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Abstract

We introduce an energy stable, high-order-accurate finite difference approximation of the dy-
namic, pure bending Kirchhoff plate equations for complex geometries and spatially variable
properties. We utilize the summation-by-parts (SBP) framework to discretize the biharmonic
operator with variable coefficients, with attention given to free and clamped boundary condi-
tions and corner conditions. Energy conservation is established by combining SBP boundary
closures with weak enforcement of the boundary and interface conditions using a penalty
(simultaneous approximation term, SAT) technique. Then we couple the plate equations to
the shallow water equations to study flexural-gravity wave propagation, and prove that the
semi-discrete system of equations is self-adjoint. We demonstrate the stability and accuracy
properties of the method on curvilinear multiblock grids using the method of manufactured
solutions. The method, which we provide in an open-source code, is then used to model
ocean wave interactions with the Thwaites Glacier and Pine Island Ice Shelf in the Amundsen
Sea off the coast of West Antarctica.
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1. Introduction

In this work, we consider numerical solution for pure bending of plates in complex ge-
ometries with spatially variable coefficients. The equations are based on the Kirchhoff-Love
model of isotropic plates, which is a two-dimensional mathematical model for flexure and
bending stresses in a thin plate for which the plate thickness is much smaller than the plate
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dimensions. This plate model is an extension of the one-dimensional Euler-Bernoulli beam
model. The governing equation of the pure bending of plates is a linear partial differential
equation (PDE) that is fourth order in two-dimensional space and second order in time.

The main motivation for our work is to study the impact of long wavelength ocean waves
(storm swell, tsunamis, infragravity waves, and even tidal forcing) on ice shelves. Recent
studies, some of which are based on data from broadband seismic arrays in Antarctic ice
shelves, reveal the extent of flexure caused by ocean waves, which in some cases has been
linked to the growth of rifts, fractures, and even break-up of ice shelves [18], [5], [4], [20].

Quantitative model-based studies of this problem are based on the hydroelastic frame-
work for ice shelves originally developed by [9], [10], and which is widely applied in the
sea ice community [8]. In this framework, the ice shelf is modeled as a thin elastic plate
floating on an inviscid, incompressible fluid layer (the ocean). While the governing equa-
tions can be solved analytically in very simple geometries, numerical solution is required for
spatially variable properties (including variable water depth and ice thickness) and complex
geometries in map view. Most models restrict attention to a 2D vertical cross-section, with
the governing equations solved using eigenfunction expansions and related semi-analytical
methods [8, 33, 31, 25|, the finite element method [27, 11, 13| , and the finite difference
method [23]. Of particular note is the extension of this work into 3D by [32] to account for
the spatially variable ice thickness and complex geometries characteristic of real ice shelves.
Most of these studies utilize the shallow water approximation for the ocean, though this
limits application to long period waves [12].

In this study, we utilize the high-order, summation-by-parts finite difference method to
solve the 2D (map view) problem with variable coefficients and complex geometries, thereby
extending earlier work using similar difference operators [23|. In general, high-order finite
difference methods are very powerful for wave-propagation problems involving propagation
over many wavelengths due to excellent numerical dispersion properties [15]. The major
drawbacks of high-order finite difference methods are handling complex geometries and ob-
taining a stable boundary treatment.

The summation-by-parts-simultaneous-approximation-term (SBP-SAT) method is a ro-
bust and well-proven framework for solving well-posed initial boundary value problems. This
method utilizes spatial-derivative operators that satisfy a summation-by-parts (SBP) prop-
erty [16] with boundary conditions implemented using a penalty technique known as the
the simultaneous-approximation-term (SAT) method [6]. Among the growing literature us-
ing SBP-SAT methods, we highlight review articles [34, 7| and a few recent studies on wave
propagation involving second-order PDEs with variable coefficients arising in continuum me-
chanics [28, 1, 2]. While the SBP-SAT method has primarily been used for first and second
derivatives in space, it has recently been extended to third and fourth derivatives [22], [24],
[23], but only in either 1D or on Cartesian grids. An important extension, which we pursue
here, is to extend this work to curvilinear, multiblock grids, in the specific context of the
variable coefficient plate equation coupled to the variable coefficient shallow water equation.

The rest of the paper is organized as follows. Section 2 introduces our notational con-
ventions and Section 3 covers the plate equation. We introduce SBP operators in Section 4,
and combine them with proper SATs to construct energy-stable self-adjoint schemes for the
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plate equation with free boundary conditions combined with corner conditions and clamped
boundary conditions in Section 6. In Section 5, interface SATs for grid-block couplings are
derived. In Section 7, we couple the plate equation to the shallow water equation to model
the interaction of ice shelves with ocean waves. In Section 8, we present numerical experi-
ments, starting with a convergence study using the method of manufactured solutions. We
then apply the method to study wave-ice shelf interactions in the Amundsen Sea region of
West Antarctica, which contains the Thwaites Ice Shelf Tongue and Pine Island Glacier.
Lastly, we conclude with summaries in Section 9.

2. Notation conventions

In this work, we consider scalar, vector, and tensor fields in R? (with d = 2 in most
cases), with summation implied over repeated subscript indices, e.g.,

The L? inner product for bounded domains Q € R? is

(1, 1) = /Q w0 @)

and for integrals over a surface 0S), we write

(u,v)a0 = /89 uv dS, (3)

which is a bilinear form.

When multiple boundary segments are present, we introduce a superscript «, defining
C? as subsets of 02 such that [J, C* = 02 and two adjacent segments meet at one point.
Let us call it a corner point. Then C* denotes the smooth segment between beginning and
ending corner points C§ and Cf, respectively (see Fig. 1b).

The integrals inherit the summation convention too, i.e.,

d
(uiyvi)x = Z(Uz',vz‘)x, (4)
i=1
where X is either € or 0€2. The summation convention applies only to the following indices:
1, 7, k and their uppercase counterparts.
Boldface font is used for vectors u, whose elements approximate some scalar field eval-
uated on the grid, and similarly for vector and tensor fields. We will later define discrete
inner products and use the summation convention in the discrete setting too, so that

d

(ui,Vz‘) = Z(ui,vi), (5>

i=1
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for example. For all spatially variable coefficients, the same symbol will be used in the
discrete case, too, which then is understood to denote a diagonal matrix with the values
of that coefficient on the diagonal. We regard the outward unit normal and unit tangent
vectors as variable coefficients that take non-zero values only at boundary points. In the
discrete space, the values of these unit vectors at the corner and edge points vary depending
on context. When integrating over a face, these values are understood to denote the unit
normal and the unit tangent to that face even at edge and corner points. The surface area
element inherits the same convention.

Finally, let YW and ® be subsets of L?(Q), where W and ® are the primal and the dual
spaces, respectively. The adjoint LT : & — L%*(Q) of a linear operator £ : W — L*(Q)
satisfies

(¢, Lw)q = (LTp,w), YweW,¢e . (6)

The operator L is said to be self-adjoint if LT = £, which implies that ® = W [30].

3. Equations of pure bending of plates

Let {EI} denote an orthonormal basis in R¢, X = X;E; and 9; = 8/8XI In this
study, we consider ) C R?, a bounded domain with outward unit normal N = nIEI and
counter-clockwise unit tangent T = 1,E; to the boundary 0f).

The governing equations for dynamic, pure bending of plates in the absence of body
forces and boundary forcing are (Chapter 3 in [29])

mai — 9,0 My yw = 0, X e, t>0, (7a)
Lw =0, X € 09, t>0. (7h)

where the moments are given by the operator

M]J = —VBéIL]aKaK — (1 — V)Ba[aj, (8)

07 is the Kronecker delta, w()? ,t) is the vertical displacement, m()? ) is mass per unit area
(vertically integrated plate density), B(X) is the bending stiffness, v(X) is Poisson’s ratio,
and the linear operator L represents well-posed boundary conditions.

3.1. Weak form and energy balance
Multiplying (7a) by ¢ and integrating over €2 gives us

(myp, ) — (¢, 0,0 Mryw)g = 0. (9)

Integrating the second term by parts yields
(¥, 0,01 Mrjw)o = (¥, ng0rM1jw)sq — (10, Mpjw)aq + (910590, Mrjw)g (10)
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where the boundary terms are

BT = (¢, n;0Mpjw) 0 — (nrdsh, Mrjw)yq, - (11)

We rewrite the last boundary integral by separating derivatives in the normal and tangential
directions using

0y = nynkg0Ok + T T Ok, (12)

such that

(105, Mpjw) g = (05, npMpyw)
= (nung gy, niMpw)yq + (TiTR OV, nrMijw) s (13)
= (ngOxY,nniMpyw) oo + (T Ox ), Ty Mrjw) yq, -

(a) Cross-sectional view of the ice shelf-ocean water (b) Corner condition is enforced when the two nor-
domain mal vectors at a point belonging to two boundary
segments are not equal: Ng1 # Ngg. Note that the

direction of integration is counter-clockwise.

Figure 1: Cross-sectional view of the domain and treatment of corner conditions

For the second term in (13), integrating by parts over a smooth segment C' of 92 having
corner points Cy and C yields

(Te O, Ty Mpjw) o = [@Z”'Jnl-7\/-"1Jw]g(lJ — (Y, Tk O Ty Mpyw) . . (14)
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Note that whenever we have a normal (or a tangent) that has two different directions at
a given point when approached from opposite directions along the boundary, that point is
considered a corner. Combining all boundary terms, (11) becomes

BT = (¢, n 0rMjw + 7O TyniMijw) oo — (niOrh, ngniMiyw) 5 — Z [@/)TJHJMIJw]gg .

(15)
Notation is further simplified by defining the normal bending moment operator,
My = ngniMpy, (16)
tangential bending moment operator,
Mp =Ty My, (17)
and shear force operator,
Vi, =n;0rMpy; + 7101 M, (18)

With this notation, we write the weak form as

(ma, ), + (0100, — Myyw)g = (b, Vi) g — (10, Myt — > [0 Ml . (19)

«

Finally, the mechanical energy balance is obtained by setting ¢ = w in (19):

(mair, i)g, + (91010, — My yw)g = (1, Vi) oy — (nOptiy, Moy gy — Y [0 Mg . (20)

We identify the left side of (20) as the rate of change of the mechanical energy of the plate
&, defined as the sum of kinetic energy and elastic strain energy:

This follows from

(818Jw, —M[J’w)Q = ((918111), VBaJaJw)Q + (ajaj?j), (1 — V)B&[@JU))Q

1d
= 55 [(818111), VBaJaJ’LU)Q + (818Jw, (1 — I/)Ba[aJU))Q]

14 (22)
= 55 [(afaJw, VBéjjaKaKw>Q + (aIaJw7 (1 - V)BaIaJw)Q]

1d

= 5& (8[8JU), —M[J'LU)Q .

Here (0;0,w, —M w),, is non-negative for the typical conditions 0 < v < 1/2 and B > 0
[19]. Thus we write (20) as

d&

dt

6

BT, (23)



where the boundary terms correspond to the power, or rate of work, during deformation
against the shear force and moments on the boundary and corners:
. . . o
BT = (w, Vow) g — (ni0r, Mypnw) o0 — Z [WMrnw] s - (24)

[0}

Standard boundary conditions include homogeneous clamped boundary conditions, [29]

w =0, X € 09, t>0, (25a)
nidrw = 0, X €99, t>0, (25D)

as well as free boundary conditions [14] together with corner conditions [17]

M,w = 0, X €09, t>0, (26a)

Vow = 0, X €09, t>0, (26D)
X=0¢

M. pw =0, Vo and i € {0,1}, t>0 (26¢)

both of which yield energy conservation and are considered of our work. Other boundary
and corner conditions are possible [29], and the numerical treatment of these cases can be
deduced from the clamped and free boundary condition cases that we examine in this work.

3.2. Coordinate transformation

Let {€;} denote an orthogonal basis in R? and let Z = x;¢;. We introduce a smooth one-
to-one mapping X; = X;(z1, ) from the reference (or computational) domain w = [0, 1]?
to the physical domain Q (see Fig. 2). From here on, we will use uppercase letters for the
quantities in the physical domain and lowercase letters for corresponding quantities in the
reference domain. Define 0; = 0/0x; and the transformation gradient

A AT
T

Ow

Figure 2: Schematic of the physical domain  and the reference domain w, modified from |[2].
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by the chain rule,
Or = Fr;0;. (27)
Further, let
J =det [(F7),,] (28)

be the Jacobian determinant of the mapping from w to 2, with J > 0. Recall the following
metric identity [35]

The covariant basis vectors @, are

—

C_I:i :8,,)2:8@)(151 - (Fﬁl)“E]. (30)
3.2.1. Integrals and normals
We have d2 = Jdw, since Jdw is the area element. Thus,

(u,v)q = (u, Jv),,. (31)

Similarly, we let J denote the arc length scale factor so that
= (u,Jv) . 32
(w0000 = (u.Jv) (32)

In two space dimensions the surface area scale factor J is related to the covariant basis
vectors d; as follows:

A

J=|a;,|, x; €{0,1}, 14,j cyclic. (33)
The normals N = n;E; and 7 = n;é; are related by Nanson’s formula [19],
Jn; = JFyn;. (34)
Similarly, the tangents T = T]E 1 and 7 = 7;€; satisfy
Jr = JFyT;. (35)

3.3. Numerical approximation of the transformation gradient

In this subsection we provide a brief comment on numerical treatment of derivatives
involved in the mapping. An approximation F, ~ Fy; of the transformation gradient can
be computed by applying difference approximations on the same grid used to solve the PDE.
When this is done, F',, must be computed to the same order of accuracy or higher as the
difference operators used to discretize the PDEs in order to retain the order of accuracy of
overall scheme. For all our numerical experiments in this paper, we compute F',. using the
first-derivative SBP operators of the same order as we use to solve the PDEs, which means
that F',. is computed to order ¢ and 2¢ near boundaries and in the interior, respectively.

Note that Nanson’s formula (34) is identical for approximated quantities, because we used
Nanson’s formula to define 7. As long as the resulting Jacobian determinant is positive, we
conclude that F',. can be computed with any sufficiently accurate method. Thus, with a
bit of notation abuse, we drop the underline notation and use the non-underline notation
interchangeably between continuous and discrete settings, as in [1].
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4. Summation-by-parts operators

The notations in this section closely follow [2]. Only diagonal-norm SBP operators are
considered here. Hence, the norm matrix P, has the following structure

PX :diag(p17p27"'ap27pl)7 (36>

where p;, Vi are proportional to the grid spacing Ax in the reference domain. Define Dy ~ Oy
as a first-derivative SBP operator. It has the SBP property

PyDy = —D% Py — epel +enelk, (37)
where
eo=[1 0 ... 0", ex=[0 ... 0 1]". (38)

4.1. Two-dimensional first-derivative operators

As in [2], let operators with subscripts &; denote one-dimensional operators which cor-
respond to coordinate direction AX;. The multidimensional first derivatives D; = 0; are
constructed using tensor products:

D; = Iy ® Dy, or D; = Dy, ® Ix,, (39)

where Iy, Vi are one-dimensional identity matrices of appropriate sizes. In analogy with
the chain rule (27) and the metric identities, we define

Or ~ Dy = F,D; (40)
and
dr~ D; = J'D;JFy,. (41)

In the discrete setting, Fj; should be interpreted as a diagonal matrix with the grid point
values of the continuous F; for each fixed indices of I and i. Similarly, D; is a matrix for
each fixed i. Thus, the implied summation in F; D; is an addition operator in R¥*¥  where
N denotes total number of grid points.

We also define two-dimensional normal and tangential first derivative operators on ref-
erence

D, =n;D;, D, =mD; (42)
and on physical
Dy =n;D;, Drp=71D; (43)
domains. Now using the fact that

drg = niny + 117y, (44)
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we can state the following
Dy =nm Dy + 175D =n;Dy + 71 D7, (45)
which is a discrete equivalent of (12). The two-dimensional quadrature is
P = Py, ® Py,, (46)
and we define
(u,v),=u"Pv (47)

for discrete integration over the reference domain w. Next, for integration over boundary

faces, denote Ow; and Ow;" to be the boundary faces where z; = 0 and z; = 1, respectively.
Now define

Pawi:PX1®"'®PXF1®PX¢+1®"'®PXd‘ (48)

Pj,,, could be used to integrate over both dw;" and dw; . The same inner product notation is
used as in the continuous case, without risk of confusion because the boldface font denotes
discrete solution vectors.

Let e? be a restriction operator that selects only those solution values that reside on the
face f. For integration over f, we write

T
(u,v); = (efu)” Pr(efv). (49)
For integration over the entire boundary dw we define

(W, V)g, = > (0,v),. (50)

fCOw

This means that the integration is performed over one face at a time. Similarly as in (31)
and (32), let us define

(u,v)g = (u,Jv), (51)
and

(W, V)yg = (u, jv)a . (52)
With the above notations, we have the summation-by-parts formula
(u, Dyv), = (0,n:v),, — (Diu,v),, . (53)

Let us establish a relation between D; and 131.
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Lemma 1. D; and D; have the following summation-by-parts property:
(u, 5IV>Q = (u,n1V)y0 — (Dru, v)g, . (54)
Proof.
(0.Drv) = (W'D Fiw) = (w, JJ 7 Dl Fiv),

= (u, D;JFpv), (use (53))
(u anF[z ) - (Diu, JFIiV)w (use (34))

<u Jnfv) — (D, JFyv),
(

u, Jn1v> — (F;Dyu, Jv),,

= (u,n;v),y0 — (Dru, Jv),
= (u7 nIV)aQ - (D[u7 V)Q‘

]

Finally, let us introduce a summation-by-parts formula in a boundary integral involving
the tangential derivatives:

(u, Drv)yq = (u, jDT)aw (u, Dyv)g, Zu (
=zw@
Ca

where v| is a zero vector with non-zero values —v(C§') and v(CY) at the corner points C§'
Ca

)

1
C(’)") - (DTU., V)(‘?Qa

and CY', rgspectively.

5. Multiblock SBP operators

The above concepts and notations can be extended to multiple grid blocks coupled across
internal interfaces, across which the Jacobian J and the transformation gradient Fj; may be
discontinuous. We restrict attention to conforming meshes having collocated grid points on
the two sides of the interface.

Let I' denote the interface between two domains €2, and €2, and let Q2 = Q, UQ,. Let

-l 5[4

denote grid functions with the top and bottom blocks corresponding to €2, and €2,, respec-
tively. Define the two-block operators

Dyu— L (JuPY) ™ et I P (( #) u—(ep)" V)
Djv = L (1P gy Pr ()" v = (e) u)
11



and B )
- Dju— 5 (JuP") " etnyJ Pr ((e%)T u— (er)” v) (58)
Dyv = 5 (1P ety d P ((ep)" v = ()" )

If w is continuous across I', then D;w is a consistent approximation of dyw in all of Q. If,
additionally, Qyw is continuous across I', then ID;w is continuous to the order of accuracy of
the underlying finite difference operators. The same is true for D;w.

Lemma 2. The multi-block operators D; and ]IN))I satisfy the following summation-by-parts
formula on the multi-block domain Q.

(% Drw)g = (%, n1w)pg — (¥, Brw) . (59)

Q

Proof. The proof is shown for two blocks, but can immediately be extended to arbitrarily
many blocks. By the definitions of D; and D;, we have

u 1 u v 1 v
(¢> DIW)Q = (¢7 D1u>Qu - 5 (nld)v u-— V)F + (X? DIV)QU - 5 (nIX7 V= u)F (60)
and

(Brpw), = (Brou) =5 0w d—x)+ (Dixv), =5 0v.x =) (61

Using the SBP properties of the single-block operators (54) D} yields

~ 1
(1/)7 ]D)IW>Q = <va¢7 u) Q. + (nq;(tb? u)l"u + (n?d)a u)l" - 5 (n}tqbv u-— V)l" (62)

~’U v v 1 v
B <DIX’V>Q + (nix; V)p, + (07X V) — B} (nix,v—u)p,

where T', = 0Q, \ T' and T, = 9Q, \ I'. The discrete surface integral over OS2 is defined as
the sum of the corresponding integrals over I', and I',, so that, by definition,

(nrh, w)yq = (nfd,u)p + (nIx, v)p, - (63)

It follows that

(6. D1w)g = (90, W)y — (D) |+ (b, — 5 (0, u = V),
= (Dix.v) |+ (i V) = 5 (v = w) o
= (019, )0 — (Di0, )Q + = (i + )y
- (Dix. >m+ vonx + i)y



We compute the numerical approximation of the transformation gradient so that n} = —n}
holds exactly in the discrete setting. Using this, we obtain

(. Drw)o = (n1tp, W)y — (Diou) 43 (&~ )y

u

- (ﬁ}]X7 V) Q. + % (n}]V, X — d))F (65)

= (N1, w)yo — <H51¢,w>9.

From now on, we will use blackboard bold typeface, e.g. D, to define discrete differential
operators.

5.1. The discrete plate operator

We define the following discrete versions of plate, moment, normal bending moment,
tangential bending moment, and shear force operators as

Dy = —DyvBD, — DD, (1 — v) BD;Dy, (66)
M[J = _VB5]JD2 - (1 — IJ)B]D)]DJ, (67)
My = nyniMyy, (68)
Mrn = TJHIM[J (69)
and
Vn = —nJD]VB51JD2 — nJﬁj(l — V)B]D[]D)J + DTTJHIM[J, (70)

respectively. The second-derivatives 9;J; can be approximated using both wide, D;D;, and
narrow-stencil, Dy, operators. We use the narrow-stencil second-derivative operator because
it is more accurate and robust than the wide-stencil approximations [21].

In order to obtain summation-by-parts formulas for the physical domain, let us restate
the formula from equation (110) from [2]:

(0, Dyv)q, = (w,n/Drv)aq — (n/Dru, v) 5 + (Dou, v)g, (71)

where D5 is a narrow-stencil SBP operator for 9;0;. Now we can construct a finite difference
operator that approximates the plate operator 0;0;M;; on the physical domain. First, let
us rewrite 0;0; My,

a;@IMU = —aJaJVBa[a[ — 8J81(1 — I/)Ba[aj. (72)
13



Theorem 3. The discrete plate operator Dy satisfies the summation-by-parts formula
(u,Dyv), = — (Dou, vBDyv),, — (D;Dyu, (1 — v)BD;D,v),

+ (0, V,v) 50 — (Dyu, M, v) 5 — Z u’ <va

cla) | (73)

cs
Proof. First, using (71), we obtain

(u, DovBD,v) g, = (Dou, vBDov)g, + (u, n/DvBDyv) 4, — (niDyu, vBD,v) 4, - (74)
Second, we have

<u DJD](:[ —v BD]DJV)Q (use (59))

- <u nsDr(1— v B]D[]D)JV> (]D)Ju, Dr(1 — V)BD[DJV)Q (use (59))

o
= (]D)]]D)Ju ( )BDIDJV)Q+ (u,nﬂﬁj(l — l/)B]D]]DJV)8Q
)

(DJU n[( )BDIDJV 90 -
Let us focus on the last term. Now using (45), we have

(Dju,n;(1 —v)BD;D,;v),0 = ([nsDy + 75D u, ni(1 — v) BDD,v)
=  (Dyu,nyni(1 —v)BDD,v),q + (sDru, ni(1 — v)BD;D;v) 450

(Dyu, ngni(1 —v)BDD;v),q + (Dru, 7yn(1 — v) BDD;v) (use (55))
=  (Dyu,nymni(1 —v)BD/D,v),q — (0, Drryn(1 — v)BD;D,;v) 40

CQ
+ Zu (TJN] 1 — V)BD[DJV C;) .

Knowing that 7;n; = 0 and n;n; = 1, we rewrite operators (68), (69), and (70) as

(76)

Mnn = an]M]J = —an[V351JD2 — anI(l — ]/)BD[ID)J = —VBDQ — TLJTL](l — I/)BD[DJ,
(77)
MTn = TJ?’L[ML} = —TJn[UB5[JD2 - TJTL](]_ - V)BD[DJ = —TJn](l - I/)BD]DJ, (78)

and

Vn = _nJD[VB(S[JDQ - nJ]IN))I(l - V)BDIDJ + ]D)T’TJ’I’L]M]J
= —’I’I,[D[VBDQ - nJ]l~)1(1 - V)B]D]]DJ - DTTJHIVB5]JD2 - DTTJTL[(l - V)B]D[]DJ (79)
= —TL]]D)]VB]D)Q — TLJ]ﬁ)[(l — V)B]D)[]D)J — DTTJTL[(I — V)B]D[]DJ,

respectively. Finally, substituting (76) into (75) and adding (75) to (74) and using equations
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(77), (78), and (79), we obtain

(u,Dyv)g

(]D)gu I/BDQV) — (D[]DJLI, (1 — I/)BD]DJV>Q

+ (]D I/BDQV)ag (]D)Nu, an](l — V)BD]DJV)aﬂ
— (

u TL]]D)]VB]DQV)aQ <11, nﬂﬁ)j(l — V)BD]DJV) 00 — (U,DTTJHI(l — V)B]D)[]D)JV)ag

cp
o)
— (]D)gu, VBDQV)Q — (ID)]DJU7 (1 — I/)BD]DJV)Q

— (Dyu, M, v) o, + Zu ( mV

+ Zu (TJTL[ ]_ — V)BDIDJV

o)

O

6. Energy-stable and self-adjoint boundary SATs for the multiblock plate oper-
ator

We discretize (7a) in space as
mw = Dyw + SAT, (80)

where the SATs in SAT enforce the boundary conditions and will be derived later. Given
an arbitrary test function ¢, we obtain the semi-discrete weak form by multiplying (80) by
¢'JP,

(¢7 mW)Q = <¢7 ]D4W)Q + (¢7 SAT)Q ) (81)
and using summation-by-parts (73), we get
(d) mw) (ng) VBID)QW) (D[DJ¢ (1 — IJ)BD]DJW)
82
Define the inner product
the symmetric positive semidefinite bilinear form
K <¢, W) = (Dggb, VBDQW)Q —+ (D]DJ¢, (1 — V)BD[ID)JW)Q s (84)
and boundary terms
Bl (¢7 W) = - (DN¢7 Mnn“’)aﬂ + (¢7 SATl)Q 5 (85)
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and

BQ (¢7 W) = (¢7 Vnw)ag - Z ¢T (MTHW‘Zi) + (¢7 SAT2)Q 3 (86)

where SAT = SAT, + SAT;. For free boundaries, the SAT; penalty will enforce the normal
moment boundary condition and the SAT; penalty will enforce the shear force boundary
condition and corner conditions. For clamped boundaries, SAT] will enforce the boundary
condition on n;0;w and the S AT, penalty will enforce the boundary condition on w. Finally,
by adding we obtain

Now we can rewrite the weak form as the following
M (¢, W)+ K (¢, w) = B (¢, w). (88)

We define the semi-discrete total energy

1 1 1
E = —(w,mw)q, + = (Dow, vBDow), + = (D;D;w, (1 — v)BD;D,;w),

1 1

From above, we conclude that the discrete energy E approximates the continuous energy £
as defined in (21). FE is a non-negative quantity, which follows from the non-negativity of
M and K. Setting ¢ = w in (88) yields the semi-discrete energy balance

dE

7 = B, w). (90)

Next we discuss the selection of the SAT terms. The general strategy is to select the SAT
terms to provide a consistent approximation of the boundary and corner conditions, while
also requiring that B(1, w) = 0 for homogeneous conditions.

6.1. Free boundary and corner conditions
Consider free boundary conditions,
Mow = g, X €09, t>0, (91)
Vow = h, X €09, t>0 (92)
and corner conditions on surfaces with free boundary conditions,

Z_co

M, w = lcow, Vo and i € {0,1}, t > 0. (93)
To enforce (91), we select SAT; = SATye, where SATy, satisfies

(¢, SATa2), = (Dnep, My w — g)ag : (94)
16



Then, for g = 0, we get
Bi(¢p,w) = — (Dng, M, W)y, + (D, M, W), = 0, (95)

which is a symmetric bilinear form having the desired property. The relation (94) is equiv-
alent to

SATy = (JP)™' > nyDyepJPref (Munw — g) . (96)
fcon

Next, we enforce (92) and (93) by writing SAT, = SATy3 + SAT... We require that SATy3
satisfies

(¢, SAT43)q = — (&, VoW — ), (97)
such that for h = 0, we obtain
%) = (6. VuWin ~ (6. VW = " (4] ) + (0.54T000. (08)
The relation (97) is equivalent to
SATys = —(JP)™" > e;JPref (V,w —h). (99)

fcoQ

Finally, we require that SAT,. satisfies

(¢7 SATCC)Q = Z ¢T ((MTnW - le") C?) 5 (100)

%0

which is equivalent to the corner SAT terms, i.e.,

SAT. = (JP)™ ) (MW — Icg) o

[0}

. 101
N (101)

With these SAT terms, it follows that By(¢, w) vanishes for homogeneous boundary and

corner conditions, as desired.

6.2. Clamped and free boundary conditions
Now consider clamped boundary conditions on 0f2.,
w = p, X € 0Q,, t>0, (102)
nrorw = q, X €09, t>0. (103)
and free boundary conditions (91), (92) on 02y = 0Q \ 0€).. Energy conservation can be

obtained by imposing homogeneous conditions, e.g. ¢ = h =1 =p = q¢ = 0. Recall that the
discrete plate operator, without boundary SATs, is

Dy = —DyovBD, — DDy (1 — v) BD;D,. (104)
17



After imposing free boundary conditions on all free boundaries, the equation takes the form

mw = Dyw + Sg (M, W — &) + Sgs (Vow — h) + See (M, w — 1) . (105)
Gathering terms with w and factorizing yields
mw = DIw — Spog — Sash — S, (106)
where
D] = Dy + SasMon + SasVin + SecMr. (107)

The SATs for free boundary conditions are such that ]D)f: satisfies

~ ~\/f
D} = —D{vBD, — (DJDI> (1— v)BD,Dy, (108)
s ~ ~\/ )
where Dy and (]D) D 1) satisfy the following formulas:

(#.Dfw)_ = (& Dyw)on, — (D, W)y, + (D2h, W) (109)

and

(¢> (ﬁJﬁf)fW) = (¢, nD1w)aq, — (Dy, nrw),q + (DD, W), . (110)
0

We obtain the final operator after adding SATs for clamped boundary conditions:
Df° = D] +°, (111)

We seek a consistent S¢ such that ]D)ffc is symmetric negative semidefinite in the inner product,
ie.,

(gb,]D)f:cW)Q - (Dﬁ%ﬁ, W)Q, (w,mcw)Q <0, (112)

which ensures that the semi-discrete problem preserves a discrete energy (for p = ¢ = 0), and
hence is stable. Determining SAT*® may be arduous, and even for the significantly simpler
beam operator, there is not a unique choice that leads to energy conservation. To identify
a suitable SAT®, we make the ansatz

~ ~\/f
D/ = —D{vBD; — (DJDI> (1—v)B (D;D,)°, (113)
where
A . ~ A\

DS = <}D>2> . (D) = (]D)J]D]) . (114)

This ansatz guarantees that ]Df:c is symmetric negative semidefinite, because

~ ~\/f

(¢.0f'w) =~ (¢.DivBDsW) - (¢, (BsDr) (1-)B <1D>I]D>J>Cw>

= — (D3, vBDyw), — (D/D;)° @, (1 — v) B (DDy) w)g,
18
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and hence the operator Df:c is stable. It remains to show that the corresponding SAT*® is
consistent with clamped boundary conditions. We have

(¢, SAT W)q, = (d)’ (Di B Dﬁc) W)Q

=~ (¢.DfvB (D - D) w)

- (9.(BB1) @ -3 @D, - @21)Iw)

= — (vBDS¢, (D2 — DS) w)g — (1 = v) B (D/Dy)° ¢, (DD — (B7Dy)°) w)g, -
(116)
To proceed, note that

005w = (. (01)'w) = ~(@Dawhn, + Dxg. Wi, + @ Dawly, (117

Q
and

<¢,(DJ1D>I>Cw>Q=(@((ﬁ‘]m)f)fvv) = (Dig.Whon, — (16, Dywhye,

0 (118)

+ (¢, D/Dyw)g, .
Using (117) and (118) in (116) yields
(¢, SATw), = — (vBD3p, Dy W)y, + (DnvBDseh, W) 0,

+ (HJD[(l - I/)B (D[DJ)C ¢, W>BQC - (n[(l - I/)B (DIDJ)C ¢’DJW)BQC .
(119)
Recall the formula

(¢, D;w)p = (¢, n/ Dy + 7/Drw)p = (¢, n/Dyw)p + Z ¢ <W

oy
) - (ID)TTIQ’)? W)F .
as

(120)
cy
o)
+ (Drrmr(1 —v)B (D/Dy) @, W)y,
— (an[(l — V)B (]D)[DJ)C ¢,DNW)8QC .

The last term on the right-hand side of (119) can be re-written as

—(ni(1 = v)B(DD,) ¢, Dyw)yo =— > (ns(1 = v)B([DD)) )" 7 <w

«

(121)

We obtain
(@, SAT W), = — (vBDsp, Dyw )y, + (DyvBDseD, W) 50,

+ (nsD;(1 = v) B (D/Dy)" ¢, W)y,
=Y (i1 =v)B(DD,) $)" 7 (w Zl) (122)

+ (Dr7yni(1 —v)B (D;Dy)° ¢, W)an

— (anI(l — V)B (DIDJ)C ¢, DNW)BQC .
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Gathering terms leads to
<¢, SATCW>Q = — ((I/BD% -+ anI(l - V)B (ID)]ID)J)C)(,b, [D)NW)E)QC
+ ((DNVB]D)g + (TLJ]D)] + ]D)TTJTL[)(l — l/)B (D[DJ)C) ¢, W)GQC

"2 (ull=n)B (D/D;)" )" 77 (W Z) .

This shows that SAT* is consistent with clamped boundary conditions and SAT® = SATy +
SAT,, where, for inhomogeneous conditions,

SATy = — Z [(DE)T uBP’leijfe?] (Dyw —h)
FCoD.

(123)

) (124)
+ 3 [ (/D))" P7(1 = v)BesJ Pretnm, | (Dyw — h)
fCOQ,
and
SAT, = Y [(Dg)T VBP—lﬂ)Neijfeﬂ (w— g)

+ Z (DD P11 —v)B (]Dfeijfe?nJ + n[TJ]]);eijfe?> (w—g)

cp
03) '
(125)

Note that the summation over « here is performed on clamped boundary segments only.

_ Z ((]D)[]D)J)C)T P Y1 —v)Bnypry ((W —-g)

[0}

6.3. Self-adjointness

In PDE-constrained optimization problems the adjoint of the discrete operator plays an
important role. Computing the gradient of the objective functional usually requires the
adjoint state method. Our objective in this subsection is to prove that the discrete plate
operator is self-adjoint, just like its corresponding continuous operator. As a consequence
of this property, one can use the same solver for both the forward and adjoint problems and
obtain the exact gradient of a discrete objective functional up to roundoff error (given that
the time-discretization is also self-adjoint).

Here we consider the plate operator Dy, = 9;0;M;;. The domain of D, is unspecified for
now. We define the space of admissible functions

W = {w e L*(Q)|Dyw € L*(Q)}. (126)

Furthermore, we assume that w satisfies either free boundary and corner conditions ((91),
(92), (93)) or clamped boundary conditions ((102), (103)). Let Wg and W¢ denote the
corresponding spaces:

We = {w € W‘me =0,V,w=0on GQ,me) . = 0,Va and i € {0, 1}},
r=ct (127)
We = {w s W‘w — 0,7;0w = 0 on aQ}.

20



Integration by parts (73) yields

oy
(¢a D4w>g = <¢> Vnw)ag - (Dn¢a Mnnw)ag - Z oM w

Co
— (D29, vBDyw)q — (DDy¢, (1 — v)BDDyw)g
= — (D2¢, VBDQUJ)Q — (D]DJ¢, (1 — V)BD]DJU))a
— (vBD2¢, Dyw) — ((1 —v)BD D¢, DD yjw),

= (Dsp,w), Yw, ¢ € Wr or Yw, ¢ € We,

(128)

which shows that D, is self-adjoint both with domain W (free with corner conditions) and

with domain We (clamped conditions).

We now consider the total discrete elastic operator, including SATs. Assuming homoge-
neous boundary and corner conditions, we can define S such that

SAT = Sw, (129)
and the total discrete operator is
D" =Dy + S. (130)

Theorem 4. The total discrete elastic operator, including SATs for free with corner or
clamped boundary conditions, is self-adjoint, i.e.,

(q’),fotw)Q = (]D)thqb, w)Q Vo, w. (131)

Proof. First, consider the case with free boundary conditions. In deriving the weak form
(88), we showed that

(¢.DY'w), = —K (¢, W)+ B(d,w), (132)

where K is symmetric and B is symmetric both in the case of free boundary and corner
conditions (cf. (95), (98)) Hence, we have

(q’), ]D)fftw)Q =—-K(¢p,w)+B(p,w)=—-K (w,¢)+ B(w,p) = (W,]fotqb)g. (133)

The result follows after using the symmetry of (-, ).
As for mixed clamped and free boundary conditions, the operator is self-adjoint by
construction (cf. (112)). O

7. Ice shelf covered ocean model

In this section, we couple the plate equation with the shallow water equation. In this
study, we consider a 2D domain ) as in Fig. 3. The governing equations are
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W+ O;HOpb = 0, X e, t>0, (134a)
mi — 8;0; My jw = —py(d + guw), Xeq, t>0, (134b)
nidrd = 0, X €09, t>0, (134c)
w=0, X € 005 U0y, t>0, (134d)
nrorw = 0, X € 0Oz U Oy, t>0, (134e)
My,w = 0, X € 0Qy U 00, t>0, (134f)
Vow =0, X € 0O U 090, t>0, (134g)
M, ,w =0, X € {SE,NW} t>0, (134h)

in which ¢(X, t) is the velocity potential, H ()? ) is the water depth, p,, is the water density,
and ¢ is the gravitational acceleration. From the velocity potential, we can calculate hori-
zontal particle velocities as Jr¢ and pressure perturbation as —pwé. Thus (134a) expresses
depth-integrated conservation of mass for the incompressible water and the right side of
(134Db) sets the vertical load applied to the plate equal to the wave-induced pressure pertur-
bation, including a term (p,gw) corresponding to hydrostatic pressure change induced by
vertical displacement of the water surface.

Free BCs on w
10 NW = Clamped BCs on w

y in km
o
S

uS)

-15 -10 -5 0 5 10 15
= in km

Figure 3: Domain and grid configuration

7.1. Continuous problem weak form and energy balance

The weak formulation for the shallow water equation is obtained by multiplying (134a)
by pwX, integrating over {2, and integrating by parts:

(Pan w)Q = - (Pva 8IH81¢>Q (135)
= (Pw81X> Ha[¢)9 - (pr> H”ﬁf@@g .
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We define the kinetic energy of the water as
1
gW = 5 ((9]¢, pwHaI¢)Q> (136)

which allows us to set x = ¢ in (135) to obtain the energy balance of the water:

déw

a (Pw@,w>ﬂ + <n181¢, ,0ng5> ) (137)

o0

Next, taking the inner product of (134b) with ¢ and using integration-by-parts as in (19),
we obtain the weak form:

(mwa w)Q + (aIaJwa _MIJU)>Q + (wa pwgw)Q = (wa Vnw)ag - (nlalwa Mnnw)ag

C&
— M. o
2l (138)
~ (v.0ud), -
Then we set ¢ = w and using (21), we obtain the plate energy balance
d& . . ;
=+ (1 pugu)y = — (W.p09) - (139)

We then define the total energy of the system as the sum of € (the kinetic and strain energy
of the plate), the kinetic energy of the water &y, and the gravitational potential energy:

1
Eit =E +Ew + 5 (W, pwgw)g, - (140)

and combining the previous equations shows that total energy is conserved:

dgtot

=0. 141
5 (141)
7.2. Discretization
We discretize (134a) and (134b) as
W = —Dy(H)p + SAT,, (142a)
MW + pu® = DyW — pugw + SAT. (142b)

As in section 6, the weak form is obtained by multiplying (142a) by pwx?’JP:

(praW)Q = - (pr7]D2(H)¢)Q + (pr7 SATd’)Q

= (D1X7 pwHDI¢)Q - <n1D1X7 pwH¢>aQ + (pra SATd))Q

(143)
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and by multiplying (142b) by ”.JP:

(m’(»b? W)Q + (1/)7 pw(b)g = (’lpu D4W)Q - (1/)7 ngW)Q + (’(/)7 SATw)Q
— (Do, vBDyw)y — (DyDyap, (1 — 1) BDDyw)g — (. pugw),

+ (’lb,VnW)aQ - (]DN"/)annW Z"/) ( a)

+ (¢, SAT,),
(144)
To obtain the energy balance for the semi-discrete problem, set x = ¢ in (143):
1d

and ¥ = w in (144):

1d o
T [(Dow, vBDow), + (D/Dyw, (1 — v)BDDyw)g + (W, pugw), + (mw, )]
(146)

- (vaw¢)Q + BT27
and add:

1d
——F =BT, + B15 = BT 147
2 dt 1 + 2 — 9 ( )

where the discrete total energy is

1 o
E = 5 [(DI¢7 pwHDI¢)Q + (Wa pwgw)ﬂ + (mw, W)Q] ( )
148
1
+ 5 [(]DQW, VBDQW)Q + (ID)IDJW, (1 — I/)BD]DJW>Q]
and boundary terms
BT = — (D1, put$)  +(pud, SAT),
o (149)
+ (W, VW) 50 — (Dyw, M, W) 5, ZW < W > + (W, SAT,)q
0
Now, let us reinstate the total operators that incorporate SBP-SAT boundary terms
DY'w = Dyw + Sy, w = Dyw + SAT,, (150)
and
D¢ = Dap + Sy = Dap + SATY,. (151)
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Using the total operators, insert (142a) into (142b)

o = DY ()9,

I L (152)
—m]D)g t(H)(b + pu = ID)fl "W — pugw.

The semi-discrete system can be written as

I w

(=mDY(H) + pwﬂ)] LpL B {fo’t — pugll

We will be solving (153).

et B

8. Numerical experiments

This section consists of two numerical experiments. First, the method of manufactured
solutions is used to assess the global convergence rates of the new SBP-SAT schemes, im-
plemented using Mattson’s variable coefficient SBP operators [21]. Second, we solve an
application problem inspired by ocean wave interaction with ice shelves off the coast of
West Antarctica. For both experiments we use a system of self-consistent units (Table 1)
such that the discretization matrices are not ill-conditioned.

Field Units

T,y 10° m
w m
t S
o) 10% m?/s
H.h 102 m

pis pw 10% kg/m?
m  10° kg/m?
10% m /s
10'® Pa m?
MPa

< e

Since the system of equations (153) is very stiff, it is beneficial to use an implicit time-
integration method. We here opt for the second-order Crank-Nicolson method. Even though
the method is unconditionally stable, we should pick the time step At to keep accuracy.
Therefore, we pick the time step according to

At = const. X 4 |0 (Az)?, (154)
By

where my and By are nominal values of m and B, respectively, and Ax is the grid spacing.
This choice is inspired by the dispersion relation for flexural waves in a plate.
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8.1. Convergence studies

We use the method of manufactured solutions on the domain depicted in Fig. 3 and
choose the exact solution

w(z,y,t) = Wycos (k1x + kay + wt),  o(z,y,t) = Posin(kyz + koy + wt), (155)
where
w 2
=001, ®y=-—Wy—ro = — = \/k? + K} 1
Wo=001, ®y=-Wozrg, k==K +8 (156)
and
Bok* + pug
=ky| H————————— 1
’ \/ o+ Hol?my (157)
with
(k1,k2) = (kcos o, ksin @) (158)
and

_8><2><0.435><R
N 18

A ~ 3.867km. (159)

The choice of A is such that the number of points per wavelength (PPWL) is above 8.
The angular velocity w and the amplitudes W, and ®( are chosen by solving the dispersion
relation with the following constant material parameters: v = 0.3, mo = (0.3p;) x 10°kg/m?,
Hy = 0.6km and By = (0.3)* x 10"®Pa m®. We choose the propagation angle o = Z. The
material parameters are

v(z,y) = 1o (1 - %Sin <‘T ;3‘”)) : (160)
m(z,y) = mo (1+%sin (x Egy», (161)
H(z,y) = Hy (1 - %Sin (x ;33/)) (162)
and
B(z,y) = (@)3 (163)
with R = 10 km.



We impose free boundary conditions on the East and North boundaries and clamped
boundaries on the West and South boundaries, and use the exact solution as boundary and
initial data. We use the Crank-Nicolson method for time-integration. We set T = 27 /w ~
13.45 s as the final time. The Crank-Nicolson method requires solving a linear system at each
time step. For that, we use MATLAB’s GMRES iterative solver with a tolerance of 1077,
maximum iteration of 300, and incomplete LU-decomposition ilu() as preconditioners. For
I1u() we select: type is ‘crout‘, droptol is 107°, milu is ‘row‘. Table 1 and Fig. 4 show
the relative [2 errors as functions of Az, where Az denotes the average grid spacing in the
physical domain. Table 1 also shows the number of grid points per wavelength (PPWL)
used in the inner domain. The convergence rates appear to be approaching rates of 2, 3.5
and 4.5 for interior orders of 2q = 2,4, 6, respectively, which are the rates that have been
observed for anisotropic problems [2].

Table 1: [? errors and convergence rates 7

Az PPWL Second order Fourth order Sixth order
log,,(error) r log,,(error) T log,,(error) r
0.2122 18 -0.81 -2.16 -2.49
0.1706 23 -1.01 2.11 -2.53 3.91 -2.99 5.27
0.1426 27 -1.16 1.94 -2.80 3.54 -3.37 4.87
0.1225 32 -1.30 2.11 -3.04 3.63 -3.67 4.64
0.1074 36 -1.41 1.94 -3.24 3.46 -3.96 4.96
0.0956 40 -1.51 1.94 -3.41 3.29 -4.17 4.17
Avg. rate 2.01 3.56 4.78
107 o e----—" ----""
w—""—_.~_— h2
. /}f,, ~45
0 -7 } ® 2nd order E
B 4th order
6th order

Figure 4: Convergence plot
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8.2. Stability and self-adjointness

We use the domain in Fig. 3 again to verify that the scheme for the plate equation is
energy conserving and self-adjoint. The total discrete plate operator D is self-adjoint in the
inner product defined by the physical quadrature JP (131). In our case, this is equivalent
to the matrix A being symmetric, where

A = JPDI (164)

By setting the smallest grid spacing in the physical domain to Az = 0.0956, we obtain a
total of 23,552 grid points. The relative deviations from symmetry ||A — AT/ max/ || Allmax
for this problem (using double precision floating point operations) are:

ond order: 7.76 x 1075, 4th order: 9.93 x 107',  6th order: 3.32 x 1071%,

which verifies that the schemes are self-adjoint to machine precision.
Without external forces and boundary data, the semi-discrete equations become

puwd PW + poJ PDY (H)p = 0

165
mJPw = Aw — p,gJ Pw — p,JPa. (165)

Since A is symmetric, the semidiscrete problem preserves the quantity

1
ot = 5 ((W)T mJPw — w' Aw +w” p,gJPw + p,¢" JPDY' (H )cb) :

v (k)

50 200 250

1
 (km)

Figure 5: BedMachine Version 2 mask of Amundsen Sea Region
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which is the same semidiscrete energy given by (140). Furthermore, our stability analysis
guarantees that the semidiscrete energy is non-negative, and hence a seminorm of w, which
means that with proper SATs, A is negative semidefinite. For the current problem, the
largest eigenvalues of A are:

2nd order: —2.0933 x 1077,  4th order: —2.0927 x 1077,  6th order: —2.0934 x 107",
which verifies that A is negative semidefinite.

8.3. Ocean wave interaction with ice shelves of the Amundsen Sea region

The topic of the application problem is to study transmission of ocean waves and tsunamis
through the ice shelves of the Amundsen Sea region (Fig. 5) in West Antarctica. For
the application problem, we modify the domain (Fig. 6) and utilize a different boundary
condition on ¢. The domain is obtained by approximating Fig. 5. First, we want to enforce
a non-reflective boundary condition on the open water part, where the waves leave the
current domain without reflection. Second, we want to provide an incoming wave into the
system through this boundary. To do this, we divide the whole boundary 0 into 2 disjoint
sub-boundaries: 9€) = 0y U 0Q2z. Neumann boundary conditions are enforced on 02y

(166a) and non-reflective boundary conditions with incoming incident waves are enforced on
0Nk (166b):

y (km)

mmm Oy, wall boundary conditions on ¢
mmm JQ) v, non-reflective boundary conditions on ¢
—— 0 p, free boundary conditions on w
00, clamped boundary conditions on w
¢ C,, corner conditions on w
T

50 100 150 200 250
z (km)

Figure 6: Amundsen Sea region and grid configuration
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n;0¢ =0, X € 0Qg, t>0, (166a)
1 . 1 . -

—— ¢ —n01p = ——=¢P) — n;8;0P), X € 0Onn. t>0. (166b)

Vg Vg

The non-reflecting condition specifies data for the characteristic variable associated with

shallow water waves, propagating at speed v/gH, into the domain. For data, we specify an

incident plane wave of the form

1 ( (t—io)—Sacw—Syy>2

¢ P (2, y,t) = doe 2 T , (167)

where ¢g = 0.5 and (s;, s,) = 1/c- (cos(8),sin(#)) is the slowness vector, ¢ = \/gH is the
wave speed (evaluated using local properties), and § = 7m/4 is the angle of the direction
of wave propagation counterclockwise from the z—axis. Here T' (in seconds) controls the
frequencies of the incident wave and ty, = 47 is for delay. Furthermore, we obtain the
variable water depth (Fig. 7a) and ice thickness (Fig. 7c) from BedMachine Version 2 [26].
Next, we interpolate both values over the grid points of Q (Fig. 7b and 7d). We set Poisson
ratio to v = 0.3.

The simulation results, shown in Figs. 8 and 9 for 7' = 10 s and 30 s, respectively,
show an extremely complex wavefield resulting from scattering and diffraction in response
to variable water depth, ice thickness, and the complex geometry of the coastline and ice
shelf edge. Consistent with previous studies, only sufficiently long wavelength incident waves
are transmitted across the ice shelf edge. In addition to providing predictions of the wave
amplitude w, our method can be used to quantify the bending moments and shear forces
acting within the ice, which can be combined with fracture mechanics concepts to assess the
likelihood of rift development and growth.
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Figure 7: Geometry of Amundsen Sea region. Discretized values are shown on a coarser mesh
than used in the simulations for easier visualization.
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Figure 8: Plots of vertical displacement w in meters for T' = 10 s. The top two rows show
the snapshots of w at different times. (@) Arrival of incident waves at the ice shelf front of
Thwaites Ice Tongue at t=1597 s. (b) Reflection from and transmission through the ice shelf
front and arrival at grounding zone at ¢ = 1900 s. (c) Complex wavefield with relfections and
scattering and arrival of incident waves at the Pine Island Ice Shelf at t = 2497 s. (d) Larger
amplitudes and shorter wavelengths in the ocean, smaller in the ice shelf at ¢ = 3483 s.
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Figure 9: Plots of vertical displacement w in meters for T = 30 s. The top two rows show the
snapshots of w at different times. (a) Arrival of incident waves at the Thwaites Ice Shelf front
at t=1650 s. (b) Reflection from ice shelf front and flexural-gravity waves reach the grounding
zone of Thwaites Ice Shelf at t = 2240 s. (c) Arrival of waves at the Pine Island Ice Shelf front
at t = 2540 s. (d) Complex wavefield with scattering at ¢ = 3480 s.

9. Conclusions

We have developed an SBP-SAT method for the variable coefficient 2D plate equation on
curvilinear multiblock grids. Free boundary and corresponding corner conditions, clamped
boundary conditions, and interface conditions are all enforced utilizing SATs, which make
the spatial discretization energy-stable and self-adjoint by design. Numerical experiments
indicate that the convergence rates are 2, 3.5 and 4.5 for interior orders of two, four and six,
respectively.

For the numerical experiments, we formed an ocean-wave-ice-shelf interaction problem for
Thwaites Glacier Tongue and Pine Island ice shelves in the Amundsen Sea region off the coast
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of West Antarctica. Our approach handles variable coefficients and complex geometries,
which is essential for modeling real-world problems in the cryosphere. Future simulations
can take tsunami and wave data (either from separate simulations or observations) to force
the model, in order to quantify the response of ice shelves to forcing from ocean waves and
tides. The model can provide predictions of bending stresses and shear forces, which may
cause fracturing and even break-up of the ice shelves, and to identify regions in which bending
stresses are amplified by wave focusing. In addition, the model could be utilized in the PDE-
constrained optimization framework of full waveform inversion, in which model parameters
like ice thickness and bending stiffness are adjusted to minimize the misfit between modeled
and observed wavefield measurements. The self-adjoint SBP-SAT framework is ideally suited
for this class of problems [3].

MATLAB source code that reproduces figures (4), (8), (9) is available at https://www.
usap-dc.org/view/dataset/601561.

CRediT authorship contribution statement

Nurbek Tazhimbetov: Conceptualization, Software, Visualization, Writing - original
draft. Martin Almquist: Conceptualization, Methodology, Software, Writing - review &
editing. Jonatan Werpers: Conceptualization, Software. Eric Dunham: Conceptualiza-
tion, Funding acquisition, Investigation, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

M.Almquist gratefully acknowledges support from the Knut and Alice Wallenberg Foun-
dation (Dnr. KAW 2016.0498). This work was also supported by the National Science
Foundation (OPP-1744759).

References

[1] Almquist, M., Dunham, E.M., 2020. Non-stiff boundary and interface penalties for narrow-stencil finite
difference approximations of the Laplacian on curvilinear multiblock grids. J. Comput. Phys. 408. URL:
https://doi.org/10.1016/5.jcp.2020.109294, doi:10.1016/3.jcp.2020.109294.

[2] Almquist, M., Dunham, E.M., 2021. Elastic wave propagation in anisotropic solids using energy-stable
finite differences with weakly enforced boundary and interface conditions. J. Comput. Phys. 424,
109842. URL: https://doi.org/10.1016/j.jcp.2020.109842, doi:10.1016/j.jcp.2020.109842.

[3] Bader, M., Almquist, M., Dunham, E., 2021. Acoustic-elastic waveform modeling and inversion using
energy-stable summation-by-parts finite-difference operators. First International Meeting for Applied
Geoscience & Energy Expanded Abstracts doi:https://doi.org/10.1190/segam2021-3579516.1.

[4] Bromirski, P., Chen, Z., Stephen, R., Gerstoft, P., Arcas, D., Diez, A., Aster, R., Wiens, D., Nyblade,
A., 2017. Tsunami and infragravity waves impacting Antarctic ice shelves. Journal of Geophysical
Research .

34



5]

[6]

7]

18]
19]
[10]

[11]

[12]
[13]
[14]

[15]

[16]

[17]
[18]

[19]
[20]
[21]
[22]

[23]

[24]

Bromirski, P.D., Diez, A., Gerstoft, P., Stephen, R.A., Bolmer, T., Wiens, D.A.,; Aster, R.C., Nyblade,
A., 2015. Ross ice shelf vibrations. Geophysical Research Letters 42, 7589-7597.

Carpenter, M.H., Gottlieb, D., Abarbanel, S., 1994. Time-stable boundary conditions for finite-
difference schemes solving hyperbolic systems: Methodology and application to high-order compact
schemes. J. Comput. Phys. 111(2), 220-236. URL: https://doi.org/10.1006/jcph.1994.1057,
doi:10.1006/jcph.1994.1057.

Del Rey Fernandez, D.C., Hicken, J.E., Zingg, D.W., 2014. Review of summation-by-parts operators
with simultaneous approximation terms for the numerical solution of partial differential equations.
Comput. Fluids 95, 171-196. URL: https://doi.org/10.1016/j.compfluid.2014.02.016, doi:10.
1016/j.compfluid.2014.02.016.

Fox, C., Squire, V.A., 1991. Coupling between the ocean and an ice shelf. Annals of Glaciology 15,
101-108.

Holdsworth, G., Glynn, J., 1978. Iceberg calving from floating glaciers by a vibrating mechanism.
Nature 274, 464—466.

Holdsworth, G., Glynn, J., 1981. A mechanism for the formation of large icebergs. Journal of Geo-
physical Research 86, 3210. URL: doi:10.1029/jc086ic04p03210.

Ilyas, M., Meylan, M.H., Lamichhane, B., Bennetts, L.G., 2018. Time-domain and modal response
of ice shelves to wave forcing using the finite element method. Journal of Fluids and Structures 80,
113-131. URL: https://doi.org/10.1016/j.jfluidstructs.2018.03.010.

Kalyanaraman, B., Bennetts, L.G., Lamichhane, B., Meylan, M.H., 2019. On the shallow-water limit
for modelling ocean-wave induced ice-shelf vibrations. Wave Motion 90, 1-16.

Kalyanaraman, B., Meylan, M.H., Bennetts, L.G., Lamichhane, B.P., 2020. A coupled fluid-elasticity
model for wave forcing of an ice-shelf. J. Fluids Struct. 97, 103074.

Kircchoff, G., 1850. Uber das gleichgewicht und die bewegung einer elastischen scheibe. J. Reine
Angew. Math. 40, 51-88.

Kreiss, H.O., Oliger, J., 1972. Comparison of accurate methods for the integration of hyperbolic
equations. Tellus XXIV, 199-215. URL: https://doi.org/10.3402/tellusa.v24i3.10634, doi:10.
3402/tellusa.v24i3.10634.

Kreiss, H.O., Scherer, G., 1974. Finite element and finite difference methods for hyperbolic partial
differential equations. Mathematical Aspects of Finite Elements in Partial Differential Equations.,
Academic Press, Inc. , 195-212URL: https://doi.org/10.1016/B978-0-12-208350-1.50012-1,
doi:10.1016/B978-0-12-208350-1.50012-1.

Lamb, H., 1889. On the flexure of an elastic plate. Proc. London Math. Soc. 21, 70-91.

MacAyeal, D.R., Okal, E.A., Aster, R.C., Bassis, J.N., Brunt, K.M., Cathles, L.M., Drucker, R.,
Fricker, H.A., Kim, Y.J., Martin, S., Okal, M.H., Sergienko, O.V., Sponsler, M.P., Thom, J.E., 2006.
Transoceanic wave propagation links iceberg calving margins ofantarctica with storms in tropics and
northern hemisphere. Geophysical Research Letters 33.

Malvern, L.E., 1969. Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Inc.
Massom, R.A., Scambos, T.A., Bennetts, L.G., Reid, P., Squire, V.A., Stammerjohn, S.E., 2018.
Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell. Nature 558(7710), 383-389.
Mattsson, K., 2012. Summation by parts operators for finite difference approximations of
second-derivatives with variable coefficients. J. Sci. Comput 51, 650-682. doi:D0I10.1007/
s10915-011-9525-z.

Mattsson, K., 2014. Diagonal-norm summation by parts operators for finite difference approximations of
third and fourth derivatives. J. Comput. Phys. 274, 432 — 454. URL: http://www.sciencedirect.com/
science/article/pii/S0021999114004343, doichttp://dx.doi.org/10.1016/j.jcp.2014.06.027.
Mattsson, K., Dunham, E.M., Werpers, J., 2018. Simulation of acoustic and flexural-gravity waves. J.
Comput. Phys. 373, 230-252. URL: https://doi.org/10.1016/j.jcp.2018.06.060, doi:10.1016/j.
jcp.2018.06.060.

Mattsson, K., Stiernstréom, V., 2015. High-fidelity numerical simulation of the dynamic beam equation.
Journal of Computational Physics 286, 194 — 213. URL: http://www.sciencedirect.com/science/

35



[25]

[26]

[27]

[28]

[29]
[30]
31]
[32]
[33]

[34]

[35]

article/pii/S0021999115000522, doi:http://dx.doi.org/10.1016/j.jcp.2015.01.038.

Meylan, M.H., Ilyas, M., Lamichhane, B.P., Bennetts, L.G., 2021. Swell-induced flexural vibrations of
a thickening ice shelf over a shoaling seabed. Proceedings of the Royal Society A 477: 20210173. URL:
https://doi.org/10.1098/rspa.2021.0173.

Morlighem, M., Rignot, E., Binder, T., Blankenship, D.D., Drews, R., Eagles, G., Eisen, O., Ferraccioli,
F., Forsberg, R., Fretwell, P., Goel, V., Greenbaum, J.S., Gudmundsson, H., Guo, J., Helm, V.,
Hofstede, C., Howat, I., Humbert, A., Jokat, W., Karlsson, N.B., Lee, W., Matsuoka, K., Millan, R.,
Mouginot, J., Paden, J., Pattyn, F., Roberts, J.L., Rosier, S., Ruppel, A., Seroussi, H., Smith, E.C.,
Steinhage, D., Sun, B., van den Broeke, M.R., van Ommen, T., van Wessem, M., Young, D.A., 2020.
Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the antarctic ice sheet.
Nature Geoscience 13, 132-137. URL: https://doi.org/10.1038/s41561-019-0510-8.
Papathanasiou, T.K., Karperaki, A.E., Theotokoglou, E.E., Belibassakis, K.A., 2015. Hydroelas-
tic analysis of ice shelves under long wave excitation. Natural Hazards and Earth System Sciences
15, 1851-1857. URL: http://www.nat-hazards-earth-syst-sci.net/15/1851/2015/, doi:10.5194/
nhess-15-1851-2015.

Petersson, N.A.; Sjogreen, B., 2015. Wave propagation in anisotropic elastic materials and curvilinear
coordinates using a summation-by-parts finite difference method. J. Comput. Phys. 299, 820-841. URL:
http://dx.doi.org/10.1016/j.jcp.2015.07.023, doi:10.1016/j.jcp.2015.07.023

Reddy, J.N., 2007. Theory and Analysis of Elastic Plates and Shells. CRC Press.

Rudin, W., 1973. Functional Analysis. McGraw-Hill Book Company.

Sergienko, O., 2010. Elastic response of floating glacier ice to impact of long-period ocean waves.
Journal of Geophysical Research 115.

Sergienko, O., 2017. Behavior of flexural gravity waves on ice shelves: Application to the ross ice shelf.
Journal of Geophysical Research: Oceans .

Sturova, I.V., 2009. Time-dependent response of a heterogeneous elastic plate floating on shallow water
of variable depth. Journal of Fluid Mechanics 637, 305-325.

Svard, M., Nordstrom, J., 2014. Review of summation-by-parts schemes for initial-boundary-value
problems. J. Comput. Phys. 268, 17-38. URL: https://doi.org/10.1016/j.jcp.2014.02.031,
doi:10.1016/j . jcp.2014.02.031.

Thompson, J.F., Warsi, Z.U., Mastin, C.W., 1985. Numerical grid generation: foundations and appli-
cations. volume 45. North-holland Amsterdam. URL: http://www.hpc.msstate.edu/publications/
gridbook/cover . php.

36



