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Abstract

Recently, deep neural networks have demonstrated comparable and even better
performance than board-certified ophthalmologists in well-annotated datasets.
However, the diversity of retinal imaging devices poses a significant challenge:
domain shift, which leads to performance degradation when applying the deep
learning models trained on one domain to new testing domains. In this paper,
we propose a multi-scale input along with multiple domain adaptors applied
hierarchically in both feature and output spaces. The proposed training strat-
egy and novel unsupervised domain adaptation framework, called Collaborative
Adversarial Domain Adaptation (CADA), can effectively overcome the chal-
lenge. Multi-scale inputs can reduce the information loss due to the pooling
layers used in the network for feature extraction, while our proposed CADA
is an interactive paradigm that presents an exquisite collaborative adaptation
through both adversarial learning and ensembling weights at different network
layers. In particular, to produce a better prediction for the unlabeled target
domain data, we simultaneously achieve domain invariance and model gener-

alizability via adversarial learning at multi-scale outputs from different levels
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of network layers and maintaining an exponential moving average (EMA) of
the historical weights during training. Without annotating any sample from
the target domain, multiple adversarial losses in encoder and decoder layers
guide the extraction of domain-invariant features to confuse the domain classi-
fier. Meanwhile, the ensembling of weights via EMA reduces the uncertainty of
adapting multiple discriminator learning. Comprehensive experimental results
demonstrate that our CADA model incorporating multi-scale input training
can overcome performance degradation and outperform state-of-the-art domain
adaptation methods in segmenting retinal optic disc and cup from fundus im-
ages stemming from the REFUGE, Drishti-GS, and Rim-One-r3 datasets. The
code will be available at https: // github. com/ cswin/CADA.

Keywords: Domain adaptation, Unsupervised learning, Segmentation,

Retinal fundus images

1. Introduction

Early diagnosis is vital for the treatment of various vision degradation dis-
eases [I], such as glaucoma, Diabetic Retinopathy (DR), and age-related macu-
lar degeneration. Many eye diseases can be revealed by the morphology of Optic
Disc (OD) and Optic Cup (OC) [2]. For instance, glaucoma is usually character-
ized by a large Cup to Disc Ratio (CDR), the ratio of the vertical diameter of the
cup to the vertical diameter of the disc. Currently, determining CDR, is mainly
performed by pathology specialists. However, it is extremely expensive to ac-
curately calculate CDR by human experts. Furthermore, manual delineation of
these lesions also introduces subjectivity, intra- and inter-variability [3]. There-
fore, it is essential to automate the process of calculating CDR. OD and OC
segmentation are commonly adopted to automatically calculate the CDR. Nev-
ertheless, OD segmentation is challenging because pathological lesions usually
occur on OD boundaries, which affect the accurate identification of the OD re-
gion. Accurate OC segmentation is more challenging due to the region overlap

between the cup and the blood vessels [4].
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(a) Zeiss Visucam 500 (b) Canon CR-2

Figure 1: Retinal fundus images collected by different fundus cameras revealing a variation

in color and intensity.

Recently, deep learning-based methods [5], 6], [7}, 8] have been proposed to
overcome these challenges and some of them, e.g., M-Net [5], have demonstrated
impressive results. Although these methods tend to perform well when being
applied to well-annotated datasets, the segmentation performance of a trained
network may degrade severely on datasets with different distributions, partic-
ularly for retinal fundus images captured with different imaging devices (e.g.,
different cameras, as illustrated in Fig. |1}). The variance among the diverse
data domains limits deep learning’s deployment in reality and impedes us from
building a robust application for retinal fundus image parsing. To recover the
degraded performance, annotating the fundus images captured from every new
domain and then re-training or fine-tuning a model is an easy way but extremely
expensive and even impractical for the medical areas that require expertise.

To tackle this challenge, recent studies [9] [T0] [TT1, 12} T3], 14}, [15] have demon-
strated the effectiveness of using deep learning for unsupervised domain adapta-
tion to enhance the performance of applying models on unlabeled target domain
data. Existing works have mainly focused on minimizing the distance between
the source and target domains to align the latent feature distributions from
different domains [12]. Several primary approaches can guide the alignment
process, which includes image-to-image translation of the input images [16], ad-

versarial training for the intermediate representations in the layers of the model
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(encoder or decoder) [I7], and applying adversarial learning to the output of
the model [I1I]. However, adversarial discriminative learning usually suffers
from the instability of its training. Numerous methods have been studied to
tackle this challenge. Self-ensembling [I8] is one of them recently applied to
visual domain adaptation [I9]. In particular, gradient descent is used to train
a student network, and the exponential moving average of the weights of the
student is transferred to a teacher network after applying each training sample.
The mean square difference between the outputs of the student and the teacher
is used as an unsupervised loss to train the student network. The paradigm
of student-teacher has been a widely used strategy for unsupervised training of
a deep neural network, feature extraction [20], and knowledge distillation [21].
This unsupervised training strategy allows the student network to capture more
information about the data during training and achieve a better prediction.
Furthermore, most of the existing methods have not considered providing
multi-scale information of the data to the deep neural networks for having a
better understanding of the difference between target and source domain fea-
tures. In addition, most deep neural networks employ pooling layers to reduce
model parameters and extract important features. However, pooling layers lead
to a significant loss of the information in the original input data. In addition,
the optic cup and disc in fundus image have high variance in brightness, color,
shape, and orientation, which makes single-scale and single-level adversarial
adaptation insufficient. Capturing only information from the output space ne-
glects the intuition that low-level features are similar across various domains,
leading to poor domain adaptability and missed opportunities for incorporating
hierarchical features in segmentation predictions. To overcome these problems,
in this study, we propose a multi-scale input training strategy to integrate dif-
ferent scales of features into different levels of the network layers. On one hand,
multi-scale inputs performing at different levels of network layers can reduce the
information loss due to the pooling layers in the network; On the other hand, it
can provide rich information for the network to easily distinguish the difference

between the source and target domain features.
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These multi-scale inputs are integrated into an encoder-decoder structure
to form multiple sub-networks with multi-outputs. In this way, we can have
multiple discriminators between the source and target domain input and lever-
age ensembling internally on the multiple distinctions at different levels of the
network layers to have a better final segmentation prediction in target domain
data. This proposed multi-domain adaptor approach can overcome the limita-
tion of the current methods while comprehensively applying domain adaptation
at hierarchical multi-scale in both feature and output space.

In this paper, we propose a novel unsupervised domain adaptation frame-
work called Collaborative Adversarial Domain Adaptation (CADA) to further
the state-of-the-art in overcoming the underlining domain shift problem. In par-
ticular, we take advantage of self-ensembling to stabilize the adversarial discrim-
inative learning of the latent representations from domain shifting to prevent
the network from getting stuck in degenerate solutions. Most importantly, we
apply the unsupervised loss by adversarial learning not only to the output space
but also to the input space and the intermediate representations of the network.
Thus, from a complementary perspective, adversarial learning can consistently
provide various model space and time-dependent weights to self-ensembling to
accelerate the learning of the domain-invariant features and further enhance the
stabilization of adversarial learning, forming a benign collaborative circulation

and unified framework. The significant contributions of this paper are as follows:

e We propose CADA, a novel unsupervised domain adaptation framework,
which exploits collaborative adversarial learning and weights self-ensembling
for feature adaptation to tackle domain shift in a mutually beneficial and
complementary manner at different network layers, resulting in a robust

and accurate model.

e We propose a multi-scale input training strategy to overcome the infor-
mation loss when applying pooling layers in the network and offer an
opportunity to integrate various scales of low-level and high-level features

for improved network learning.
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e We optimized feature adaptation by applying adversarial discriminative
learning in two phases of the network, i.e., intermediate representation
space and output space. More specifically, we apply adversarial learning
at multiple layers of the network to learn the invariant features in both

encoder and decoder phases simultaneously.

e We reduce the uncertainty of multiple discriminators collaborative learn-
ing for domain shift via the EMA to ensemble model weights dynamically

during training.

e We evaluate the effectiveness of our CADA on the challenging task of
unsupervised joint segmentation of the retinal OD and OC. Our CADA
can overcome performance degradation to domain shift and outperform
one of the state-of-the-art domain adaptation methods with a significant

performance gain on various datasets.

This work is a substantial extension of our conference paper “CFEA: Collab-
orative Feature Ensembling Adaptation for Domain Adaptation in Unsupervised
Optic Disc and Cup Segmentation” [22] published in Medical Image Comput-
ing and Computer Assisted Intervention (MICCAI) 2019. In this extension,
we substantially expanded our framework’s reliability and scalability of over-
coming domain shift issue in fundus images. In particular, we demonstrate the

significant new contributions as below:

e We propose a novel multi-scale input layer to enhance the feature interac-
tion between the encoder and the decoder where CFEA only uses a single
scale. An input on each scale provides original image information to an
encoder layer, which is followed by a decoder layer at the same network
“pyramid” level. The rich original pixel-wise feature can infuse the in-
teraction between encoder and decoder at the different feature-learning
levels in the network. This infusion triggered by the multi-scale input can
further guide the model learning and promote performance by reducing

the significant information loss due to the pooling layers applied in the
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network and reducing the high variance of the optical cup and disc images

in brightness, color, shape, and orientation.

e Instead of a single domain adaptor (e.g., a discriminator network) at the
end of the network in CFEA, we propose to apply multi-domain adaptors
at hierarchical multi-scales in both feature and output space, which en-
courages the network to learn the domain-invariant features consistently.
More importantly, they can collaboratively distinguish robust latent fea-
tures in the scenarios that the optical cup and disc images have high
variance in brightness, color, shape, and orientation, thus leading to a

reliable and scalable domain adaptation framework.

e Comprehensive ablation studies are performed to investigate the effective-
ness of the proposed framework. The ablation study investigates the im-
portance of the encoder adversarial discriminative adaptation, the power
of weights self-ensembling adaptation, the scalability of using multiple do-
main adaptors, and the choice of various combinations of the weights of

loss functions.

e Evaluation on multiple public datasets is performed to show generalizabil-
ity and stability of the proposed CADA framework compared to state-of-
the-art methods.

2. Related Work

2.1. Optic Disc and Optic Cup Features

The features of the Optic Disc (OD) and Optic Cup (OC) are critical for the
diagnosis of eye diseases [2]. For example, ophthalmic pathologies (e.g., glau-
coma) can be indicated by the variations of the shape, color, or depth of OD.
The Cup to Disc Ratio (CDR), the ratio of the vertical diameter of the cup to
the vertical diameter of the disc, is considered a valuable feature for diagnosing
eye diseases [23], such as glaucoma, because higher CDR is highly associated

with detectable visual field damage [24]. Currently, determining CDR is mainly
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performed by pathology specialists. However, it is expensive to calculate CDR
by human experts accurately. Furthermore, the variance of determining the
CDR among professionals is usually significant, which can be caused by both
the diversity of retinal fundus images and different experiences of the profession-
als [25]. Therefore, it is essential to automate the process of calculating CDR.
On one hand, this automated process can reduce the cost of diagnosis. On the
other hand, it can stabilize diagnostic accuracy and improve the efficiency of

retinopathy screening procedures.

2.2. OD and OC Image Segmentation

Image segmentation is a long-term research topic in the field of computer
vision and image analysis. It is the basis for feature recognition and quantitative
feature understanding [26]. In medical imaging, image segmentation is partic-
ularly important since it can help to locate related lesions/tumors and provide
quantitatively analytical results of shapes/morphologies for clinicians. For ex-
ample, image segmentation can automatically detect the OD and OC regions
and calculate the CDR simultaneously, e.g., [4]. The task of OD segmentation is
to detect the region between retinal and the rim. The presence of pathological
lesions on the OD boundaries become problematic for OD detection. More to
the point, OC detection is hindered by the region overlap between the cup and
the blood vessels, as well as the color intensity changing between the cup and
rim. It is critical to erase these challenges for reducing incorrect OD and OC
segmentation that may cause a false diagnosis.

Recently, many deep learning-based studies [2, [4 5] have been proposed
to overcome these challenges. In general, there are several steps to achieve
a decent result. Firstly, a pre-trained disc center localization method [27] is
used to detect the OD and OC. The localization mainly acts as an attention
mechanism so that the network can focus on essential regions and meanwhile, the
polar transformation amplifies the relevant features to enable a more accessible
learning process. Secondly, the localized areas are transformed (e.g., cropped,

re-sized, and image coordinate system consistency) into the segmentation model
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training stage. Lastly, these transformed image regions are fed into an encoder-
decoder convolutional network to predict the actual OD and OC regions for an
arbitrary fundus image. The encoder is utilized to extract rich image features;
the decoder part is used to produce accurate segmentation results based on the
encoded features. These combined techniques can reduce the negative effect
on model performance caused by the variance in retinal images. However, the
variation is only constrained within one image domain, in which the training
and testing images usually have similar distributions, such as background color
and intensity. In practice, the testing images can be acquired from different
types of cameras and have varying background or image intensity (as illustrated
in Fig. [1)). The performance of a model trained on the dataset collected from
one domain is severely degraded in another domain. This issue is referred to as
“domain shift” [28]. It is critical to overcome this issue for a generalized and

robust model in medical practice.

2.8. Unsupervised Domain Adaptation

Saenk et al. [29] originally introduced the unsupervised domain adaptation
problem in tackling the performance degradation caused by the domain shift.
In particular, unsupervised domain adaptation aims to tackle domain shift via
adapting the training process of a model in an unsupervised manner. The
model is adapted to improve the performance on the target domain. More
importantly, leveraging unsupervised learning can reduce the tremendous and
expensive data labeling work for the target domain. Therefore, unsupervised
domain adaptation is a promising direction to solve domain shift problems,
especially, in the medical field whose data is multi-modal and requires expensive
and expertise data labeling.

Recently, many deep learning-based domain adaptation methods [4} [17, [30]
have been proposed and achieved several encouraging results. Many of these
methods tackle the domain shift issue by extracting invariant features across
the source and target domains. A critical approach for reducing the domain

discrepancy is adversarial learning [9], which has become a fundamental method
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Figure 2: Comparison between prior domain adaptation methods and our framework. Each
colored arrow represents a connection with each multi-scale output to a corresponding domain

adaptor.

to obtain invariant information across multiple domains. In particular, it lever-
ages the gradient discrepancy between learning the labeled and unlabeled data
to minimize performance degradation. The implementation can either be image-
to-image translation [31},[32] [33] in a convolutional neural network (CNN) input-
end or multiple adversarial learning [I1],[34] applied at the output-end of a CNN.
Noticeably, the image-to-image translation usually introduces artifacts, which
may be not a proper approach in the medical field. Therefore, in this work, we
focus on gradient-based adversarial learning.

In addition, previous adversarial learning based approaches [35] are mainly
applied domain adaptation at the output space of a deep neural network. How-
ever, accurate image segmentation requires the model to capture both low-
and high-level image representations; thus, it would be ideal for applying do-
main adaptation at various feature spaces with multi-scale representations. In
this study, we comprehensively investigated whether employing multiple domain
adaptors at a different level of layers of the network can benefit the represen-
tation learning across domains compared to the approaches only focusing on
adaptation at the output space. We showed the design difference between pre-
vious methods and our framework and illustrated the major novelty in Fig.

Furthermore, although adversarial learning can align the latent feature dis-

10
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tribution of the source and target domain and have achieved encouraging re-
sults [9], the results of multiple adversarial learning-based methods are easily
suffering from sub-optimal performance due to the difficulty of stabilizing the
training process of multiple adversarial modules. Thus, in this work, we propose
to leverage the Exponential Moving Average (EMA) [36] computing method to
dynamically ensemble learning weights as embedding multiple adversarial mod-
ules in a network. Meanwhile, this stabilization can bring not only a more
robust but also an accurate model to effectively overcome the domain shift is-

sue in fundus image segmentation problems.

3. Multi-scale Collaborative Feature Ensembling Adaptation

3.1. Problem Formulation

Unsupervised domain adaptation typically refers to the scenario: given a
labeled source domain dataset with distribution P(X) and the corresponding
label Y; with distribution P(Y;|X5), as well as a target dataset with distribution
P(X;) and unknown label with distribution P(Y;|X:), where P(X,) # P(X}),
the goal is to train a model from both labeled data X, and unlabeled data X,
with which the expected model distribution P(Y;|X;) is close to P(Y;|Xy).

8.2. Querview of the Proposed Method

Fig. [3] illustrates the design of the proposed domain adaptation framework.
Our network includes three primary networks, i.e. the Source-domain Network
(SN, in blue), the Target-domain Student Network (TSN, in gray), and the
Target-domain Teacher Network (TTN, in orange). We utilize multi-scale inputs
and outputs to each of the primary networks to adapt various levels of features
hierarchically. During training, at each iteration, the source images are fed into
SN to generate the Source-encoder Feature (SF) Psy and source decoder output
P,,. The source domain segmentation loss is obtained by comparing the P,
with the source domain ground truth. TSN shares the same weights with SN,
and the weights of TTN are the Exponential Moving Average (EMA) weights of

11
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Figure 3: Overview of the proposed model architecture with each primary network block col-
ored: the Source-Domain Network (SN, in blue), the Target-domain Student Network (TSN,
in gray) and the Target-domain Teacher Network (TTN, in orange). Note that discriminators
can be added between all the intermediate decoder layers of SN and TSN. However, we only
add the discriminators among the input (Pssy and P;sf) and output (Pso and Prso) of the

decoders in this figure for simplicity.

TSN. Adversarial losses for domain confusion are added for both encoder and
decoder outputs of SN and TSN. Moreover, Mean Square Error (MSE) losses are
added to both the encoder and decoder outputs of TSN and TTN. To reduce the
difficulty of high-dimensional feature calculations, the outputs of all encoders
are compressed to one feature map output via a 1 x 1 convolutional layer.
Although each of the networks plays a distinctive role in guiding networks
to learn domain invariant representations, all of them can interact with each
other, benefit one another, and work collaboratively as a unified framework dur-
ing an end-to-end training process. SN and TSN focus on supervised learning
for labeled samples from the source domain (X,) and adversarial discriminative
learning for unlabeled samples from the target domain (X;), separately. More
importantly, we allow SN and TSN to share the weights that are sequentially
learned from both labeled and unlabeled samples. This technique is commonly

adopted in unsupervised domain adaptation to reduce the number of learnable

12
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parameters [I1], B7]. The labeled samples enable the network to learn accu-
rate segmentation predictions while the unlabeled samples bring unsupervised
learning and further present a type of perturbation to regularize the model train-
ing [38]. Furthermore, TTN conducts the weight self-ensembling [19] part by
replicating the average weights of the TSN instead of predictions. TTN solely
takes unlabeled target images as input and then the mean square difference be-
tween TSN and TTN is computed for the same target sample. Different data
augmentations (e.g., adding Gaussian noise and random intensity or brightness
scaling) are applied to TSN and TTN to avoid the loss vanishing issue.

In this work, the U-Net [39] with encoder-decoder structure is employed
as the backbone of each network, since U-Net is one of the most successful
segmentation frameworks in medical image segmentation. With the adaptability
and flexibility of our framework, we expect that the results can generalize to

other backbone networks and medical image analysis tasks.

8.8. Multi-scale Input Sub-networks

We allow multi-scale inputs to provide rich original pixel-wise features that
can infuse the interaction between encoder and decoder at the different feature-
learning levels of the network. Each level of the network is considered as a
sub-network that primarily processes one scale of the original input for segmen-
tation prediction. Fig. ] shows the paradigm of the multi-scale input networks.
To simplify the re-scaling procedure, we apply a 2 x 2, 4 x 4, and 8 x 8 size of
pooling followed by a 3 x 3 convolutional layer to reduce the scale of the origi-
nal input. A level scale of an input passes through several convolutional layers
across both encoder and decoder of the network. Four scales of inputs are built
and each of them is corresponding to a level of the neural network layers, which
is considered a sub-network. The output of each sub-network uses a domain
adaptor for domain adaptation. Lastly, another domain adaptor is employed
as the average of the four sub-networks outputs for domain adaptation. The
whole network uses multiple domain adaptors to adjust itself for domain adap-

tion learning at both low-level and high-level features and perform an accurate

13
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Figure 4: The network design details illustrating the multi-scale input in the combination
of multiple domain adaptors applied at different hierarchical layers. Each color represents a
level scale of the input that passes through several convolutional layers across both encoder
and decoder of the network. The label on each layer includes the size of the input to the

layer-block and the number of channels in all convolutional layers in that block.

segmentation prediction, especially those from the fundus optic cup and disc.
There are 5 adaptors and each of them is a combination of supervised segmenta-
tion learning, the mean square difference between the prediction of the teacher
and student network, and adversarial learning through deep convolutional net-
works as discriminators. We show the paradigm of the multi-scale input in the
combination of multiple domain adaptors applied at different hierarchical layers
and the details of network design in Fig. [} Notably, we include the multi-scale

inputs to both the student and teacher networks of our CADA framework.

8.4. Multiple Adversarial Discriminative Learning

We apply five discriminators at the encoder and decoder of the networks, sep-
arately, to achieve adversarial discriminative learning. To simplify our method’s
explanation, the following section is using two types of discriminators for dis-
cussion: one discriminator is applied for encoder features and the other four
discriminators are used for the outputs of the decoder. The adversarial loss
functions are calculated between SN and TSN. Each of the loss calculations is

performed by two steps in each training iteration: (1) train the target domain
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segmentation network to maximize the adversarial loss L,q4,, thereby fooling
the domain discriminator D to maximize the probability of the source domain

feature Ps being classified as target features:

ﬁadv(XS) =Es,~x, log(l - D(PS))7 (1)

and 2) minimize the discriminator loss L:

£d(X37Xt) = ExtNxt log(D(Pt)) + EISNXS log(l - D(Ps))7 (2)

where P; is the target domain feature.

Note that discriminators can be added between all the intermediate decoder
layers of SN and TSN. However, we only add the discriminators among the
input (Psy and Pisy) and output (Ps, and Pis,) of the decoders in this section

for simplicity.

3.5. Self-ensembling

In self-ensembling for domain adaptation, the training of the student model
is iteratively improved by the task-specific loss upon an Exponential Moving
Average (EMA) model (teacher) of the student model, which can be illustrated
as:

0y =ad;_; +(1-a)d, (3)

where ®; and P} denote the parameters of the student network and the teacher
network, respectively. EMA transfers a smooth version of the weights of the
student to the teacher network. Thus, the teacher network is more stable and
robust than the student.

More specifically, at each iteration, a mini-batch of the labeled source domain
and unlabeled target samples are drawn from the target domain 7. Then, the
EMA predictions and the base predictions are generated by the teacher model
and the student model respectively with different augmentations applied to the
target samples. Afterward, a Mean-Squared Error (MSE) loss between the EMA
and target predictions is calculated. Finally, the MSE loss together with the

task-specific loss on the labeled source domain data is minimized to update the
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parameters of the student network. Since the teacher model is an improved
model at each iteration, the MSE loss helps the student model to learn from
the unlabeled target domain images. Therefore, the student model and teacher

model can work collaboratively to achieve robust and accurate predictions.

3.6. Unsupervised Domain Adaptation

Unlike existing methods, our method appropriately integrates adversarial

domain confusion and self-ensembling with an encoder-decoder architecture.

3.6.1. Adversarial Feature Adaptation

Adversarial domain confusion is applied to both the encoded features and
decoded predictions between Source domain Network (SN) and Target domain
Student Network (T'SN) to reduce the distribution differences. According to
Eq.[l{and |2} this corresponds to the adversarial loss function £aEdU for the encoder

output of SN and TSN, and the adversarial loss function E(?dv for the decoder
output of SN and TSN:

L5, (Xs) = Eq x, log(1 — Dg(Pyy)), (4)
‘C(?dv(XS) =Es. ~x, log(l - DD(PSO))7 (5)

where Py¢ € RWexHexCe g the encoder output and Py, € RWaxHaxCa ig the
decoder output. H,; and W, are the width and height of the decoders’ output;
Cy refers to pixel categories of the segmentation result, which is three in our
cases. H., W, and C, are the width, height, channel of the encoders’ output.
Dpg and Dp are the discriminator networks for the encoder and decoder outputs,
respectively.

The discriminator loss £Z for the encoder feature and the discriminator loss

EdD for the decoder feature are as follows:

LY (Xs, Xy) = Eqonx, log(DE(Pisy))+
E. ~x, log(1 —Dg(Psy))

16
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LY (X,, X;) = Eyyox, 10g(Dp(Piso))+
EQCSNXS log(l — DD(Pso))

RWexHexCe jg the encoder output and Py, € RWexHaxCa jg the

decoder output of TSN.

(7)

where Pisr €

3.6.2. Collaborative Adaptation with Self-ensembling

Self-ensembling is also applied to both the encoded features and decoded
predictions between TSN and Target domain Teacher Network (TTN). In this
work, the MSE is used for self-ensembling. The MSE loss £E _ between encoder
outputs of TSN and TTN, and the MSE loss £
TSN and TTN can be formulated as:

s Detween decoder outputs of

&ME

Efmse( ) - Eﬁ?tNXt, [M (ptSf pztfl)2‘| ) (8)

=
Mz

‘Cr?we( ) - Eﬂ?tNXt [ (sto pfto) ‘| . (9)

=1

where p!*/ | pi/ | ptse and pft® denote the i'" element of the flattened predictions

(Pisfs Pug, Piso, and Py,) of the student encoder, student decoder, teacher
encoder, teacher decoder, respectively. M and N are the number of elements in

the encoder feature and decoder output, respectively.

8.6.3. Patch-based Discriminator Learning in Multi-scale Output Space

Unlike the domain adaption for classification problems, we need to adapt
both low-level and high-level features for pixel-wise image segmentation tasks.
To have a better segmentation on the image across the source domain, the in-
variant features from both low-level and high-level layers are considered in this
study. Particularly, like the study [35], the geometry structure of the predicted
segmentation masks in the output space is used for domain adaptation. How-
ever, the dimension of the feature space from different levels of the layers varies
from 256, 128, 64, to 32. Thus, we perform a 2D convolutional layer with 1 x 1

kernels on each scale of features (see Fig. |4) to reduce the feature dimensions
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consistently to be the number of pixel classes in the segmentation mask, which
is 3 classes, including background, optic disc, and optic cup. In other words, we
convert the features in high-dimensional feature space to a low-dimensional out-
put space. We achieve domain adaptation at each level of layers of the network
by applying adversarial learning on the converted low-dimensional features in
the output space. We apply a patch-based discriminator on each output of the
segmentation network. In the adversarial learning, the segmentation network
is to fool each discriminator by producing a m X n X 3 size of output having a
similar distribution either from source or target domain, where m and n is the
width and height of the output, respectively. A patch-based discriminator [32]
is used to perform adversarial learning for capturing the local statistical simi-
larity. Basically, this type of discriminator tries to classify whether each patch
in a predicted mask image is following the distribution of that from the source
or target domain. More particularly, each discriminator network is composed of
five convolutional layers. They have 64, 128, 256, and 512 channels, respectively.
A kernel size 4 x 4 and a stride size 2 X 2 are implemented in each layer. A Leaky
ReLU [40] layer with an alpha value of 0.2 is used after each convolutional layer.

Each discriminator produces a 16 x 16 size output.

8.6.4. Total Objective Function

Finally, we use cross-entropy as the segmentation loss for labeled images
from the source domain. Combing Eq. [ [] [6] [7} [§l and [0 the total loss is

obtained, which can be formulated as below.

Liotal(Xs, Xi) = Loeg(Xs) + N, LE (X, X))+

adv

(10)
Mo LR(Xo, X))+ MNE LB (X)) + AP, Ll (X)),

adv mse~ mse mse~mse

where AE, D, \E

B AR UAE . and AP balance the weights of the losses. The choice

of each weight component A was accomplished by cross-validation in our exper-
iments. Lgeq(Xs) is the segmentation loss. Based on Eq. we optimize the

following min-max problem:

min max L X, Xy),
forf3 DD total( s t) (11)
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where f s and f4 are the source domain network with trainable weights gzNS and

target domain network with trainable weights ¢.

4. Experiments and Results

4.1. Dataset

Extensive experiments are conducted on three public datasets, including
REFUGE [41], Drishti-GS [42], and RIM-ONE-r3 [43], to validate the effective-
ness of the proposed method. The dataset REFUGE includes 400 source do-
main retinal fundus images (supervised training dataset) with size 2124 x 2056,
acquired by a Zeiss Visucam 500 camera, 400 labeled (testing dataset), and
400 additional unlabeled (unsupervised training dataset) target domain retinal
fundus images with size 1634 x 1634 collected by a Canon CR-2 camera. As
different cameras are used, the source and target domain images have totally
distinct appearances (e.g., color and texture). For other experiments, we utilize
the REFUGE training dataset as our source domain for training the segmen-
tation network and consider the Drishti-GS and RIM-ONE-r3 datasets as our
target domain datasets for adaptation. The dataset Drishti-GS includes 50 im-
ages for training and 51 images for testing. The dataset RIM-ONE-r3 is split
to include 99 images for training and 60 images for testing. More details of the
three datasets are shown in Table [l The optic disc and optical cup regions
were carefully delineated by the experts. All of the methods in this section
are supervised by the annotations of the source domain and evaluated by the
disc and cup dice indices (DI), and the cup-to-disc ratio (CDR) on the target

domain.

4.2. Data Preprocessing

Firstly, we detect the center of the optic disc by a pre-trained disc-aware
ensemble network [5] and then center and crop the optic disc regions. The

REFUGE source domain was preprocessed to a size of 600 x 600 while the
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Table 1: The details of the three datasets used for the evaluation of the proposed method.

Domain Dataset Number of images  Image size Cameras
Source REFUGE Train 400 2124 x 2056  Zeiss Visucam 500
REFUGE Train(w/o label)/Test 400/400 1634 x 1634 Canon CR-2
Target Drishti-GS Train/Test 50/51 2047 x 1759 -
RIM-ONE-r3 Train/Test 99/60 2144 x 1424 -

(a) REFUGE Source (b) REFUGE Target (c) Drishti-GS (d) RIM-ONE-13

Figure 5: Samples from three datasets (REFUGE, Drishti-GS, and RIM-ONE-r3). The vari-
ations in color, field of vision, and textures demonstrate the challenge of domain shift. In
particular, the RIM-ONE-r3 dataset carries the strongest deviation from the REFUGE and
Drishti-GS datasets and thus poses a greater domain shift.

REFUGE target domains were pre-processed to a size of 500 x 500. The Drishti-
GS and Rim-One datasets were preprocessed to a size of 700 x 700. This is due
to the different sizes of images acquired by the various cameras.

During training, all images are resized to a small size of 400 x 400 to adapt
the network’s receptive field. In addition, we used this pre-trained model to
understand the image quality of the datasets. For example, some images’ optic
discs are not detectable because the image contrast is significantly low. In
this case, we removed two low-quality images from the dataset RIM-ONE-r3 to

evaluate our method, and the other two datasets remained as the original.

4.3. Implementation Details

The U-Net is used for both student and teacher networks. Four scales of

layer blocks are used for network design. Each block includes two groups of
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the combination with one convolutional layer, one batch normalization layer,
and one ReLU layer. Each layer block is followed by either one max-pooling
layer or one up-sampling layer. The details can be found in Fig. 4 To train
our network on the REFUGE dataset, we started from a randomly initialized
U-Net and used both source and target domain images. However, for another
two smaller datasets (e.g, RIM-ONE-r3 and Drishti-GS), to avoid overfitting,
we first trained our network on REFUGE using the source domain images with
their annotations and then applied our multi-scale domain adaptors to further
train the network on the smaller datasets for domain adaptation.

We used the stochastic gradient descent (SGD) optimizer for both student
and teacher networks and used the Adam [44] optimizer for all discrimina-
tors. We set the initial learning rate as le — 4 for both student and teacher
networks and adjusted the learning rate during training by Lrinitia X (1 —
Tter cyrrent | Itermaz ), where Lriniviq1 means the initial learning rate, Iter ey rent
means the current iteration number, and [ter,,,, means the maximum itera-
tion number. We also applied polynomial decay with a power of 0.9 in a total
of 200 epochs for network training. Lastly, we used morphological operations
(i.e., hole filling) to post-process the results. For the discriminators, we set the
initial learning rate as 2.5e — 5 and applied the same learning rate adjusting
function. All experiments are processed on Python v3.6, and PyTorch v1.0.0
with NVIDIA TITAN Xp GPUs. The detailed implementations and code will
be available at https://github.com/cswin/CADAL

4.4. FEvaluation Metrics

We followed the REFUGE challenge [41] and used a spatial overlap index,
dice coefficients (DI), to evaluate the segmentation performance for both OD
and OC. We also used the optic cup to disc ratio (CDR) to understand the

overall model performance for clinical glaucoma screening convention. The DI
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and CDR can be formulated as the below:

TP
DI = 2N
ONTP y NFP { NFN (12)
1/ cup
CDR Yopr = |CDRP — CDRY|

= Vdisc’
where NTP NFP and NN are the number of true positive, false positive, and
false negative overlapped pixels, respectively; while VP and V¥#5¢ represents
the vertical diameters of optic cup and disc, respectively. An absolute difference
~Yopr between the predicted CDR (CDRP) and the true CDR (CDRY) is used

for evaluation where a lower yopg indicates a better model performance.

4.5. Adaptation to Datasets using Different Fundus Cameras

Tables 2-4 lay out the segmentation results on each of the three datasets:
REFUGE, Drishti-GS, and Rim-One-r3. As mentioned in the prior section, we
use three metrics to evaluate the model performance, the mean dice coefficient
for the optic cup (OC), the mean dice coefficient for the optic disc (OD), and
the mean absolute error for the vertical cup to disc ratio (yopr). A larger value
tending to one for OD and OC means better segmentation results; for vopg, a
smaller value tending to zero represents better results. To test the effectiveness
of our model, a “Source only” model is trained only over the REFUGE training-
source domain in a supervised manner and tested upon each respective target-
testing domain. AdaptSegNet [I1] is one of the state-of-the-art unsupervised
domain adaptation methods for image segmentation. The domain adaptation
algorithm used in AdaptSegNet is also adopted similarly in the solution proposed
by POSAL [35], the winner of the REFUGE challenge for fundus image OD and
OC segmentation. CFEA [22] is our previous work published in MICCAT 2019.

In particular, it is observed that training a network solely over the source
domain is insufficient to generalize onto the new domain, thus demonstrating a
key problem of domain shift. The baseline model AdaptSegNet is outperformed
by CADA consistently for OD, OC, and vopgr. Furthermore, the improvement
of CADA over our prior model CFEA, indicates a new paradigm for model

development through multi-scale inputs and multi-discriminators. A sample
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Table 2: Results of adapting the source REFUGE domain (Zeiss Visucam 500 camera) to the
REFUGE target domain (Canon CR-2 camera).

Evaluation-Index Source only AdaptSegNet [I1] CFEA [22] CADA
Optic Cup 0.7317 0.8198 0.8627 0.8714
Optic Disk 0.8532 0.9315 0.9416 0.9498

YCDR 0.0676 0.0588 0.0481 0.0447

visualization of the segmentation results is presented Fig. [(] Overall, these
results indicate that the proposed framework has the capability of overcoming

domain shifts, thus allowing us to build a robust and accurate model.

Table 3: Results of adapting the REFUGE source domain to the Drishti-GS target domain.

Evaluation-Index Source only AdaptSegNet [11] CFEA [22] CADA
Optic Cup 0.8183 0.8267 0.8271 0.8400
Optic Disk 0.8800 0.8814 0.8875 0.8900

YCDR 0.1238 0.1176 0.1133 0.1110

4.6. Comparison with State-of-the-art Domain Adaptation Techniques

We compared with AdaptSegNet [II], which is one of the state-of-the-art
domain adaptation methods for image segmentation. AdaptSegNet adopts ad-
versarial learning with two discriminator networks at the last two output layers.
POSAL [35], the winner of the REFUGE challenge, applied a similar technique
into their framework for optic disc and cup segmentation at the final layer. In
this study, we compared their domain adaptation technique with ours, which
applies multiple domain adaptors with adversarial learning at multi-scales in
both feature and output spaces. Moreover, compared to POSAL, our approach
applied domain adaptation ensembles inside our framework rather than outside
by averaging the results of multiple trained sub-networks. From this perspec-

tive, the primary goal of this study is to investigate a novel domain adaptation
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Table 4: Results of adapting the REFUGE source domain to the Rim-One-r3 target domain.
The weaker performance relative to the domain adaptation over the REFUGE and Drishti-GS
target domains is in part, considered to be due to the poor image qualities of the Rim-ONE-r3

dataset and larger domain shift.

Evaluation-Index Source only AdaptSegNet [IT] CFEA [22] CADA
Optic Cup 0.5916 0.6271 0.6351 0.6404
Optic Disk 0.7285 0.7365 0.7506 0.7664

YCDR 0.1069 0.1017 0.0947 0.0869

framework rather than solely pursuing higher scores by experimenting with dif-
ferent preprocessing techniques and backbone architectures. In particular, we
find a significant improvement by extending adversarial learning not only at one
scale (i.e., solely the encoder or decoder level), but rather at multiple scales, as
well as our other aforementioned contributions.

To study the computational performance, we compared both CADA and
POSAL on the REFUGE source and target domain experiment, the results of
which are shown in Table 5. Due to the variability of factors that affect model
running time [45], i.e. the coding framework, structure, model depth, and GPU
utilization, a holistic account is described including model procedures, model
complexity, training time, and inference time. Two NVIDIA Titan Xp GPU’s
were utilized with a mini-batch size of 4 for 100 epochs. In particular, the CADA
model was run in a PyTorch framework while the open-access POSAL model
was run in a Keras-Tensorflow framework. The discriminator architectures are
practically identical and as the discriminators are removed during testing, the
testing time is influenced only by the network backbone. It is observed in one
setting, that despite POSAL having fewer parameters than our U-NET based
CADA model, our model’s training and testing time is more than twice as fast.
This computational discrepancy is conjectured to be influenced by the computa-
tional burden of the residual network structure [46], the depth of the CNN’s, as

well as the coding framework differences (differences in parallel computing sup-
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Fundus Image Source only AdaptSegNet CFEA CADA Ground truth

Getting better and better

Figure 6: The visual examples of the optic disc (OD) and Optic Cup (OC). The red and blue
circles are the position of OD and OC in the ground truth respectively. The contours are

indicative of the gap between the model results and the ground truth.

port, memory utilization, etc.). Nevertheless, the inference time suggests that
our CADA model is an invaluable tool to practitioners for diagnostic purposes,

being substantially faster than manual practice.

Table 5: Computational comparison with other framework on REFUGE challenge [35]

CADA POSAL [35]
Average Training Time Per Epoch (s) 148.5 306.5
Backbone Parameters 9.7M 5.8M
Discriminator Parameters 2.8M 2.8M
Average Testing Time (s) 0.023 0.053

4.7. Ablation Study

An ablation study is conducted solely over the REFUGE source and target
domains respectively to demonstrate the influence of various components of our

proposed framework.
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4.7.1. The Importance of the Encoder Adaptation (No-Enc-Ada)

To demonstrate the importance of encoder adaptation modules, we remove
the adversarial discriminator Dg and the MSE module mseg from the encoders
and then retrain the model. Fig. [7] shows the performance comparison of the
models with modifications on the test dataset. As one can see, without the
encoder adaptation, the performance drops apparently. This comparison result
may indicate that the encoder discriminative adaptation module is a crucial

component for learning the domain-invariant representation.

4.7.2. Reduce Uncertainty via Weights Self-ensembling Adaptation (No-SE-Ada)

We also investigate how self-ensembling adaptation affects domain adapta-
tion performance. For this, we retrain our framework after removing the teacher
network. The performance comparison of the models with modifications shows
in Fig.[7] As one can see, the average performance on the test dataset is much
worse than using both adversarial domain confusion and self-ensembling adap-
tation. Especially, for predicting the CDR, in Fig. [T}c, we can see that without
weights ensembling, the CDR prediction drops down significantly. This com-
parison result shows that self-ensembling can significantly improve the model’s
robustness and the generalizability for domain shift. More importantly, weight
ensembling can reduce the model uncertainty of learning domain-invariant latent
features when incorporating multiple discriminators in different feature learning
space. Meanwhile, this is able to enforce all discriminators to maximize their

ability to discriminate the deeper latent space features.

4.7.8. Multiple Discriminators Adaptation Study (CADA-2,3,4D)

We exploit multiple discriminators at the decoder to further investigate the
maximum power of collaborative feature learning. We compare the results of
applying different numbers of discriminators to different decoder layers. As one
can see from CADA-2D, CADA-3D, and CADA-4D in Fig.[7] the more discrim-
inators we use, the better result we obtain. When we apply discriminators to

all decoder layers (one is at the end of the encoder, and another four are at
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Figure 7: Ablation study: performance comparison of the models with modifications on the
REFUGE dataset. No-Enc-Ada means removing the discriminator from the encoder and only
applying a discriminator on the decoder. No-SE-Ada means removing self-ensembling (the

teacher network) from the proposed CADA.

each layer of the decoder), we obtain the best result. Notably, CADA-2D is the
method proposed in our previous work [22]. More importantly, this comparison
result further indicates that collaborative feature learning between adversarial

adaptation and dynamic weight ensembling can overcome domain shift.

4.7.4. Evaluation of A

We evaluate the various combinations of A for balancing the segmentation,
adversarial, and self-ensembling loss. Due to the tremendous combinations, it
is impossible to study all of them. We follow the existing studies [47] and use
cross-validation to investigate the most effective A combinations. We find the
following combination is the most effective one that can stabilize our frame-
work training: Aseq = 1, A2, =0.002,A\D, = 0.018,\Z_ = 0.057, AL, = 0.79.
We also show qualitative results in Fig. [§] to demonstrate the effectiveness of
the proposed domain adaptation model. As one can see, these qualitative re-

sults are consistent with Fig. [7] This result can further support that collabora-

tion between adversarial learning and dynamic weight ensembling is an effective
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FundusImage Source only AdaptSegNet CADA-2D (Ours) CADA-3D (Ours) CADA-4D (Ours) Ground truth

Getting better and better

Figure 8: Ablation study comparison: the qualitative examples of the Optic Disc (OD) and
Optic Cup (OC) segmentation, where the black and gray region denote the cup and disc
segmentation, respectively. The red and blue dash circle are the positions of the OD and OC
in the ground truth, respectively. The contours are indicative of the gap between the model

results and the ground truth.

strategy to overcome domain shift in fundus images.

5. Discussions and Conclusion

In this work, we propose a novel method, CADA, for unsupervised domain
adaptation across different retinal fundus imaging cameras, specifically over the
REFUGE, Drishti-GS, and Rim-ONE-r3 datasets. Our CADA framework col-
laboratively combines multiple adversarial discriminative learning and weights
self-ensembling to obtain domain-invariant features from both feature represen-
tation (encoder) and output space (decoder) in different feature scale levels.
Multi-scale inputs provide hierarchical features to the collaborative learning
process, while multiple domain adaptors collaboratively offer a comprehensive
solution for out of distribution (OOD) samples. Weights self-ensembling sta-
bilizes adversarial learning and prevents the network from getting stuck in a

sub-optimal solution. From a complementary perspective, adversarial discrimi-
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native learning can consistently provide various model space and time-dependent
weights to self-ensembling. With which, we can accelerate the learning of the
domain-invariant features and conversely enhance the stabilization of adversarial
discriminative learning, forming a fine collaborative circulation and generalized
framework. Moreover, we apply multiple discriminators to the multi-scale out-
put from each layer of the decoder. These adversarial discriminative modules
collaboratively encourage the encoder to extract the latent domain-invariant
features. Therefore, the collaborative mutual benefits from multi-scale inputs,
adversarial discriminative feature learning, weights self-ensembling, and multi-
scale outputs during an end-to-end learning process, resulting in a robust and
accurate model.

Notably, the proposed framework also suggests a generalizable unsupervised
learning approach. For example, we could replace the discriminator with the
contrastive learning objective functions [20, 48]. With which, the encoder can
learn the rich representations rather than the invariant features. Then, we can
fine-tune the encoder with limited labeled data for specific tasks, such as image
classification and segmentation. Simultaneously transferring weights with EMA
from both encoder and decoder during model training is a significant novelty
compared to existing representation learning methods.

In terms of the running time, due to the multiple discriminator architecture,
our framework needs relatively more computational during the training stage,
compared to AdaptSegNet [11], to help the segmentation network to adapt to
the target domain. However, in the testing stage, the computational costs are
the same as a standard U-Net network, as the images only need to go through the
TTN network. Experimental results demonstrate the superiority of our domain
adaptation method over other methods either by a significant performance gain
or computational efficiency. Our approach potentiates a general and extendable
framework to other semi-supervised and unsupervised representation learning
problems.

Lastly, although we have shown marked advantages of our method, the cur-

rent study has some limitations that we hope to address in the future. First, it
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is hard to balance the contributions (e.g., learning losses) from multiple domain
adaptors during training. To find the optimal weight for each domain adaptor,
we currently have to apply a massive grid-search, which can be time-consuming.
Second, our framework solely investigates one type of encoder-decoder network
architecture. It would be interesting to understand how our framework can im-
prove other architectures for domain adaptation and performance across various
tasks. The current work sheds light on the underlying superiority of applying

multiple domain adaptors at hierarchical multi-scale feature and output space.
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