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Abstract

Transformer architectures have achieved state-
of-the-art results on a variety of natural lan-
guage processing (NLP) tasks. However, their
attention mechanism comes with a quadratic
complexity in sequence lengths, making the
computational overhead prohibitive, especially
for long sequences. Attention context can be
seen as a random-access memory with each to-
ken taking a slot. Under this perspective, the
memory size grows linearly with the sequence
length, and so does the overhead of reading
from it. One way to improve the efficiency is
to bound the memory size. We show that dis-
parate approaches can be subsumed into one
abstraction, attention with bounded-memory
control (ABC), and they vary in their organi-
zation of the memory. ABC reveals new, unex-
plored possibilities. First, it connects several
efficient attention variants that would otherwise
seem distinct. Second, this abstraction gives
new insights—an established approach (Wang
et al., 2020b) previously thought to not be appli-
cable in causal attention, actually is. Last, we
present a new instance of ABC, which draws in-
spiration from existing ABC approaches, but re-
places their heuristic memory-organizing func-
tions with a learned, contextualized one. Our
experiments on language modeling, machine
translation, and masked language model fine-
tuning show that our approach outperforms pre-
vious efficient attention models; compared to
strong transformer baselines, it significantly im-
proves the inference time and space efficiency
with no or negligible accuracy loss.

1 Introduction

Transformer architectures are now central in natural
language processing (Vaswani et al., 2017). They
rely on the attention mechanism (Bahdanau et al.,
2015) to contextualize the input. The context can
be seen as a random access memory whose size lin-
early grows with the sequence length; each query

∗This work was done while Zhaofeng Wu and Nikolaos
Pappas were at the University of Washington.

reads from it using a softmax-normalized linear
combination, with overhead linear in the memory
size. This amounts to a quadratic complexity over-
all, making transformers’ computational overhead
prohibitive, especially for long sequences.

One way to improve attention’s efficiency is
to bound its memory size. Imposing a constant-
sized constraint over the memory ensures that read-
ing from it has constant time and space overhead,
yielding a linear overall complexity in sequence
lengths. This is in fact a common strategy adopted
by several recent works. In this work, we show
that some of these works are closely connected
in ways that, to date, have gone unremarked. We
propose attention with bounded-memory control
(ABC), a unified abstraction over them. In ABC,
constant-sized memories are organized with vari-
ous control strategies, e.g., induced from heuristic
patterns (Beltagy et al., 2020; Zaheer et al., 2020;
Ainslie et al., 2020; Rae et al., 2020, inter alia),
locality assumptions (Parmar et al., 2018; Liu et al.,
2018), or positions (Wang et al., 2020b).

These strategies, by and large, are “context-
agnostic.” In response to this, we propose ABCMLP,
a particular instance of ABC that learns a contex-
tualized control strategy from data. Specifically,
ABCMLP uses a neural network to determine how
to store each token into the memory (if at all).
Compared to previous bounded-memory models,
it strikes a better trade-off between accuracy and
efficiency: controlling for the accuracy, ABCMLP
can get away with much smaller memory sizes.

ABC models (including ABCMLP) come with a
linear complexity in sequence lengths, and admit
recurrent computation graphs in causal attention
(self-attention over the prefix). Therefore they are
appealing choices in a variety of applications, in-
cluding text encoding, language modeling and text
generation. This leads to a surprising finding. Lin-
former (Wang et al., 2020b), an established effi-
cient attention method, was previously thought not



to be applicable in causal attention or autoregres-
sive decoding (Tay et al., 2020). Through the ABC

view, we show that it actually is, and achieves com-
petitive performance in our machine translation
experiments.

ABC connects existing models that would oth-
erwise seem distinct, reveals new insights into
established methods, and inspires new efficient
attention architectures. We explore its applica-
tions in transformers, as a drop-in substitute for
the canonical softmax attention. ABC offers a
novel lens that can help future research in the
analysis of transformers, where the theoretical in-
sights are still catching up with empirical suc-
cess. Experiments on language modeling, machine
translation, and masked language model finetun-
ing show that our ABCMLP model outperforms pre-
vious ABC approaches in accuracy with a much
smaller memory size. Compared to the strong
transformer baseline, ABCMLP achieves a signif-
icant speedup and memory savings at inference
time, with no or negligible accuracy loss. The
efficiency improvements are more prominent for
long sequences, suggesting that the asymptotic sav-
ings are even more appealing in applications in-
volving long sequences. We release our code at
https://github.com/Noahs-ARK/ABC.

2 An Outer-Product View of Attention

This section presents our outer-product memory
perspective of attention, which allows for a smooth
transition to later discussion.

In attention, a sequence of queries {qi}Ni=1 at-
tend to a memory with N slots, each storing a
key and value pair: K = [k1, . . . ,kN ]⊤,V =
[v1, . . . ,vN ]⊤ ∈ RN×d.1 Query q reads from the
memory using a softmax-normalized linear combi-
nation, producing a d-dimensional vector:

attn(q, {ki}, {vi}) = V⊤ softmax (Kq) . (1)

This takes O(N) time and space. When the atten-
tion with N queries can be parallelized (e.g., in
text encoding), it takes linear time and quadratic
space; when it cannot be (e.g., in decoding), it
takes quadratic time and linear space.

The memory can be equivalently represented
as sums of vector outer products: K = IK =∑︁N

i=1 ei ⊗ki, V =
∑︁N

i=1 ei ⊗vi. I is the identity
matrix, and ⊗ denotes the outer product: [x ⊗

1The number of queries and key-value pairs may differ,
e.g., in the cross attention of a sequence-to-sequence model.

y]i,j = xiyj . N -dimensional vectors {ei} form
the standard basis: ei has the ith element being
one and others zeros. We can view ei as control
vectors that determine where to store ki and vi:

ei ⊗ ki =
[︁
0, . . . 0⏞ ⏟⏟ ⏞

i−1

, 1, 0, . . . , 0⏞ ⏟⏟ ⏞
N−i

]︁⊤ ⊗ ki

=
[︁

0⏞⏟⏟⏞
d×(i−1)

;ki; 0⏞⏟⏟⏞
d×(N−i)

]︁⊤
.

(2)

The N -by-d matrix on the last line has its ith row
being k⊤

i and all others zeros; in this sense, ki is
stored in the ith slot by ei, not affecting others.

3 Attention with Bounded Memory

A straightforward way to improve attention’s ef-
ficiency is to bound its memory size. Our outer-
product view of attention provides a straightfor-
ward way to devise this, by replacing {ei} with
control vectors that select n ≪ N vectors to
attend to. We dub this approach attention with
bounded-memory control (ABC). Concretely, let˜︁K, ˜︁V ∈ Rn×d denote a constant-size memory with
n slots, with n set a priori.

˜︁K =

N∑︂
i=1

ϕi ⊗ ki, ˜︁V =

N∑︂
i=1

ϕi ⊗ vi. (3)

{ϕi ∈ Rn}Ni=1 denotes a sequence of control vec-
tors. The output is calculated by attending to ˜︁K
and ˜︁V: ABC (q, {ki}, {vi}, {ϕi}) =

˜︁V⊤ softmax
(︂ ˜︁Kq

)︂
. (4)

We will discuss various ways to construct {ϕi} in
the subsequent sections. Reading from the memory
takes a constant O(n) time and space; therefore
ABC’s overall complexity is O(Nn), linear in the
sequence length.2

Eq. 3 offers an equivalent recurrent computa-
tion, which is particularly useful in causal attention
where only the prefix is looked at,˜︁Kt+1 = ˜︁Kt + ϕt+1 ⊗ kt+1, (5)

likewise for ˜︁Vt. ˜︁Kt and ˜︁Vt can be seen as the
recurrent hidden state that encodes the prefix.

In what follows, we study several existing effi-
cient attention approaches and show that they are
in fact instances of the ABC abstraction.

2Using bounded memory distinguishes ABC from softmax
attention. If growing-size memory were allowed (n = N ), an
ABC with ϕi = ei would fall back to softmax attention.

https://github.com/Noahs-ARK/ABC


3.1 Linformer

Linformer (Wang et al., 2020b) is an established ef-
ficient transformer variant that has proven success-
ful in masked language modeling and text encoding.
It assumes fixed-length inputs and learns a low-rank
approximation of the attention weights. A learned
n-by-N matrix WLF down projects the N -by-d
dimensional keys and values along the timestep di-
mension, to an n-by-d memory: ˜︁KLF = WLFK,˜︁VLF = WLFV; they are then used for attention
computation with Eq. 4. This yields a linear com-
plexity in the input length. Linformer is an ABC

instance with ϕLF
i = WLF

:,i (ith column), and in this
sense, it learns a control vector for each position.

Previous works have noted that Linformer can-
not be efficiently applied in causal attention (Table
1 of Tay et al., 2020). Indeed, it is less straightfor-
ward to avoid mixing future with the past when
projecting along the timestep dimension. ABC

reveals that, in fact, Linformer is applicable in
causal attention. Like all ABC models, it admits
a linear-complexity recurrent computation (Eq. 5):˜︁KLF

t+1 =
˜︁Kt + ϕLF

t+1 ⊗ kt+1. This confirms ABC’s
benefits: it reveals new insights about existing mod-
els and reassesses their applications and impact.
Our experiments show that Linformer achieves
competitive performance in machine translation.

3.2 Clustering-Based Attention

Improving attention’s efficiency with clustering has
received an increasing amount of interest (Kitaev
et al., 2020; Roy et al., 2020; Wang et al., 2020a,
inter alia). ABC bears interesting connections to
clustering-based methods. Here we discuss an
approach that closely follows Vyas et al. (2020),
except that it clusters keys and values instead of
queries, and only attends to the centroids to reduce
the effective context size. Formally, keys and val-
ues are grouped into n < N clusters {˜︁kCL

j }nj=1,
{˜︁vCL

j }nj=1.3 Let an N -by-n binary matrix M de-
note the cluster membership shared between keys
and values. Mi,j = 1 iff. ki is assigned to cluster˜︁kCL
j and vi to ˜︁vCL

j . The jth centroid for the keys is

˜︁kCL
j =

N∑︂
i=1

Mi,j∑︁N
ℓ=1Mℓ,j

ki; (6)

3We use ˜︁kCL
j to denote both the jth cluster and its centroid.

likewise for the values. It then attends over the cen-
troids using Eq. 4, with ˜︁KCL = [˜︁kCL

1 , . . . , ˜︁kCL
n ]⊤ =

n∑︂
j=1

ej ⊗ ˜︁kCL
j =

n∑︂
j=1

ej ⊗
N∑︂
i=1

Mi,j∑︁N
ℓ=1Mℓ,j

ki

=
N∑︂
i=1

⎛⎝ n∑︂
j=1

ej
Mi,j∑︁N
ℓ=1Mℓ,j

⎞⎠⊗ ki.

The last line indicates that this model is an instance
of ABC: ϕi =

∑︁n
j=1(Mi,j/

∑︁N
ℓ=1Mℓ,j)ej . The

stack of centroids can be seen as the constant-size
memory. Putting aside the clustering overhead (i.e.,
constructing M and computing centroids), it has a
linear complexity in the sequence length.

3.3 Sliding-Window Attention
In some applications, being able to remove entries
from the memory can be beneficial: clearing up
older context frees slots for more recent ones, pro-
moting a locality inductive bias. ABC offers the
capability to do so, if augmented with an additional
matrix multiplication. We use the sliding-window
attention as an example.

Attending to the most recent n input tokens (Belt-
agy et al., 2020; Zaheer et al., 2020; Sukhbaatar
et al., 2021, inter alia) can be seen as a first-
in-first-out queue that “pops” out the oldest to-
ken while “pushing” in the most recent one:˜︁KWD

t = [kt−n+1, ...,kt]
⊤. The pop operation can

be achieved by multiplying an n-by-n upper shift
matrix: Ui,j = δi+1,j , with δ being the Kronecker
delta (i.e., U has ones only on the superdiagonal
and zeros elsewhere). Left-multiplying U against˜︁KWD

t shifts its rows one position up, with zeros
appearing in the last:

U ˜︁KWD
t = U

[︁
kt−n+1, . . . ,kt⏞ ⏟⏟ ⏞

n

]︁⊤
=

[︁
kt−n+2, . . . ,kt−1,kt⏞ ⏟⏟ ⏞

n−1

,0
]︁⊤ ∈ Rn×d.

Then the most recent token can be put into the
slot freed up: ˜︁KWD

t+1 = U ˜︁KWD
t + en ⊗ kt+1. U

and ϕt = en ensure a first-in-first-out queue. Di-
lated and stride convolution patterns (Beltagy et al.,
2020) can be similarly recovered (§A.4).

Recurrently multiplying U simulates the discrete
pop operation (Grefenstette et al., 2015; Joulin and
Mikolov, 2015; Yogatama et al., 2018) in a differen-
tiable way. This is reminiscent of recurrent neural
networks, while in this case U is never updated as



parameters. It is exciting to explore learning U,
but is beyond the scope of this work.

Discussion. Besides the models discussed above,
certain variants of Rae et al. (2020) and sparse at-
tention patterns (local-to-global attention; Beltagy
et al., 2020; Zaheer et al., 2020; Ainslie et al., 2020)
can also be seen as instances of ABC (§A). ABC

provides a unified perspective of them, and at the
same time points out their limitations: their control
strategies are context-agnostic. In response to this,
in §4 we propose to learn a contextualized strategy
from data. Table 1 analyzes various ABC models,
and Table 2 details their complexity.

4 Learned Memory Control

The ABC abstraction connects several existing ap-
proaches that would otherwise seem distinct. This
inspires the design of new architectures. We hy-
pothesize that learning a contextualized strategy
can achieve better performance. This section intro-
duces ABCMLP. It parameterizes ϕ with a single-
layer multi-layer perceptron (MLP) that takes as
input the token’s representation xi, and determines
which slots to write it into and how much.

αi = exp (Wϕxi) , ϕi = αi

/︄
N∑︂
j=1

αj . (7)

Matrix Wϕ is learned. exp is an elementwise
activation function. The motivation is to allow for
storing a “fractional” (but never negative) amount
of input into the memory.4 Using a non-negative
activation, however, has a drawback: the scales of∑︁

iϕi ⊗ ki and
∑︁

iϕi ⊗ vi would grow with the
sequence lengths, making training less stable. To
overcome this, we divide αi vectors by their sum.
This functions as normalization and aims to offset
the impact of varying sequence lengths.5 It admits
the recurrent computation graph as in Eq. 5, and
has a linear complexity in the sequence length.

A key design choice of ABCMLP is that its ϕi

depends only on current input xi. This helps (1)
keep the recurrent computation efficient in prac-
tice (Lei et al., 2018), and (2) make it applicable

4We experiment with other activations in §C.2.
5Here encoder self-attention or cross attention is assumed,

and the normalization sums over the entire sequence. Causal
attention is slightly different, normalizing by the sum over
the prefix instead: ϕi = αi/

∑︁i
j=1 αj . This does not re-

quire access to future tokens. §B.1 details a linear complexity
computation graph of causal ϕi.

in not only encoder self-attention and cross atten-
tion, but also causal attention. Concurrently to this
work, Goyal et al. (2021) and Ma et al. (2021) also
proposed methods to learn contextualized control.
They compute ϕi from previous layer’s memory,
revealing the full sequence to the control vectors.
As a result, these two approaches are unsuitable for
causal attention.6

ABCMLP, as other ABC models, can be used as
a drop-in replacement for the canonical softmax
attention, and we apply its multihead variant in
transformers. With proper parameter sharing, the
number of additional parameters ABCMLP incurs
is small: inspired by Wang et al. (2020b), we tie
ϕ-MLP’s parameters across different layers, which
adds less than 1% parameters to the models.

ABCMLP: context-agnostic then context-
dependent attention. We now dissect ABCMLP
and show that it can be seen as a cascade of
two attention mechanisms: one with a learned
context-agnostic “pseudo query” followed by one
with a context-dependent query. Our analysis starts
with a one-dimensional example; the conclusion
generalizes to higher-dimensional cases.

Example 1. Consider ABCMLP with a single mem-
ory slot (n = 1). It is parameterized with a learned
vector wϕ, and ϕi = exp(wϕ·xi)/

∑︁N
j=1 exp(wϕ·

xj). Since ϕi is a scalar here, ϕi ⊗ ki = ϕik
⊤
i .

˜︁K⊤ =
N∑︂
i=1

(ϕi ⊗ ki)
⊤

=
N∑︂
i=1

exp(wϕ · xi)∑︁N
j=1 exp(wϕ · xj)

ki

= attn
(︁
wϕ, {xi}Ni=1, {ki}Ni=1

)︁
.

In other words, ˜︁K uses wϕ as a “pseudo-query”
to attend to {xi} and {ki}. Likewise, ˜︁V⊤ =
attn(wϕ, {xi}Ni=1, {vi}Ni=1). Despite its similar-
ity to the standard softmax attention, Example 1
has a more efficient linear complexity in sequence
lengths. wϕ’s being context-independent is the key
to the savings. Table 2 details its complexity.

Example 1’s conclusion generalizes to higher-
dimensional cases: the jth dimension of {ϕi} at-
tends to {xi} and {ki} using the jth row of Wϕ

as the context-independent pseudo-query; n such
attention mechanisms run in parallel, stacking the

6Both are instances of ABC (§A.5). Ma et al. (2021) resorts
to a variant of Katharopoulos et al. (2020) for causal attention.



Model Section ϕt Mem. Control

Sliding-window §3.3 en ˜︁Kt+1 = U ˜︁Kt + ϕt+1 ⊗ kt+1

Linformer §3.1 WLF
:,t

˜︁Kt+1 = ˜︁Kt + ϕt+1 ⊗ kt+1

L2G Pattern §A.1 ei if xt is the ith global token
ABCRD §A.2 eit , where it ∼ unif{1, n}
Comp. Trans. §A.3 e⌊nt/N⌋

Clustering §3.2
∑︁n

j=1

(︂
Mt,j/

∑︁N
ℓ=1Mℓ,j

)︂
ej

ABCMLP §4 exp (Wϕxt)/
∑︁t

i=1 exp (Wϕxt)

Table 1: A comparison of different ABC models. N denotes the sequence length, and n the memory size. ϕt denotes
the memory control vector for kt and vt, and unif is the discrete uniform distribution.

Time Complexity Space Complexity

Model Mem. Per Query Overall Mem. Per Query Overall

Softmax Attention - O(N) O(N2) - O(N) O(N2)

ABC O(N) O(n) O(nN) O(n) O(n) O(nN)

Table 2: ABC’s time and space complexity in sequence length against the softmax attention’s. “Mem.” indicates
the time and space needed for calculating and storing memory ˜︁K, ˜︁V. N denotes the sequence length, and n the
memory size. The time complexity analysis assumes that the softmax attention cannot be parallelized across the
queries. In practice, this is common in autoregressive decoding or for long sequences where the accelerators (e.g.,
GPUs) do not have enough threads to fully parallelize softmax attention’s computation across different queries.

results into n-by-d memory ˜︁K and ˜︁V. Intuitively,
it is the “real queries” {qi} that encode “what infor-
mation is useful for the prediction task.” Without
access to them, ABCMLP summarizes the input for
n times using different pseudo-queries, aiming to
preserve enough information in the memory for
onward computation. The attention output is calcu-
lated with the context-dependent real queries using
Eq. 4. §B.2 presents a detailed derivation.

Connections to other prior works. Although
starting from distinct motivations, ABCMLP closely
relates to hierarchical attention (HA; Yang et al.,
2016). HA summarizes the context into higher-
level representations with a cascade of attention
mechanisms, e.g., words to sentences, and then to
documents. ABCMLP applies two types of attention.
The first learns context-agnostic pseudo-queries
and attends to the same sequence for n times in
parallel, while the second retrieves from the mem-
ory with real queries. HA, in contrast, summarizes
non-overlapping segments at each level.

The learned pseudo-queries closely relate to the
inducing point method in set attention (ISA; Lee
et al., 2019). ISA applies a non-linear feedforward
network between a cascade of two attention mod-

ules. This precludes the outer-product memory
computation and efficient recurrences in ABC.

Another line of work “linearizes” attention
through kernel tricks and also applies bounded
memory: their feature map dimensions are
analogous to memory sizes. They substitute
the softmax with approximations (Peng et al.,
2021; Choromanski et al., 2021), heuristically de-
signed (Katharopoulos et al., 2020; Schlag et al.,
2021), or learned (Kasai et al., 2021b) functions.
ABCMLP keeps the softmax, but over a smaller
constant-sized context. This can be useful in prac-
tice: (1) ABC provides a unified perspective of
several efficient attention methods, allowing for
borrowing from existing wisdom to design new
architectures; (2) it draws a close analogy to the
canonical softmax attention, and is better-suited as
its drop-in substitute in various application settings,
as we will show in the experiments; (3) empirically,
we find that ABCMLP can get away with a much
smaller memory size to retain the accuracy. Peng
et al. (2021) and Schlag et al. (2021) use gating
to promote recency bias. The same technique is
equally applicable in ABC models.

The learned contextualized memory control is
reminiscent of the content-based addressing in neu-



ral Turing machines (NTM; Graves et al., 2014).
ABCMLP computes the control vectors {ϕi} as a
function of the input, but not of the memory as in
NTM. This ensures that the control vectors at differ-
ent timesteps can be computed in parallel, improv-
ing the time efficiency in practice (Lei et al., 2018;
Peng et al., 2018). Analogies between memory
and neural architectures are also made by other pre-
vious works (Hochreiter and Schmidhuber, 1997;
Weston et al., 2015; Le et al., 2020, inter alia).

5 Experiments

We evaluate ABC models on language modeling
(§5.1), sentence-level and document-level machine
translation (§5.2), and masked language model fine-
tuning (§5.3). Dataset statistics and implementa-
tion details are summarized in §C.

5.1 Language Modeling
Setting. We experiment with WikiText-103, sam-
pled text from English Wikipedia (Merity et al.,
2017). The BASE model with standard softmax
attention is the strong transformer-based language
model by Baevski and Auli (2019). We com-
pare the following ABC variants, which build on
BASE, but replace the softmax attention with linear-
complexity bounded-memory attention alternatives
while keeping other components the same.
• ABCMLP, as described in §4, learns a contextual-

ized exp-MLP as the ϕ function.
• Linformer (§3.1; Wang et al., 2020b).
• ABCRD stores each token in a randomly-selected

memory slot with ϕt = eit . it is uniformly
drawn from {1, . . . , n} at each time step. This
helps us quantify the differences between ran-
dom and learned bounded-memory controls.

We consider two model size settings:
• 16 layers (Baevski and Auli, 2019). All models

have around ∼242M parameters. They train with
512-token segments, and evaluate with 0 or 480
context sizes: a 0- or 480- length prefix precedes
each evaluation segment.

• 32 layers (Kasai et al., 2021b). All models have
∼484M parameters. This setting applies layer
dropout (Fan et al., 2020), and evaluates with a
256 context size. It aims to compare ABCMLP to
several kernel-based efficient attention variants:
ELU (Katharopoulos et al., 2020), RFA (Peng
et al., 2021), and T2R (Kasai et al., 2021b).

Results. Table 3a compares ABC variants using
Baevski and Auli (2019)’s 16-layer setting. Among

Dev. Test

Model n 0 480 0 480

BASE - 19.8 18.4 20.5 19.0

Linformer 64 26.5 27.1 27.2 30.7
ABCRD 64 23.2 22.3 24.0 23.1

ABCMLP 32 21.2 19.7 21.9 20.5
ABCMLP 64 20.4 18.9 21.1 19.5

(a) 16-layer setting. 0/480 indicate evaluation context sizes.

Model n Dev. Test

†BASE - 17.9 18.5

†ELU 128 22.0 22.8
†RFA 32 20.4 21.3
†T2R 32 20.1 20.8

ABCMLP 32 19.2 19.9

(b) 32-layer setting. A 256-length context is used at evaluation
time. † numbers are due to Kasai et al. (2021b).

Table 3: WikiText-103 language modeling perplexity
(lower is better). n denotes the memory size. Bold num-
bers perform the best among linear-complexity models.

ABC models, ABCMLP achieves the best perfor-
mance for both context sizes. With a memory
size n = 64, ABCMLP outperforms both Linformer
and ABCRD by more than 2.9 test perplexity; and
the gap is larger with the longer 480-length con-
text: more than 3.6 test perplexity. ABCMLP-32
outperforms its larger-memory ABC counterparts
by more than 2.1 test perplexity. These results
confirm ABCMLP’s advantages of using a contex-
tualized strategy. Surprisingly, Linformer under-
performs ABCRD, and its performance drops with
the larger 480-length context window. This sug-
gests that, while successful in text encoding, Lin-
former’s position-based strategy is a suboptimal
design choice for causal attention, at least for long
context. All ABC models underperform the BASE,
with ABCMLP-64 having the smallest gap of 0.5
perplexity. ABCMLP-32 outperforms kernel-based
methods by more than 0.9 test perplexity, using
Kasai et al. (2021b)’s 32-layer setting (Table 3b).

5.2 Machine Translation

Datasets. To assess their performance over var-
ious output lengths, we compare ABC models on
sentence- and document- level machine translation.
• Sentence-level translation with WMT14 EN-DE



Model Cross n Causal n BLEU

BASE - - 27.2

ABCRD 32 32 25.7
ABCRD 64 64 26.2

Linformer 32 32 26.6
Linformer 64 64 26.7

ABCMLP 32 8 27.1
ABCMLP 32 32 27.3

(a) Bolded number outperforms BASE.

Model Cross n Causal n BLEU

BASE - - 39.9

Linformer 128 64 -

ABCRD 128 64 38.6

ABCMLP 128 64 39.7

(b) Linformer fails to converge even with multiple random
seeds. Bold number performs the best among ABC models.

Table 4: Machine translation test SacreBLEU. Left:
sentence-level translation with WMT14 EN-DE; right:
document-level translation with IWSLT14 ES-EN.

(Bojar et al., 2014). The preprocessing and data
splits follow Vaswani et al. (2017).

• Document-level translation with IWSLT14 ES-
EN (Cettolo et al., 2014). We use Miculicich
et al. (2018)’s data splits and preprocessing. Fol-
lowing standard practice (Voita et al., 2019), a
4-sentence sliding window is used to create the
dataset, i.e., each instance has 4 sentences.

Setting. We compare ABC variants as in §5.1.
§C.2 further compares to the clustering-based
(§3.2) and sliding-window (§3.3) ABC variants.

The BASE model they build on is our implemen-
tation of transformer-base (Vaswani et al., 2017).
ABC variants replace decoder cross attention and
causal attention with bounded-memory attention,
while keeping softmax attention for the encoder,
since its overhead is much less significant (Kasai
et al., 2021a); other components are kept the same.
§C.2 studies a model that replaces all softmax at-
tention with ABCMLP. It performs on par with
BASE, confirming ABCMLP’s broad applicability
in various application scenarios. We evaluate with
SacreBLEU (Post, 2018).

Results. Table 4a summarizes sentence-level ma-
chine translation results on the WMT14 EN-DE test
set. Overall ABCMLP performs on par with BASE,
with either 32-32 cross-causal memory sizes or 32-
8. Even with smaller memory sizes, it outperforms
other ABC variants by more than 1.1 BLEU. Dif-
ferently from the trend in the language modeling
experiment (§5.1), Linformer outperforms ABCRD
by more than 0.5 BLEU. We attribute this to the
smaller sequence lengths of this dataset. ABCMLP
outperforms other ABC models by more than 0.4
BLEU, even with smaller memory sizes.

The trend is similar on document-level trans-
lation with IWSLT14 ES-EN (Table 4b), except
that ABCMLP slightly underperforms BASE by 0.2
BLEU. This suggests that even with longer se-
quences, ABCMLP is effective despite its bounded
memory size. Linformer fails to converge even
with multiple random seeds, suggesting the limita-
tions of its purely position-based strategy in tasks
involving decoding varying-length text.

5.3 Masked Language Model Finetuning
Setting. We compare the ABC variants as in §5.1.
It is interesting to pretrain ABC from scratch,
but we lack the resources to do so. Instead, we
warm-start from a pretrained RoBERTa-base (Liu
et al., 2019) trained with the softmax transformer,
swap its attention with ABC variants, and continue
pretraining with the masked language modeling
(MLM) objective on a concatenation of BookCor-
pus (Zhu et al., 2015), English Wikipedia, Open-
WebText (Gokaslan and Cohen, 2019), and Real-
News (Zellers et al., 2019).7 Then the models are
finetuned and evaluated on downstream classifica-
tion datasets from the the GLUE benchbark (Wang
et al., 2019). This is an appealing setting, since it
avoids reinvesting the huge amounts of resources
already put into pretraining.8

Results. Table 5 compares downstream text clas-
sification performance. BASE indicates a baseline
that continues pretraining RoBERTa-base on our
data.9 Following standard practice, we report devel-
opment accuracy. Linformer achieves competitive

7Our data differs from RoBERTa’s, which we do not have
access to. We replace CC-News (Nagel, 2016) with RealNews,
and drop Stories (Trinh and Le, 2018), whose public access is
broken at the time of this work.

8In preliminary experiments, we explored swapping in
ABC, and then directly finetuning on downstream tasks with-
out continued MLM pretraining; all models fail.

9BASE slightly underperforms RoBERTa-base. This could
be due to overfitting, or the pretraining data discrepancy.



Model n MNLI QNLI QQP SST Avg.

BASE - 87.2 92.4 91.7 94.3 91.4

Linformer 64 85.3 91.8 90.8 92.4 90.1
Linformer 128 86.1 91.9 91.4 93.7 90.8
ABCMLP 64 85.6 91.8 91.7 93.8 90.7
ABCMLP 128 87.1 92.6 91.8 94.4 91.5

Table 5: Text classification development set accuracy.
All models continue pretraining RoBERTa-base on our
data with the MLM objective. Bold numbers perform
the best among ABC models, and underlined ones per-
form on par with or better than BASE.

performance, aligned with Wang et al. (2020b)’s
results. ABCMLP outperforms Linformer, and per-
forms on par with or better than BASE, affirming
the benefits of using contextualized memory or-
ganization in MLM. ABCRD fails to converge in
continued pretraining even with multiple seeds.

Based on the above results, we think ABCMLP
can achieve competitive performance when pre-
trained from scratch, just as Linformer does (Wang
et al., 2020b). Further empirical exploration is be-
yond our budget and left for future work.

6 Analysis

Decoding efficiency over varying sequence
lengths. ABC’s efficiency gains can be more
prominent for long sequences. We study ABCMLP’s
decoding overhead with varying sequence lengths.
Following Kasai et al. (2021b), we consider
a sequence-to-sequence generation experiment.
Three linear-complexity models are compared:
RFA (with 256/128 cross/causal memory sizes;
Peng et al., 2021), T2R (32/4; Kasai et al., 2021b),
and ABCMLP (32/8). The sizes are chosen to maxi-
mize efficiency without accuracy drop. T2R needs
to be finetuned from a pretrained transformer to
match its performance, while others don’t.

All linear-time models achieve consistent decod-
ing speed for different lengths (Figure 1a), sub-
stantially outpacing the softmax attention base-
line, especially for long sequences. In particular,
ABCMLP decodes ∼1.25 times faster than RFA,
another competitive model that can match trans-
former’s accuracy without a warm start from a pre-
trained model. This can be attributed to the fact that
ABCMLP achieves similar accuracy with a much
smaller memory. T2R’s memory sizes are simi-
lar to ABCMLP’s, but it decodes about 20% faster.

<latexit sha1_base64="uLC0wC07FQu4TVXBdJ7efI6Zo0o="></latexit>

AbcMLP

(a) Decoding Speed.

<latexit sha1_base64="uLC0wC07FQu4TVXBdJ7efI6Zo0o="></latexit>

AbcMLP

(b) Decoding memory overhead.

Figure 1: Sequence-to-sequence decoding speed (top)
and memory consumption (bottom) varying sequence
lengths. Greedy decoding is used, with batch size 16.

This is because it does not compute the softmax
when calculating attention output, while ABCMLP
does (Eq. 4). These results show that ABCMLP is
an appealing modeling choice for decoding tasks,
especially when training from scratch is desired.

ABCMLP also achieves significant savings in
terms of memory overhead (Figure 1b). ABCMLP,
RFA, and T2R’s curves are similar.

Text encoding efficiency. We compare the effi-
ciency of ABCMLP against softmax attention and
Linformer when used as text encoders. The mod-
els’ sizes mirror those in the MLM experiment
(§5.3). Table 6 summarizes inference time and
memory overhead with 512-length inputs, batch
size 16. Both ABCMLP and Linformer achieve infer-
ence speed gains and memory savings over BASE.
Linformer is faster, since its linear projection is
cheaper to compute than ABCMLP’s MLP. Infer-
ence speed is measured on the same V100 GPU.
The trend in memory overhead is similar.

Although ABCMLP slightly underperforms Lin-
former in terms of inference speed, it can be a more
appealing architectural choice in practice: in all
of our 5 experiments, ABCMLP outperforms other
ABC models in accuracy. Linformer, in contrast,
fails to converge or yields sub-optimal performance
on some tasks. This confirms its flexibility and ap-



BASE Linformer ABCMLP

n - 64 128 64 128

Speed 1.0× 1.7× 1.5× 1.5× 1.3×

Memory 1.0× 0.5× 0.6× 0.5× 0.6×

Table 6: Text encoding inference speed (higher is better)
and memory (lower is better). Inputs are text segments
with 512 tokens and batch size 16.

Cross n
8 16 32 64

C
au

sa
ln

8 24.7 25.2 25.6 25.5
16 - 25.4 25.7 25.6
32 - - 25.7 25.8
64 - - - 25.8

Table 7: ABCMLP’s SacreBLEU on WMT14 EN-DE
development data varying memory sizes.

plicability in various settings.

Memory size’s impact on accuracy. Practically,
one may want to minimize the memory size to im-
prove efficiency. We use the WMT14 EN-DE ex-
periment to investigate how memory size affects ac-
curacy. Using the §5.2’s setup, we vary ABCMLP’s
cross and causal attention memory sizes and com-
pare their translation quality on the development
data. They are selected from {8, 16, 32, 64}, with
cross attention’s equal to or larger than causal’s:
cross attention is more important than causal atten-
tion in machine translation (Michel et al., 2019).
Our results (Table 7) align with this observation:
when cross attention memory is large enough, re-
ducing causal attention memory size from 64 to 8
has a minor 0.3 BLEU drop. Surprisingly, ABCMLP
with 8-8 sized cross-causal memory is only 1.1
BLEU behind the best-performing configuration.

7 Conclusion

We presented attention with bounded-memory con-
trol (ABC). It provides a unified perspective of sev-
eral recently-proposed models, and shows that they
vary in the organization of the bounded memory.
ABC reveals new insights into established meth-
ods and inspires new architectures. We proposed
ABCMLP, a particular instance of ABC that learns a
contextualized memory control. On language mod-
eling, machine translation, and masked language
model finetuning, ABCMLP outperforms previous
ABC models. Compared to the strong transformer

baseline, ABCMLP achieves substantial efficiency
improvements with no or negligible accuracy loss.
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Appendices
A Other ABC Models

A.1 Sparse Local-to-global Attention
It sparsifies attention pattern to reduce the number
of tokens that are attended to (Beltagy et al., 2020;
Zaheer et al., 2020, inter alia). All queries attend
to a subset of n < N “global tokens,” while ignor-
ing others. Therefore the effective context size is
reduced to n. The global tokens are usually pre-
selected by positions according to some heuristics.
Local-to-global attention is an instance of ABC: it
can be recovered by letting ϕt = ei if xt is the ith
global token (i = 1, . . . , n), and the zero vectors
for others.

A.2 Random Memory Control
As a baseline, ABCRD stores each token in a
randomly-selected memory slot. This is achieved
by letting ϕt = eit , where it is uniformly drawn
from {1, . . . , n} for each t. It is designed as a
baseline to ABCMLP and Linformer to quantify the
differences between random and learned bounded-
memory control.

Random sparse attention patterns are explored
by Zaheer et al. (2020), where a subset of n < N
tokens are randomly selected to be attended to by
all tokens. ABCRD is different, and it attends to all
tokens, but randomly “squash” them into an n-slot
memory.

A.3 Compressive Transformer with Mean
Pooling

The compressive transformer (Rae et al., 2020)
explores various ways to “squash” long context
into smaller and more compact representations. It
achieves state-of-the-art performance on several
language modeling benchmarks. We show that at
least the mean-pooling variant of the compressive
transformer can be seen as an ABC instance.

The mean-pooling variant of the compressive
transformer compresses the context by

K =
[︁
k1, . . . ,kN

]︁⊤ ∈ RN×d

→ ˜︁K =
[︁
(k1 + · · ·+ kc)⏞ ⏟⏟ ⏞

c

/c,

(kc+1 + · · ·+ k2c)⏞ ⏟⏟ ⏞
c

/c . . . ,

(kN−c+1 + · · ·+ kN )⏞ ⏟⏟ ⏞
c

/c
]︁⊤ ∈ Rn×d.

where c = N/n is the compression ratio. Here
N mod n = 0 is assumed, since otherwise the
sequence can be padded to.

The above model is an ABC instance by letting

ϕi = e⌊(i−1)/c⌋+1/c. (8)

A.4 Dilated Convolution Attention Patterns

The dilated attention pattern is similar to the sliding
window attention and only considers the context
within a predefined window. It differs in that it
attends to every other token:

˜︁Kt = [kt−2n+2,kt−2n+4, ...,kt−2,kt]
⊤. (9)

It can be simulated with two separate queues ˜︁Kodd

and ˜︁Keven:

˜︁Kodd
t =

{︄
U ˜︁Kodd

t−1 + en ⊗ kt, if t is odd˜︁Kodd
t−1, otherwise

˜︁Keven
t =

{︄
U ˜︁Keven

t−1 + en ⊗ kt, if t is even˜︁Keven
t−1 , otherwise

Likewise for the values. Depending on t, the query
attends to one of the two queues: output ={︄(︁˜︁Vodd

)︁⊤
softmax( ˜︁Koddqt), if t is odd(︁ ˜︁Veven

)︁⊤
softmax( ˜︁Kevenqt), otherwise.

The above implementation could incur consider-
able amount of overhead and may be actually more
expensive than the the original dilated window for-
mulation. Therefore it has more conceptual value
than practical value.

A.5 Shared Workspace and Linear Unified
Nested Attention

Concurrently to this work, shared
workspace (SW; Goyal et al., 2021) and lin-
ear unified nested attention (LUNA; Ma et al.,
2021) also propposed methods to learn contextual-
ized memory control strategies. Both can be seen
as instances of ABC. At layer ℓ, their ϕℓ

i is a func-
tion of previous layer’s memory ˜︁Xℓ−1 ∈ Rn×d

and current layer’s input Xℓ ∈ RN×d:

ϕi =
[︂
softmax

(︂˜︁Xℓ−1Xℓ⊤
)︂]︂

:,i
, (10)

where [·]:,i denotes the ith column of a matrix.
Query, key, and value projections are suppressed
for notation clarity.



SW and LUNA reveal the entire sequence to the
control vectors, by constructing ϕ as a function of
previous layer’s memory. Although both admit the
recurrent computation as all ABC models do, they
are ill-suited for causal attention and autoregressive
decoding, since future information is “leaked” to
ϕi from the previous layer. LUNA resorts to a
variant of Katharopoulos et al. (2020) in causal
attention (Ma et al., 2021). In contrast, ABCMLP
never conditions ϕi on previous layer’s memory,
but only on the current layer’s input.

B More Details about ABC-MLP

B.1 Normalization in Causal Attention
An equivalent implementation to Eq. 7 is to nor-
malize ˜︁K and ˜︁V instead of ϕi vectors:

αi = exp (Wϕxi) , ϕi = αi,

K̄ = ˜︁K/︄
N∑︂
j=1

αj . V̄ = ˜︁V/︄
N∑︂
j=1

αj .

output = V̄
⊤
softmax(K̄q).

M/z divides the ℓth row of matrix M by vector
z’s ℓth dimension. This admits a linear complex-
ity computation graph for the causal variant of
ABCMLP.

B.2 Higher-Dimensional Case of Example 1
This section generalizes Example 1 to higher di-
mensional cases. Assume that the constant-sized
memory has n slots. ϕi is cauculated as in Eq. 7.
Then ˜︁K =

∑︁N
i=1ϕi ⊗ ki ∈ Rn×d. Each row

of ˜︁K can be seen as a separate attention mecha-
nism with a pseudo query. Let [·]ℓ denote the ℓth
row/dimension of a matrix/vector. Then for any
ℓ = 1, . . . , n,

[︁ ˜︁K]︁
ℓ
=

N∑︂
i=1

[ϕi]ℓ ⊗ ki

=

N∑︂
i=1

exp([Wϕ]ℓ · xi)∑︁N
j=1 exp([Wϕ]ℓ · xj)

k⊤
i

= attn
(︁
[Wϕ]ℓ, {xi}Ni=1, {ki}Ni=1

)︁⊤ ∈ R1×d.

In other words, there are n attention mechanisms in
total, each with a separately-parameterized pseudo-
query [Wϕ]ℓ. They summarize the context for n
times in parallel, each producing a d-dimensional
vectors. These output vectors are then stacked into
n-by-d memory ˜︁K. ˜︁V is similar.

C Experimental Details

C.1 Language Modeling

We closely build on Baevski and Auli (2019) and
Kasai et al. (2021b). The hyperparameters are sum-
marized in Table 10. All models are trained on 4
A100 GPUs.

C.2 Machine Translation

We experiment with a sentence-level (WMT14 EN-
DE, Bojar et al., 2014) and a document-level bench-
mark (IWSLT14 ES-EN, Cettolo et al., 2014) to
assess model performance over various sequence
lengths. The preprocessing and data splits of
WMT14 EN-DE follow Vaswani et al. (2017). A
32,768 byte pair encoding (BPE; Sennrich et al.,
2016) vocabulary is shared between source and
target languages. For IWSLT14, we follow Mi-
culicich et al. (2018) and use the dev2010 sub-
set for development and tst2010-2012 for testing.
The tokenization is also the same as Miculicich
et al. (2018): we tokenize and truecase Spanish
and English with Moses (Koehn et al., 2007) and
run byte-pair encoding with 30k splits, shared be-
tween the two languages. The final dataset contains
1421, 8, and 42 documents for training, develop-
ment, and testing. On average, each document
contains 126.7 sentences, and each sentence con-
tains 21.7(ES)/22.5(EN) BPE subwords. We use
a sliding window with length-4 and stride-one to
generate our dataset. During inference, we use
predicted context on the target side.

We average the checkpoints from the last five
epochs to obtain the final model (Vaswani et al.,
2017). In inference, we apply beam search with
size 5 and length penalty 0.6. Other hyperparam-
eters are summarized in Table 11. All models are
trained on 4 RTX 2080 Ti GPUs.

Additional machine translation results. In ad-
dition to the results presented in §5.2, Table 8 fur-
ther compares, on the WMT14 EN-DE dataset, the
clustering-based (§3.2) and sliding-window (§3.3)
models of ABC, as well as ReLU and sigmoid vari-
ants of ABCMLP. Clustering and sliding-window
ABC variants underperform ABCMLP with the same
memory sizes by more than 0.5 BLEU. Both ReLU
and sigmoid underperform their exp counterpart.

MLP-exp-all replaces the encoder’s softmax at-
tention modules with ABC, in addition to the de-
coder’s. It underperforms ABCMLP by only 0.3
BLEU.



Model ϕ Cross n Causal n Encoder n BLEU

BASE - - - - 27.2

ABC

Window 32 32 - 26.3

Cluster 32 32 - 26.8

MLP-ReLU 32 8 - -
MLP-ReLU 32 32 - 26.4

MLP-sigmoid 32 8 - 26.8
MLP-sigmoid 32 32 - 27.0

MLP-exp 32 8 - 27.1
MLP-exp 32 32 - 27.3
MLP-exp-all 32 32 32 27.0

Table 8: ABC variants’ performance (SacreBLEU) on the WMT14 EN-DE test set for sentence-level machine
translation. MLP-ReLU with 32/8 memory sizes fails to converge. MLP-exp-all applies ABC in both the encoder
and the decoder, while others only in the decoders.

Figure 1b compares ABCMLP’s (32-8 memory
sizes) attention memory overhead with softmax
attention’s. Following Kasai et al. (2021b), we con-
sider a synthetic sequence-to-sequence generation
task with varying sequence lengths. A batch size
of 16 and greedy decoding is used. The models are
of the same size as those in §5.2.

C.3 Masked Language Model Finetuning

Our data for continued pretraining is a concate-
nation of BookCorpus (Zhu et al., 2015), En-
glish Wikipedia, OpenWebText (Gokaslan and Co-
hen, 2019), and RealNews (Zellers et al., 2019).
Our data differs from RoBERTa’s pretraining data,
which we do not have access to. We replace their
CC-News (Nagel, 2016) with RealNews, and drop
Stories (Trinh and Le, 2018). At the time of this
project, the public access to the Stories dataset
is broken.10 Our machine does not have a large
enough memory to load all the data. We therefore
split the training data into 20 shards, after shuf-
fling. Other preprocessing is the same as Liu et al.
(2019).11 The hyperparameters for continued pre-
training follow base-sized RoBERTa, part of which
are summarized in Table 12. All models are trained
on a single TPU v3 accelerator.

For downstream task finetuning, we use the same

10https://console.cloud.google.com/
storage/browser/commonsense-reasoning/
reproduce/stories_corpus?pli=1

11https://github.com/pytorch/fairseq/
blob/master/examples/roberta/README.
pretraining.md

hyperparameters as Liu et al. (2019).12 Table 13
briefly describes the tasks. The readers are referred
to Wang et al. (2019) for futher details.

12https://github.com/pytorch/fairseq/
blob/master/examples/roberta/README.glue.
md

https://console.cloud.google.com/storage/browser/commonsense-reasoning/reproduce/stories_corpus?pli=1
https://console.cloud.google.com/storage/browser/commonsense-reasoning/reproduce/stories_corpus?pli=1
https://console.cloud.google.com/storage/browser/commonsense-reasoning/reproduce/stories_corpus?pli=1
https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.pretraining.md
https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.pretraining.md
https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.pretraining.md
https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.glue.md
https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.glue.md
https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.glue.md


Data Train Dev. Test Vocab. Sent./doc

WikiText-103 103M 218K 246K 268K -

WMT14 EN-DE 4.5M 3K 3K 32K -

IWSLT14 ES-EN 1713 8 56 30K 121.5

Table 9: Statistics for the datasets. WikiText-103 split sizes are in number of tokens, WMT14 in number of sentences,
and IWSLT14 in number of documents.

Hyperprams. B&A Kasai

# Layers 16 32
# Heads 8 8
Embedding Size 1024 1024
Head Size 128 128
FFN Size 4096 4096
Batch Size 64 64
Learning Rate 1.0 1.0
Dropout 0.3 0.3
Layer Dropout - 0.2
Memory size [32, 64] 64

Table 10: Hyperparameters used in the language model-
ing experiments. B&A: Baevski and Auli (2019); Kasai:
Kasai et al. (2021b).

Hyperprams. WMT14 IWSLT14

# Layers 6 6
# Heads 8 8
Embedding Size 512 512
Head Size 64 64
FFN Size 2048 1024
Warmup Steps 6000 4000
Dropout 0.1 0.3
Cross Attn. n 32 128
Causal Attn. n 8 64

Table 11: Hyperparameters used in the machine trans-
lation experiments.

Hyperprams. Values

# Layers 12
# Heads 12
Embedding Size 768
Head Size 64
FFN Size 3072
Dropout 0.1
Memory Size [64, 128]

Table 12: Hyperparameters for continued pretraining
in the masked language model finetuning experiments.

Data Task Train Dev.

MNLI Entailment 392K 9.8K
QNLI Entailment 105K 5.5K
QQP Paraphrase 363K 40K
SST-2 Sentiment 67K 873

Table 13: GLUE datasets and statistics. MNLI:
Williams et al. (2018); QNLI is compiled by GLUE’s
authors using Rajpurkar et al. (2016); QQP: Csernai
(2017, accessed September 1, 2020); SST-2: Socher
et al. (2013).


