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Abstract Flexure and extension of ice shelves in response to incident ocean surface gravity
waves have been linked to iceberg calving, rift growth, and even disintegration of ice shelves. Most
modeling studies utilize a plate bending model for the ice, focusing exclusively on flexural gravity
waves. Ross Ice shelf seismic data shows not only flexural gravity waves, with dominantly vertical
displacements, but also extensional Lamb waves, which propagate much faster with dominantly
horizontal displacements. Our objective is to model the full-wave response of ice shelves, including
ocean compressibility, ice elasticity, and gravity. Our model is a 2D vertical cross-section of the ice
shelf and sub-shelf ocean cavity. We quantify the frequency-dependent excitation of flexural gravity
and extensional Lamb waves and provide a quantitative theory for extensional Lamb wave genera-
tion by the horizontal force imparted by pressure changes on the vertical ice shelf edge exerted by
gravity waves. Our model predicts a horizontal to vertical displacement ratio that increases with
decreasing frequency, with ratio equal to unity at ~0.001 Hz. Furthermore, in the very long period
band (< 0.003 Hz), tilt from flexural gravity waves provides an order of magnitude larger contribu-
tion to seismometer horizontal components than horizontal displacements from extensional Lamb
waves.

24

Non-technical summary |In the past three decades, we have seen ice shelves catastrophi-
cally weaken and break apart. In some cases, large calving events or ice shelf disintegration is corre-
lated to the arrival of ocean waves and tsunamis. This has prompted the deployment of seismome-
ters on ice shelves to study the ice shelf response to ocean wave impacts. Ocean waves convert
to several other wave modes in the ice shelf and ocean layer beneath the ice shelf. In our study,
we present computer simulations of the ocean and ice shelf system to quantify the wave motions
within and on the surface of the ice shelf, thereby permitting comparison to seismic data. Our re-
sults help guide interpretation of seismic data and in understanding which wave modes are most
likely to contribute to calving and fracture of ice shelves.

» 1 Introduction

» Ice shelf stability and strength play an important role in understanding and predicting sea level rise (Bromwich
» and Nicolas, 2010). Ice shelves buttress ice sheets and following ice shelf collapse, ice streams have been observed
» to accelerate (Dupont and Alley, 2005; Pritchard et al., 2012). In the past three decades, we have seen ice shelves
» catastrophically weaken and break apart; as the climate continues to warm, thinning and collapse of ice shelves is
» likely to occur at a more rapid rate.

a1 Weakening of ice shelves has been associated with wave-induced flexure (Holdsworth and Glynn, 1978) as well
» as basal and surface melting (Paolo et al., 2015). Basal melting is facilitated through influx (into the sub-ice shelf
1 cavity) of warm seasonal sea water and circumpolar deep water (Walker et al., 2008; Rignot et al., 2013). During the
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summer months, surface melting increases, creating supraglacial lakes, further thinning the ice shelves and possibly
contributing to hydro-fracturing into the ice shelf (Banwell et al., 2013).

Melting and thinning weaken ice shelves, but what creates fractures and finally triggers the collapse of ice shelves
is poorly determined. Possible processes include ocean surface gravity wave forcing (Holdsworth and Glynn, 1978;
Bromirski et al., 2010; Brunt et al., 2011; Banwell et al., 2017; Massom et al., 2018). Incident ocean waves are partially
transmitted into the ice shelf as flexural gravity waves (similar to ocean surface gravity waves but with additional
inertia and elastic resistance to bending from the ice) and other elastic waves bearing more similarity to traditional
seismic waves. The ability of waves to transmit through the ice shelf and the magnitude of wave-induced stresses
depend on the ice shelf structure (ice thickness, elastic moduli, density), depth of water in the sub-shelf cavity, and
the properties of the incident wave (frequency, incident angle). Incident waves include high frequency ocean swells,
storm-generated infragravity waves, tides, and tsunamis (MacAyeal et al., 2006). Lower frequency waves penetrate
the sub-shelf cavities more efficiently, causing flexure (Sergienko, 2013). This flexural stress can open cracks, drive
rift growth, and initiate collapse events. Bromirski et al. (2010) concluded that both of the breakup events on the
Wilkins Ice shelf in 2008 matched with arrivals of infragravity waves from large storm events on the Patagonian
coast. Brunt et al. (2011) suggested that tsunami arrivals from the 2011 Tohoku-Oki, Japan, earthquake caused a
massive calving event on the Sulzberger Ice Shelf. Massom et al. (2018) linked storm-generated swell to calving and
break-up of the Larsen A and B and Wilkins ice shelves. Icequake activity near the front of the Ross Ice Shelf is also
correlated ocean wave arrivals (Chen et al., 2019; Aster et al., 2021), though other factors such as tidal and thermal
stresses contribute as well (Olinger et al., 2019). Flexural gravity waves are also excited by abrupt rift opening and
can be used to track and monitor the expansion of rifts (Olinger et al., 2022).

Most models of the wave response of ice shelves have focused exclusively on the flexural response. However, the
Ross Ice Shelf data shows other wave modes, including the fundamental mode extensional Lamb wave that propa-
gates close to the plane stress P-wave speed of ice and has dominantly horizontal displacements (Bromirski et al.,
2017; Chen et al., 2018, 2019). These observations motivate us to examine how incident ocean waves convert to flexu-
ral gravity and extensional Lamb waves. Chen et al. (2018) suggest that wave-induced pressure changes on the shelf
front, which exert a net horizontal force on the ice shelf, are responsible for excitation of extensional Lamb wave.
We confirm this hypothesis with our modeling.

Before introducing our model, we remark on the many studies that have focused on the flexural gravity wave
response of ice shelves and sea ice. Most work utilizes a bending plate model to describe the ice response, recognizing
that horizontal wavelengths are much larger than ice thickness at frequencies of interest. The frequency-domain
reflection/transmission problem of gravity waves in open water coupled to flexural gravity waves in ice-covered water
was solved by Fox and Squire (1990, 1991). The earlier history of the field is reviewed by Squire et al. (1995); Squire
(2007). While much of this work focused on sea ice, attention has shifted recently to ice shelves (Sergienko, 2010,
2013). Lipovsky (2018) provides a methodology to estimate wave-induced bending stresses from measured ice shelf
motions. Finite element (Ilyas et al., 2018; Sergienko, 2017) and finite difference (Mattsson et al., 2018) methods
can be used to solve to the potential flow problem in sub-shelf cavity. These studies show how the shallow water
approximation breaks down at swell frequencies (Kalyanaraman et al., 2019) and how ice shelves affect the shoaling
process as waves advance into shallower water (Meylan et al., 2021). Solution of the full elasticity problem in the
ice shelf can be used to determine the validity of the plate approximation (Sergienko, 2010, 2017; Kalyanaraman
et al., 2020). While most efforts focus on 2D vertical cross-section models, some 3D or 2D map-view models have
been developed to account for the complex geometries and variable ice thickness and water depth of real ice shelves
(Sergienko, 2017; Tazhimbetov et al., 2022). However, use of an bending plate model for the ice shelf precludes study
of extensional Lamb waves and other ice shelf wave modes.

Our objective is to model the full-wave response of ice shelves, including ocean compressibility, ice elasticity and
inertia, and gravity. We do this forna 2D vertical cross-section of the ice shelf and sub-shelf ocean cavity, coupled
to an open-water region. The ice and ocean obey the elastic and acoustic wave equations, respectively, and gravity
is added using an extension of the fully coupled method introduced by Lotto and Dunham (2015). This allows us to
model extensional Lamb waves in addition to flexural gravity waves. A similar model was utilized by Kalyanaraman
et al. (2020) to study wave reflection/transmission and resonance modes of finite length ice shelves. They note the
existence of extensional wave resonance modes, but do not perform a systematic investigation of extensional Lamb
wave excitation by incident surface gravity waves. This is the primary focus of our study and we anticipate results to
be of use when interpreting data from ice shelves and understanding which wave modes might contribute to fracture
and calving.

2 Model and wave modes

We study wave propagation in a 2D vertical cross-section of the ice shelf and sub-shelf ocean cavity, connected to an
open-water region (Figure la). We use a coordinate system in which z is horizontal and z is vertical, positive up with
the sea surface at z = 0 and seafloor at z = —H;. An incident wave is imposed in the open-water region (z < 0) and
arrives at the ice shelf edge (z = 0), where it is both reflected and transmitted into the ice shelf and sub-shelf cavity.
In the open water (z < 0) the water depth is H;. For « > 0, an ice shelf of thickness H; floats on the water. Given the
ice and water densities, p; and p,,, respectively, hydrostatic balance requires the water depth in the sub-shelf cavity
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tobe Hy = Hy — (p;/pw)H;. The top of the ice shelf is located at z = (1 — p; /pw ) H;. The ice-water interface is located
z = —(pi/pw)H; and the sub-shelf ocean cavity extends to = = —H;. When deriving dispersion relations involving
the ice, it is convenient to introduce the half-thickness h = H,/2.

a) A
£=9.8 m/szl Z
. Ice ]
— < p,= 920 kg/m’ o
c,= 2000 m/s i
¢, = 1000 m/s
H, < Water 7
p_=1000 kg/m? H
w _ F& —
¢, = 1500 m/s o 2
b) N
g=9.8 m/le z
- XV
HZ

Figure1l a)Anincidentsurface gravity wave, propagating to the right, reaches the ice shelf edge at z = 0, creating reflected
surface gravity waves and transmitted flexural gravity and extensional Lamb waves. The ice shelf is of thickness H; and the
ocean is of depth H; in open water and Hs beneath the shelf. b) Step change in water depth at = = 0 that causes reflection
and transmission of surface gravity waves, used to verify our procedure for calculating frequency-dependent reflection/trans-
mission coefficients from time-domain simulations.

The ice and compressible ocean obey the elastic and acoustic wave equations, respectively, and gravity is added
using an extension of the method introduced by Lotto and Dunham (2015), which assumes small perturbations about
an initial hydrostatic equilibrium state in the water.

The governing equations in the water are

1 0p Ovy Ov,
£, 7T = 1
K, 0t Oz 0z 0, 1)

obtained by combining the linearized mass balance with a linearized equation of state; and the momentum balance
equations,

Ovy  Op
Pwﬁ 9 0, (2)
and
ov, Op
p“’ﬁ + 9. 0, (3)

for particle velocities v;, pressure perturbation p, bulk modulus K, and density p,,. The sound speed is ¢y =
v/ K/ pw. Gravity acts as a restoring force, entering the open-water problem only through linearization of the free
surface boundary condition,
p—pwgn =0, atx
<0,z (4)
=0,

where wave height 7 is governed by the linearized kinematic condition on the sea surface,

@ =wv,, atz

ot (5)
<0,z
=0.
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At the bottom of the ocean, we assume a rigid wall condition,

v, =0, atz (6)
= —H;.

The ice obeys the elastic wave equation for an isotropic solid with spatially uniform material properties:

Puy O ) 02y, n 0?u, n 0*uy L D%, @)
Pitge = W\ 822 " 9202 H\ 922 022 )’

0%u, 0u,  0%u, 0%u, 0%u,
pi o2 (At p) (axaz + 072 ) Tt < 0x? + 072 ) ’ ©)

for particle displacements u;, density p, Lamé parameters A and u. The associated P- and S-wave speeds are ¢, =
(A4 2u)/p and ¢s = +/ 11/ p, respectively. To calculate stresses, we use Hooke’s Law,

Oy = A0y + 21655, (9)

where §;; is the Kronecker delta, and the strain-displacement relation,

€ij
1 (0u; Ou, (10)
= - -
2\ 0z; Oux;
The top of the ice is a free surface,
Oxz = 07 Ozz
=0, atz (11)
= (1= pi/pw)Hi

At the ice-water interface along the base of the ice shelf, we balance tractions and enforce continuity of normal
velocity:

Ogz =0, (12)
—O0zz =P — PwdT, 877/at = Vg, (13)
Ou, /0t =v,, atx>0,z=—(p;/pw)Hi, (14)

where fields on the left side are evaluated at the bottom of the ice and fields on the right side are evaluated at the
top of the water. Here the treatment of gravity in the water is identical to that in the open water region, with 7 again
being the vertical displacement at the top of the water. We are therefore accounting for pressure changes in response
to perturbations about the background hydrostatic state in the water, but neglecting prestress within the ice.

Along the submerged portion of the vertical ice shelf edge, we again balance tractions and enforce continuity of
normal velocity:

0z» =0, (15)
—Ogxz = D, (16)
Oug /Ot = v, atx =0, —(pi/pw)H; <z<O. (17)

The portion of the shelf edge above water is a free surface:

Ozr =0, (18)

Ory =0, atx=0, 0<z<(1l-p;i/pw)H;. (19)

Our goal is to study the reflection and transmission of incident surface gravity waves. Reflection and transmission
coefficients of various wave modes can be defined in terms of the amplitude of propagating plane wave solutions in

the frequency domain, which are derived in the following sections. However, we will extract these reflection and
transmission coefficients from time-domain simulations using a procedure described subsequently.

2.1 Wave modes in open water

We first consider the problem of wave propagation in open water. We solve equations (1-3) with boundary condi-
tions (4)-(6), assuming ¢*(**~«*) dependence of all fields, where k is the horizontal wavenumber and w is the angular

5
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frequency. For notational simplicity, ¢'(**~«%) is implied and we denote the water depth as H. The solution for unit
amplitude wave height (n = 1) is

= P cosh (x(= + H)) 20
b= ksinh (kH) coshiriz ’
cosh (k(z + H))
r = KW —————~—, 21
! ksinh (kH) @D
. sinh (k(z + H))
_ 22
vz T i (Hk) 22)
where
2
K=y k2 — (23)
€
and w and k are related by the dispersion relation
2
. (24)
= gk tanh(Hk).

The solutions to (24) include surface gravity waves (with slight corrections due to water compressibility) and acoustic
waves (with slight corrections due to gravity) and have be discussed in many previous studies (Sells, 1965; Yamamoto,
1982; Lotto and Dunham, 2015). In this study, we are exclusively interested in the surface gravity wave mode.

2.2 Wave modes in ice-covered water

In A, we solve the corresponding problem in ice-covered water. For notational simplicity, we denote the water depth
as H and the ice thickness as 2h. The dispersion relation is

wpwDo _ 2picy (25)
ksinh(kH)  w3pF’
where
gr .
Do = cosh(kH) — = sinh(kH), (26)
w
P sinh(ph) sinh(gh) n cosh(ph) cosh(qh)’ 27)
Ds DA
Dg = 4k’pqsinh(ph) cosh(gh) — (k* + q2)2 cosh(ph) sinh(gh), (28)
D 4 = 4k®pq cosh(ph) sinh(gh) — (k* + q2)2 sinh(ph) cosh(gh), (29)
with
p=/k?—w?/c, (30)

q=\k?—w?/c. (31)

Note that Dy = 0 provides the dispersion relation for surface gravity waves in open water, given previously as (24).
Similarly, Ds = 0 and D4 = 0 provide the dispersion relations for symmetric and antisymmetric modes of an elastic
layer bounded by free surfaces.

Next we examine limits appropriate for long-wavelength extensional Lamb wave and flexural gravity wave modes.
For the fundamental symmetric mode (extensional Lamb wave), assume kh < 1, such that ph < 1and gh < 1. In
this limit,

Ds
2
oY qh (w2 _ kch;s) ’ (32)

4
Cs

where the plane stress P-wave speed ¢, is defined via

2 (33)
= 403 <1 — C;) .
p

Thus for an elastic plate bounded by free surfaces, solutions of Dg = 0, in this long-wavelength limit, describe
nondispersive extensional Lamb waves propagating at c,,;.

2
Cps
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For the fundamental antisymmetric mode (flexural wave), in addition to kh <« 1, ph < 1, and ¢h < 1, we
also assume w/kc, < 1 and w/kcs < 1 (phase velocity less than both the P- and S-wave speeds). In this limit, the
dispersion relation for flexural waves in an elastic plate bounded by free surfaces, D4 = 0, can be written as

2

w
~ i (1 - CQ) h2kt, (34)
3 c2
or equivalently 5
w? = =k, (35)
m
where X
2Eh
B= 31— 12) m (36)
= 2hp;,

are the bending stiffness B (written in terms of Young’s modulus E and Poisson ratio ) and the ice mass per hori-
zontal unit area m. Note that
4 4 AYE
= gcs (1 — 67 h*.
p

The approximate dispersion relation (35) matches that of flexural waves obeying the Euler-Bernoulli plate model,

B

m (37)

d4
—mw?w + Bd—;} =0, (38)

where w is the vertical displacement (assumed to be uniform with depth).

Continuing with these approximations (which restricts focus to the flexural wave), but now accounting for the
interaction of the ice shelf and water to study flexural gravity waves, we find

A

3 (39)

F~-
khw? (w? — 1)’

such that the dispersion relation becomes

1W Py [cosh(kH) - i—’; sinh(kH)} mw? — BEA

fesinh(kH) T e (40)
or equivalently, )
#ﬁkm = Bk* + pug — mw?. (41)
This can be solved for w as
2 pwg + Bk (42)

YT pw/ktanh(kH) +m’

matching expressions given in many previous studies on flexural gravity waves (Ewing and Crary, 1934; Fox and
Squire, 1990; Squire et al., 1995; Squire, 2007), thereby confirming the consistency of our model with known solutions
in this limit.

Figure 2 shows the phase velocity (¢ = w/k) and group velocity (U = dw/dk) for the surface gravity wave, exten-
sional Lamb wave, and flexural gravity wave modes. Parameter values are given in Table 1 and we use the open-water
depth H = H, for the surface gravity wave and the sub-shelf depth H = H; for the extensional Lamb wave and flex-
ural gravity wave solutions. We focus on frequencies up to 0.02 Hz, corresponding to the very long period (< 0.003
Hz) and infragravity (0.003 — 0.02 Hz) bands. We do not consider higher frequency swell in this study.

Surface gravity waves are normally dispersed, with phase and group velocity reaching a maximum wave speed of
V/gH in the long wavelength limit (figure 2a). Extensional Lamb waves exhibit no significant dispersion over the fre-
quency band of interest (figure 2b). In addition to gravity the elastic restoring force causes the flexural gravity waves
to propagate faster than surface gravity waves, and shorter wavelengths propagate faster than longer wavelengths.
Therefore, flexural gravity waves are anomalously dispersed, with phase and group velocity reaching a minimum
wave speed of \/gH in the long wavelength limit (figure 2¢). Additionally plotted in figure 2c are the group and phase
velocity for the flexural gravity wave using the plate approximation (42), verifying the validity of the plate model at
the frequencies of interest.

7
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a) Surface Gravity Wave b) Extensional Lamb Wave Flexural Gravity Wave
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Figure2 Group and phase velocity for the surface gravity wave, extensional Lamb wave, and flexural gravity wave.

Finally, we remark that while our model results for the ice shelf response are discussed primarily in terms of wave
amplitude (specifically, displacements of the ice surface), the horizontal normal stress o, is also of interest because
this stress component acts to open and close vertical fractures and rifts. The stresses can be calculated immediately
from the surface displacements using the frequency-domain transfer functions given by Lipovsky (2018). For flexural
gravity waves, which carry the largest stresses, the stress o,, can be obtained from the vertical displacement w, in
the long wavelength plate theory limit, as (Timoshenko and Goodier, 1970)

6Bk?
T

~
~

O-II

(43)

3 Procedure to extract reflection and transmission coefficients from time-domain
simulations

In this section we describe a procedure to extract frequency-dependent reflection and transmission coefficients from

our time-domain simulations. The procedure will utilize Fourier transforms in both space and time with the following
notation:

f(k,t) :/OC f(x, t)e ™ dx (44)
flant) = ﬁ /_ Z F(k, )t dk (45)
fow = [~ [~ reoerar, (46)
fat) = 5 [ Fawle ™ do, @)

3.1 Surface gravity wave reflection/transmission for a step change in water depth

We begin with the simpler problem of surface gravity wave reflection/transmission from a step change in water
depth. There is no ice shelf in this problem. Let H; and H, be the water depths in z < 0 and x > 0, respectively
(Figure 1b). The problem is posed in the frequency domain. Define k; and k; as the wavenumbers of the surface
gravity wave mode in z < 0 and = > 0, respectively, obtained by solving the open-water dispersion relation (24). The
wavefield solution in the frequency domain, for an incident wave of spectral amplitude A(w), is given by
A, w) = {A(w) [e“fl“:— R(w)e~ 17| + other modes, z <0, (48)

A(w)T (w)e*™** + other modes, x>0,

where R and T are the frequency-dependent reflection and transmission coefficients, respectively, for the propagat-
ing surface gravity wave mode. In addition, it is well known that except in the shallow water limit, there are additional
evanescent surface gravity wave mode solutions to (24), which are confined to the vicinity of the step change in water
depth at © = 0 (Newman, 1965; Miles, 1967; Dingemans, 1997). These modes can be safely ignored at locations z suf-
ficiently removed from = = 0. Furthermore, because we account for water compressibility, there are also acoustic

8
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modes. The acoustic modes exist as propagating waves only above some cut-off frequency, which is much higher
than the frequencies of interest to us. Thus these modes are also evanescent and can be neglected in the following
procedure to determine R and 7.

Our goal now is to set up a problem in the time domain from which we can extract R and 7. To do this, we set
initial conditions at ¢ = 0 corresponding to a broadband incident wave packet propagating only in the +x direction.
Define n(z,0) = ng(x) and its spatial Fourier transform

7o(k) = /no(z)efikmdx. (49)

The wavefield at some later time t is obtained by multiplying by the phase factor e %!, where w; = w; (k) is obtained
from solving the dispersion relation (24) for the surface gravity wave mode in water of depth H,. We select the sign
of wy such that wy /k > 0 so that the wave propagates in the +z direction.

Next we switch between w and & Fourier transforms using a change of variable based on the dispersion relation.
Note that dw = Udk, where U is the group velocity, which can be viewed as either a function of k or w, as desired,
provided that these are evaluated using the solution to the dispersion relation corresponding to the desired surface
gravity wave mode. This procedure is illustrated for the incident wave:

1 )
I — ~ i(kz—wit) 50
n (z,t) 27T/770(k:)e dk (50)
L [ 70(k1) itkyo—wt)
- ilhia—t) g 51
o | Ukr)© “ 6D

where k; = k;(w) is evaluated for the surface gravity wave mode in water of depth H;. It follows that

7 () = / 0! (2, )t dt (52)
— ’7U°((]’;1)> etk (53)

from which we identify the spectral amplitude of the incident wave in (48) as
A(w) =70 (k1)/U (k). (54)

Initial conditions on pressure and particle velocity are obtained by evaluating (20)-(22) times the surface displace-
ment spectral amplitude A(w).

To solve for the reflection coefficient R from our time-domain simulation, we Fourier transform the time series
of 1 at some point = < 0 to obtain 7j(z,w). Then solve (48), neglecting the evanescent surface gravity and acoustic
modes, to obtain

R(w)

= {ﬁz:’;) _ eiklz:| ik

(55)

The procedure can be simplified even further by selecting the x location to be to the left of the initial wave packet, so
that only the reflected wave contributes to the time series. In this case, the incident wave in (55), namely the —e?*1®
term in brackets, can be ignored.

Extracting the transmission coefficient is similar. We select some point x > 0 sufficiently far from x = 0, extract
the time series of 7, and Fourier transform it in time to obtain 7j(z,w). Neglecting evanescent surface gravity and
acoustic modes, we solve (48) for the transmission coefficient

T(w) = Weik”. (56)

While the procedure above is stated for a single z, in our implementation we average the resulting R and T over
multiple x, which we find improves the accuracy at high frequencies. With a grid spacing of 200 m R was averaged
over = —100 km to —50 km and T was averaged over x = —100 km to —50 km.

The procedure above does require neglecting evanescent surface gravity and acoustic wave modes, which might
introduce a small error in the calculated R and 7'. This error could be eliminated using a more sophisticated pro-
cedure that isolates a specific wave mode. For example, it is well known that the eigenfunctions of wave modes in
layered media obey orthogonality conditions (Aki and Richards, 2002). The orthogonality conditions require eval-
uation of integrals of particle velocity and stress fields over depth z at fixed x. We defer this extension to future
work.
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3.2 Reflection/transmission with an ice shelf

The procedure for extracting reflection/transmission coefficients for the ice shelf problem (Figure 1a) is more com-
plex, as we are interested in multiple wave modes, not all of which are well expressed in the water surface vertical
displacement 7. Furthermore, we note that seismometers placed on the ice shelf surface are the primary means of
measuring wave motions. Thus we define u(x,t) and w(x, t) as the horizontal and vertical displacements of the top
surface of the ice shelf.

The incident and reflected wavefield in the open-water region (x < 0) is identical to that in (48). The surface
displacements of the transmitted wavefield can be written as

iz, w) = Aw) [Ty
w(z,w) = Aw) [Tz,

F(w)e* ™ + T, (w)e™*] + other modes, (57)
F(w)e® ™ + T, . (w)e™*] + other modes, (58)
where the subscript x or z on the transmission coefficients T refers to the displacement direction and the subscripts
f and e refers to the flexural gravity and extensional Lamb wave modes, respectively. The wavenumbers k; and k. are
obtained from the flexural gravity and extensional Lamb wave solutions of the dispersion equation (107). We note that
theratios 7T, ¢ /7. s and T, ./T. . are independent of the reflection/transmission process and can be determined from
the eigenfunctions given in A. Thus we need only consider one displacement direction when extracting transmission
coefficients for each wave mode. Because flexural gravity waves have dominantly vertical particle motions, we focus
on T .. Similarly, because extensional Lamb waves have dominantly horizontal particle motions, we focus on T ,.

The procedure for extracting the reflection coefficient of surface gravity waves is identical to the previous prob-
lem. To extract transmission coefficients, we record ice surface displacement time series v and w at some = > 0
that is sufficiently far from the ice shelf edge. We then exploit the vastly different phase and group velocities of the
flexural gravity and extensional Lamb wave modes by windowing the appropriate wave arrivals in the time series.
We then Fourier transform these windowed time series in time and evaluate

T.p(w) = wfi’s)e"‘“f"”, (59)
T, o(w) = U0 it (60)

' A(w)

3.3 Numerical simulations

In this study we utilize the finite difference code FDMAP (Dunham et al., 2011; Kozdon et al., 2012, 2013) that couples
an acoustic ocean in the presence of gravity to an elastodynamic solids. We employ a Cartesian mesh with uniform
(but different) grid spacings in the z and z directions. The method uses sixth-order central differences in space in
the interior (with reduced order near boundaries and interfaces) and a third-order explicit Runge-Kutta method for
time-stepping. Gravity is accounted for using the method in Lotto and Dunham (2015), for both the open-water region
and at the top of the sub-shelf water cavity.

We examine two model geometries. For the open ocean with a floating ice shelf and subshelf cavity problem
setup (Figure la), the domain extends from x = —100 km to x = 300 km with the ice shelf edge located at x = 0. In
the z—direction the grid spacing is 200 m. In the z—direction the domain is divided into 3 blocks. From the seafloor,
z = —H; = —1 km, to the depth of the ice-water interface, z = —(p;/pw)H; = —0.368 km, the grid spacing in the
z—direction is 13.45 m (48 grid points). From the depth of the ice-water interface, z = —(p;/pw)H; = —0.368 km, to
the open-water free surface z = 0 the grid spacing in the z—direction is 5.84 m (64 grid points). From the open-water
free surface z = 0 to the top of the ice shelf, z = (1 — p;/pw)H; = 0.032 km, the grid spacing in the z—direction is
2.29 m (14 grid points). Characteristic-based absorbing boundary conditions (Kozdon et al., 2012, 2013) are used on
the left and right sides of the domain. The simulation runs for a total of 1700 s with time steps of 0.000615 s.

For the step change in water depth problem setup, figure 1b, the domain extends from z = —400 km to « = 400
km with the step changing occurring at z = 0. In the xz—direction the grid spacing is 200 m. In this setup H; = 1 km
and H; = 0.25 km with 10 m grid spacing in the z—direction. The simulation runs for a total of 8000 s with time step
0f 0.003333 s.

4 Reflection and transmission coefficients for a step change in water depth

Before proceeding to the ice shelf reflection/transmission problem, we verify our model and procedure for extracting
R and T on a problem with a known solution. Specifically, we consider a step change in water depth, from H; to Ho
atz = 0 (Figure 1b).

The reflection/transmission coefficients in the linear long wave (LLW, k1 H; < 1 and kyHy < 1) limit are well

known (Lamb, 1905):
VH —H>

LLW I VI, (61)
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Table1l Parameter values for dispersion analysis and simulations.

parameter symbol value
Density in ocean Puw 1000 kg/m?
Sound speed in ocean co 1500 m/s
Density in ice i 920 kg/m?
P-wave speed in ice Cp 2000 m/s
S-wave speed in ice Cs 1000 m/s
Gravity g 9.8 m/s?
Open water ocean depth  H; 1000 m
Sub-shelf ocean cavity H, 632 m
Ice thickness H; 400 m

and the transmission coefficient is
2V H;
Thiw = ———F7—.
VH ++Hs

These values are the anticipated limits for R and T in the low frequency limit.

Exact closed form expressions for R and 7" are not available outside the LLW limit, and instead the problem must
be solved numerically or using approximations (Newman, 1965; Miles, 1967; Dingemans, 1997). However, in the high
frequency limit, surface gravity waves will be confined to the water surface and will not sense the change in water
depth. Hence the high frequency limits are R — 0, T' — 1.

4.1 Simulation results

Our initial vertical sea surface displacement is a unit amplitude Gaussian,
1o ()

_ eXp{ (_(”32;2350)2) } (63)

where xg is the center of the Gaussian and o is the width of the Gaussian. We set g = —15 km and ¢ = 1 km, which
provides a wave packet that includes dispersive surface gravity waves at frequencies above the LLW limit. We use
the eigenmode solution and Fourier transforms in the = direction (using FFTs on the simulation grid) to determine
the pressure and particle velocities in the water corresponding to a wave packet propagating in the +z direction with
surface amplitude (63). The initial conditions are shown in figure 3 and time-domain simulation results are shown
in figure 4. Normal dispersion is visible at high frequencies. Because H, < Hj, the reflection coefficient is positive
and the transmission coefficient is greater than unity.

4.2 Reflection and transmission coefficients

From the simulation data, we extract the simulation reflection and transmission coefficients using (55) and (56),
respectively. Results are shown in figure 5. The reflection and transmission coefficients match the LLW solutions,
given in (61) and (62), in the low frequency limit, but differ at high frequency as seen in previous studies (Newman,
1965; Miles, 1967; Dingemans, 1997).

5 Reflection and transmission coefficients for ice-covered water

Having verified our procedure for determining reflection and transmission coefficients from time-domain simula-
tions, we now turn to the problem of wave interaction with floating ice shelves (Figure 1a).

5.1 Simulation results

We use the same initial conditions for the wave packet as used in the step change in depth problem. Incident surface
gravity waves in the open water impact the ice shelf, exciting both flexural gravity and extensional Lamb waves. The
flexural gravity waves are dominantly expressed in the vertical components (figure 6) and extensional Lamb waves
are dominantly expressed in the horizontal component (figure 7). We also show the horizontal normal stress o, in
figure 8. The largest stresses are carried by flexural gravity waves, not extensional Lamb waves.

11
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Figure 3 Simulation initial conditions: a) sea surface displacement, b) pressure, c) horizontal particle velocity, d) vertical
particle velocity.
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Figure4 Simulation results for the step change in water depth problem, showing vertical displacement on the surface (z =
0) through time.

» 5.2 Reflection and transmission coefficients

»s  Following the procedure described in section 3.2, we calculate reflection and transmission coefficients. Results are
2 shown in Figure 9. We begin by explaining the reflection and transmission of surface gravity and flexural gravity
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—e—-simulation R
1.5 1 - = LLWR |
L S simulation T
-=LLWT

R, [T

k1H,

Figure 5 Reflection and transmission coefficients for the step change in water depth problem, which approach the linear
long wave (LLW) solution in the low frequency limit.

a) Vertical displacement on surface i b) Vertical velocity on surface % 102
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Figure 6 (a) Vertical displacement and (b) vertical velocity on the open-water and ice surface. Surface gravity waves in the
open-water region are normally dispersed with the longest wavelengths traveling at the linear long wave speed /gH;. The
ice shelf response is dominated by anomalously dispersed flexural gravity waves, with the longest wavelengths traveling at
the linear long wave speed /g Ho.

waves (Figure 9a), both quantified in terms of the vertical displacement amplitude on the water or ice surface. At low
frequencies, the results match expectations from linear long wave theory without ice, illustrating that the additional
inertia and elastic resistance to flexure of the ice are negligible. Because Hy < H;, T > 1in this limit. As frequency
increases, R and T both decrease, as seen for the step change in depth problem without ice (Figure 5). The decrease
of R for this problem arises from the shorter wavelength waves, which involve motions of the water at depths of order
the wavelength, becoming less sensitive to the water depth. In the high frequency limit, the waves simply propagate
across the step without reflection. In contrast, for the ice shelf problem, the reflection coefficient begins increasing
around 0.01 Hz as the stiffness and inertia of the ice shelf begin to impede wave transmission. The anticipated high
frequency limit for R is unity, meaning that surface gravity waves are fully reflected.

Next we examine transmission of extensional Lamb waves, which we quantify in terms of the horizontal dis-
placement amplitude on the ice surface (Figure 9c,d). The transmission coefficient increases as frequency decreases,
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(a) Horizontal displacement and (b) horizontal velocity on the open-water and ice surface. In addition to surface

gravity waves in the open-water region and flexural gravity waves in the ice-covered water are both visible, we also see ex-
tensional Lamb waves. These have minimal dispersion, dominantly horizontal particle motions, and propagate around the
plane stress P-wave speed of ice.
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Figure 8 Tensile and compressional horizontal normal stresses (o, in the ice and minus pressure (—p) in the water, high-
light the propagating long wavelength extensional Lamb waves and shorter wavelength flexural gravity waves. The exten-
sional Lamb wave exhibits symmetric stressing about the centerline of the ice shelf, whereas the flexural gravity wave exhibits
antisymetric stressing. The largest stress changes are carried by the flexural gravity waves.

passing through unity around 0.001 Hz. Transmission coefficients larger than unity indicate that horizontal displace-
ments of the ice surface carried by extensional Lamb waves exceed vertical displacements of the incident waves. In
the low frequency limit, T diverges as w™!, a behavior that we explain in the next section.
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Figure9 (a) Simulation-derived reflection coefficient (blue) and flexural gravity wave vertical transmission coefficient (yel-
low) with linear long wave limits for the step depth change problem (red and purple). (b) Diagram illustrating extensional
Lamb wave excitation by pressure changes exerted on the ice shelf face by surface gravity waves. (c and d) Simulation-derived
extensional Lamb wave horizontal transmission coefficient (green), the analytical prediction for the transmitted extensional
wave given in equation (66) (black dashed), and and flexural gravity wave tilt contribution to horizontal seismometer mea-
surements given by equation (68) (magenta).

5.3 Mechanism for extensional Lamb wave excitation

In this section we provide a quantitative theory for the excitation of extensional Lamb waves by incident surface
gravity waves. The incident waves cause pressure changes in the water column and these pressure changes exert a
horizontal force on the submerged portion of the ice shelf edge. This excites extensional Lamb waves. This concep-
tual mechanism was suggested by Chen et al. (2018), which we extend quantitatively as follows.

Consider an incident, time-harmonic surface gravity wave of amplitude A. The wave amplitude at the ice shelf
edge differs from A because of the superposition of incident and reflected waves. By neglecting evanescent modes,
we approximate the amplitude at the edge as (1 + R)A, where R is the frequency-dependent surface gravity wave
reflection coefficient. Next we estimate the pressure change in the water column associated with the surface gravity
waves as p = p,g(1 + R)I A, where

0
w h(k H

Iw) =" wdz,
pilli J (o, m,  cosh(kH)

(64)

is the normalized integral of the depth-dependent pressure changes from the eigenmode solution given in A and k is
the wavenumber of surface gravity waves at angular frequency w. The normalization is chosen so that I — 1 in the
low frequency limit (kH; < 1) where pressure changes are approximately uniform over the submerged portion of
the shelf front. We find that I ~ 1 over frequencies of interest in this study. This pressure change gives rise to a net
horizontal force

Pi
F=plH,
Py (65)

= pig(1+ R)IAH,;.

Next we assume that this force generates an effectively 1D extensional Lamb wave with depth-independent normal
stress o, and horizontal particle velocity v,. The depth-independence of these fields holds asymptotically in the
limit of horizontal wavelengths greatly exceeding ice thickness, as evident from the eigenfunctions in A. This limit

15


https://seismica.org/

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

This is a non-peer reviewed manuscript submitted to SEISMICA Excitation of Flexural Gravity and Extensional Lamb Waves

is well justified for frequencies of interest. The stress and particle velocity are related by the extensional Lamb wave
impedance: —o,,; = p;CpsvUs, Where we have assumed that the phase velocity is approximately ¢, (Figure 2b). Force
balance requires F' = —o,, H;, such that —o,, = p;g(1+ R)I A. Inserting this into the impedance relation, we obtain
vy = (g/cps)(1 + R)IA. Finally, using v, = —iwu,, we obtain the extensional Lamb wave transmission coefficient
(defined as the ratio u,/A)

_ gl + R@))I(@)

Weps

Tye(w) (66)

This prediction, using the R(w) derived from the simulations, is plotted in Figure 9c,d. There is excellent agreement
with the simulation-derived T}, .(w). We note that in the low frequency limit (i.e., very long period band), where
the ice has negligible effect on gravity wave propagation, except by modifying the water depth, we can approximate
R(w) = RrLw, which is independent of frequency, and I(w) = 1. This reveals the T}, . oc w™! divergence seen in our
simulation results (Figure 9c,d).

5.4 Tilt contribution to horizontal seismometer measurements

Our theory and simulation results provide a prediction of both horizontal and vertical displacements of the ice shelf
surface, which can be compared to seismic observations. Here we combine previous results to predict the frequency-
dependent ratio of horizontal to vertical displacements. We assume that horizontal displacements are dominated by
extensional Lamb waves and that vertical displacements are dominated by flexural gravity waves. The predicted
displacement ratio is therefore approximated as |u,|/|u.|~ [Ty c(w)|/|T%, f(w)|. We focus on the low frequency limit
where the ice has minimal influence on flexural gravity waves, except by reducing the water depth, so that T, ;(w) can
be approximated as the LLW transmission coefficient (62). Similarly, the surface gravity wave reflection coefficient
can be approximated using (61). Then, using these results in (66), and noting that for the LLW problem 1 + Ry w =
Trw, we find the predicted horizontal-to-vertical displacement ratio

g _ 1mHz
Weps f

with the latter expression using the value of ¢, for our simulation parameters. Thus vertical displacements are
predicted to be larger than horizontal displacements for frequencies greater than ~1 mHz, whereas horizontals will
be larger for lower frequencies.

This prediction is in apparent contradiction to observations, which can be found in power spectral density plots
for horizontal and vertical seismometer data in Figure 3 of Bromirski et al. (2017). The observations show larger
horizontal motions not just in the very long period band but also in the infragravity band. There are several possible
explanations for this discrepancy. First, there could be some additional extensional Lamb wave source that is unac-
counted for in our model. Turbulent drag along the base of the ice shelf during wave motions in the sub-shelf cavity
would provide an additional horizontal force that would excite extensional Lamb waves. Drag of this form is widely
used in shallow water wave modeling, with basal shear stress (drag) being proportional to the square of horizontal
velocity. Given that this is a nonlinear forcing mechanism, frequency-dependent excitation of extensional waves
cannot be quantified without detailed modeling of the broadband wavefield. We defer this to future work. Another
hypothesis is that the horizontal seismometer components are not only measuring horizontal displacements, but
also include contributions from tilt. Tilt effects are most important at low frequencies, and studies of atmospheric
coupling to the solid Earth have identified tilt as important or even dominant at the frequencies of interest to us
(Rodgers, 1968; Tanimoto and Wang, 2018).

To explore this possibility, we follow Rodgers (1968) by calculating the tilt contribution to horizontal seismometer
measurements as

|z |/~ (67)

g Ou(z,w)
Untilt T T 2T or (68)
igk .
T

where the subscript & denotes the seismometer horizontal component and « is the vertical displacement of the
surface in the frequency domain. The final expression follows by assuming ¢’** dependence of the propagating
wave, where k is the wavenumber for a given wave mode at angular frequency w.

We calculate the tilt contribution from both extensional Lamb and flexural gravity waves, taking @ from our
simulations as before, which we normalize by the amplitude of the incident surface gravity wave. We find that the
contribution from extensional Lamb waves is negligible in comparison to the actual horizontal displacements carried
by these waves. In contrast, the tilt contribution from flexural gravity waves, which is shown in Figure 9c¢,d, is larger
than the horizontal extensional Lamb wave displacements over the entire frequency band of our study. Specifically,
flexural gravity wave tilt is an order of magnitude larger than extensional Lamb wave horizontals at frequencies
~0.001 Hz characterizing the very long period band. This ratio decreases toward unity in the infragravity wave band.
Thus we conclude that horizontal component seismometers are primarily measuring tilt from flexural gravity waves,
especially at low frequencies.
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Additional features of the seismic observations support this idea. Figure 9 of Chen et al. (2018) provides cross-
correlation-based seismograms, bandpassed to 0.002-0.004 Hz, showing move-out at the flexural gravity wave speed
on both vertical and horizontal components. The beamforming dispersion analysis in their Figure 8 shows larger
power on the horizontal component than the vertical component along the flexural gravity wave dispersion curve at
frequencies less than 0.02 Hz. This is inconsistent with the expected horizontal to vertical ratio for flexural gravity
waves, but at least qualitatively consistent with our results in Figure 9.

6 Conclusion

In this work we have modeled the wave response of the ice shelf and sub-shelf ocean cavity to a surface gravity wave
that is incident from open water. This was done using a depth-resolved 2D vertical cross-section model, accounting
for full elastodynamics of the ice shelf, in contrast to most prior work that utilizes a bending plate model for the shelf.
We extract frequency-dependent reflection and transmission coefficients from our time-domain simulation results,
in particular focusing on the amplitude of transmitted flexural gravity and extensional Lamb waves. The incident
waves cause pressure changes in the water column at the ice shelf edge produce a time-varying horizontal force on
the submerged portion of the ice shelf edge, which excites extensional Lamb waves. A quantitative version of this
theory shows excellent agreement with our simulation results.

Our model also provides a prediction of the horizontal and vertical displacements of the ice shelf surface, which
are primarily controlled by extensional Lamb waves and flexural gravity waves, respectively. The vertical is predicted
to exceed the horizontal at frequencies greater than ~0.001 Hz, which is not seen in seismic data from the Ross Ice
Shelf (Bromirski et al., 2017; Chen et al., 2018). We attribute this discrepancy to the expression of tilt from flexural
gravity waves on the horizontal seismometer components, which our model predicts will be larger than extensional
Lamb wave horizontal displacements at frequencies in the infragravity wave band and lower.

Future extensions of this work are required to explore more realistic geometries, finite-length ice shelves and
interaction with grounded ice, and the extension from 2D to 3D with obliquely incident waves. Nonetheless, our
work provides an important advance in understanding the wave response of ice shelves to incident ocean waves, a
problem receiving growing attention due to the possible role of wave-induced stresses in fracture and calving.
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A Wave modes in ice-covered water

In this appendix, we seek ¢’(**~«!) solutions for an elastic ice shelf over an acoustic ocean with gravity. This problem
was solved by Press and Ewing (1951) for infinitely deep water and by Lipovsky (2018) for finite depth (but incom-
pressible) water. For simplicity we do not use the hat notation for frequency-domain fields that is used in the main
text. The solution is developed by solving for the response in the ice and water, separately, to an imposed pressure
P on the side bounding the ice-water interface. For the ice, this means —o,, = P, and for the water, this means
p — pgn = P. This response includes the vertical velocity v, at the same location, which defines the impedances of
the ice and water layers, Z; and Z,,, defined as P/v. . Enforcing interface conditions (12)-(14) is equivalent to matching
impedance: Z,, = Z;, a convenient procedure used by (Biot, 1952) for a related problem. For notational convenience,
the ¢’(F*=) term is implied, and we denote the water depth as H and ice thickness as 2h. Furthermore, we place
z = 0 at different locations when deriving the water and ice response to simplify the solution.

A.1 Impedance of acoustic ocean with gravity

The general solution in the water, with z = 0 being the water surface, is (Kundu et al., 2015)

p = Asinh(kz) + B cosh(kz), (69)
Vp = piw [Asinh(kz) + B cosh(kz)], (70)
v, = - r [A cosh(kz) + Bsinh(kz)], (71)

ipww
K
PuwW

where k = \/k? — w?/c3 and the coefficients A and B are to be determined. Setting v, = 0 on z = —H gives

Acosh(kH) (73)
— Bsinh(kH) = 0.

Next we enforce p — p,,gn = P on z = 0 to obtain

A+ B=P (74)
w
It follows that
sinh(xkH)
A= —"=P, 75
P (75)
cosh(kH)
B=——""-—P 76
P (76)
gk .
Dy = cosh(kH) — e sinh(kH), (77)
where Dy = 0 is the dispersion relation for wave modes in an ocean with a free surface on top. The impedance is
iWPwDO
= W 78
ksinh(kH) (78)
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A.2 Impedance of elastic ice shelf

Next we solve for the response of an elastic ice shelf of thickness 2h. It is convenient to set z = 0 along the centerline
with boundary conditions enforced at z = +h. The displacements and traction components of stress are

Uy = k (Alefpz + Agepz) +iq (Blefqz — Bzeqz) ; (79)
Uy = ip (Ale*pz — Agepz) —k (Blefqz + Bgeqz) , (80)
Ous/pt = —2kp (A1e™P* — AxeP?) — i (k* + %) (Bie™9% + Boe?), (81)
0./ =—i (k* 4+ ¢%) (A1e7P% + AzeP?) + 2kq (Bre™?* — Bye??), (82)
for coefficients A;, B; and
p= [k —w2/c (83)
q= k2 —w?/c2. (84)

Note that symmetric modes will have A; — As = 0 and By + By = 0, whereas antisymmetric modes will have
Ay + Ay =0and B; — By = 0.
Next we enforce ,, =0onz = +h,0,, =0onz=h,ando,, = —Ponz=—h:

—2kp (Aleiph — Aerh) —1 (k2 + q2) (B1€7qh + Bgeqh) =0, (85)
72]€p (Aleph — Ageiph) —1 (k2 + q2) (Blfiqh + Bgeiqh) = 0 (86)
—1 (k2 + q2) (Ale*ph + Ageph) + 2kq (Ble*qh — B26qh) =0, (87)
—1 (k2 + q2) (Ale”h + Age*ph) + 2kq (Bleqh - Bgefqh) = (88)

Then form linear combinations of the resulting equations to highlight excitation of symmetric and antisymmetric
modes. Symmetric modes are determined by

—2kpsinh(ph)(A; + A2) — i (k* + ¢°) sinh(qh)(B1 — Bs) =0, (89)

—i (k* + ¢*) cosh(ph)(A; + As) + 2kqcosh(qh)(By — Bs) = —%’ (90)
and antisymmetric modes by

—2kpcosh(ph)(A; — As) — i (k2 + q2) cosh(gh)(B; + Bs) =0, (91)

—i (k2 + q2) sinh(ph)(A; — As) 4 2kgsinh(qh)(B; + Bs) = f%. (92)

The determinants of the coefficient matrices provide the dispersion relations for symmetric (Dg = 0) and antisym-
metric (D4 = 0) modes of an elastic layer bounded by free surfaces:

Dg = 4k*pqsinh(ph) cosh(qh) — (k;2 + q2)2 cosh(ph) sinh(gh), (93)
D 4 = 4k®pq cosh(ph) sinh(gh) — (k* + q2)2 sinh(ph) cosh(gh). (94)

The dispersion relations Dg = 0 and D4 = 0 are more often written as ?e.g.,>lamb1917waves, achenbach1973wave,
achenbach2003reciprocity

tanh(qh 4k%pq

(gh) _ :
(symmetric), (95)
tanh(ph) (k2 +¢2)°
tanh(gh)  (k*+¢ ) . .
= t t . 96
tanh(ph) g (antisymmetric) (96)
The coefficients are given by
i (k2 2) sinh(gh
A1+A2:Z( —l—q)sm (q)ﬂ’ ©7)
DS 2#
_ 2kpsinh(ph) P
By — By = Ds o (98)
i (k2 + ¢?) cosh(qh
A17A2:z( + ¢*) cos (q)£7 (99)
DA 2/.1,
By 4 By — _ 2kpcosh(ph) E’ (100)
DA 2#
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and hence,
_ .2, o2y |sinh(gh) cosh(qh)] P
Al—Z(k +q)|: DS + DA 4/,0’
. inh(gh)  cosh(gh)] P
A _ 2 2 Sin _ e
2 7 (k’ +4q ) |: Dg D4 4LL’
sinh(ph)  cosh(ph)] P
By = -2k il
1 P l: DS + DA 4,L,L,
B sinh(ph) = cosh(ph)] P
BQ = 2kp |: DS + DA 4‘u.
Next we calculate impedance of the ice as Z; = P/v,, where v, = —iwu, is evaluated at z = —h:
o 2ip;c
1 T wgpF)

e sinh(ph) sinh(gh) . cosh(ph) cosh(gh)

Dg

2 A3 Dispersion relation for coupled ice-water system

The dispersion relation for the coupled system is obtained by matching impedance, Z,, = Z;, yielding

Dy

wpwDo _ 20163

ksinh(kH)  w3pF’
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