O o NN R W N

T S B S S L S L N T i T T - LV S RO S O S O S - T T S T S SR SO R NS R ST S L T S T e T e e e R e B e T e T e e e
e e = N o e = = e I o = = T = T B e == N = L o = Y B e O === e R =AY L B S U I =]

',\' frontiers

in Aging Neuroscience

ORIGINAL RESEARCH
published: xx xx 2021
doi: 10.3389/fnagi.2021.758298

OPEN ACCESS

Edited by:
Kristy A. Nielson,
Marquette University, United States

Reviewed by:

Feng Bai,

Nanjing Drum Tower Hospital, China
Viadimir S. Fonov,

McGill University, Canada

*Correspondence:
Joseph M. Gullett
Jjoe.gullett@gmail.com

Received: 13 August 2021
Accepted: 07 November 2021
Published: xx xx 2021

Citation:

Gullett UM, Albizu A, Fang R,
Loewenstein DA, Duara R,

Rosselli M, Armstrong MJ, Rundek T,
Hausman HK, Dekosky ST,

Woods AJ and Cohen RA (2021)
Baseline Neuroimaging Predicts
Decline to Dementia From Amnestic
Mild Cognitive Impairment.

Front. Aging Neurosci. 13:7568298.
doi: 10.3389/fnagi.2021.758298

Check for
updates

Baseline Neuroimaging Predicts
Decline to Dementia From Amnestic
Mild Cognitive Impairment

Joseph M. Gullett™, Alejandro Albizu’, Ruogu Fang’, David A. Loewenstein?,
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Background and Objectives: Prediction of decline to dementia using objective
biomarkers in high-risk patients with amnestic mild cognitive impairment (@MCl) has
immense utility. Our objective was to use multimodal MRI to (1) determine whether
accurate and precise prediction of dementia conversion could be achieved using
baseline data alone, and (2) generate a map of the brain regions implicated in longitudinal
decline to dementia.

Methods: Participants meeting criteria for aMCI at baseline (N = 55) were classified
at follow-up as remaining stable/improved in their diagnosis (N = 41) or declined to
dementia (N = 14). Baseline T1 structural MRI and resting-state fMRI (rsfMRI) were
combined and a semi-supervised support vector machine (SVM) which separated stable
participants from those who decline at follow-up with maximal margin. Cross-validated
model performance metrics and MRI feature weights were calculated to include the
strength of each brain voxel in its ability to distinguish the two groups.

Results: Total model accuracy for predicting diagnostic change at follow-up was 92.7%
using baseline T1 imaging alone, 83.5% using rsfMRI alone, and 94.5% when combining
T1 and rsfMRI modalities. Feature weights that survived the p < 0.01 threshold for
separation of the two groups revealed the strongest margin in the combined structural
and functional regions underlying the medial temporal lobes in the limbic system.

Discussion: An MRI-driven SVM model demonstrates accurate and precise prediction
of later dementia conversion in aMCI patients. The multi-modal regions driving this
prediction were the strongest in the medial temporal regions of the limbic system,
consistent with literature on the progression of Alzheimer’s disease.

Keywords: machine learning, support vector machine, magnetic resonance imaging, mild cognitive impairment,
Alzheimer’s disease
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INTRODUCTION

While the clinical course of Alzheimer’s disease (AD) is fairly
well-understood, the ability to predict progression from an earlier
stage of the disease using data available upon initial clinical
presentation remains poor. With the advancement of machine
learning, clinicians are now presented with the opportunity
to identify which high-risk patients are likely to convert to
AD, such as those diagnosed with amnestic mild cognitive
impairment (aMCI) (Petersen, 2004). This ability to provide early
identification of at-risk patients additionally has a large medical-
economic cost savings given that early intervention to delay the
onset of Alzheimer’s by just 1 year, for example, could reduce total
health care payments up to 14% (Zissimopoulos et al., 2015) and
decrease the number of Alzheimer’s diagnoses by 9.2 million by
2050 (Brookmeyer et al., 2007).

Patients are given a diagnosis of aMCI when they demonstrate
a delayed memory performance score that is 1.5 standard
deviations or more from the mean of their like-aged peers
(Petersen et al., 2014). The conversion rate to dementia in
patients with aMCI ranges from as low as 17.7% in community-
derived samples, up to 40.4% in clinic samples (Oltra-Cucarella
et al., 2018), regardless of follow-up length. This is compared to
5.4-10.1% of “all” MCI cases and < 1% in healthy older adults in
community-derived samples over a 5 year period (Ganguli et al.,
2015, 2019). Machine learning models utilizing Support Vector
Machines (SVM) offer enhanced predictive accuracy for disease
progression by integrating previously uncharacterized features of
multiple neuroimaging modalities with or without the addition
of cognitive performance data to distinguish between two groups
of patients (Ruppert, 2004), such as those who convert from
MCI to AD and those who remain classified as MCI. In recent
years, prediction of disease progression from MCI to dementia
or presumed AD has been explored with SVM using baseline
MRI measures of all structural voxels (Moradi et al., 2015),
cortical thickness (Eskildsen et al., 2013), cortical and subcortical
volume (Hojjati et al., 2018), and resting-state fMRI (rsfMRI)
connectivity (Li Y. et al., 2016) in isolation, with prediction
accuracies of 66, 76, 89, and 93%, respectively.

Given that the amount of data at an initial clinical visit is
often quite limited, a model that could provide strong predictive
accuracy of MCI conversion to AD using MRI-alone would be
of immense utility. To our knowledge, only one other study has
used a combined model of structural and resting-state functional
MRI to predict all MCI conversion to AD (Hojjati et al., 2018).
Replication of this study in an aMCI population would provide
unique information about this higher-risk population, as well
as offer the ability to derive the neural regions where structural
and functional networks combined to predict conversion from
aMCI to AD. Ultimately, acquisition of the combined structural-
functional neural regions important for conversion to AD would
provide the opportunity for early neurotherapeutic interventions
in high-risk aMCI patients.

In the present study, we sought to leverage baseline T1
MRI in a homogenous sample of individuals diagnosed with
aMCI to predict longitudinal consensus-based diagnostic decline
using a cross-validated SVM approach. Further, we wished to

determine whether the inclusion of an additional MRI modality
(resting-state functional MRI; rstMRI) into the prediction model
would improve predictive accuracy of the uni-modal structural
model. Lastly, we sought to determine if neuropsychological
performance at baseline outperformed objective neuroimaging
for the prediction of longitudinal diagnostic decline. We
hypothesized that T1 MRI would have a higher level of predictive
accuracy than rsfMRI when used individually, but that the
combination of these two modalities would provide the highest
level of predictive accuracy. Further, we hypothesized that
the combined structural-functional model would yield neural
regions in the medial temporal lobes underlying the limbic
network that would optimally discriminate stable aMCI from
progressive aMCI, given the lower network connectivity in MCI
compared to controls (Li et al, 2015) as well as the strong
association of this network with the presence of Alzheimer’s
disease (Badhwar et al., 2017). Lastly, given the use of many of
the neuropsychological test measures in the determination of the
aMCI or dementia diagnosis being predicted, we hypothesized
that neuropsychological testing would outperform neuroimaging
in the prediction of future decline.

MATERIALS AND METHODS

Participant Selection

Participants were recruited through the 1Florida Alzheimer’s
Disease Research Center (ADRC) for an IRB-approved
longitudinal investigation performed in accordance with
the declaration of Helsinki (P50-AG047266-05). Participants
from the present study were selected from a larger pool of
287 potential participants if they met the following criteria:
(a) valid T1 and rsfMRI neuroimaging scans at baseline, (b)
consensus diagnosis of either single-domain or multi-domain
amnestic MCI at baseline alone, (c) had no other neurological
or cognitive diagnoses (e.g., Parkinson’s disease, suspected Lewy
Body Dementia, vascular dementia) at baseline, (d) consensus
diagnosis available at both baseline and follow-up, (e) no aberrant
QC metrics of rsfMRI data at baseline to include greater than
+/—3 SD values for in-scanner movement, global correlation of
connectivity due to motion, or number of invalid scans.

Participant Diagnosis

An experienced geriatric psychiatrist administered a standard
clinical assessment protocol, which included the CDR® Dementia
Staging Instrument (CDR) (Morris, 1997) and the Montreal
Cognitive Assessment (MoCA) (Nasreddine et al., 2005).
Subsequently, a uniform battery of neuropsychological tests,
including the National Alzheimer’s Coordinating Center -
Unified Data Set (NACC-UDS) (Beekly et al., 2007; Acevedo
et al., 2009; Weintraub et al., 2018) battery, was independently
administered in the participant’s dominant and preferred
language (English or Spanish). Participants received a diagnosis
of amnestic mild cognitive impairment (aMCI) at the baseline
assessment if they met Petersen’s criteria for MCI (Petersen
et al, 2014) and demonstrated all of the following: (a)
subjective cognitive complaints by the participant and/or
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collateral informant; (b) evidence by clinical evaluation or
history of memory or other cognitive decline; (c) Global Clinical
Dementia Rating scale of 0.5 (Morris, 1997); (d) below expected
performance on delayed recall of the HVLT-R (Brandt, 1991) or
delayed paragraph recall from the Logical Memory subtest of the
NACC-UDS (Beekly et al., 2007) as measured by a score thatis 1.5
SD or more below the mean using age, education, and language-
related norms. Participants were classified as multi-domain
amnestic MCI if they met the above criteria as well as <1.5 SD
performance on at least one other domain measure. All of these
standard criteria were reviewed by an experienced behavioral
neurologist (RD) or a board-certified neuropsychologist (DL).
All these criteria were reviewed by a neurologist and a
neuropsychologist and using an algorithmic diagnosis procedure
final clinical diagnoses were made (Duara et al., 2010, 2011). In
the few cases where consensus could not be obtained, at least one
additional neurologist and neuropsychologist were consulted to
render a final cognitive diagnosis.

For the purposes of determining diagnostic change at the
follow-up visit, participants must have participated in the above
assessment at least one calendar year (mean = 15.45 months;
range 12.0-17.0 months) subsequent to their initial visit, which
must have included acquisition of their whole-brain MRI. To
be determined as “stable” in their diagnosis, the follow-up visit
consensus diagnosis must be either the same (aMCI) or mildly
improved (pre-MCI). For the purposes of this classification,
pre-MCI diagnosis (see Loewenstein et al.,2012) included the
following: (a) subjective memory complaints by the participant
and/or or collateral informant; (b) evidence by clinical evaluation
or history of memory or other cognitive decline determined after
an extensive CDR interview); (c) Global CDR scale of 0.5; (d) a
neuropsychological battery (see below) was deemed normal by
a clinical neuropsychologist and generally, no measures in the
neuropsychological battery fell 1.0 SD or more below normal
limits, relative to age and education related normative data. To
be considered “declined” in their diagnosis, the follow-up visit
consensus diagnosis must have been determined as Dementia per
the criteria a and b as described for the aMCI group above, and
evidenced all of the following: (a) Global CDR score of 1.0; (b)
below expected performance on the memory measures described
above that scored 2.0 SD or more below the mean using age,
education, and language-related norms.

Neuropsychological Battery

Participants completed a comprehensive neuropsychological
evaluation which assessed various cognitive domains. Verbal
memory was measured using the HVLI-R (Brandt, 1991;
Arango-Lasprilla et al., 2015b) and Craft 21 Story Recall (Craft
et al., 1996); confrontation naming was assessed with the MINT
(Gollan et al.,, 2012); visuospatial cognitive functioning was
evaluated with the Benson Figure Drawing (Possin et al., 2011)
and Block Design (Wechsler et al., 2008); executive function was
appraised with the Stroop Test (Stroop, 1935; Trenerry et al,
2012; Tobergte and Curtis, 2013), as well as TMT B (Reitan, 1958;
Arango-Lasprilla et al.,, 2015a); and finally, verbal fluency was
assessed using category (Benton, 1968; Ostrosky-Solis et al., 2007)
and phonemic fluency (Ruff et al., 1996).

Spanish language evaluations were completed with equivalent
standardized neuropsychological tests. Tasks administered to
primary Spanish speakers had appropriate age, education, and
cultural/language normative data for the translated versions
(Lang et al, 2021). Testing was performed by proficient
Spanish/English psychometricians.

Magnetic Resonance Imaging

Participants completed a 1-h MRI acquisition on a Siemens
Skyra 3 T MRI scanner (Siemens Medical Solutions, Erlangen,
Germany) with 32-channel head coil at Mount Sinai Medical
Center, Miami Beach, Florida. The 3D T1 weighted volumetric
magnetization-prepared rapid gradient-echo sequence (MP-
RAGE) consisted of 176 slices at slice thickness = 1 mm isotropic,
FOV =256 x 256, TR = 3.0 s, and TE = 1.4 s. The resting-state
functional MRI (rsfMRI) scan was administered with eyes open
consisting of 48 interleaved slices at a slice thickness = 3.0 mm
isotropic, FOV = 212 x 212, TR = 3.0 s, and TE = 30 ms. For
exclusionary purposes of potential incidental findings, MRI scans
were evaluated by visual inspection as well as with T2 weighted
FLAIR (5 mm thick sequential axial slices), and the MP-RAGE
sequence (which provides high tissue contrast and high spatial
resolution with whole brain coverage).

Functional Magnetic Resonance Imaging
Pre-processing

Functional MRI pre-processing was completed in accordance
with past studies by our group (Hausman et al, 2020).
Specifically, functional images were preprocessed and analyzed
using the MATLAB R2019b based functional connectivity
toolbox “Conn toolbox” version 18b and SPM 12 (Penny
et al., 2007; Whitfield-Gabrieli and Nieto-Castanon, 2012). We
followed a pre-processing pipeline which included functional
realignment and unwarping, functional centering of the image
to (0, 0, 0) coordinates, slice-timing correction, structural
centering to (0, 0, 0) coordinates, structural segmentation
and normalization to MNI space, functional normalization to
MNI space, and spatial smoothing with a kernel of 8 mm
FWHM. During pre-processing, the Conn toolbox implements
an anatomical, component-based, noise correction strategy
(aCompCor) for spatial and temporal processing to remove
physiological noise factors from the data (Behzadi et al,
2007). The implementation of aCompCor combined with the
quantification of participant motion and the identification of
outlier scans through the Artifact Rejection Toolbox (ART)
allows for better interpretation of functional connectivity results
(Behzadi et al., 2007; Whitfield-Gabrieli and Nieto-Castanon,
2012; Shirer et al., 2015). The ART was set to the 97th
percentile setting with the mean global-signal deviation threshold
set at z = £ 3 and the participant-motion threshold set at
0.9 mm. Applying linear regression and using a band-pass
filter of 0.008-0.09 Hz, data were de-noised to exclude signal
frequencies outside of the range of expected BOLD signals
(such as low-frequency scanner drift), minimize participant
motion, extract white matter and cerebral spinal fluid noise
components, and control for within-participant realignment and
scrubbing covariates.
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Structural Magnetic Resonance Imaging
Pre-processing

Individual T1-weighted images were converted from DICOM to
NIFTT using dem2niix (Li X. et al., 2016). T1 images were then
skull-stripped and transformed with the into MNI space using
the default Conn processing pipeline for anatomical volumes,
which utilizes MNI-space direct normalization (Whitfield-
Gabrieli and Nieto-Castanon, 2012). Manual inspection of
skull-stripping performance was completed to ensure optimal
brain extraction for each subject. To reduce potential bias
introduced by automated segmentation procedures, all voxels
of the skull-stripped, MNI-normalized, T1-weighted data for
each subject were included into the model, with regional
analyses being performed subsequent to feature extraction
(described below).

Supervised Machine-Learning

Within- and between-network connectivity calculations were
performed using ROI-ROI analyses of the 7-network Yeo
et al. (2011) parcellation atlas. Functional connectivity of
each connection was input as the pairwise connectivity of
the 51 parcellations of the seven Yeo et al. (2011) atlas
networks, which is calculated via Fisher z-transformed bivariate
correlations between brain regions BOLD time-series that
quantify associations in the activation at rest. Redundant pairs
were removed to result in a final total of 1,275 connections.
Participant classes were determined by separating participants
into binary groups based on maintenance or decline in consensus
diagnostic criteria at the follow-up visit most proximal to
the diagnosis of aMCIL. Due to the high dimensionality of
MRI data, feature selection was performed on the training
data to further reduce the number of trained features. One
popular method of feature selection is to filter the features via
voxelwise t-tests between classes to select current elements with
a significant group-level difference (p < 0.01) as features for the
subsequent prediction step (Iguyon and Elisseeff, 2003; Saeys
et al., 2007; Dubois et al., 2018). Due to the difference in unit
scale between the T1 and rsfMRI images, the selected features
were standardized via z-score transformation. To classify stable
participants and those who declined, we used SVM; a machine
learning algorithm to search for the optimal hyperplane that
separates two classes with maximal margin under the assumption
of independently and identically distributed (iid) data (Andreola,
2009), which is satisfied in this study. Specifically, LIBSVM
(Chang and Lin, 2011) was used to optimize the objective
function:

1 T i T 2
i 1 - 1 ( 1 b) ) 0
I’lll\”l’lilzw W+Ci lmax( Yi\w Xl-‘r )

where C is a penalty parameter on the training error. In other
words, to address the issue of unbalanced data, the penalty
parameter, C, was proportionally scaled for the minority class
(i.e., greater penalty for incorrect classification of decline class
compared to stable). A linear kernel was generated with the
function:

K (xi, xj) = xiij

Model performance was evaluated across 10 permutations of
two-level nested stratified cross-validation (Lindquist et al., 2017;
Varoquaux et al., 2017; Polosecki et al., 2020). To elaborate, we
began by splitting the data into randomized folds and performed
an outer cross-validation loop consisting of k iterations. In each
iteration, leave-one-out cross-validation was used to separate a
single test case per fold in an outer loop. An inner stratified cross-
validation loop was then performed on the training data (N = 54)
with 10-folds, providing an optimal hyper-parameter C. A voxel-
level ¢-test on T1w signal intensity/functional connectivity values
within each cross-validation fold (i.e., 55 times) was performed
on the training data only. Following training, predictions of held
out test data were performed with the decision function:

f () = sgn(w'x +b)

As a sub-investigation of the effect of single-domain aMCI
and multi-domain aMCI on prediction outcomes, model
performance was further evaluated as above after separating
subgroups with single-domain impairment (N = 23) and multi-
domain impairment (N = 32). In other words, the above model
was evaluated for its ability to predict diagnostic decline at follow-
up in patients with single-domain impairment, and again in
patients with multi-domain impairment.

Lastly, to assess the predictive capabilities of baseline
neuropsychological data (see Table 1), we employed identical
SVM procedures as above to predict aMCI decline to
dementia. Both a class-mean filling approach and a list-
wise deletion approach were compared in their ability to handle
neuropsychological data missing at random (MAR). As a note,
when removing cases with missing data, further decreased group
balance was observed and as such, we proportionally adjusted
the penalty parameter C (as above) to account for the unbalanced
data prior to running the final SVM model.

Statistical Analysis

After all k iterations in the outer cross-validation loop were
performed, predicted labels of all participants were compared
against ground truth labels to calculate performance metrics.
A Precision-Recall curve of positive predictive value against
true positive rate was plotted to demonstrate the separability
of classes within each model by calculating the area under
the curve (AUC). The F1 score was generated given that it
(1) takes both precision and recall into account to ultimately
measure the accuracy of the model while accounting for false
positives and false negatives, (2) is often more useful in models
with unequal groups, such as the present study. Essentially,
the F1 score ranges from 0 to 1 and gives more weight
to false negatives and false positives while not letting large
numbers of true negatives influence the score, which is helpful
in dichotomous prediction models such as the present study.
A high F1 score (e.g., over 90%) means that the model has
limited false positives and false negatives, indicating the model
has correctly identified real threats while not being disturbed
by false alarms. Lastly, the Matthew’s correlation coefficient
(MCC) was also calculated for each modality given that it may
represent a more reliable statistical approach in binary prediction
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TABLE 1 | Demographics and cognitive performance at baseline for total sample, consensus diagnosis change, and single- vs. multi-domain amnestic MCI groups.

Total Stable at follow-upf Decline at follow-upf p-value
(N = 55) N=41) (N =14)

Age 72.5(7.7) 72.0 (6.6) 73.8 (10.3) 0.466
Education 15.0 (3.14) 14.9 (3.0) 15.3(3.5) 0.735
Gender (% Female) 56.4 53.7 64.3 0.489
Race (% White) 94.5 95.1 92.9 0.612
Hispanic (%) 54.5 53.7 57.1 0.821
Spanish first language (%) 40.0 41.5 35.7 0.743
Follow-up length (months) 15.45 (3.56) 16.92 (4.89) 14.95 (2.89) 0.173
CDR sOB? 1.17 (0.59) 0.98 (0.51) 1.71(0.47) <0.001
CDR globalP 0.50 (0.0) 0.50 (0.0) 0.50 (0.0) -
Hippocampal atrophy (%)° 54.5 51.2 64.3 0.765
APOE positive (%)° 25.5 24.4 28.6 0.140
Single-domain aMCl (%) 41.8 51.2 14.3 0.016
Multi-domain aMClI (%) 58.2 48.8 85.7 0.016
Cognitive performance
MoCA total score 22.0 (3.0) 22.6 (2.9) 20.1 (3.0) 0.084
HVLT-R delayed recall 1.8 (3.3 1.6 (2.9) 3.00 (4.1) 0.493
Craft story delayed recall 13.2 (7.0) 156.2 (6.5) 7.8(1.8) 0.005
MINT naming 25.9 (5.9) 26.1 (4.1) 23.5(7.6) 0.260
Benson figure drawing 16.3(1.3) 16.5(1.1) 14.5 (1.8) 0.163
Trail-making test, Part B 138.8 (68.5) 125.4 (63.9) 178.3 (68.5) 0.011
Semantic fluency 15.4 (4.4) 16.2 (4.2) 13.0 (4.2) 0.017

Total Single-domain aMClI Multi-domain p-value

(N = 55) (N =23) aMCI (N = 32)

Age 72.5(7.7) 72.2(7.8) 72.8(7.8) 0.782
Education 15.0 (3.14) 14.9 (3.0) 15.1 (3.3 0.808
Gender (% Female) 56.4 56.5 56.3 0.984
Race (% White) 94.5 95.7 93.8 0.242
Hispanic (%) 54.5 65.2 46.9 0.178
Spanish first language (%) 40.0 47.8 43.8 0.262
Follow-up length (months) 15.45 (3.56) 15.3 (3.0) 15.6 (3.9) 0.736
CDR soB? 1.17 (0.59) 0.91 (0.6) 1.36 (0.6) 0.005
CDR globalP 0.50 (0.0) 0.50 (0.0) 0.50 (0.0) —
Hippocampal atrophy (%)° 54.5 39.1 65.6 0.103
APOE positive (%)® 25.5 13.0 34.4 0.107
Coghnitive performance
MoCA total score 22.0 (3.0) 23.6 (3.3) 21.1(2.5) 0.021
HVLT-R delayed recall 1.8(3.3) 2.14 (4.0) 1.64 (2.8) 0.605
Craft story delayed recall 13.2 (7.0) 17.5(5.7) 10.7 (6.6) 0.005
MINT naming 25.9 (5.3 28.3 (3.5) 24.6 (5.8) 0.031
Benson figure drawing 16.3(1.3) 15.8 (1.3 15.0 (1.3) 0.125
Trail-making test, Part B 138.8 (68.5) 110.8 (60.2) 161.9 (75.1) 0.005
Semantic fluency 15.4 (4.4) 16.9 (3.8) 14.3 (4.5) 0.032

aClinical Dementia Rating Scale Sum of Boxes at baseline.

bClinical Dementia Rating Scale global score at baseline.
CPositron Emission Tomography (PET) imaging.

9Neurologist confirmed on T1 MRI.
eApolipoprotein E-4 allele present.

Based on the NACC UDS Consensus Diagnosis.

models that achieve good results in all possible outcomes
(Chicco and Jurman, 2020).

Functional Regions of Interest
The 7-network Yeo et al. (2011) parcellation atlas was
utilized for determination of regions of interest (ROIs). In

this atlas, the seven main networks include the Cingulo-
Opercular Network (consisting of the parietal operculum,
temporal occipital cortex, frontal operculum, lateral prefrontal
cortex), Default Mode Network (prefrontal cortex, posterior
cingulate cortex, parahippocampal cortex, and parietal and
temporal cortices (corresponding to the angular gyrus and
middle temporal gyrus, posterior division, respectively), the
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Dorsal Attention Network [posterior cortex (corresponding to
the lateral occipital cortex, superior division), frontal eye fields,
precentral ventral cortex], the Fronto-Parietal Control Network
[parietal cortex (corresponding to the posterior division of
the supramarginal gyrus), temporal cortex (corresponding to
the posterior division of the middle temporal gyrus), dorsal
prefrontal cortex, lateral prefrontal cortex, orbitofrontal cortex,
ventral prefrontal cortex, medial posterior prefrontal cortex,
precuneus, and the cingulate cortex], the Limbic Network
[orbitofrontal cortex (corresponding to the frontal pole),
temporal pole], the Somatomotor Network [somatomotor cortex
(corresponding to the precentral gyrus)], and the Visual Network
[visual cortex (corresponding to the superior division of the
lateral occipital cortex)].

Feature Weight Calculation

For feature weight generation and deployment, a final model
was trained on features of all participants to derive overall
classification weights. Specifically, the classification weights
generated through feature selection were based upon the model
parameters learned by the optimization function only during the
training phase, ¢f. Equation (3). These weights can be applied
to independent data from a new participant to predict their
cognitive decline status associated with specific observed T1 and
functional connectivity features in test data. The feature weights
at each voxel, representing the relative contribution of each voxel
to the classification, were separated by positive and negative
weights that predict cognitive stability and decline, respectively
(Cole et al., 2015). Positive and negative weights were divided
by their respective sum of weights to compute the percent
contribution of each voxel toward either positive or negative
predictions. To demonstrate specific brain regions that predict
decline to dementia, ROIs were defined using the 51 Yeo Atlas
parcellations and ranked based on their average voxel percent
contribution. Since features are selected based on the training
data, the number of features varies per fold and data type.

RESULTS

A total of 55 participants met study criteria and were utilized
for this secondary data analysis. Mean age of the participants
was 72.5 (SD 7.7); the average educational attainment was 15.0
years (SD 3.14). The mean MoCA score was 22.0 (SD 3.0)
(Table 1). Of the 232 potential participants who were excluded,
152 were excluded because they did not have aMCI at baseline
(or had multiple diagnoses), 44 did not have valid T1 and rsftMRI
baseline scans, 30 were missing the follow-up visit that came
after the MRI visit, and 6 had aberrant QC metrics of rstMRI
data at baseline. Forty-one participants remained diagnostically
stable over the study period and 14 declined to dementia at
the most proximal follow-up evaluation to baseline. Of these 55
participants, 28 had fully complete neuropsychological battery
test results, while 27 subjects had between one and two missing
neuropsychological measures determined in post-hoc analyses to
be missing at random (MAR). Participants who met criteria for
multi-domain aMCI at baseline were significantly more likely to

decline to dementia at follow-up when compared to participants
with single-domain aMCI (chi-square = 5.85; odds ratio = 6.5;
p =0.016) (Table 1). Otherwise, groups did not differ significantly
on any of the examined demographic or clinical factors.

Results of a repeated, nested cross-validation reveal a total
accuracy for predicting diagnostic change at follow-up was 92.7%
using baseline T1 imaging alone, 83.5% using rstMRI alone, and
94.5% when combining T1 and rsfMRI modalities (Figure 1). As
such, 51 of 55 participants were accurately classified using T1, 46
of 55 participants were accurately classified using rsfMRI, and 52
of 55 were accurately classified using both modalities together.

Given the significant statistical difference in the rate of single-
and multi-domain aMCI across stable and decline groups, follow-
up model performance investigation was completed. Follow-
up investigation of single-domain and multi-domain aMCI
subgroups revealed nearly identical model performance such
that the combined T1 and rsfMRI achieved 94.4% total accuracy
in the single-domain aMCI subgroup and 94.7% total accuracy
in the multi-domain aMCI subgroup. These results indicate
that although the prevalence of aMCI subtypes differs, the
performance of the full, original model is comparable, and
further model performance metrics will be calculated using all 55
participants together.

Figure 2 shows that the baseline T1 image alone is highly
discriminant in the prediction of diagnostic decline as evidenced
by a precision recall area under the curve (AUC) value 0.961,
while the AUC for the baseline rsfMRI prediction was 0.836, and
the combined T1 and rsfMRI model was 0.960. Further, the mean
F1 score for each modality at the prediction of diagnostic decline
was greater than 90% (94% for T1 alone, 88% for rsfMRI, and
96% for the multi-modal T1 and rsfMRI model). Lastly, results
indicate an MCC value of 0.84 for the T1 image alone, an MCC
value of 0.65 for the rsfMRI image alone, and an MCC value of
0.88 for the combination of T1 and rsfMRI.

Supervised Machine Learning Feature

Weight Classification

In the present dataset, T1-weighted data averaged 331,945
features, functional data averaged 85 features, and the
combination of these data averaged 331,860 features. Given
that a linear classifier was used to discriminate between aMCI
patients who remained stable and declined diagnostically at the
follow-up visit immediately after their baseline MRI, each feature
in a given MRI sequence influenced this classification via its
weight. As such, the larger the absolute magnitude of a given
feature’s weight, the more strongly it influenced the optimal
participant discrimination. As seen in Figure 3, this weight
vector is projected onto the MNI-registered brain in order to
display how strongly a given region of the brain influenced
the optimal discrimination between aMCI patients with stable
vs. declined diagnostic classification at follow-up. Given that
combined structural and resting-state features were most
predictive of diagnostic decline (see Figure 2), we developed
a deployable model of combined structural and functional
feature weights to demonstrate the importance of each brain
region for the prediction of diagnostic decline. As such, we
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A
Accuracy = TP + TN
TP + TN+ FP +FN
1 Balanced Accuracy
[ 94.5%
09 92.7% (52/55)
(51/55)
508 83.5%
5 (46/55)
<07
0.6
0.5
anat func anat+func

FIGURE 1 | Repeated, nested, cross-validation test accuracy results for the prediction of aMCl patient (N = 55) diagnostic change at follow-up using baseline MRI
alone, where a leave-one-out approach was used to predict whether or not a patient declined to dementia. (A) Accuracy formula and case predictions for each
imaging modality overlaid with balanced case accuracy values. (B) Confusion matrices for all aMClI patients, Single Domain aMClI patients, and Multi-domain aMCl
patients and their respective sensitivity and specificity values. anat = T1, func = rsfMRI.

B
All aMCI (N = 55 x 10 iterations)
Predicted |Predicted
Decline Stable
Tfue TP = 133 EN=7 Sensitivity = 95.0%
Decline
True FP = 23 TN = 387 Specificity = 94.4%
Stable
Single Domain aMCI (N = 23 x 10 iterations)
Predicted |Predicted
Decline Stable
Tl_'ue TP =18 EN =2 Sensitivity = 90.0%
Decline
True _ _ Specificity = 94.8%
Stable FP =11 TN =199
Multi-domain aMCI (N = 32 x 10 iterations)
Predicted |Predicted
Decline Stable
True _ _ Sensitivity = 95.8%
Decline TP =115 FN=5
True EP =12 TN = 188 Specificity = 94.0%
Stable

calculated a classifier for the group pairing (stable vs. decline)
based on the MNI-registered normalized combination of the T1
voxelwise intensity values and the rsfMRI connectivity matrix
using a t-test filter (p < 0.01) to select features with a significant
difference between groups (Figure 3). Results indicate that when
considering the mean feature weight of each multimodal region
for predicting diagnostic decline, the limbic system results in the
highest degree of group separation, yet the lowest percentage of
total significant voxels by volume (2.90%). Conversely, the visual
system demonstrated the lowest degree of group separation by
feature weight, yet the highest total voxels by volume (5.24%).
Rankings of remaining multimodal regions can be seen in
Figure 3.

When examining baseline neuropsychological testing data
alone, use of a class-mean filling approach to deal with missing
data resulted in overall poor accuracy (60% repeated, nested,
cross-validated test accuracy) for the prediction of decline
from aMCI to dementia at follow-up (N = 55). To assess the
effect of class-mean filling, observations with missing data were
removed and the above analyses were repeated on the 28 subjects
with complete data, yielding a 82.1% repeated, nested, cross-
validated test accuracy for the prediction of decline from aMCI
to dementia at follow-up. Lastly, when combining the class-
mean filled neuropsychological data with the functional and
anatomical model, nearly identical performance was observed
to the multimodal imaging model, including a repeated, nested,
cross-validated test accuracy of 94.5%, a mean AUC of 0.96,
MCC of 0.88, and F1-Score of 0.96. However, when utilizing
only those subjects with complete neuropsychological data
(N = 28) along with multimodal neuroimaging data, repeated,

nested, cross-validated test accuracy was 82.1%. In other
words, in a limited subset sample of 28 participants, dementia
conversion prediction based on neuropsychological performance
is not improved by the addition of neuroimaging into the
model. However, in a larger sample of 55 participants, multi-
modal neuroimaging provides the greatest predictive ability
and the model is not improved further by the addition of
neuropsychological data.

DISCUSSION

The present study demonstrates that with limited baseline data
(<45 min total MRI protocol), a multi-modal SVM model
could predict diagnostic decline from amnestic MCI to dementia
with over 94% accuracy and 96% precision. In fact, we show
that 92.7% accuracy and 96% precision was achieved with
a < 10 min T1 alone, and that neuroimaging outperformed a
cognitive battery for predicting future decline. This finding has
considerable clinical significance as it demonstrates the ability
of easily obtained objective biomarkers to provide accurate and
precise predictions about which high-risk aMCI patients will
go on to develop dementia or potential Alzheimer’s disease
(AD). While one other study has achieved a similar predictive
accuracy in an MCI population also using MRI alone (Hojjati
et al,, 2018), the present study investigates higher risk aMCI
patients and offers unique neuroanatomical information about
the combined structural and functional regions that were
optimally discriminative for the conversion to dementia in a
relatively short time frame. Given the focus on amnestic MCI
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A B Mean F1 Score
[F; = 9. Precision * recall T1 (anat):  94.0%
1= precision + recall rsfMRI (func): 88.0%
T1 + rsfMRI: 96.0%
c Precision-Recall Curve

0.95
0.9
5
v
5 0.85
g
a
0.8
0.75 — mean anat (AUC:0.961)
w— mean func (AUC:0.836)
— mean anat+func (AUC:0.96)
0.7
0 0.2 0.4 0.6 0.8 1
Recall

FIGURE 2 | (A) The F1 score takes into account both precision and recall to
measure model accuracy while accounting for false positives and false
negatives. (B) The mean F1-score which gives more weight to false negatives
and false positives while not allowing large numbers of true negatives
influence the score, and (C) The precision recall curve focuses on the ability of
each baseline imaging modality to predict diagnostic decline at follow-up.
anat = T1, func = rstMRI.

patients, the findings here provide a potentially stronger link to
the increased incidence of AD as opposed to an all-MCI cohort,
where true AD conversion rates are considerably lower (Ganguli
et al., 2015, 2019; Oltra-Cucarella et al., 2018).

The performance of structural T1 MRI alone as a predictor
for diagnostic decline to dementia was quite strong, and suggests
that structural features were the largest driving force in both
the prediction model as well as the resulting feature weights
that separated stable patients from converters. This may in part
be due to the use of all structural voxels in the model rather
than restriction to known ROIs generated by outside parcellation
algorithms, as has been done in prior MCI-to-dementia
conversion prediction studies (Hojjati et al., 2018). Generation
of multimodal feature weights, or combined neural regions that
were optimally discriminative for the separation of aMCI patients
who did and did not progress to dementia, revealed several
important findings. We found that the combined structural and
functional regions underlying the limbic system were the smallest
in relative size after thresholding for significance, yet showed the
strongest degree of group separation as seen by the mean feature
weight of significant voxels in that region. Neuroanatomical
regions within the limbic system, as defined by the Yeo atlas,
include the orbitofrontal cortex and temporal pole. Similarly
strong group separation performance was achieved by the
regions underlying the frontoparietal control network (FPCN),
which encompasses the anatomical regions of the temporal lobe,
prefrontal cortex, cingulate cortex, and precuneus. These findings
are highly consistent with the meta-analytic literature that suggest
neural regions in the medial temporal lobe are associated with

the progression from aMCI to AD (Ferreira et al., 2011), that
alterations of the trans-entorhinal limbic regions are seen in MCI
patients who eventually convert to AD (Schroeter et al., 2009),
and that hypoactivation of the FPCN is observed in MCI patients
relative to controls (Li et al., 2015).

We also found the combined structural and functional features
underlying the default mode network to be highly important
for dementia conversion prediction. This is consistent with
the findings of a large meta-analysis in which MCI patients
demonstrated hypoactivation in the default mode network,
frontoparietal, and visual networks relative to healthy controls (Li
et al,, 2015). Feature weight generation also revealed that a large
number of voxels in the multimodal regions underlying the visual
system were significantly predictive of dementia conversion. This
is consistent with meta-analytic work suggesting that relative to
controls, both MCI and AD patients demonstrate hypoactivation
of the visual system during rstMRI (Li et al., 2015). We propose
this finding may be related to degree of impairment, as more
impaired patients are more likely have difficulty disengaging their
visual systems during a resting paradigm and are thus more likely
to fixate on the in-scanner screen. Regardless, this finding may be
of clinical utility, as it in itself may be akin to a pathognomonic
sign predictive of risk for dementia conversion. It is noted that the
slightly higher accuracy of the combined structural-functional
model for dementia conversion prediction may be a factor of
the previously demonstrated reduced resting-state connectivity
among MCI patients who convert to dementia compared to those
who do not (Li Y. et al., 2016). A prior study used SVM to predict
dementia conversion in an MCI-only cohort and found slightly
lower predictive utility of sMRI than the present study (91%
vs. 94% accuracy), higher predictive utility of rstMRI (93% vs.
84% accuracy), and nearly identical combined predictive utility
(97% vs. 96% accuracy). Differences observed in the predictive
accuracy of rsfMRI may be the result of the use of different atlases
for identification of functional connectivity data. Hojjati et al.
(2018) utilized the 160-region Dosenbach rstMRI atlas, while the
present study utilized the Yeo 7-network atlas (Yeo et al., 2011).
While not explicitly stated in their work, it is presumed that the
interconnection of these 160 regions resulted in a total of 12,720
unique connections (using the formula: x = @) available
for predictive analyses, whereas the present study was limited
to 1,275 unique connections. Thus, the inclusion of a higher
number of data points appears to be, at least in part, a potential
driver of higher accuracy in the SVM model. To this end, the
present study’s higher accuracy for sMRI may also be driven by
the use of all potential viable white and gray matter voxels in the
brain rather than restriction to ROIs generated by an automated
parcellation program (e.g., Freesurfer). As such, future work may
seek to utilize a greater number of rstMRI internodal connections
to increase predictive ability of the uni- and multi-modal models.

With respect to the use of neuropsychological tests as
predictors of future diagnostic decline, we found that the
combination of six cognitive measures in an SVM model
demonstrated the lowest accuracy of all predictor variables in
the present study. This is particularly intriguing, as many of
these cognitive measures were used in the formulation of the
very consensus diagnosis being predicted, and we hypothesized
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4.23E-04
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3.98E-04

Group Discrimination Strength

Multimodal Regions by Importance for Predicting Diagnostic Decline
to Dementia from aMCI (N = 55)

Percent Total Voxels by Volume
5.24%

FIGURE 3 | Brain regions (yellow-orange scale) where combined structural (T1) and functional (resting-state fMRI) MRI baseline data significantly discriminated
between aMCI patients who remained diagnostically stable and those who declined to dementia at follow-up. Only the top 50% of significant (p < 0.01) voxels are
displayed based on discrimination strength (voxels with weights 0.000 through —0.0009 excluded for visualization purposes); CON, Cingulo-opercular (Salience)
Network; DAN, Dorsal Attention Network; DMN, Default Mode Network; FPCN, Fronto-parietal Control Network.

5.09%

4.89%

it to have much higher predictive value for that reason.
However, we note our own human nature lends to the ability
to ignore missing data and maintain the goal of diagnosis,
whereas a machine (SVM) does not deal well with such missing
data. It is common to encounter missing neuropsychological
test data in human studies, which certainly contributed to a
smaller sample size and likely to the lower performance of the
neuropsychological SVM model. While our model includes a
disproportionately larger number of neuroimaging based features
(331,945 structural features, 85 rsfMRI features) in comparison
to the six neurocognitive measures in the combined model, if
the neurocognitive measures were to have true predictive value,
they would have been assigned a weight reflective of such. The
fact that in the full 55-subject sample the model did not improve
with their addition suggests neuroimaging likely outperforms
these six neurocognitive measures for the prediction of future
decline. Future work should aim to ensure all cases used for MRI
prediction also retain full neuropsychological data to avoid the
effects of missing data on SVM analyses.

The present single-center study has several limitations. First,
only 14 participants progressed to dementia over a relative short

time period, and slightly over half of these individuals were
amyloid positive compared to a much lower amyloid positive
rate in our cognitively normal individuals. While not statistically
significant, those who converted to dementia tended to be older,
have lower cognitive performance at baseline, and a higher
rate of amyloid positivity; all of which suggest they may have
been at an increased risk of conversion even apart from the
MRI findings. Relatedly, we found a higher rate of conversion
to dementia in a sub-group of participants with multi-domain
amnestic MCI, though follow-up analysis determined the model
equally successful at predicting dementia conversion within the
two subgroups. Further, baseline neuroimaging outperformed
a baseline battery of cognitive performance measures in the
prediction of diagnostic decline at follow-up. Thus, we believe the
high degree of accuracy and specificity in larger group prediction
suggests our model is successful at identifying individuals
who would ultimately decline to dementia despite the sample
heterogeneity. With a larger sample, use of a single-domain
aMCI only population may have led to stronger feature weights
in the regions ultimately implicated in Alzheimer’s disease,
such as the limbic system and temporal lobe regions. We used
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cross-validation strictly for model performance reporting and
not for building a final deployment model. As such, the final
model was trained on all subjects and was only used to generate
weight maps for deployment to make predictions about new,
future data. Future studies are required to determine whether
our final algorithm could as accurately predict additional cases
from our cohort and importantly to different cohorts such as
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and
other datasets to assess generalizability of results. While we found
that the performance of the combined structural and functional
model exceeded the performance of each modality alone, it did so
by only a small percentage when compared to the unimodal T1
model. While our data do not provide the ability to comment on
how the strength of rsftMRI activation in the important networks
influenced multimodal predictive accuracy, our future work aims
to investigate the patterns of hyper- and hypo-activation in these
identified networks and compare between patients who do and
do not convert to dementia. Lastly, in the future, we seek to
determine the utility of this model to predict conversion to MCI
in a population of healthy older adults with no evidence of MCI
but with subjective cognitive complaints.

CONCLUSION

We demonstrate that a combination of structural and functional
information undetected by the human eye can be used to
accurately identify high-risk amnestic MCI patients who will
develop dementia a short time later. The model deployed in
this study independently revealed that several neuroanatomical
regions commonly implicated in the development of Alzheimer’s
disease were the largest drivers in identifying amnestic MCI
patients who progress to dementia at follow-up. Further
evaluation of our model with larger cohorts, longer follow-up
periods, evaluation of amyloid load, and diverse ethnic and
cultural groups have the potential to advance the field. If further
validated, this technique has the potential to contribute to the
identification of individuals with aMCI who are at high risk of
progression to dementia, and thus could be prioritized for studies
targeting disease modification.
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