is either ⌦ or @⌦. The summation convention applies only to the following indices:
i, j, k and their uppercase counterparts.

Boldface font is used for vectors u, whose elements approximate some scalar field eval-
uated on the grid, and similarly for vector and tensor fields. We will later define discrete
inner products and use the summation convention in the discrete setting too, so that

(ui,vi) =
dX

i=1

(ui,vi), (5)

3

Electronic copy available at: https://ssrn.com/abstract=4147169



for example. For all spatially variable coefficients, the same symbol will be used in the
discrete case, too, which then is understood to denote a diagonal matrix with the values
of that coefficient on the diagonal. We regard the outward unit normal and unit tangent
vectors as variable coefficients that take non-zero values only at boundary points. In the
discrete space, the values of these unit vectors at the corner and edge points vary depending
on context. When integrating over a face, these values are understood to denote the unit
normal and the unit tangent to that face even at edge and corner points. The surface area
element inherits the same convention.

Finally, let W and � be subsets of L2(⌦), where W and � are the primal and the dual
spaces, respectively. The adjoint L† : � ! L

2(⌦) of a linear operator L : W ! L
2(⌦)

satisfies

(�,Lw)⌦ =
�
L†
�, w

�
⌦

8w 2 W ,� 2 �. (6)

The operator L is said to be self-adjoint if L† = L, which implies that � = W [30].

3. Equations of pure bending of plates

Let { ~EI} denote an orthonormal basis in Rd, ~X = XI
~EI and @I = @/@XI . In this

study, we consider ⌦ ⇢ R2, a bounded domain with outward unit normal N̂ = nI
~EI and

counter-clockwise unit tangent T̂ = ⌧I
~EI to the boundary @⌦.

The governing equations for dynamic, pure bending of plates in the absence of body
forces and boundary forcing are (Chapter 3 in [29])

mẅ � @J@IMIJw = 0, ~X 2 ⌦, t � 0, (7a)

Lw = 0, ~X 2 @⌦, t � 0. (7b)

where the moments are given by the operator

MIJ = �⌫B�IJ@K@K � (1� ⌫)B@I@J , (8)

�IJ is the Kronecker delta, w( ~X, t) is the vertical displacement, m( ~X) is mass per unit area
(vertically integrated plate density), B( ~X) is the bending stiffness, ⌫( ~X) is Poisson’s ratio,
and the linear operator L represents well-posed boundary conditions.

3.1. Weak form and energy balance

Multiplying (7a) by  and integrating over ⌦ gives us

(m , ẅ)⌦ � ( , @J@IMIJw)⌦ = 0. (9)

Integrating the second term by parts yields

( , @J@IMIJw)⌦ = ( , nJ@IMIJw)@⌦ � (nI@J ,MIJw)@⌦ + (@I@J ,MIJw)⌦ , (10)
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where the boundary terms are

BT = ( , nJ@IMIJw)@⌦ � (nI@J ,MIJw)@⌦ . (11)

We rewrite the last boundary integral by separating derivatives in the normal and tangential
directions using

@J = nJnK@K + ⌧J⌧K@K , (12)

such that

(nI@J ,MIJw)@⌦ = (@J , nIMIJw)@⌦
= (nJnK@K , nIMIJw)@⌦ + (⌧J⌧K@K , nIMIJw)@⌦
= (nK@K , nJnIMIJw)@⌦ + (⌧K@K , ⌧JnIMIJw)@⌦ .

(13)

(a) Cross-sectional view of the ice shelf-ocean water
domain

(b) Corner condition is enforced when the two nor-
mal vectors at a point belonging to two boundary
segments are not equal: N̂C1

1
6= N̂C0

2
. Note that the

direction of integration is counter-clockwise.

Figure 1: Cross-sectional view of the domain and treatment of corner conditions

For the second term in (13), integrating by parts over a smooth segment C of @⌦ having
corner points C0 and C1 yields

(⌧K@K , ⌧JnIMIJw)C = [ ⌧JnIMIJw]
C1

C0
� ( , ⌧K@K⌧JnIMIJw)C . (14)
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Note that whenever we have a normal (or a tangent) that has two different directions at
a given point when approached from opposite directions along the boundary, that point is
considered a corner. Combining all boundary terms, (11) becomes

BT = ( , nJ@IMIJw + ⌧K@K⌧JnIMIJw)@⌦ � (nI@I , nJnIMIJw)@⌦ �
X

↵

[ ⌧JnIMIJw]
C↵

1
C↵

0
.

(15)

Notation is further simplified by defining the normal bending moment operator,

Mnn = nJnIMIJ , (16)

tangential bending moment operator,

M⌧n = ⌧JnIMIJ , (17)

and shear force operator,
Vn = nJ@IMIJ + ⌧I@IM⌧n. (18)

With this notation, we write the weak form as

(m , ẅ)⌦ + (@I@J ,�MIJw)⌦ = ( , Vnw)@⌦ � (nI@I ,Mnnw)@⌦ �
X

↵

[ M⌧nw]
C↵

1
C↵

0
. (19)

Finally, the mechanical energy balance is obtained by setting  = ẇ in (19):

(mẇ, ẅ)⌦ + (@I@Jẇ,�MIJw)⌦ = (ẇ, Vnw)@⌦ � (nI@Iẇ,Mnnw)@⌦ �
X

↵

[ẇM⌧nw]
C↵

1
C↵

0
. (20)

We identify the left side of (20) as the rate of change of the mechanical energy of the plate
E , defined as the sum of kinetic energy and elastic strain energy:

E =
1

2
[(ẇ,mẇ)⌦ + (@I@Jw,�MIJw)⌦] . (21)

This follows from

(@I@Jẇ,�MIJw)⌦ = (@I@Iẇ, ⌫B@J@Jw)⌦ + (@I@Jẇ, (1� ⌫)B@I@Jw)⌦

=
1

2

d

dt
[(@I@Iw, ⌫B@J@Jw)⌦ + (@I@Jw, (1� ⌫)B@I@Jw)⌦]

=
1

2

d

dt
[(@I@Jw, ⌫B�IJ@K@Kw)⌦ + (@I@Jw, (1� ⌫)B@I@Jw)⌦]

=
1

2

d

dt
(@I@Jw,�MIJw)⌦ .

(22)

Here (@I@Jw,�MIJw)⌦ is non-negative for the typical conditions 0  ⌫  1/2 and B � 0
[19]. Thus we write (20) as

dE
dt

= BT, (23)
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where the boundary terms correspond to the power, or rate of work, during deformation
against the shear force and moments on the boundary and corners:

BT = (ẇ, Vnw)@⌦ � (nI@Iẇ,Mnnw)@⌦ �
X

↵

[ẇM⌧nw]
C↵

1
C↵

0
. (24)

Standard boundary conditions include homogeneous clamped boundary conditions, [29]

w = 0, ~X 2 @⌦, t � 0, (25a)

nI@Iw = 0, ~X 2 @⌦, t � 0, (25b)

as well as free boundary conditions [14] together with corner conditions [17]

Mnnw = 0, ~X 2 @⌦, t � 0, (26a)

Vnw = 0, ~X 2 @⌦, t � 0, (26b)

M⌧nw

���
~X=C↵

i

= 0, 8↵ and i 2 {0, 1}, t � 0 (26c)

both of which yield energy conservation and are considered of our work. Other boundary
and corner conditions are possible [29], and the numerical treatment of these cases can be
deduced from the clamped and free boundary condition cases that we examine in this work.

3.2. Coordinate transformation

Let {~ei} denote an orthogonal basis in R2 and let ~x = xi~ei. We introduce a smooth one-
to-one mapping XI = XI(x1, x2) from the reference (or computational) domain ! = [0, 1]2

to the physical domain ⌦ (see Fig. 2). From here on, we will use uppercase letters for the
quantities in the physical domain and lowercase letters for corresponding quantities in the
reference domain. Define @i = @/@xi and the transformation gradient

Figure 2: Schematic of the physical domain ⌦ and the reference domain !, modified from [2].
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by the chain rule,

@I = FIi@i. (27)

Further, let

J = det
⇥�
F

�1
�
iI

⇤
(28)

be the Jacobian determinant of the mapping from ! to ⌦, with J > 0. Recall the following
metric identity [35]

JFIi@i = @iJFIi. (29)

The covariant basis vectors ~ai are

~ai = @i
~X = @iXI

~EI =
�
F

�1
�
iI
~EI . (30)

3.2.1. Integrals and normals

We have d⌦ = Jd!, since Jd! is the area element. Thus,

(u, v)⌦ = (u, Jv)!. (31)

Similarly, we let Ĵ denote the arc length scale factor so that

(u, v)@⌦ =
⇣
u, Ĵv

⌘

@!
. (32)

In two space dimensions the surface area scale factor Ĵ is related to the covariant basis
vectors ~ai as follows:

Ĵ = |~ai| , xj 2 {0, 1}, i, j cyclic. (33)

The normals N̂ = nI
~EI and n̂ = ni~ei are related by Nanson’s formula [19],

ĴnI = JFIini. (34)

Similarly, the tangents T̂ = ⌧I
~EI and ⌧̂ = ⌧i~ei satisfy

Ĵ⌧I = JFIi⌧i. (35)

3.3. Numerical approximation of the transformation gradient

In this subsection we provide a brief comment on numerical treatment of derivatives
involved in the mapping. An approximation F

Ii
⇡ F Ii of the transformation gradient can

be computed by applying difference approximations on the same grid used to solve the PDE.
When this is done, F

Ii
must be computed to the same order of accuracy or higher as the

difference operators used to discretize the PDEs in order to retain the order of accuracy of
overall scheme. For all our numerical experiments in this paper, we compute F

Ii
using the

first-derivative SBP operators of the same order as we use to solve the PDEs, which means
that F

Ii
is computed to order q and 2q near boundaries and in the interior, respectively.

Note that Nanson’s formula (34) is identical for approximated quantities, because we used
Nanson’s formula to define n̂. As long as the resulting Jacobian determinant is positive, we
conclude that F

Ii
can be computed with any sufficiently accurate method. Thus, with a

bit of notation abuse, we drop the underline notation and use the non-underline notation
interchangeably between continuous and discrete settings, as in [1].
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4. Summation-by-parts operators

The notations in this section closely follow [2]. Only diagonal-norm SBP operators are
considered here. Hence, the norm matrix Px has the following structure

PX = diag(p1, p2, . . . , p2, p1), (36)

where pi, 8i are proportional to the grid spacing�x in the reference domain. DefineDX ⇡ @X
as a first-derivative SBP operator. It has the SBP property

PXDX = �D
T
XPX � e0e

T
0 + eNe

T
N , (37)

where

e0 =
⇥
1 0 . . . 0

⇤T
, eN =

⇥
0 . . . 0 1

⇤T
. (38)

4.1. Two-dimensional first-derivative operators

As in [2], let operators with subscripts Xi denote one-dimensional operators which cor-
respond to coordinate direction Xi. The multidimensional first derivatives Di ⇡ @i are
constructed using tensor products:

Di = IX1 ⌦DXi or Di = DXi ⌦ IXd
, (39)

where IXi , 8i are one-dimensional identity matrices of appropriate sizes. In analogy with
the chain rule (27) and the metric identities, we define

@I ⇡ DI = FIiDi (40)

and

@I ⇡ eDI = J
�1
DiJFIi. (41)

In the discrete setting, FIi should be interpreted as a diagonal matrix with the grid point
values of the continuous FIi for each fixed indices of I and i. Similarly, Di is a matrix for
each fixed i. Thus, the implied summation in FIiDi is an addition operator in RN⇥N , where
N denotes total number of grid points.

We also define two-dimensional normal and tangential first derivative operators on ref-
erence

Dn = niDi, D⌧ = ⌧iDi (42)

and on physical

DN = nIDI , DT = ⌧IDI (43)

domains. Now using the fact that

�IJ = nInJ + ⌧I⌧J , (44)
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we can state the following

DI = nInJDJ + ⌧I⌧JDJ = nIDN + ⌧IDT , (45)

which is a discrete equivalent of (12). The two-dimensional quadrature is

P = PX1 ⌦ PXd
, (46)

and we define

(u,v)! = uT
Pv (47)

for discrete integration over the reference domain !. Next, for integration over boundary
faces, denote @!�

i and @!+
i to be the boundary faces where xi = 0 and xi = 1, respectively.

Now define

P@!i = PX1 ⌦ · · ·⌦ PXi�1 ⌦ PXi+1 ⌦ · · ·⌦ PXd
. (48)

P@!i could be used to integrate over both @!+
i and @!�

i . The same inner product notation is
used as in the continuous case, without risk of confusion because the boldface font denotes
discrete solution vectors.

Let eTf be a restriction operator that selects only those solution values that reside on the
face f . For integration over f , we write

(u,v)f =
�
e
T
f u
�T

Pf

�
e
T
f v
�
. (49)

For integration over the entire boundary @! we define

(u,v)@! =
X

f⇢@!

(u,v)f . (50)

This means that the integration is performed over one face at a time. Similarly as in (31)
and (32), let us define

(u,v)⌦ = (u, Jv)! (51)

and

(u,v)@⌦ =
⇣
u, Ĵv

⌘

@!
. (52)

With the above notations, we have the summation-by-parts formula

(u, Div)! = (u, niv)@! � (Diu,v)! . (53)

Let us establish a relation between DI and eDI .
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Lemma 1. DI and eDI have the following summation-by-parts property:

⇣
u, eDIv

⌘

⌦
= (u, nIv)@⌦ � (DIu,v)⌦ . (54)

Proof.

⇣
u, eDIv

⌘

⌦
=
�
u, J�1

DiJFIiv
�
⌦
=
�
u, JJ�1

DiJFIiv
�
!

= (u, DiJFIiv)! (use (53))
= (u, niJFIiv)@! � (Diu, JFIiv)! (use (34))

=
⇣
u, ĴnIv

⌘

@!
� (Diu, JFIiv)!

=
⇣
u, ĴnIv

⌘

@!
� (FIiDiu, Jv)!

= (u, nIv)@⌦ � (DIu, Jv)!
= (u, nIv)@⌦ � (DIu,v)⌦ .

Finally, let us introduce a summation-by-parts formula in a boundary integral involving
the tangential derivatives:

(u, DTv)@⌦ =
⇣
u, ĴDT

⌘

@!
= (u, Dtv)@! =

X

↵

uT

✓
v
���
C↵

1

C↵
0

◆
� (Dtu,v)@!

=
X

↵

uT

✓
v
���
C↵

1

C↵
0

◆
� (DTu,v)@⌦ ,

(55)

where v
���
C↵

C↵
0

is a zero vector with non-zero values �v(C↵
0 ) and v(C↵

1 ) at the corner points C↵
0

and C
↵
1 , respectively.

5. Multiblock SBP operators

The above concepts and notations can be extended to multiple grid blocks coupled across
internal interfaces, across which the Jacobian J and the transformation gradient FIi may be
discontinuous. We restrict attention to conforming meshes having collocated grid points on
the two sides of the interface.

Let � denote the interface between two domains ⌦u and ⌦v, and let ⌦ = ⌦u [ ⌦v. Let

w =


u
v

�
,  =


�
�

�
, (56)

denote grid functions with the top and bottom blocks corresponding to ⌦u and ⌦v, respec-
tively. Define the two-block operators

DIw =

2

4
D

u
Iu� 1

2 (J
u
P

u)�1
e
u
�n

u
I ĴP�

⇣
(eu�)

T u� (ev�)
T v
⌘

D
v
Iv � 1

2 (J
v
P

v)�1
e
v
�n

v
I ĴP�

⇣
(ev�)

T v � (eu�)
T u
⌘

3

5 (57)
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and

eDIw =

2

4
eDu
Iu� 1

2 (J
u
P

u)�1
e
u
�n

u
I ĴP�

⇣
(eu�)

T u� (ev�)
T v
⌘

eDv
Iv � 1

2 (J
v
P

v)�1
e
v
�n

v
I ĴP�

⇣
(ev�)

T v � (eu�)
T u
⌘

3

5 (58)

If w is continuous across �, then DIw is a consistent approximation of @Iw in all of ⌦. If,
additionally, @Iw is continuous across �, then DIw is continuous to the order of accuracy of
the underlying finite difference operators. The same is true for eDIw.

Lemma 2. The multi-block operators DI and eDI satisfy the following summation-by-parts

formula on the multi-block domain ⌦.

( ,DIw)⌦ = ( , nIw)@⌦ �
⇣
 , eDIw

⌘

⌦
. (59)

Proof. The proof is shown for two blocks, but can immediately be extended to arbitrarily
many blocks. By the definitions of DI and eDI , we have

( ,DIw)⌦ = (�, Du
Iu)⌦u

� 1

2
(nu

I�,u� v)� + (�, Dv
Iv)⌦v

� 1

2
(nv

I�,v � u)� (60)

and
⇣
eDI ,w

⌘

⌦
=
⇣
eDu
I�,u

⌘

⌦u

� 1

2
(nu

Iu,�� �)� +
⇣
eDv
I�,v

⌘

⌦v

� 1

2
(nv

Iv,�� �)� . (61)

Using the SBP properties of the single-block operators (54) Du,v
I yields

( ,DIw)⌦ =�
⇣
eDu
I�,u

⌘

⌦u

+ (nu
I�,u)�u

+ (nu
I�,u)� �

1

2
(nu

I�,u� v)�

�
⇣
eDv
I�,v

⌘

⌦v

+ (nv
I�,v)�v

+ (nv
I�,v)� �

1

2
(nv

I�,v � u)� ,
(62)

where �u = @⌦u \ � and �v = @⌦v \ �. The discrete surface integral over @⌦ is defined as
the sum of the corresponding integrals over �u and �v so that, by definition,

(nI ,w)@⌦ = (nu
I�,u)�u

+ (nv
I�,v)�v

. (63)

It follows that

( ,DIw)⌦ = (nI ,w)@⌦ �
⇣
eDu
I�,u

⌘

⌦u

+ (nu
I�,u)� �

1

2
(nu

I�,u� v)�

�
⇣
eDv
I�,v

⌘

⌦v

+ (nv
I�,v)� �

1

2
(nv

I�,v � u)�

= (nI ,w)@⌦ �
⇣
eDu
I�,u

⌘

⌦u

+
1

2
(u, nu

I�+ n
v
I�)�

�
⇣
eDv
I�,v

⌘

⌦v

+
1

2
(v, nv

I�+ n
u
I�)� .

(64)
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We compute the numerical approximation of the transformation gradient so that nu
I = �n

v
I

holds exactly in the discrete setting. Using this, we obtain

( ,DIw)⌦ = (nI ,w)@⌦ �
⇣
eDu
I�,u

⌘

⌦u

+
1

2
(nu

Iu,�� �)�

�
⇣
eDv
I�,v

⌘

⌦v

+
1

2
(nv

Iv,�� �)�

= (nI ,w)@⌦ �
⇣
eDI ,w

⌘

⌦
.

(65)

From now on, we will use blackboard bold typeface, e.g. D, to define discrete differential
operators.

5.1. The discrete plate operator

We define the following discrete versions of plate, moment, normal bending moment,
tangential bending moment, and shear force operators as

D4 = �D2⌫BD2 � eDJ
eDI(1� ⌫)BDIDJ , (66)

MIJ = �⌫B�IJD2 � (1� ⌫)BDIDJ , (67)

Mnn = nJnIMIJ , (68)

M⌧n = ⌧JnIMIJ (69)

and

Vn = �nJDI⌫B�IJD2 � nJ
eDI(1� ⌫)BDIDJ + DT ⌧JnIMIJ , (70)

respectively. The second-derivatives @I@I can be approximated using both wide, DIDI , and
narrow-stencil, D2, operators. We use the narrow-stencil second-derivative operator because
it is more accurate and robust than the wide-stencil approximations [21].

In order to obtain summation-by-parts formulas for the physical domain, let us restate
the formula from equation (110) from [2]:

(u,D2v)⌦ = (u, nIDIv)@⌦ � (nIDIu,v)@⌦ + (D2u,v)⌦ , (71)

where D2 is a narrow-stencil SBP operator for @I@I . Now we can construct a finite difference
operator that approximates the plate operator @J@IMIJ on the physical domain. First, let
us rewrite @J@IMIJ

@J@IMIJ = �@J@J⌫B@I@I � @J@I(1� ⌫)B@I@J . (72)
13
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Theorem 3. The discrete plate operator D4 satisfies the summation-by-parts formula

(u,D4v)⌦ =� (D2u, ⌫BD2v)⌦ � (DIDJu, (1� ⌫)BDIDJv)⌦

+ (u,Vnv)@⌦ � (DNu,Mnnv)@⌦ �
X

↵

uT

✓
M⌧nv

���
C↵

1

C↵
0

◆
.

(73)

Proof. First, using (71), we obtain

(u,D2⌫BD2v)⌦ = (D2u, ⌫BD2v)⌦ + (u, nIDI⌫BD2v)@⌦ � (nIDIu, ⌫BD2v)@⌦ . (74)

Second, we have
⇣
u, eDJ

eDI(1� ⌫)BDIDJv
⌘

⌦
(use (59))

=
⇣
u, nJ

eDI(1� ⌫)BDIDJv
⌘

@⌦
�
⇣
DJu, eDI(1� ⌫)BDIDJv

⌘

⌦
(use (59))

= (DIDJu, (1� ⌫)BDIDJv)⌦ +
⇣
u, nJ

eDI(1� ⌫)BDIDJv
⌘

@⌦

� (DJu, nI(1� ⌫)BDIDJv)@⌦ .

(75)

Let us focus on the last term. Now using (45), we have

(DJu, nI(1� ⌫)BDIDJv)@⌦ = ([nJDN + ⌧JDT ]u, nI(1� ⌫)BDIDJv)@⌦
= (DNu, nJnI(1� ⌫)BDIDJv)@⌦ + (⌧JDTu, nI(1� ⌫)BDIDJv)@⌦
= (DNu, nJnI(1� ⌫)BDIDJv)@⌦ + (DTu, ⌧JnI(1� ⌫)BDIDJv)@⌦ (use (55))
= (DNu, nJnI(1� ⌫)BDIDJv)@⌦ � (u,DT ⌧JnI(1� ⌫)BDIDJv)@⌦

+
X

↵

uT

✓
⌧JnI(1� ⌫)BDIDJv

���
C↵

1

C↵
0

◆
.

(76)
Knowing that ⌧InI = 0 and nInI = 1, we rewrite operators (68), (69), and (70) as

Mnn = nJnIMIJ = �nJnI⌫B�IJD2 � nJnI(1� ⌫)BDIDJ = �⌫BD2 � nJnI(1� ⌫)BDIDJ ,

(77)
M⌧n = ⌧JnIMIJ = �⌧JnI⌫B�IJD2 � ⌧JnI(1� ⌫)BDIDJ = �⌧JnI(1� ⌫)BDIDJ , (78)

and

Vn = �nJDI⌫B�IJD2 � nJ
eDI(1� ⌫)BDIDJ + DT ⌧JnIMIJ

= �nIDI⌫BD2 � nJ
eDI(1� ⌫)BDIDJ � DT ⌧JnI⌫B�IJD2 � DT ⌧JnI(1� ⌫)BDIDJ

= �nIDI⌫BD2 � nJ
eDI(1� ⌫)BDIDJ � DT ⌧JnI(1� ⌫)BDIDJ ,

(79)

respectively. Finally, substituting (76) into (75) and adding (75) to (74) and using equations
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(77), (78), and (79), we obtain

(u,D4v)⌦
=� (D2u, ⌫BD2v)⌦ � (DIDJu, (1� ⌫)BDIDJv)⌦
+ (DNu, ⌫BD2v)@⌦ + (DNu, nJnI(1� ⌫)BDIDJv)@⌦

� (u, nIDI⌫BD2v)@⌦ �
⇣
u, nJ

eDI(1� ⌫)BDIDJv
⌘

@⌦
� (u,DT ⌧JnI(1� ⌫)BDIDJv)@⌦

+
X

↵

uT

✓
⌧JnI(1� ⌫)BDIDJv

���
C↵

1

C↵
0

◆

=� (D2u, ⌫BD2v)⌦ � (DIDJu, (1� ⌫)BDIDJv)⌦

� (DNu,Mnnv)@⌦ + (u,Vnv)@⌦ �
X

↵

uT

✓
M⌧nv

���
C↵

1

C↵
0

◆
.

6. Energy-stable and self-adjoint boundary SATs for the multiblock plate oper-
ator

We discretize (7a) in space as

mẅ = D4w + SAT, (80)

where the SATs in SAT enforce the boundary conditions and will be derived later. Given
an arbitrary test function �, we obtain the semi-discrete weak form by multiplying (80) by
�T

JP ,
(�,mẅ)⌦ =(�,D4w)⌦ + (�, SAT )⌦ , (81)

and using summation-by-parts (73), we get

(�,mẅ)⌦ =� (D2�, ⌫BD2w)⌦ � (DIDJ�, (1� ⌫)BDIDJw)⌦

� (DN�,Mnnw)@⌦ + (�,Vnw)@⌦ �
X

↵

�T

✓
M⌧nw

���
C↵

1

C↵
0

◆
+ (�, SAT )⌦ .

(82)

Define the inner product
M (�,w) = (�,mw)⌦ , (83)

the symmetric positive semidefinite bilinear form

K (�,w) = (D2�, ⌫BD2w)⌦ + (DIDJ�, (1� ⌫)BDIDJw)⌦ , (84)

and boundary terms

B1 (�,w) = � (DN�,Mnnw)@⌦ + (�, SAT1)⌦ , (85)
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and
B2 (�,w) = (�,Vnw)@⌦ �

X

↵

�T

✓
M⌧nw

���
C↵

1

C↵
0

◆
+ (�, SAT2)⌦ , (86)

where SAT = SAT1+SAT2. For free boundaries, the SAT1 penalty will enforce the normal
moment boundary condition and the SAT2 penalty will enforce the shear force boundary
condition and corner conditions. For clamped boundaries, SAT1 will enforce the boundary
condition on nI@Iw and the SAT2 penalty will enforce the boundary condition on w. Finally,
by adding we obtain

B (�,w) = B1 (�,w) +B2 (�,w) . (87)

Now we can rewrite the weak form as the following

M (�, ẅ) +K (�,w) = B (�,w) . (88)

We define the semi-discrete total energy

E =
1

2
(ẇ,mẇ)⌦ +

1

2
(D2w, ⌫BD2w)⌦ +

1

2
(DIDJw, (1� ⌫)BDIDJw)⌦

=
1

2
M (ẇ, ẇ) +

1

2
K (w,w) .

(89)

From above, we conclude that the discrete energy E approximates the continuous energy E
as defined in (21). E is a non-negative quantity, which follows from the non-negativity of
M and K. Setting � = ẇ in (88) yields the semi-discrete energy balance

dE

dt
= B(ẇ,w). (90)

Next we discuss the selection of the SAT terms. The general strategy is to select the SAT
terms to provide a consistent approximation of the boundary and corner conditions, while
also requiring that B( ,w) = 0 for homogeneous conditions.

6.1. Free boundary and corner conditions

Consider free boundary conditions,

Mnnw = g, ~X 2 @⌦, t � 0, (91)

Vnw = h, ~X 2 @⌦, t � 0 (92)

and corner conditions on surfaces with free boundary conditions,

M⌧nw

���
~X=C↵

i

= lC↵
i
, 8↵ and i 2 {0, 1}, t � 0. (93)

To enforce (91), we select SAT1 = SATd2, where SATd2 satisfies

(�, SATd2)⌦ = (DN�,Mnnw � g)@⌦ . (94)
16
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Then, for g = 0, we get

B1(�,w) =� (DN�,Mnnw)@⌦ + (DN�,Mnnw)@⌦ = 0, (95)

which is a symmetric bilinear form having the desired property. The relation (94) is equiv-
alent to

SATd2 = (JP )�1
X

f⇢@⌦

nIDIef ĴPfe
T
f (Mnnw � g) . (96)

Next, we enforce (92) and (93) by writing SAT2 = SATd3 + SATcc. We require that SATd3
satisfies

(�, SATd3)⌦ = � (�,Vnw � h)@⌦ , (97)

such that for h = 0, we obtain

B2(�,w) = (�,Vnw)@⌦ � (�,Vnw)@⌦ �
X

↵

�T

✓
M⌧nw

���
C↵

1

C↵
0

◆
+ (�, SATcc)@⌦ . (98)

The relation (97) is equivalent to

SATd3 = �(JP )�1
X

f⇢@⌦

ef ĴPfe
T
f (Vnw � h) . (99)

Finally, we require that SATcc satisfies

(�, SATcc)⌦ =
X

↵

�T

✓�
M⌧nw � lC↵

i

� ���
C↵

1

C↵
0

◆
, (100)

which is equivalent to the corner SAT terms, i.e.,

SATcc = (JP )�1
X

↵

�
M⌧nw � lC↵

i

� ���
C↵

1

C↵
0

. (101)

With these SAT terms, it follows that B2(�,w) vanishes for homogeneous boundary and
corner conditions, as desired.

6.2. Clamped and free boundary conditions

Now consider clamped boundary conditions on @⌦c,

w = p, ~X 2 @⌦c, t � 0, (102)

nI@Iw = q, ~X 2 @⌦c t � 0. (103)

and free boundary conditions (91), (92) on @⌦f = @⌦ \ @⌦c. Energy conservation can be
obtained by imposing homogeneous conditions, e.g. g = h = l = p = q = 0. Recall that the
discrete plate operator, without boundary SATs, is

D4 = �D2⌫BD2 � eDJ
eDI(1� ⌫)BDIDJ . (104)
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After imposing free boundary conditions on all free boundaries, the equation takes the form

mẅ = D4w + Sd2 (Mnnw � g) + Sd3 (Vnw � h) + Scc (M⌧nw � l) . (105)

Gathering terms with w and factorizing yields

mẅ = Df
4w � Sd2g � Sd3h� Sccl, (106)

where
Df

4 = D4 + Sd2Mnn + Sd3Vn + SccM⌧n. (107)
The SATs for free boundary conditions are such that Df

4 satisfies

Df
4 = �Df

2⌫BD2 �
⇣
eDJ
eDI

⌘f
(1� ⌫)BDIDJ , (108)

where Df
2 and

⇣
eDJ
eDI

⌘f
satisfy the following formulas:

⇣
�,Df

2w
⌘

⌦
= (�,DNw)@⌦c � (DN�,w)@⌦c

+ (D2�,w)⌦ , (109)

and
✓
�,
⇣
eDJ
eDI

⌘f
w

◆

⌦

= (�, nJDIw)@⌦c � (DJ�, nIw)@⌦c
+ (DIDJ�,w)⌦ . (110)

We obtain the final operator after adding SATs for clamped boundary conditions:

Dfc
4 = Df

4 + Sc
, (111)

We seek a consistent Sc such that Dfc
4 is symmetric negative semidefinite in the inner product,

i.e., ⇣
�,Dfc

4 w
⌘

⌦
=
⇣
Dfc

4 �,w
⌘

⌦
,

⇣
w,Dfc

4 w
⌘

⌦
 0, (112)

which ensures that the semi-discrete problem preserves a discrete energy (for p = q = 0), and
hence is stable. Determining SAT

c may be arduous, and even for the significantly simpler
beam operator, there is not a unique choice that leads to energy conservation. To identify
a suitable SAT

c, we make the ansatz

Dfc
4 = �Df

2⌫BDc
2 �

⇣
eDJ
eDI

⌘f
(1� ⌫)B (DIDJ)

c
, (113)

where

Dc
2 =

⇣
Df

2

⌘†
, (DIDJ)

c =

✓⇣
eDJ
eDI

⌘f◆†

. (114)

This ansatz guarantees that Dfc
4 is symmetric negative semidefinite, because

⇣
�,Dfc

4 w
⌘

⌦
= �

⇣
�,Df

2⌫BDc
2w
⌘

⌦
�
✓
�,
⇣
eDJ
eDI

⌘f
(1� ⌫)B (DIDJ)

c w

◆

⌦

= � (Dc
2�, ⌫BDc

2w)⌦ � ((DIDJ)
c �, (1� ⌫)B (DIDJ)

c w)⌦ ,

(115)
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and hence the operator Dfc
4 is stable. It remains to show that the corresponding SAT

c is
consistent with clamped boundary conditions. We have

(�, SAT cw)⌦ =
⇣
�,
⇣
Df

4 � Dfc
4

⌘
w
⌘

⌦

=�
⇣
�,Df

2⌫B (D2 � Dc
2)w

⌘

⌦

�
✓
�,
⇣
eDJ
eDI

⌘f
(1� ⌫)B (DIDJ � (DIDJ)

c)w

◆

⌦

=� (⌫BDc
2�, (D2 � Dc

2)w)⌦ � ((1� ⌫)B (DIDJ)
c �, (DIDJ � (DIDJ)

c)w)⌦ .

(116)
To proceed, note that

(�,Dc
2w)⌦ =

✓
�,
⇣
Df

2

⌘†
w

◆

⌦

= �(�,DNw)@⌦c + (DN�,w)@⌦c
+ (�,D2w)⌦ , (117)

and

(�, (DJDI)
c w)⌦ =

 
�,

✓⇣
eDJ
eDI

⌘f◆†

w

!

⌦

= (nJDI�,w)@⌦c � (nI�,DJw)@⌦c

+ (�,DIDJw)⌦ .

(118)

Using (117) and (118) in (116) yields

(�, SAT cw)⌦ =� (⌫BDc
2�,DNw)@⌦c

+ (DN⌫BDc
2�,w)@⌦c

+ (nJDI(1� ⌫)B (DIDJ)
c �,w)@⌦c

� (nI(1� ⌫)B (DIDJ)
c �,DJw)@⌦c

.

(119)
Recall the formula

(�,DIw)� = (�, nIDN + ⌧IDTw)� = (�, nIDNw)� +
X

↵

�T
⌧I

✓
w
���
C↵

1

C↵
0

◆
� (DT ⌧I�,w)� .

(120)
The last term on the right-hand side of (119) can be re-written as

� (nI(1� ⌫)B (DIDJ)
c �,DJw)@⌦c

=�
X

↵

(nI(1� ⌫)B (DIDJ)
c �)T ⌧J

✓
w
���
C↵

1

C↵
0

◆

+ (DT ⌧JnI(1� ⌫)B (DIDJ)
c �,w)@⌦c

� (nJnI(1� ⌫)B (DIDJ)
c �,DNw)@⌦c

.

(121)

We obtain
(�, SAT cw)⌦ =� (⌫BDc

2�,DNw)@⌦c
+ (DN⌫BDc

2�,w)@⌦c

+ (nJDI(1� ⌫)B (DIDJ)
c �,w)@⌦c

�
X

↵

(nI(1� ⌫)B (DIDJ)
c �)T ⌧J

✓
w
���
C↵

1

C↵
0

◆

+ (DT ⌧JnI(1� ⌫)B (DIDJ)
c �,w)@⌦c

� (nJnI(1� ⌫)B (DIDJ)
c �,DNw)@⌦c

.

(122)
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Gathering terms leads to
(�, SAT cw)⌦ =� ((⌫BDc

2 + nJnI(1� ⌫)B (DIDJ)
c)�,DNw)@⌦c

+ ((DN⌫BDc
2 + (nJDI + DT ⌧JnI)(1� ⌫)B (DIDJ)

c)�,w)@⌦c

�
X

↵

(nI(1� ⌫)B (DIDJ)
c �)T ⌧J

✓
w
���
C↵

1

C↵
0

◆
.

(123)

This shows that SAT c is consistent with clamped boundary conditions and SAT
c = SATd1+

SATe, where, for inhomogeneous conditions,

SATd1 =�
X

f⇢@⌦c

h
(Dc

2)
T
⌫BP

�1
ef ĴPfe

T
f

i
(DNw � h)

+
X

f⇢@⌦c

h
((DIDJ)

c)T P
�1(1� ⌫)Bef ĴPfe

T
f nInJ

i
(DNw � h)

(124)

and

SATe =
X

f⇢@⌦

h
(Dc

2)
T
⌫BP

�1DNef ĴPfe
T
f

i
(w � g)

+
X

f⇢@⌦

((DIDJ)
c)T P

�1(1� ⌫)B
⇣
DIef ĴPfe

T
f nJ + nI⌧JDT

T ef ĴPfe
T
f

⌘
(w � g)

�
X

↵

((DIDJ)
c)T P

�1(1� ⌫)BnT ⌧J

✓
(w � g)

���
C↵

1

C↵
0

◆
.

(125)
Note that the summation over ↵ here is performed on clamped boundary segments only.

6.3. Self-adjointness

In PDE-constrained optimization problems the adjoint of the discrete operator plays an
important role. Computing the gradient of the objective functional usually requires the
adjoint state method. Our objective in this subsection is to prove that the discrete plate
operator is self-adjoint, just like its corresponding continuous operator. As a consequence
of this property, one can use the same solver for both the forward and adjoint problems and
obtain the exact gradient of a discrete objective functional up to roundoff error (given that
the time-discretization is also self-adjoint).

Here we consider the plate operator D4 = @J@IMIJ . The domain of D4 is unspecified for
now. We define the space of admissible functions

W =
�
w 2 L

2(⌦)
��D4w 2 L

2(⌦)
 
. (126)

Furthermore, we assume that w satisfies either free boundary and corner conditions ((91),
(92), (93)) or clamped boundary conditions ((102), (103)). Let WF and WC denote the
corresponding spaces:

WF =
n
w 2 W

���Mnnw = 0, Vnw = 0 on @⌦,M⌧nw

���
~X=C↵

i

= 0, 8↵ and i 2 {0, 1}
o
,

WC =
n
w 2 W

���w = 0, nI@Iw = 0 on @⌦
o
.

(127)
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Integration by parts (73) yields

(�,D4w)⌦ = (�, Vnw)@⌦ � (Dn�,Mnnw)@⌦ �
X

↵

�M⌧nw

���
C↵

1

C↵
0

� (D2�, ⌫BD2w)⌦ � (DIDJ�, (1� ⌫)BDIDJw)⌦
=� (D2�, ⌫BD2w)⌦ � (DIDJ�, (1� ⌫)BDIDJw)⌦
=� (⌫BD2�,D2w)⌦ � ((1� ⌫)BDIDJ�,DIDJw)⌦
= (D4�, w)⌦ 8w,� 2 WF or 8w,� 2 WC ,

(128)
which shows that D4 is self-adjoint both with domain WF (free with corner conditions) and
with domain WC (clamped conditions).

We now consider the total discrete elastic operator, including SATs. Assuming homoge-
neous boundary and corner conditions, we can define S such that

SAT = Sw, (129)

and the total discrete operator is

Dtot
4 = D4 + S. (130)

Theorem 4. The total discrete elastic operator, including SATs for free with corner or

clamped boundary conditions, is self-adjoint, i.e.,

�
�,Dtot

4 w
�
⌦
=
�
Dtot

4 �,w
�
⌦

8�,w. (131)

Proof. First, consider the case with free boundary conditions. In deriving the weak form
(88), we showed that

�
�,Dtot

4 w
�
⌦
= �K (�,w) +B (�,w) , (132)

where K is symmetric and B is symmetric both in the case of free boundary and corner
conditions (cf. (95), (98)) Hence, we have

�
�,Dtot

4 w
�
⌦
= �K (�,w) +B (�,w) = �K (w,�) +B (w,�) =

�
w,Dtot

4 �
�
⌦
. (133)

The result follows after using the symmetry of (·, ·)⌦.
As for mixed clamped and free boundary conditions, the operator is self-adjoint by

construction (cf. (112)).

7. Ice shelf covered ocean model

In this section, we couple the plate equation with the shallow water equation. In this
study, we consider a 2D domain ⌦ as in Fig. 3. The governing equations are
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ẇ + @IH@I� = 0, ~X 2 ⌦, t � 0, (134a)

mẅ � @J@IMIJw = �⇢w(�̇+ gw), ~X 2 ⌦, t � 0, (134b)

nI@I� = 0, ~X 2 @⌦, t � 0, (134c)

w = 0, ~X 2 @⌦E [ @⌦N , t � 0, (134d)

nI@Iw = 0, ~X 2 @⌦E [ @⌦N , t � 0, (134e)

Mnnw = 0, ~X 2 @⌦W [ @⌦S, t � 0, (134f)

Vnw = 0, ~X 2 @⌦W [ @⌦S, t � 0, (134g)

M⌧nw = 0, ~X 2 {SE,NW} t � 0, (134h)

in which �( ~X, t) is the velocity potential, H( ~X) is the water depth, ⇢w is the water density,
and g is the gravitational acceleration. From the velocity potential, we can calculate hori-
zontal particle velocities as @I� and pressure perturbation as �⇢w�̇. Thus (134a) expresses
depth-integrated conservation of mass for the incompressible water and the right side of
(134b) sets the vertical load applied to the plate equal to the wave-induced pressure pertur-
bation, including a term (⇢wgw) corresponding to hydrostatic pressure change induced by
vertical displacement of the water surface.

Figure 3: Domain and grid configuration

7.1. Continuous problem weak form and energy balance

The weak formulation for the shallow water equation is obtained by multiplying (134a)
by ⇢w�, integrating over ⌦, and integrating by parts:

(⇢w�, ẇ)⌦ = � (⇢w�, @IH@I�)⌦
= (⇢w@I�, H@I�)⌦ � (⇢w�, HnI@I�)@⌦ .

(135)
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We define the kinetic energy of the water as

EW =
1

2
(@I�, ⇢wH@I�)⌦ , (136)

which allows us to set � = �̇ in (135) to obtain the energy balance of the water:

dEW
dt

=
⇣
⇢w�̇, ẇ

⌘

⌦
+
⇣
nI@I�, ⇢wH�̇

⌘

@⌦
. (137)

Next, taking the inner product of (134b) with  and using integration-by-parts as in (19),
we obtain the weak form:

(m , ẅ)⌦ + (@I@J ,�MIJw)⌦ + ( , ⇢wgw)⌦ = ( , Vnw)@⌦ � (nI@I ,Mnnw)@⌦

�
X

↵

[ M⌧nw]
C↵

1
C↵

0

�
⇣
 , ⇢w�̇

⌘

⌦
.

(138)

Then we set  = ẇ and using (21), we obtain the plate energy balance

dE
dt

+ (ẇ, ⇢wgw)⌦ = �
⇣
ẇ, ⇢w�̇

⌘

⌦
. (139)

We then define the total energy of the system as the sum of E (the kinetic and strain energy
of the plate), the kinetic energy of the water EW , and the gravitational potential energy:

Etot = E + EW +
1

2
(w, ⇢wgw)⌦ . (140)

and combining the previous equations shows that total energy is conserved:

dEtot
dt

= 0. (141)

7.2. Discretization

We discretize (134a) and (134b) as

ẇ = �D2(H)�+ SAT�, (142a)
mẅ + ⇢w�̇ = D4w � ⇢wgw + SATw. (142b)

As in section 6, the weak form is obtained by multiplying (142a) by ⇢w�T
JP :

(⇢w�̇, ẇ)⌦ = � (⇢w�̇,D2(H)�)⌦ + (⇢w�, SAT�)⌦

= (DI�̇, ⇢wHDI�)⌦ �
⇣
nIDI�, ⇢wH�̇

⌘

@⌦
+ (⇢w�, SAT�)⌦

(143)
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and by multiplying (142b) by  T
JP :

(m , ẅ)⌦ +
⇣
 , ⇢w�̇

⌘

⌦
= ( ,D4w)⌦ � ( , ⇢wgw)⌦ + ( , SATw)⌦

=� (D2 , ⌫BD2w)⌦ � (DIDJ , (1� ⌫)BDIDJw)⌦ � ( , ⇢wgw)⌦

+ ( ,Vnw)@⌦ � (DN ,Mnnw)@⌦ �
X

↵

 T

✓
M⌧nw

���
C↵

1

C↵
0

◆

+ ( , SATw)⌦ .

(144)
To obtain the energy balance for the semi-discrete problem, set � = � in (143):

1

2

d

dt
(DI�, ⇢wHDI�)⌦ =

⇣
⇢w�̇, ẇ

⌘

⌦
+ BT1 (145)

and  = ẇ in (144):

1

2

d

dt
[(D2w, ⌫BD2w)⌦ + (DIDJw, (1� ⌫)BDIDJw)⌦ + (w, ⇢wgw)⌦ + (mẇ, ẇ)⌦]

= �
⇣
ẇ, ⇢w�̇

⌘

⌦
+ BT2,

(146)

and add:

1

2

d

dt
E = BT1 + BT2 = BT, (147)

where the discrete total energy is

E =
1

2
[(DI�, ⇢wHDI�)⌦ + (w, ⇢wgw)⌦ + (mẇ, ẇ)⌦]

+
1

2
[(D2w, ⌫BD2w)⌦ + (DIDJw, (1� ⌫)BDIDJw)⌦]

(148)

and boundary terms

BT =�
⇣
nIDI�, ⇢wH�̇

⌘

@⌦
+ (⇢w�, SAT�)⌦

+ (ẇ,Vnw)@⌦ � (DNẇ,Mnnw)@⌦ �
X

↵

ẇT

✓
M⌧nw

���
C↵

1

C↵
0

◆
+ (ẇ, SATw)⌦ .

(149)

Now, let us reinstate the total operators that incorporate SBP-SAT boundary terms

Dtot
4 w = D4w + Sww = D4w + SATw (150)

and

Dtot
2 � = D2�+ S� = D2�+ SAT�. (151)
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Using the total operators, insert (142a) into (142b)

ẇ = �Dtot
2 (H)�,

�mDtot
2 (H)�̇+ ⇢w�̇ = Dtot

4 w � ⇢wgw.
(152)

The semi-discrete system can be written as

I

(�mDtot
2 (H) + ⇢wI)

� 
w
�

�

t

=


�Dtot

2 (H)
Dtot

4 � ⇢wgI

� 
w
�

�
. (153)

We will be solving (153).

8. Numerical experiments

This section consists of two numerical experiments. First, the method of manufactured
solutions is used to assess the global convergence rates of the new SBP-SAT schemes, im-
plemented using Mattson’s variable coefficient SBP operators [21]. Second, we solve an
application problem inspired by ocean wave interaction with ice shelves off the coast of
West Antarctica. For both experiments we use a system of self-consistent units (Table 1)
such that the discretization matrices are not ill-conditioned.

Field Units
x, y 103 m
w m
t s
� 103 m2/s

H, h 103 m
⇢i, ⇢w 103 kg/m3

m 106 kg/m2

g 103 m/s2
B 1018 Pa m3

p MPa

Since the system of equations (153) is very stiff, it is beneficial to use an implicit time-
integration method. We here opt for the second-order Crank-Nicolson method. Even though
the method is unconditionally stable, we should pick the time step �t to keep accuracy.
Therefore, we pick the time step according to

�t = const.⇥
r

m0

B0
(�x)2 , (154)

where m0 and B0 are nominal values of m and B, respectively, and �x is the grid spacing.
This choice is inspired by the dispersion relation for flexural waves in a plate.
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8.1. Convergence studies

We use the method of manufactured solutions on the domain depicted in Fig. 3 and
choose the exact solution

w(x, y, t) = W0 cos (k1x+ k2y + !t) , �(x, y, t) = �0 sin(k1x+ k2y + !t), (155)

where

W0 = 0.01, �0 = �W0
!

H0k
2
, k =

2⇡

�
=
q

k
2
1 + k

2
2 (156)

and

! = k

s

H0
B0k

4 + ⇢wg

⇢w +H0k
2m0

(157)

with

(k1, k2) = (k cos↵, k sin↵) (158)

and

� =
8⇥ 2⇥ 0.435⇥R

18
⇡ 3.867km. (159)

The choice of � is such that the number of points per wavelength (PPWL) is above 8.
The angular velocity ! and the amplitudes W0 and �0 are chosen by solving the dispersion
relation with the following constant material parameters: ⌫ = 0.3, m0 = (0.3⇢i)⇥106kg/m2,
H0 = 0.6km and B0 = (0.3)3 ⇥ 1018Pa m3. We choose the propagation angle ↵ = ⇡

4 . The
material parameters are

⌫(x, y) = ⌫0

✓
1� 1

3
sin

✓
x+ 3y

R

◆◆
, (160)

m(x, y) = m0

✓
1 +

1

3
sin

✓
x+ 3y

R

◆◆
, (161)

H(x, y) = H0

✓
1� 1

3
sin

✓
x+ 3y

R

◆◆
(162)

and

B(x, y) =

✓
m(x, y)

⇢i

◆3

(163)

with R = 10 km.
26

Electronic copy available at: https://ssrn.com/abstract=4147169



We impose free boundary conditions on the East and North boundaries and clamped
boundaries on the West and South boundaries, and use the exact solution as boundary and
initial data. We use the Crank-Nicolson method for time-integration. We set T = 2⇡/! ⇡
13.45 s as the final time. The Crank-Nicolson method requires solving a linear system at each
time step. For that, we use MATLAB’s GMRES iterative solver with a tolerance of 10�9,
maximum iteration of 300, and incomplete LU-decomposition ilu() as preconditioners. For
Ilu() we select: type is ‘crout‘, droptol is 10�5, milu is ‘row‘. Table 1 and Fig. 4 show
the relative l

2 errors as functions of �x, where �x denotes the average grid spacing in the
physical domain. Table 1 also shows the number of grid points per wavelength (PPWL)
used in the inner domain. The convergence rates appear to be approaching rates of 2, 3.5
and 4.5 for interior orders of 2q = 2, 4, 6, respectively, which are the rates that have been
observed for anisotropic problems [2].

Table 1: l
2 errors and convergence rates r

�x PPWL Second order Fourth order Sixth order

log10(error) r log10(error) r log10(error) r

0.2122 18 -0.81 -2.16 -2.49
0.1706 23 -1.01 2.11 -2.53 3.91 -2.99 5.27
0.1426 27 -1.16 1.94 -2.80 3.54 -3.37 4.87
0.1225 32 -1.30 2.11 -3.04 3.63 -3.67 4.64
0.1074 36 -1.41 1.94 -3.24 3.46 -3.96 4.96
0.0956 40 -1.51 1.94 -3.41 3.29 -4.17 4.17
Avg. rate 2.01 3.56 4.78

0.1 0.12 0.14 0.16 0.18 0.2
10-5

10-4
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10-2

10-1

100

E
rr

or

h
2

h
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Figure 4: Convergence plot
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8.2. Stability and self-adjointness

We use the domain in Fig. 3 again to verify that the scheme for the plate equation is
energy conserving and self-adjoint. The total discrete plate operator Dtot

4 is self-adjoint in the
inner product defined by the physical quadrature JP (131). In our case, this is equivalent
to the matrix A being symmetric, where

A = JPDtot
4 (164)

By setting the smallest grid spacing in the physical domain to �x = 0.0956, we obtain a
total of 23, 552 grid points. The relative deviations from symmetry kA � A

Tkmax/kAkmax

for this problem (using double precision floating point operations) are:

2nd order: 7.76⇥ 10�15, 4th order: 9.93⇥ 10�15, 6th order: 3.32⇥ 10�15,

which verifies that the schemes are self-adjoint to machine precision.
Without external forces and boundary data, the semi-discrete equations become

⇢wJP ẇ + ⇢wJPDtot
2 (H)� = 0

mJP ẅ = Aw � ⇢wgJPw � ⇢wJP�.
(165)

Since A is symmetric, the semidiscrete problem preserves the quantity

"tot =
1

2

⇣
(ẇ)T mJP ẇ �wT

Aw +wT
⇢wgJPw + ⇢w�

T
JPDtot

2 (H)�
⌘
,
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Figure 5: BedMachine Version 2 mask of Amundsen Sea Region
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which is the same semidiscrete energy given by (140). Furthermore, our stability analysis
guarantees that the semidiscrete energy is non-negative, and hence a seminorm of w, which
means that with proper SATs, A is negative semidefinite. For the current problem, the
largest eigenvalues of A are:

2nd order: �2.0933⇥ 10�7, 4th order: �2.0927⇥ 10�7, 6th order: �2.0934⇥ 10�7
,

which verifies that A is negative semidefinite.

8.3. Ocean wave interaction with ice shelves of the Amundsen Sea region

The topic of the application problem is to study transmission of ocean waves and tsunamis
through the ice shelves of the Amundsen Sea region (Fig. 5) in West Antarctica. For
the application problem, we modify the domain (Fig. 6) and utilize a different boundary
condition on �. The domain is obtained by approximating Fig. 5. First, we want to enforce
a non-reflective boundary condition on the open water part, where the waves leave the
current domain without reflection. Second, we want to provide an incoming wave into the
system through this boundary. To do this, we divide the whole boundary @⌦ into 2 disjoint
sub-boundaries: @⌦ = @⌦NR [ @⌦R. Neumann boundary conditions are enforced on @⌦R

(166a) and non-reflective boundary conditions with incoming incident waves are enforced on
@⌦NR (166b):

Figure 6: Amundsen Sea region and grid configuration
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nI@I� = 0, ~X 2 @⌦R, t � 0, (166a)
1p
gH

�̇� nI@I� =
1p
gH

�̇
(D) � nI@I�

(D)
, ~X 2 @⌦NR, t � 0. (166b)

The non-reflecting condition specifies data for the characteristic variable associated with
shallow water waves, propagating at speed

p
gH, into the domain. For data, we specify an

incident plane wave of the form

�
(D)(x, y, t) = �0e

� 1
2

⇣
(t�t0)�sxx�syy

T

⌘2

, (167)

where �0 = 0.5 and (sx, sy) = 1/c · (cos(✓), sin(✓)) is the slowness vector, c =
p
gH is the

wave speed (evaluated using local properties), and ✓ = 7⇡/4 is the angle of the direction
of wave propagation counterclockwise from the x�axis. Here T (in seconds) controls the
frequencies of the incident wave and t0 = 4T is for delay. Furthermore, we obtain the
variable water depth (Fig. 7a) and ice thickness (Fig. 7c) from BedMachine Version 2 [26].
Next, we interpolate both values over the grid points of ⌦ (Fig. 7b and 7d). We set Poisson
ratio to ⌫ = 0.3.

The simulation results, shown in Figs. 8 and 9 for T = 10 s and 30 s, respectively,
show an extremely complex wavefield resulting from scattering and diffraction in response
to variable water depth, ice thickness, and the complex geometry of the coastline and ice
shelf edge. Consistent with previous studies, only sufficiently long wavelength incident waves
are transmitted across the ice shelf edge. In addition to providing predictions of the wave
amplitude w, our method can be used to quantify the bending moments and shear forces
acting within the ice, which can be combined with fracture mechanics concepts to assess the
likelihood of rift development and growth.
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Figure 7: Geometry of Amundsen Sea region. Discretized values are shown on a coarser mesh
than used in the simulations for easier visualization.
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(a) t = 1597 s (b) t = 1900 s

(c) t = 2497 s (d) t = 3483 s

Figure 8: Plots of vertical displacement w in meters for T = 10 s. The top two rows show
the snapshots of w at different times. (a) Arrival of incident waves at the ice shelf front of
Thwaites Ice Tongue at t=1597 s. (b) Reflection from and transmission through the ice shelf
front and arrival at grounding zone at t = 1900 s. (c) Complex wavefield with relfections and
scattering and arrival of incident waves at the Pine Island Ice Shelf at t = 2497 s. (d) Larger
amplitudes and shorter wavelengths in the ocean, smaller in the ice shelf at t = 3483 s.
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(a) t = 1650 s (b) t = 2240 s

(c) t = 2540 s (d) t = 3480 s

Figure 9: Plots of vertical displacement w in meters for T = 30 s. The top two rows show the
snapshots of w at different times. (a) Arrival of incident waves at the Thwaites Ice Shelf front
at t=1650 s. (b) Reflection from ice shelf front and flexural-gravity waves reach the grounding
zone of Thwaites Ice Shelf at t = 2240 s. (c) Arrival of waves at the Pine Island Ice Shelf front
at t = 2540 s. (d) Complex wavefield with scattering at t = 3480 s.

9. Conclusions

We have developed an SBP-SAT method for the variable coefficient 2D plate equation on
curvilinear multiblock grids. Free boundary and corresponding corner conditions, clamped
boundary conditions, and interface conditions are all enforced utilizing SATs, which make
the spatial discretization energy-stable and self-adjoint by design. Numerical experiments
indicate that the convergence rates are 2, 3.5 and 4.5 for interior orders of two, four and six,
respectively.

For the numerical experiments, we formed an ocean-wave-ice-shelf interaction problem for
Thwaites Glacier Tongue and Pine Island ice shelves in the Amundsen Sea region off the coast
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of West Antarctica. Our approach handles variable coefficients and complex geometries,
which is essential for modeling real-world problems in the cryosphere. Future simulations
can take tsunami and wave data (either from separate simulations or observations) to force
the model, in order to quantify the response of ice shelves to forcing from ocean waves and
tides. The model can provide predictions of bending stresses and shear forces, which may
cause fracturing and even break-up of the ice shelves, and to identify regions in which bending
stresses are amplified by wave focusing. In addition, the model could be utilized in the PDE-
constrained optimization framework of full waveform inversion, in which model parameters
like ice thickness and bending stiffness are adjusted to minimize the misfit between modeled
and observed wavefield measurements. The self-adjoint SBP-SAT framework is ideally suited
for this class of problems [3].

MATLAB source code that reproduces figures (4), (8), (9) is available at https://www.
usap-dc.org/view/dataset/601561.
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