

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59
60
61
62
63
64
65
66
67
68
69
70 Q12
71
72
73
74
75
76
77
78 Q1
79
80 Q2
81 Q3
82 Q13
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113 Q14
114

Baseline Neuroimaging Predicts Decline to Dementia From Amnestic Mild Cognitive Impairment

Joseph M. Gullett^{1*}, Alejandro Albizu¹, Ruogu Fang¹, David A. Loewenstein², Ranjan Duara³, Monica Rosselli⁴, Melissa J. Armstrong¹, Tatjana Rundek⁵, Hanna K. Hausman¹, Steven T. Dekosky¹, Adam J. Woods¹ and Ronald A. Cohen¹

¹ University of Florida, Gainesville, FL, United States, ² University of Miami, Coral Gables, FL, United States, ³ Mount Sinai Medical Center, Miami Beach, FL, United States, ⁴ Florida Atlantic University, Boca Raton, FL, United States, ⁵ Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States

OPEN ACCESS

Edited by:

Kristy A. Nelson,
Marquette University, United States

Reviewed by:

Feng Bai,
Nanjing Drum Tower Hospital, China
Vladimir S. Fonov,
McGill University, Canada

*Correspondence:

Joseph M. Gullett
joe.gullett@gmail.com

Received: 13 August 2021

Accepted: 01 November 2021

Published: xx xx 2021

Citation:

Gullett JM, Albizu A, Fang R, Loewenstein DA, Duara R, Rosselli M, Armstrong MJ, Rundek T, Hausman HK, Dekosky ST, Woods AJ and Cohen RA (2021) Baseline Neuroimaging Predicts Decline to Dementia From Amnestic Mild Cognitive Impairment. *Front. Aging Neurosci.* 13:758298. doi: 10.3389/fnagi.2021.758298

Background and Objectives: Prediction of decline to dementia using objective biomarkers in high-risk patients with amnestic mild cognitive impairment (aMCI) has immense utility. Our objective was to use multimodal MRI to (1) determine whether accurate and precise prediction of dementia conversion could be achieved using baseline data alone, and (2) generate a map of the brain regions implicated in longitudinal decline to dementia.

Methods: Participants meeting criteria for aMCI at baseline ($N = 55$) were classified at follow-up as remaining stable/improved in their diagnosis ($N = 41$) or declined to dementia ($N = 14$). Baseline T1 structural MRI and resting-state fMRI (rsfMRI) were combined and a semi-supervised support vector machine (SVM) which separated stable participants from those who decline at follow-up with maximal margin. Cross-validated model performance metrics and MRI feature weights were calculated to include the strength of each brain voxel in its ability to distinguish the two groups.

Results: Total model accuracy for predicting diagnostic change at follow-up was 92.7% using baseline T1 imaging alone, 83.5% using rsfMRI alone, and 94.5% when combining T1 and rsfMRI modalities. Feature weights that survived the $p < 0.01$ threshold for separation of the two groups revealed the strongest margin in the combined structural and functional regions underlying the medial temporal lobes in the limbic system.

Discussion: An MRI-driven SVM model demonstrates accurate and precise prediction of later dementia conversion in aMCI patients. The multi-modal regions driving this prediction were the strongest in the medial temporal regions of the limbic system, consistent with literature on the progression of Alzheimer's disease.

Keywords: machine learning, support vector machine, magnetic resonance imaging, mild cognitive impairment, Alzheimer's disease

INTRODUCTION

While the clinical course of Alzheimer's disease (AD) is fairly well-understood, the ability to predict progression from an earlier stage of the disease using data available upon initial clinical presentation remains poor. With the advancement of machine learning, clinicians are now presented with the opportunity to identify which high-risk patients are likely to convert to AD, such as those diagnosed with amnestic mild cognitive impairment (aMCI) (Petersen, 2004). This ability to provide early identification of at-risk patients additionally has a large medical-economic cost savings given that early intervention to delay the onset of Alzheimer's by just 1 year, for example, could reduce total health care payments up to 14% (Zissimopoulos et al., 2015) and decrease the number of Alzheimer's diagnoses by 9.2 million by 2050 (Brookmeyer et al., 2007).

Patients are given a diagnosis of aMCI when they demonstrate a delayed memory performance score that is 1.5 standard deviations or more from the mean of their like-aged peers (Petersen et al., 2014). The conversion rate to dementia in patients with aMCI ranges from as low as 17.7% in community-derived samples, up to 40.4% in clinic samples (Oltra-Cucarella et al., 2018), regardless of follow-up length. This is compared to 5.4–10.1% of "all" MCI cases and < 1% in healthy older adults in community-derived samples over a 5 year period (Ganguli et al., 2015, 2019). Machine learning models utilizing Support Vector Machines (SVM) offer enhanced predictive accuracy for disease progression by integrating previously uncharacterized features of multiple neuroimaging modalities with or without the addition of cognitive performance data to distinguish between two groups of patients (Ruppert, 2004), such as those who convert from MCI to AD and those who remain classified as MCI. In recent years, prediction of disease progression from MCI to dementia or presumed AD has been explored with SVM using baseline MRI measures of all structural voxels (Moradi et al., 2015), cortical thickness (Eskildsen et al., 2013), cortical and subcortical volume (Hojjati et al., 2018), and resting-state fMRI (rsfMRI) connectivity (Li Y. et al., 2016) in isolation, with prediction accuracies of 66, 76, 89, and 93%, respectively.

Given that the amount of data at an initial clinical visit is often quite limited, a model that could provide strong predictive accuracy of MCI conversion to AD using MRI-alone would be of immense utility. To our knowledge, only one other study has used a combined model of structural and resting-state functional MRI to predict all MCI conversion to AD (Hojjati et al., 2018). Replication of this study in an aMCI population would provide unique information about this higher-risk population, as well as offer the ability to derive the neural regions where structural and functional networks combined to predict conversion from aMCI to AD. Ultimately, acquisition of the combined structural-functional neural regions important for conversion to AD would provide the opportunity for early neurotherapeutic interventions in high-risk aMCI patients.

In the present study, we sought to leverage baseline T1 MRI in a homogenous sample of individuals diagnosed with aMCI to predict longitudinal consensus-based diagnostic decline using a cross-validated SVM approach. Further, we wished to

determine whether the inclusion of an additional MRI modality (resting-state functional MRI; rsfMRI) into the prediction model would improve predictive accuracy of the uni-modal structural model. Lastly, we sought to determine if neuropsychological performance at baseline outperformed objective neuroimaging for the prediction of longitudinal diagnostic decline. We hypothesized that T1 MRI would have a higher level of predictive accuracy than rsfMRI when used individually, but that the combination of these two modalities would provide the highest level of predictive accuracy. Further, we hypothesized that the combined structural-functional model would yield neural regions in the medial temporal lobes underlying the limbic network that would optimally discriminate stable aMCI from progressive aMCI, given the lower network connectivity in MCI compared to controls (Li et al., 2015) as well as the strong association of this network with the presence of Alzheimer's disease (Badhwar et al., 2017). Lastly, given the use of many of the neuropsychological test measures in the determination of the aMCI or dementia diagnosis being predicted, we hypothesized that neuropsychological testing would outperform neuroimaging in the prediction of future decline.

MATERIALS AND METHODS

Participant Selection

Participants were recruited through the Florida Alzheimer's Disease Research Center (ADRC) for an IRB-approved longitudinal investigation performed in accordance with the declaration of Helsinki (P50-AG047266-05). Participants from the present study were selected from a larger pool of 287 potential participants if they met the following criteria: (a) valid T1 and rsfMRI neuroimaging scans at baseline, (b) consensus diagnosis of either single-domain or multi-domain amnestic MCI at baseline alone, (c) had no other neurological or cognitive diagnoses (e.g., Parkinson's disease, suspected Lewy Body Dementia, vascular dementia) at baseline, (d) consensus diagnosis available at both baseline and follow-up, (e) no aberrant QC metrics of rsfMRI data at baseline to include greater than $+/-3$ SD values for in-scanner movement, global correlation of connectivity due to motion, or number of invalid scans.

Participant Diagnosis

An experienced geriatric psychiatrist administered a standard clinical assessment protocol, which included the CDR® Dementia Staging Instrument (CDR) (Morris, 1997) and the Montreal Cognitive Assessment (MoCA) (Nasreddine et al., 2005). Subsequently, a uniform battery of neuropsychological tests, including the National Alzheimer's Coordinating Center - Unified Data Set (NACC-UDS) (Beekly et al., 2007; Acevedo et al., 2009; Weintraub et al., 2018) battery, was independently administered in the participant's dominant and preferred language (English or Spanish). Participants received a diagnosis of amnestic mild cognitive impairment (aMCI) at the baseline assessment if they met Petersen's criteria for MCI (Petersen et al., 2014) and demonstrated all of the following: (a) subjective cognitive complaints by the participant and/or

229 collateral informant; (b) evidence by clinical evaluation or
230 history of memory or other cognitive decline; (c) Global Clinical
231 Dementia Rating scale of 0.5 (Morris, 1997); (d) below expected
232 performance on delayed recall of the HVLT-R (Brandt, 1991) or
233 delayed paragraph recall from the Logical Memory subtest of the
234 NACC-UDS (Beekly et al., 2007) as measured by a score that is 1.5
235 SD or more below the mean using age, education, and language-
236 related norms. Participants were classified as multi-domain
237 amnestic MCI if they met the above criteria as well as ≤ 1.5 SD
238 performance on at least one other domain measure. All of these
239 standard criteria were reviewed by an experienced behavioral
240 neurologist (RD) or a board-certified neuropsychologist (DL).
241 All these criteria were reviewed by a neurologist and a
242 neuropsychologist and using an algorithmic diagnosis procedure
243 final clinical diagnoses were made (Duara et al., 2010, 2011). In
244 the few cases where consensus could not be obtained, at least one
245 additional neurologist and neuropsychologist were consulted to
246 render a final cognitive diagnosis.

247 For the purposes of determining diagnostic change at the
248 follow-up visit, participants must have participated in the above
249 assessment at least one calendar year (mean = 15.45 months;
250 range 12.0–17.0 months) subsequent to their initial visit, which
251 must have included acquisition of their whole-brain MRI. To
252 be determined as “stable” in their diagnosis, the follow-up visit
253 consensus diagnosis must be either the same (aMCI) or mildly
254 improved (pre-MCI). For the purposes of this classification,
255 pre-MCI diagnosis (see Loewenstein et al., 2012) included the
256 following: (a) subjective memory complaints by the participant
257 and/or or collateral informant; (b) evidence by clinical evaluation
258 or history of memory or other cognitive decline determined after
259 an extensive CDR interview; (c) Global CDR scale of 0.5; (d) a
260 neuropsychological battery (see below) was deemed normal by
261 a clinical neuropsychologist and generally, no measures in the
262 neuropsychological battery fell 1.0 SD or more below normal
263 limits, relative to age and education related normative data. To
264 be considered “declined” in their diagnosis, the follow-up visit
265 consensus diagnosis must have been determined as Dementia per
266 the criteria a and b as described for the aMCI group above, and
267 evidenced all of the following: (a) Global CDR score of 1.0; (b)
268 below expected performance on the memory measures described
269 above that scored 2.0 SD or more below the mean using age,
270 education, and language-related norms.

272 **Neuropsychological Battery**

273 Participants completed a comprehensive neuropsychological
274 evaluation which assessed various cognitive domains. Verbal
275 memory was measured using the HVLT-R (Brandt, 1991;
276 Arango-Lasprilla et al., 2015b) and Craft 21 Story Recall (Craft
277 et al., 1996); confrontation naming was assessed with the MINT
278 (Gollan et al., 2012); visuospatial cognitive functioning was
279 evaluated with the Benson Figure Drawing (Possin et al., 2011)
280 and Block Design (Wechsler et al., 2008); executive function was
281 appraised with the Stroop Test (Stroop, 1935; Trexerry et al.,
282 2012; Toberge and Curtis, 2013), as well as TMT B (Reitan, 1958;
283 Arango-Lasprilla et al., 2015a); and finally, verbal fluency was
284 assessed using category (Benton, 1968; Ostrosky-Solis et al., 2007)
285 and phonemic fluency (Ruff et al., 1996).

286 Spanish language evaluations were completed with equivalent
287 standardized neuropsychological tests. Tasks administered to
288 primary Spanish speakers had appropriate age, education, and
289 cultural/language normative data for the translated versions
290 (Lang et al., 2021). Testing was performed by proficient
291 Spanish/English psychometricians.

292 **Magnetic Resonance Imaging**

293 Participants completed a 1-h MRI acquisition on a Siemens
294 Skyra 3 T MRI scanner (Siemens Medical Solutions, Erlangen,
295 Germany) with 32-channel head coil at Mount Sinai Medical
296 Center, Miami Beach, Florida. The 3D T1 weighted volumetric
297 magnetization-prepared rapid gradient-echo sequence (MP-
298 RAGE) consisted of 176 slices at slice thickness = 1 mm isotropic,
299 FOV = 256×256 , TR = 3.0 s, and TE = 1.4 s. The resting-state
300 functional MRI (rsfMRI) scan was administered with eyes open
301 consisting of 48 interleaved slices at a slice thickness = 3.0 mm
302 isotropic, FOV = 212×212 , TR = 3.0 s, and TE = 30 ms. For
303 exclusionary purposes of potential incidental findings, MRI scans
304 were evaluated by visual inspection as well as with T2 weighted
305 FLAIR (5 mm thick sequential axial slices), and the MP-RAGE
306 sequence (which provides high tissue contrast and high spatial
307 resolution with whole brain coverage).

309 **Functional Magnetic Resonance Imaging**

310 **Pre-processing**

311 Functional MRI pre-processing was completed in accordance
312 with past studies by our group (Hausman et al., 2020).
313 Specifically, functional images were preprocessed and analyzed
314 using the MATLAB R2019b based functional connectivity
315 toolbox “Conn toolbox” version 18b and SPM 12 (Penny
316 et al., 2007; Whitfield-Gabrieli and Nieto-Castanon, 2012). We
317 followed a pre-processing pipeline which included functional
318 realignment and unwarping, functional centering of the image
319 to (0, 0, 0) coordinates, slice-timing correction, structural
320 centering to (0, 0, 0) coordinates, structural segmentation
321 and normalization to MNI space, functional normalization to
322 MNI space, and spatial smoothing with a kernel of 8 mm
323 FWHM. During pre-processing, the Conn toolbox implements
324 an anatomical, component-based, noise correction strategy
325 (aCompCor) for spatial and temporal processing to remove
326 physiological noise factors from the data (Behzadi et al.,
327 2007). The implementation of aCompCor combined with the
328 quantification of participant motion and the identification of
329 outlier scans through the Artifact Rejection Toolbox (ART)
330 allows for better interpretation of functional connectivity results
331 (Behzadi et al., 2007; Whitfield-Gabrieli and Nieto-Castanon,
332 2012; Shirer et al., 2015). The ART was set to the 97th
333 percentile setting with the mean global-signal deviation threshold
334 set at $z = \pm 3$ and the participant-motion threshold set at
335 0.9 mm. Applying linear regression and using a band-pass
336 filter of 0.008–0.09 Hz, data were de-noised to exclude signal
337 frequencies outside of the range of expected BOLD signals
338 (such as low-frequency scanner drift), minimize participant
339 motion, extract white matter and cerebral spinal fluid noise
340 components, and control for within-participant realignment and
341 scrubbing covariates.

343 Structural Magnetic Resonance Imaging 344 Pre-processing

345 Individual T1-weighted images were converted from DICOM to
346 NIFTI using dcm2niix (Li X. et al., 2016). T1 images were then
347 skull-stripped and transformed into MNI space using
348 the default Conn processing pipeline for anatomical volumes,
349 which utilizes MNI-space direct normalization (Whitfield-
350 Gabrieli and Nieto-Castanon, 2012). Manual inspection of
351 skull-stripping performance was completed to ensure optimal
352 brain extraction for each subject. To reduce potential bias
353 introduced by automated segmentation procedures, all voxels
354 of the skull-stripped, MNI-normalized, T1-weighted data for
355 each subject were included into the model, with regional
356 analyses being performed subsequent to feature extraction
(described below).

359 Supervised Machine-Learning

360 Within- and between-network connectivity calculations were
361 performed using ROI-ROI analyses of the 7-network Yeo
362 et al. (2011) parcellation atlas. Functional connectivity of
363 each connection was input as the pairwise connectivity of
364 the 51 parcellations of the seven Yeo et al. (2011) atlas
365 networks, which is calculated via Fisher z-transformed bivariate
366 correlations between brain regions' BOLD time-series that
367 quantify associations in the activation at rest. Redundant pairs
368 were removed to result in a final total of 1,275 connections.
369 Participant classes were determined by separating participants
370 into binary groups based on maintenance or decline in consensus
371 diagnostic criteria at the follow-up visit most proximal to
372 the diagnosis of aMCI. Due to the high dimensionality of
373 MRI data, feature selection was performed on the training
374 data to further reduce the number of trained features. One
375 popular method of feature selection is to filter the features via
376 voxelwise *t*-tests between classes to select current elements with
377 a significant group-level difference ($p < 0.01$) as features for the
378 subsequent prediction step (Iguyon and Elisseeff, 2003; Saeyns
379 et al., 2007; Dubois et al., 2018). Due to the difference in unit
380 scale between the T1 and rsfMRI images, the selected features
381 were standardized via z-score transformation. To classify stable
382 participants and those who declined, we used SVM; a machine
383 learning algorithm to search for the optimal hyperplane that
384 separates two classes with maximal margin under the assumption
385 of independently and identically distributed (iid) data (Andreola,
386 2009), which is satisfied in this study. Specifically, LIBSVM
387 (Chang and Lin, 2011) was used to optimize the objective
388 function:

$$389 \min_{w, b} \frac{1}{2} w^T w + c \sum_{i=1}^i \max (1 - y_i (w^T x_i + b), 0)^2$$

390 where C is a penalty parameter on the training error. In other
391 words, to address the issue of unbalanced data, the penalty
392 parameter, C , was proportionally scaled for the minority class
393 (i.e., greater penalty for incorrect classification of decline class
394 compared to stable). A linear kernel was generated with the
395 function:

$$396 K(x_i, x_j) = x_i^T x_j$$

400 Model performance was evaluated across 10 permutations of
401 two-level nested stratified cross-validation (Lindquist et al., 2017;
402 Varoquaux et al., 2017; Polosecki et al., 2020). To elaborate, we
403 began by splitting the data into randomized folds and performed
404 an outer cross-validation loop consisting of k iterations. In each
405 iteration, leave-one-out cross-validation was used to separate a
406 single test case per fold in an outer loop. An inner stratified cross-
407 validation loop was then performed on the training data ($N = 54$)
408 with 10-folds, providing an optimal hyper-parameter C . A voxel-
409 level *t*-test on T1w signal intensity/functional connectivity values
410 within each cross-validation fold (i.e., 55 times) was performed
411 on the training data only. Following training, predictions of held
412 out test data were performed with the decision function:

$$413 f(x) = \text{sgn}(w^T x + b)$$

415 As a sub-investigation of the effect of single-domain aMCI
416 and multi-domain aMCI on prediction outcomes, model
417 performance was further evaluated as above after separating
418 subgroups with single-domain impairment ($N = 23$) and multi-
419 domain impairment ($N = 32$). In other words, the above model
420 was evaluated for its ability to predict diagnostic decline at follow-
421 up in patients with single-domain impairment, and again in
422 patients with multi-domain impairment.

423 Lastly, to assess the predictive capabilities of baseline
424 neuropsychological data (see Table 1), we employed identical
425 SVM procedures as above to predict aMCI decline to
426 dementia. Both a class-mean filling approach and a list-
427 wise deletion approach were compared in their ability to handle
428 neuropsychological data missing at random (MAR). As a note,
429 when removing cases with missing data, further decreased group
430 balance was observed and as such, we proportionally adjusted
431 the penalty parameter C (as above) to account for the unbalanced
432 data prior to running the final SVM model.

434 Statistical Analysis

435 After all k iterations in the outer cross-validation loop were
436 performed, predicted labels of all participants were compared
437 against ground truth labels to calculate performance metrics.
438 A Precision-Recall curve of positive predictive value against
439 true positive rate was plotted to demonstrate the separability
440 of classes within each model by calculating the area under
441 the curve (AUC). The F1 score was generated given that it
442 (1) takes both precision and recall into account to ultimately
443 measure the accuracy of the model while accounting for false
444 positives and false negatives, (2) is often more useful in models
445 with unequal groups, such as the present study. Essentially,
446 the F1 score ranges from 0 to 1 and gives more weight
447 to false negatives and false positives while not letting large
448 numbers of true negatives influence the score, which is helpful
449 in dichotomous prediction models such as the present study.
450 A high F1 score (e.g., over 90%) means that the model has
451 limited false positives and false negatives, indicating the model
452 has correctly identified real threats while not being disturbed
453 by false alarms. Lastly, the Matthew's correlation coefficient
454 (MCC) was also calculated for each modality given that it may
455 represent a more reliable statistical approach in binary prediction

TABLE 1 | Demographics and cognitive performance at baseline for total sample, consensus diagnosis change, and single- vs. multi-domain amnestic MCI groups.

	Total (N = 55)	Stable at follow-up ^f (N = 41)	Decline at follow-up ^f (N = 14)	p-value
Age	72.5 (7.7)	72.0 (6.6)	73.8 (10.3)	0.466
Education	15.0 (3.14)	14.9 (3.0)	15.3 (3.5)	0.735
Gender (% Female)	56.4	53.7	64.3	0.489
Race (% White)	94.5	95.1	92.9	0.612
Hispanic (%)	54.5	53.7	57.1	0.821
Spanish first language (%)	40.0	41.5	35.7	0.743
Follow-up length (months)	15.45 (3.56)	16.92 (4.89)	14.95 (2.89)	0.173
CDR SOB ^a	1.17 (0.59)	0.98 (0.51)	1.71 (0.47)	<0.001
CDR global ^b	0.50 (0.0)	0.50 (0.0)	0.50 (0.0)	—
Hippocampal atrophy (%) ^d	54.5	51.2	64.3	0.765
APOE positive (%) ^e	25.5	24.4	28.6	0.140
Single-domain aMCI (%)	41.8	51.2	14.3	0.016
Multi-domain aMCI (%)	58.2	48.8	85.7	0.016
Cognitive performance				
MoCA total score	22.0 (3.0)	22.6 (2.9)	20.1 (3.0)	0.084
HVLT-R delayed recall	1.8 (3.3)	1.6 (2.9)	3.00 (4.1)	0.493
Craft story delayed recall	13.2 (7.0)	15.2 (6.5)	7.8 (1.8)	0.005
MINT naming	25.9 (5.3)	26.1 (4.1)	23.5 (7.6)	0.260
Benson figure drawing	15.3 (1.3)	15.5 (1.1)	14.5 (1.8)	0.163
Trail-making test, Part B	138.8 (68.5)	125.4 (63.9)	178.3 (68.5)	0.011
Semantic fluency	15.4 (4.4)	16.2 (4.2)	13.0 (4.2)	0.017
	Total (N = 55)	Single-domain aMCI (N = 23)	Multi-domain aMCI (N = 32)	p-value
Age	72.5 (7.7)	72.2 (7.8)	72.8 (7.8)	0.782
Education	15.0 (3.14)	14.9 (3.0)	15.1 (3.3)	0.808
Gender (% Female)	56.4	56.5	56.3	0.984
Race (% White)	94.5	95.7	93.8	0.242
Hispanic (%)	54.5	65.2	46.9	0.178
Spanish first language (%)	40.0	47.8	43.8	0.262
Follow-up length (months)	15.45 (3.56)	15.3 (3.0)	15.6 (3.9)	0.736
CDR SOB ^a	1.17 (0.59)	0.91 (0.6)	1.36 (0.6)	0.005
CDR global ^b	0.50 (0.0)	0.50 (0.0)	0.50 (0.0)	—
Hippocampal atrophy (%) ^d	54.5	39.1	65.6	0.103
APOE positive (%) ^e	25.5	13.0	34.4	0.107
Cognitive performance				
MoCA total score	22.0 (3.0)	23.6 (3.3)	21.1 (2.5)	0.021
HVLT-R delayed recall	1.8 (3.3)	2.14 (4.0)	1.64 (2.8)	0.605
Craft story delayed recall	13.2 (7.0)	17.5 (5.7)	10.7 (6.6)	0.005
MINT naming	25.9 (5.3)	28.3 (3.5)	24.6 (5.8)	0.031
Benson figure drawing	15.3 (1.3)	15.8 (1.3)	15.0 (1.3)	0.125
Trail-making test, Part B	138.8 (68.5)	110.8 (50.2)	161.9 (75.1)	0.005
Semantic fluency	15.4 (4.4)	16.9 (3.8)	14.3 (4.5)	0.032

^aClinical Dementia Rating Scale Sum of Boxes at baseline.^bClinical Dementia Rating Scale global score at baseline.^cPositron Emission Tomography (PET) imaging.^dNeurologist confirmed on T1 MRI.^eApolipoprotein E-4 allele present.^fBased on the NACC UDS Consensus Diagnosis.

models that achieve good results in all possible outcomes (Chicco and Jurman, 2020).

Functional Regions of Interest

The 7-network Yeo et al. (2011) parcellation atlas was utilized for determination of regions of interest (ROIs). In

this atlas, the seven main networks include the Cingulo-Opercular Network (consisting of the parietal operculum, temporal occipital cortex, frontal operculum, lateral prefrontal cortex), Default Mode Network (prefrontal cortex, posterior cingulate cortex, parahippocampal cortex, and parietal and temporal cortices (corresponding to the angular gyrus and middle temporal gyrus, posterior division, respectively), the

571 Dorsal Attention Network [posterior cortex (corresponding to
 572 the lateral occipital cortex, superior division), frontal eye fields,
 573 precentral ventral cortex], the Fronto-Parietal Control Network
 574 [parietal cortex (corresponding to the posterior division of
 575 the supramarginal gyrus), temporal cortex (corresponding to
 576 the posterior division of the middle temporal gyrus), dorsal
 577 prefrontal cortex, lateral prefrontal cortex, orbitofrontal cortex,
 578 ventral prefrontal cortex, medial posterior prefrontal cortex,
 579 precuneus, and the cingulate cortex], the Limbic Network
 580 [orbitofrontal cortex (corresponding to the frontal pole,
 581 temporal pole], the Somatomotor Network [somatomotor cortex
 582 (corresponding to the precentral gyrus)], and the Visual Network
 583 [visual cortex (corresponding to the superior division of the
 584 lateral occipital cortex)].

586 Feature Weight Calculation

587 For feature weight generation and deployment, a final model
 588 was trained on features of all participants to derive overall
 589 classification weights. Specifically, the classification weights
 590 generated through feature selection were based upon the model
 591 parameters learned by the optimization function *only* during the
 592 training phase, *cf.* Equation (3). These weights can be applied
 593 to independent data from a new participant to predict their
 594 cognitive decline status associated with specific observed T1 and
 595 functional connectivity features in test data. The feature weights
 596 at each voxel, representing the relative contribution of each voxel
 597 to the classification, were separated by positive and negative
 598 weights that predict cognitive stability and decline, respectively
 599 (Cole et al., 2015). Positive and negative weights were divided
 600 by their respective sum of weights to compute the percent
 601 contribution of each voxel toward either positive or negative
 602 predictions. To demonstrate specific brain regions that predict
 603 decline to dementia, ROIs were defined using the 51 Yeo Atlas
 604 parcellations and ranked based on their average voxel percent
 605 contribution. Since features are selected based on the training
 606 data, the number of features varies per fold and data type.

609 RESULTS

610 A total of 55 participants met study criteria and were utilized
 611 for this secondary data analysis. Mean age of the participants
 612 was 72.5 (SD 7.7); the average educational attainment was 15.0
 613 years (SD 3.14). The mean MoCA score was 22.0 (SD 3.0)
 614 (**Table 1**). Of the 232 potential participants who were excluded,
 615 152 were excluded because they did not have aMCI at baseline
 616 (or had multiple diagnoses), 44 did not have valid T1 *and* rsfMRI
 617 baseline scans, 30 were missing the follow-up visit that came
 618 after the MRI visit, and 6 had aberrant QC metrics of rsfMRI
 619 data at baseline. Forty-one participants remained diagnostically
 620 stable over the study period and 14 declined to dementia at
 621 the most proximal follow-up evaluation to baseline. Of these 55
 622 participants, 28 had fully complete neuropsychological battery
 623 test results, while 27 subjects had between one and two missing
 624 neuropsychological measures determined in *post-hoc* analyses to
 625 be missing at random (MAR). Participants who met criteria for
 626 multi-domain aMCI at baseline were significantly more likely to

627 decline to dementia at follow-up when compared to participants
 628 with single-domain aMCI (chi-square = 5.85; odds ratio = 6.5;
 629 *p* = 0.016) (**Table 1**). Otherwise, groups did not differ significantly
 630 on any of the examined demographic or clinical factors.

631 Results of a repeated, nested cross-validation reveal a total
 632 accuracy for predicting diagnostic change at follow-up was 92.7%
 633 using baseline T1 imaging alone, 83.5% using rsfMRI alone, and
 634 94.5% when combining T1 and rsfMRI modalities (**Figure 1**). As
 635 such, 51 of 55 participants were accurately classified using T1, 46
 636 of 55 participants were accurately classified using rsfMRI, and 52
 637 of 55 were accurately classified using both modalities together.

638 Given the significant statistical difference in the rate of single-
 639 and multi-domain aMCI across stable and decline groups, follow-
 640 up model performance investigation was completed. Follow-
 641 up investigation of single-domain and multi-domain aMCI
 642 subgroups revealed nearly identical model performance such
 643 that the combined T1 and rsfMRI achieved 94.4% total accuracy
 644 in the single-domain aMCI subgroup and 94.7% total accuracy
 645 in the multi-domain aMCI subgroup. These results indicate
 646 that although the prevalence of aMCI subtypes differs, the
 647 performance of the full, original model is comparable, and
 648 further model performance metrics will be calculated using all 55
 649 participants together.

650 **Figure 2** shows that the baseline T1 image alone is highly
 651 discriminant in the prediction of diagnostic decline as evidenced
 652 by a precision recall area under the curve (AUC) value 0.961,
 653 while the AUC for the baseline rsfMRI prediction was 0.836, and
 654 the combined T1 and rsfMRI model was 0.960. Further, the mean
 655 F1 score for each modality at the prediction of diagnostic decline
 656 was greater than 90% (94% for T1 alone, 88% for rsfMRI, and
 657 96% for the multi-modal T1 and rsfMRI model). Lastly, results
 658 indicate an MCC value of 0.84 for the T1 image alone, an MCC
 659 value of 0.65 for the rsfMRI image alone, and an MCC value of
 660 0.88 for the combination of T1 and rsfMRI.

663 Supervised Machine Learning Feature 664 Weight Classification

665 In the present dataset, T1-weighted data averaged 331,945
 666 features, functional data averaged 85 features, and the
 667 combination of these data averaged 331,860 features. Given
 668 that a linear classifier was used to discriminate between aMCI
 669 patients who remained stable and declined diagnostically at the
 670 follow-up visit immediately after their baseline MRI, each feature
 671 in a given MRI sequence influenced this classification via its
 672 weight. As such, the larger the absolute magnitude of a given
 673 feature's weight, the more strongly it influenced the optimal
 674 participant discrimination. As seen in **Figure 3**, this weight
 675 vector is projected onto the MNI-registered brain in order to
 676 display how strongly a given region of the brain influenced
 677 the optimal discrimination between aMCI patients with stable
 678 vs. declined diagnostic classification at follow-up. Given that
 679 combined structural and resting-state features were most
 680 predictive of diagnostic decline (see **Figure 2**), we developed
 681 a deployable model of combined structural and functional
 682 feature weights to demonstrate the importance of each brain
 683 region for the prediction of diagnostic decline. As such, we

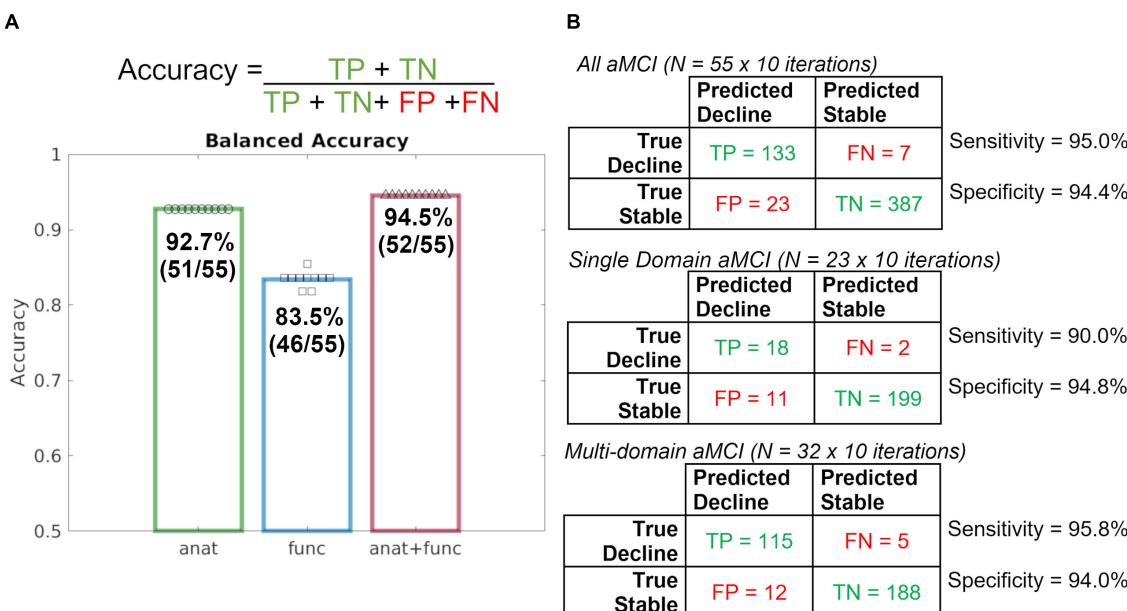


FIGURE 1 | Repeated, nested, cross-validation test accuracy results for the prediction of aMCI patient ($N = 55$) diagnostic change at follow-up using baseline MRI alone, where a leave-one-out approach was used to predict whether or not a patient declined to dementia. **(A)** Accuracy formula and case predictions for each imaging modality overlaid with balanced case accuracy values. **(B)** Confusion matrices for all aMCI patients, Single Domain aMCI patients, and Multi-domain aMCI patients and their respective sensitivity and specificity values. $anat = T1$; $func = rsfMRI$.

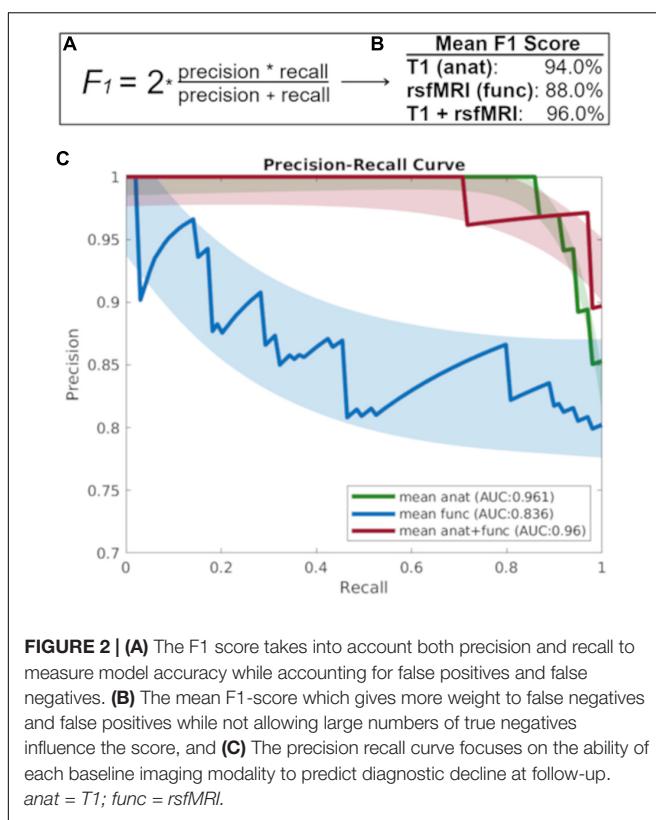
calculated a classifier for the group pairing (stable vs. decline) based on the MNI-registered normalized combination of the T1 voxelwise intensity values and the rsfMRI connectivity matrix using a *t*-test filter ($p < 0.01$) to select features with a significant difference between groups (**Figure 3**). Results indicate that when considering the mean feature weight of each multimodal region for predicting diagnostic decline, the limbic system results in the highest degree of group separation, yet the lowest percentage of total significant voxels by volume (2.90%). Conversely, the visual system demonstrated the lowest degree of group separation by feature weight, yet the highest total voxels by volume (5.24%). Rankings of remaining multimodal regions can be seen in **Figure 3**.

When examining baseline neuropsychological testing data alone, use of a class-mean filling approach to deal with missing data resulted in overall poor accuracy (60% repeated, nested, cross-validated test accuracy) for the prediction of decline from aMCI to dementia at follow-up ($N = 55$). To assess the effect of class-mean filling, observations with missing data were removed and the above analyses were repeated on the 28 subjects with complete data, yielding a 82.1% repeated, nested, cross-validated test accuracy for the prediction of decline from aMCI to dementia at follow-up. Lastly, when combining the class-mean filled neuropsychological data with the functional and anatomical model, nearly identical performance was observed to the multimodal imaging model, including a repeated, nested, cross-validated test accuracy of 94.5%, a mean AUC of 0.96, MCC of 0.88, and F1-Score of 0.96. However, when utilizing only those subjects with complete neuropsychological data ($N = 28$) along with multimodal neuroimaging data, repeated,

nested, cross-validated test accuracy was 82.1%. In other words, in a limited subset sample of 28 participants, dementia conversion prediction based on neuropsychological performance is not improved by the addition of neuroimaging into the model. However, in a larger sample of 55 participants, multi-modal neuroimaging provides the greatest predictive ability and the model is not improved further by the addition of neuropsychological data.

DISCUSSION

The present study demonstrates that with limited baseline data (<45 min total MRI protocol), a multi-modal SVM model could predict diagnostic decline from amnestic MCI to dementia with over 94% accuracy and 96% precision. In fact, we show that 92.7% accuracy and 96% precision was achieved with a < 10 min T1 alone, and that neuroimaging outperformed a cognitive battery for predicting future decline. This finding has considerable clinical significance as it demonstrates the ability of easily obtained objective biomarkers to provide accurate and precise predictions about which high-risk aMCI patients will go on to develop dementia or potential Alzheimer's disease (AD). While one other study has achieved a similar predictive accuracy in an MCI population also using MRI alone (Hojjati et al., 2018), the present study investigates higher risk aMCI patients and offers unique neuroanatomical information about the combined structural and functional regions that were optimally discriminative for the conversion to dementia in a relatively short time frame. Given the focus on amnestic MCI



patients, the findings here provide a potentially stronger link to the increased incidence of AD as opposed to an all-MCI cohort, where true AD conversion rates are considerably lower (Ganguli et al., 2015, 2019; Oltra-Cucarella et al., 2018).

The performance of structural T1 MRI alone as a predictor for diagnostic decline to dementia was quite strong, and suggests that structural features were the largest driving force in both the prediction model as well as the resulting feature weights that separated stable patients from converters. This may in part be due to the use of all structural voxels in the model rather than restriction to known ROIs generated by outside parcellation algorithms, as has been done in prior MCI-to-dementia conversion prediction studies (Hojjati et al., 2018). Generation of multimodal feature weights, or combined neural regions that were optimally discriminative for the separation of aMCI patients who did and did not progress to dementia, revealed several important findings. We found that the combined structural and functional regions underlying the limbic system were the smallest in relative size after thresholding for significance, yet showed the strongest degree of group separation as seen by the mean feature weight of significant voxels in that region. Neuroanatomical regions within the limbic system, as defined by the Yeo atlas, include the orbitofrontal cortex and temporal pole. Similarly strong group separation performance was achieved by the regions underlying the frontoparietal control network (FPCN), which encompasses the anatomical regions of the temporal lobe, prefrontal cortex, cingulate cortex, and precuneus. These findings are highly consistent with the meta-analytic literature that suggest neural regions in the medial temporal lobe are associated with

the progression from aMCI to AD (Ferreira et al., 2011), that alterations of the trans-entorhinal limbic regions are seen in MCI patients who eventually convert to AD (Schroeter et al., 2009), and that hypoactivation of the FPCN is observed in MCI patients relative to controls (Li et al., 2015).

We also found the combined structural and functional features underlying the default mode network to be highly important for dementia conversion prediction. This is consistent with the findings of a large meta-analysis in which MCI patients demonstrated hypoactivation in the default mode network, frontoparietal, and visual networks relative to healthy controls (Li et al., 2015). Feature weight generation also revealed that a large number of voxels in the multimodal regions underlying the visual system were significantly predictive of dementia conversion. This is consistent with meta-analytic work suggesting that relative to controls, both MCI and AD patients demonstrate hypoactivation of the visual system during rsfMRI (Li et al., 2015). We propose this finding may be related to degree of impairment, as more impaired patients are more likely have difficulty disengaging their visual systems during a resting paradigm and are thus more likely to fixate on the in-scanner screen. Regardless, this finding may be of clinical utility, as it in itself may be akin to a pathognomonic sign predictive of risk for dementia conversion. It is noted that the slightly higher accuracy of the combined structural-functional model for dementia conversion prediction may be a factor of the previously demonstrated reduced resting-state connectivity among MCI patients who convert to dementia compared to those who do not (Li Y. et al., 2016). A prior study used SVM to predict dementia conversion in an MCI-only cohort and found slightly lower predictive utility of sMRI than the present study (91% vs. 94% accuracy), higher predictive utility of rsfMRI (93% vs. 84% accuracy), and nearly identical combined predictive utility (97% vs. 96% accuracy). Differences observed in the predictive accuracy of rsfMRI may be the result of the use of different atlases for identification of functional connectivity data. Hojjati et al. (2018) utilized the 160-region Dosenbach rsfMRI atlas, while the present study utilized the Yeo 7-network atlas (Yeo et al., 2011). While not explicitly stated in their work, it is presumed that the interconnection of these 160 regions resulted in a total of 12,720 unique connections (using the formula: $x = \frac{n(n-1)}{2}$) available for predictive analyses, whereas the present study was limited to 1,275 unique connections. Thus, the inclusion of a higher number of data points appears to be, at least in part, a potential driver of higher accuracy in the SVM model. To this end, the present study's higher accuracy for sMRI may also be driven by the use of all potential viable white and gray matter voxels in the brain rather than restriction to ROIs generated by an automated parcellation program (e.g., Freesurfer). As such, future work may seek to utilize a greater number of rsfMRI internodal connections to increase predictive ability of the uni- and multi-modal models.

With respect to the use of neuropsychological tests as predictors of future diagnostic decline, we found that the combination of six cognitive measures in an SVM model demonstrated the lowest accuracy of all predictor variables in the present study. This is particularly intriguing, as many of these cognitive measures were used in the formulation of the very consensus diagnosis being predicted, and we hypothesized

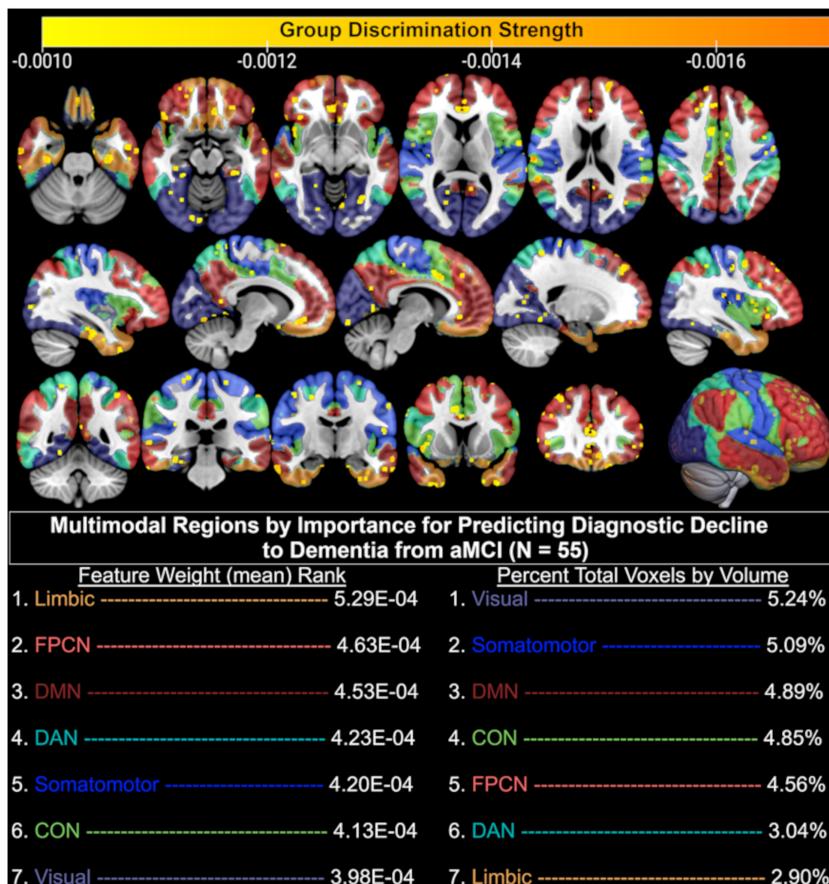


FIGURE 3 | Brain regions (yellow-orange scale) where combined structural (T1) and functional (resting-state fMRI) MRI baseline data significantly discriminated between aMCI patients who remained diagnostically stable and those who declined to dementia at follow-up. Only the top 50% of significant ($p < 0.01$) voxels are displayed based on discrimination strength (voxels with weights 0.000 through -0.0009 excluded for visualization purposes); CON, Cingulo-opercular (Salience) Network; DAN, Dorsal Attention Network; DMN, Default Mode Network; FPCN, Fronto-parietal Control Network.

it to have much higher predictive value for that reason. However, we note our own human nature lends to the ability to ignore missing data and maintain the goal of diagnosis, whereas a machine (SVM) does not deal well with such missing data. It is common to encounter missing neuropsychological test data in human studies, which certainly contributed to a smaller sample size and likely to the lower performance of the neuropsychological SVM model. While our model includes a disproportionately larger number of neuroimaging based features (331,945 structural features, 85 rsfMRI features) in comparison to the six neurocognitive measures in the combined model, if the neurocognitive measures were to have true predictive value, they would have been assigned a weight reflective of such. The fact that in the full 55-subject sample the model did not improve with their addition suggests neuroimaging likely outperforms these six neurocognitive measures for the prediction of future decline. Future work should aim to ensure all cases used for MRI prediction also retain full neuropsychological data to avoid the effects of missing data on SVM analyses.

The present single-center study has several limitations. First, only 14 participants progressed to dementia over a relative short

time period, and slightly over half of these individuals were amyloid positive compared to a much lower amyloid positive rate in our cognitively normal individuals. While not statistically significant, those who converted to dementia tended to be older, have lower cognitive performance at baseline, and a higher rate of amyloid positivity; all of which suggest they may have been at an increased risk of conversion even apart from the MRI findings. Relatedly, we found a higher rate of conversion to dementia in a sub-group of participants with multi-domain amnestic MCI, though follow-up analysis determined the model equally successful at predicting dementia conversion within the two subgroups. Further, baseline neuroimaging outperformed a baseline battery of cognitive performance measures in the prediction of diagnostic decline at follow-up. Thus, we believe the high degree of accuracy and specificity in larger group prediction suggests our model is successful at identifying *individuals* who would ultimately decline to dementia despite the sample heterogeneity. With a larger sample, use of a single-domain aMCI only population may have led to stronger feature weights in the regions ultimately implicated in Alzheimer's disease, such as the limbic system and temporal lobe regions. We used

1027 cross-validation strictly for model performance reporting and
 1028 not for building a final deployment model. As such, the final
 1029 model was trained on all subjects and was only used to generate
 1030 weight maps for deployment to make predictions about new,
 1031 future data. Future studies are required to determine whether
 1032 our final algorithm could as accurately predict additional cases
 1033 from our cohort and importantly to different cohorts such as
 1034 the Alzheimer's Disease Neuroimaging Initiative (ADNI) and
 1035 other datasets to assess generalizability of results. While we found
 1036 that the performance of the combined structural and functional
 1037 model exceeded the performance of each modality alone, it did so
 1038 by only a small percentage when compared to the unimodal T1
 1039 model. While our data do not provide the ability to comment on
 1040 how the strength of rsfMRI activation in the important networks
 1041 influenced multimodal predictive accuracy, our future work aims
 1042 to investigate the patterns of hyper- and hypo-activation in these
 1043 identified networks and compare between patients who do and
 1044 do not convert to dementia. Lastly, in the future, we seek to
 1045 determine the utility of this model to predict conversion to MCI
 1046 in a population of healthy older adults with no evidence of MCI
 1047 but with subjective cognitive complaints.

1048
 1049 **CONCLUSION**
 1050
 1051 We demonstrate that a combination of structural and functional
 1052 information undetected by the human eye can be used to
 1053 accurately identify high-risk amnestic MCI patients who will
 1054 develop dementia a short time later. The model deployed in
 1055 this study independently revealed that several neuroanatomical
 1056 regions commonly implicated in the development of Alzheimer's
 1057 disease were the largest drivers in identifying amnestic MCI
 1058 patients who progress to dementia at follow-up. Further
 1059 evaluation of our model with larger cohorts, longer follow-up
 1060 periods, evaluation of amyloid load, and diverse ethnic and
 1061 cultural groups have the potential to advance the field. If further
 1062 validated, this technique has the potential to contribute to the
 1063 identification of individuals with aMCI who are at high risk of
 1064 progression to dementia, and thus could be prioritized for studies
 1065 targeting disease modification.

1068 DATA AVAILABILITY STATEMENT

1069
 1070 The datasets presented in this article are not readily available
 1071 because of restrictions imposed by the administering and funding

1074 REFERENCES

1075 Acevedo, A., Krueger, K. R., Navarro, E., Ortiz, F., Manly, J. J., Padilla-Vélez, M. M.,
 1076 et al. (2009). The Spanish translation and adaptation of the Uniform Data Set
 1077 of the National Institute on Aging Alzheimer's Disease Centers. *Alzheimer Dis.*
Assoc. Disord. 23, 102–109. doi: 10.1097/WAD.0b013e318193e376

1078 Andreola, R. (2009). Support Vector Machines na classificação de imagens
 1079 hiperespectrais. *지능정보연구* 16:130.

1080 Arango-Lasprilla, J. C., Rivera, D., Garza, M. T., Saracho, C. P., Rodríguez, W.,
 1081 Rodríguez-Agudelo, Y., et al. (2015b). Hopkins Verbal Learning Test- Revised:
 1082 normative data for the Latin American Spanish speaking adult population.
NeuroRehabilitation 37, 699–718. doi: 10.3233/NRE-151286

1083 institutions given the ongoing nature of the funded project,
 1084 the data utilized for this manuscript are unavailable for public
 1085 hosting. Upon completion of this funding period, data can be
 1086 made available by request to the authors given that a formal data
 1087 sharing agreement is signed by the requesting agency.

1088 All software and code used in the present manuscript is freely
 1089 available to the public. Requests to access the datasets should
 1090 be directed to RD, duara@msmc.com.

1093 ETHICS STATEMENT

1094 The studies involving human participants were reviewed and
 1095 approved by the Participants were recruited through the 1Florida
 1096 Alzheimer's Disease Research Center (ADRC) for an IRB-
 1097 approved longitudinal investigation performed in accordance
 1098 with the declaration of Helsinki (P50-AG047266-05). The
 1099 patients/participants provided their written informed consent to
 1100 participate in this study.

1103 AUTHOR CONTRIBUTIONS

1104 JG: conceptualization, methodology, formal analysis,
 1105 visualization, investigation, writing-original draft, writing-
 1106 editing, and funding acquisition. AA: methodology, formal
 1107 Analysis, investigation, visualization, software, and writing-
 1108 original draft. RF: methodology and formal analysis. DL and
 1109 RD: project administration, supervision, and writing—review
 1110 and editing. MR, MA, TR, and SD: project administration
 1111 and writing—review and editing. HH: formal analysis, writing-
 1112 original draft, and writing—review and editing. AW: formal
 1113 analysis, conceptualization, writing—review and editing, and
 1114 supervision. RC: writing—review and editing, and supervision.
 1115 1FLADRC: project administration, funding acquisition. All
 1116 authors contributed to the article and approved the submitted
 1117 version.

1120 FUNDING

1121 This work was supported in part by the 1Florida Alzheimer's
 1122 Disease Research Center (Grant No. AG047266 to JG) and
 1123 the National Institutes of Health (P30-AG066506-02; P50-
 1124 AG047266-05).

1125 Arango-Lasprilla, J. C., Rivera, D., Aguayo, A., Rodríguez, W., Garza, M. T.,
 1126 Saracho, C. P., et al. (2015a). Trail Making Test: normative data for the Latin
 1127 American Spanish speaking adult population. *NeuroRehabilitation* 37, 639–661.
 1128 doi: 10.3233/NRE-151284

1129 Badhwar, A. P., Tam, A., Dansereau, C., Orban, P., Hoffstaedter, F., and Bellec, P.
 1130 (2017). Resting-state network dysfunction in Alzheimer's disease: a systematic
 1131 review and meta-analysis. *Alzheimers Dement.* 8, 73–85. doi: 10.1016/j.jad.2017.03.007

1132 Beekly, D. L., Ramos, E. M., Lee, W. W., Deitrich, W. D., Jacka, M. E., Wu, J.,
 1133 et al. (2007). The National Alzheimer's Coordinating Center (NACC) database:
 1134 the uniform data set. *Alzheimer Dis. Assoc. Disord.* 21, 249–258. doi: 10.1097/
 1135 WAD.0b013e318142774e

1136 1137 1138 1139 1140

1141 Behzadi, Y., Restom, K., Liau, J., and Liu, T. T. (2007). A component based
1142 noise correction method (CompCor) for BOLD and perfusion based fMRI.
1143 *Neuroimage* 37, 90–101. doi: 10.1016/j.neuroimage.2007.04.042

1144 Benton, A. L. (1968). Differential behavioral effects in frontal lobe disease.
1145 *Neuropsychologia* 6, 53–60. doi: 10.1016/0028-3932(68)90038-9

1146 Brandt, J. (1991). The Hopkins Verbal Learning Test: development of a new
1147 memory test with six equivalent forms. *Clin. Neuropsychol.* 5, 125–142. doi:
1148 10.1080/13854049018403297

1149 Brookmeyer, R., Johnson, E., Ziegler-Graham, K., and Arrighi, H. M. (2007).
1150 Forecasting the global burden of Alzheimer's disease. *Alzheimers Dement.* 3,
1151 186–191. doi: 10.1016/j.jalz.2007.04.381

1152 Chang, C. C., and Lin, C. J. (2011). LIBSVM: a Library for support vector machines.
1153 *ACM Trans. Intell. Syst. Technol.* 2, 1–27. doi: 10.1145/1961189.1961199

1154 Chicco, D., and Jurman, G. (2020). The advantages of the Matthews correlation
1155 coefficient (MCC) over F1 score and accuracy in binary classification
1156 evaluation. *BMC Genomics* 21:6. doi: 10.1186/s12864-019-6413-7

1157 Cole, J. H., Leech, R., and Sharp, D. J. (2015). Prediction of brain age suggests
1158 accelerated atrophy after traumatic brain injury. *Ann. Neurol.* 77, 571–581.
1159 doi: 10.1002/ana.24367

1160 Craft, S., Newcomer, J., Kanne, S., Dagogo-Jack, S., Cryer, P., Sheline, Y.,
1161 et al. (1996). Memory improvement following induced hyperinsulinemia in
1162 Alzheimer's disease. *Neurobiol. Aging* 17, 123–130. doi: 10.1016/0197-4580(95)
1163 02002-0

1164 Duara, R., Loewenstein, D. A., Greig, M., Acevedo, A., Potter, E., Appel, J.,
1165 et al. (2010). Reliability and validity of an algorithm for the diagnosis of
1166 normal cognition, mild cognitive impairment, and dementia: implications for
1167 multicenter research studies. *Am. J. Geriatr. Psychiatry* 18, 363–370. doi: 10.
1168 1097/JGP.0b013e3181c534a0

1169 Duara, R., Loewenstein, D. A., Greig, M. T., Potter, E., Barker, W., Raj, A., et al.
1170 (2011). Pre-MCI and MCI: neuropsychological, clinical, and imaging features
1171 and progression rates. *Am. J. Geriatr. Psychiatry* 19, 951–960. doi: 10.1097/JGP.
1172 0b013e3182107c69

1173 Dubois, J., Galdi, P., Han, Y., Paul, L. K., and Adolphs, R. (2018). Resting-State
1174 Functional Brain Connectivity Best Predicts the Personality Dimension of
1175 Openness to Experience. *Personal. Neurosci.* 1:e6. doi: 10.1017/pen.2018.8

1176 Eskildsen, S. F., Coupé, P., García-Lorenzo, D., Fonov, V., Pruessner, J. C., and
1177 Collins, D. L. (2013). Prediction of Alzheimer's disease in subjects with mild
1178 cognitive impairment from the ADNI cohort using patterns of cortical thinning.
1179 *Neuroimage* 65, 511–521. doi: 10.1016/j.neuroimage.2012.09.058

1180 Ferreira, L. K., Diniz, B. S., Forlenza, O. V., Busatto, G. F., and Zanetti, M. V.
1181 (2011). Neurostructural predictors of Alzheimer's disease: a meta-analysis of
1182 VBM studies. *Neurobiol. Aging* 32, 1733–1741. doi: 10.1016/j.neurobiolaging.
1183 2009.11.008

1184 Ganguli, M., Jia, Y., Hughes, T. F., Snitz, B. E., Chang, C. H., Berman, S. B.,
1185 et al. (2019). Mild Cognitive Impairment that Does Not Progress to Dementia:
1186 A Population-Based Study. *J. Am. Geriatr. Soc.* 67, 232–238. doi: 10.1111/jgs.
1187 15642

1188 Ganguli, M., Lee, C. W., Snitz, B. E., Hughes, T. F., McDade, E., and Chang,
1189 C. C. H. (2015). Rates and risk factors for progression to incident dementia
1190 vary by age in a population cohort. *Neurology* 84, 72–80. doi: 10.1212/WNL.
1191 0000000000001113

1192 Gollan, T. H., Weissberger, G. H., Runquist, E., Montoya, R. I., and Cera, C. M.
1193 (2012). Self-ratings of spoken language dominance: a Multilingual Naming
1194 Test (MINT) and preliminary norms for young and aging Spanish-English
1195 bilinguals. *Biling.* 15, 594–615. doi: 10.1017/S1366728911000332

1196 Hausman, H. K., O'Shea, A., Kraft, J. N., Boutzoukas, E. M., Evangelista, N. D.,
1197 Van Etten, E. J., et al. (2020). The Role of Resting-State Network Functional
1198 Connectivity in Cognitive Aging. *Front. Aging Neurosci.* 12:177. doi: 10.3389/
1199 fnagi.2020.00177

1200 Hojjati, S. H., Ebrahimbzadeh, A., Khazaee, A., and Babajani-Feremi, A. (2018).
1201 Predicting conversion from MCI to AD by integrating rs-fMRI and structural
1202 MRI. *Comput. Biol. Med.* 102, 30–39. doi: 10.1016/j.combiomed.2018.09.004

1203 Iguyon, I., and Elisseeff, A. (2003). An introduction to variable and feature
1204 selection. *J. Mach. Learn. Res.* 3, 1157–1182. doi: 10.1162/15324430332275
1205 3616

1206 Lang, M., Rosselli, M., Greig, M. T., Torres, V. L., Vélez-Uribe, I., Arruda, F., et al.
1207 (2021). Depression and the diagnosis of MCI in a culturally diverse sample in
1208 the United States. *Arch. Clin. Neuropsychol.* 36, 214–230. doi: 10.1093/arclin/
1209 acz043

1210 Li, H. J., Hou, X. H., Liu, H. H., Yue, C. L., He, Y., and Zuo, X. N. (2015).
1211 Toward systems neuroscience in mild cognitive impairment and Alzheimer's
1212 disease: a meta-analysis of 75 fMRI studies. *Hum. Brain Mapp.* 36, 1217–1232.
1213 doi: 10.1002/hbm.22689

1214 Li, X., Morgan, P. S., Ashburner, J., Smith, J., and Rorden, C. (2016). The first
1215 step for neuroimaging data analysis: DICOM to NIfTI conversion. *J. Neurosci.*
1216 *Methods* 264, 47–56. doi: 10.1016/j.jneumeth.2016.03.001

1217 Li, Y., Wang, X., Li, Y., Sun, Y., Sheng, C., Li, H., et al. (2016). Abnormal resting-
1218 state functional connectivity strength in mild cognitive impairment and its
1219 conversion to Alzheimer's disease. *Neural Plast.* 2016:4680972. doi: 10.1155/
1220 2016/4680972

1221 Lindquist, M. A., Krishnan, A., López-Solà, M., Jepma, M., Woo, C. W., Koban, L.,
1222 et al. (2017). Group-regularized individual prediction: theory and application
1223 to pain. *Neuroimage* 145, 274–287. doi: 10.1016/j.neuroimage.2015.10.074

1224 Moradi, E., Pepe, A., Gaser, C., Huttunen, H., and Tohka, J. (2015). Machine
1225 learning framework for early MRI-based Alzheimer's conversion prediction
1226 in MCI subjects. *Neuroimage* 104, 398–412. doi: 10.1016/j.neuroimage.2014.
1227 10.002

1228 Morris, J. C. (1997). Clinical Dementia Rating: a reliable and valid diagnostic
1229 and staging measure for dementia of the Alzheimer type. *Int. Psychogeriatr.* 9,
1230 173–176. doi: 10.1017/S1041610297004870

1231 Nasreddine, Z., Phillips, N., Bédirian, V., Charbonneau, S., Whitehead, V., Collin,
1232 I., et al. (2005). The Montreal Cognitive Assessment, MoCA: a brief screening
1233 tool for mild cognitive impairment. *J. Am. Geriatr. Soc.* 53, 695–699. doi: 10.
1234 1111/j.1532-5415.2005.53221.x

1235 Oltra-Cucarella, J., Ferrer-Cascales, R., Alegret, M., Gasparini, R., Díaz-Ortiz,
1236 L. M., Ríos, R., et al. (2018). Risk of progression to Alzheimer's disease
1237 for different neuropsychological Mild Cognitive Impairment subtypes: a
1238 hierarchical meta-analysis of longitudinal studies. *Psychol. Aging* 33, 1007–1021.
1239 doi: 10.1037/pag0000294

1240 Ostrosky-Solis, F., Gutierrez, A. L., Flores, M. R., and Ardila, A. (2007). Same
1241 or different? Semantic verbal fluency across Spanish-speakers from different
1242 countries. *Arch. Clin. Neuropsychol.* 22, 367–377. doi: 10.1016/j.acn.2007.
1243 01.011

1244 Penny, W., Friston, K., Ashburner, J., Kiebel, S., and Nichols, T. (2007). *Statistical
1245 Parametric Mapping: The Analysis of Functional Brain Images*. Amsterdam:
1246 Elsevier. doi: 10.1016/B978-0-12-372560-8.X5000-1

1247 Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. *J. Intern.
1248 Med.* 256, 183–194. doi: 10.1111/j.1365-2796.2004.01388.x

1249 Petersen, R. C., Caraciolo, B., Brayne, C., Gauthier, S., Jelic, V., and Fratiglioni, L.
1250 (2014). Mild cognitive impairment: a concept in evolution. *J. Intern. Med.* 275,
1251 214–228. doi: 10.1111/joim.12190

1252 Polosecki, P., Castro, E., Rish, I., Pustina, D., Warner, J. H., Wood, A., et al.
1253 (2020). Resting-state connectivity stratifies premanifest Huntington's disease by
1254 longitudinal cognitive decline rate. *Sci. Rep.* 10:1252. doi: 10.1038/s41598-020-
1255 58074-8

1256 Possin, K. L., Laluz, V. R., Alcantar, O. Z., Miller, B. L., and Kramer, J. H. (2011).
1257 Distinct neuroanatomical substrates and cognitive mechanisms of figure copy
1258 performance in Alzheimer's disease and behavioral variant frontotemporal
1259 dementia. *Neuropsychologia* 49, 43–48. doi: 10.1016/j.neuropsychologia.2010.
1260 10.026

1261 Reitan, R. M. (1958). Validity of the Trail Making Test as an Indicator of Organic
1262 Brain Damage. *Percept. Mot. Skills* 8, 271–276. doi: 10.2466/pms.1958.8.3.271

1263 Ruff, R. M., Light, R. H., Parker, S. B., and Levin, H. S. (1996). Benton controlled
1264 Oral Word Association Test: reliability and updated norms. *Arch. Clin.
1265 Neuropsychol.* 11, 329–338. doi: 10.1016/0887-6177(95)00033-X

1266 Ruppert, D. (2004). The Elements of Statistical Learning: data mining, inference,
1267 and prediction. *J. Am. Stat. Assoc.* 99, 567–567. doi: 10.1198/jasa.2004.s339

1268 Saeyns, Y., Inza, I., and Larrañaga, P. (2007). A review of feature selection techniques
1269 in bioinformatics. *Bioinformatics* 23, 2507–2517. doi: 10.1093/bioinformatics/
1270 btm344

1271 Schroeter, M. L., Stein, T., Maslowski, N., and Neumann, J. (2009). Neural
1272 correlates of Alzheimer's disease and mild cognitive impairment: a systematic
1273 and quantitative meta-analysis involving 1351 patients. *Neuroimage* 47, 1196–
1274 1206. doi: 10.1016/j.neuroimage.2009.05.037

1275 Shirer, W. R., Jiang, H., Price, C. M., Ng, B., and Greicius, M. D. (2015).
1276 Optimization of rs-fMRI Pre-processing for Enhanced Signal-Noise Separation,
1277 Test-Retest Reliability, and Group Discrimination. *Neuroimage* 117, 67–79.
1278 doi: 10.1016/j.neuroimage.2015.05.015

1255 Stroop, J. R. (1935). Studies of interference in serial verbal reactions. *J. Exp. Psychol.* 18, 643–662. doi: 10.1037/h0054651 1312

1256 Thomas Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., et al. (2011). The organization of the human cerebral cortex 1313 estimated by intrinsic functional connectivity. *J. Neurophysiol.* 106, 1125–1165.

1257 1314

1258 1315

1259 1316

1260 Toberge, D. R., and Curtis, S. (2013). *STROOP Test de Colores y Palabras. Vol 53.* 1317 (Q21) Madrid: TEA Ediciones.

1261 1318

1262 Trenerry, M. R., Crosson, B., DeBoe, J., and Leber, W. R. (2012). *Stroop 1319 Neuropsychological Screening Test (Adult)*. Lutz: Psychological Assessment

1263 Resources. doi: 10.1007/springerreference_183456

1264 Varoquaux, G., Raamana, P. R., Engemann, D. A., Hoyos-Idrobo, A., Schwartz, Y., 1320 and Thirion, B. (2017). Assessing and tuning brain decoders: cross-validation, 1321 caveats, and guidelines. *Neuroimage* 145, 166–179. doi: 10.1016/j.neuroimage. 1322 2016.10.038

1265 1323

1266 Wechsler, D., Coalson, D. L., and Raiford, S. E. (2008). *WAIS-IV Technical and 1324 Interpretive Manual*. London: Pearson.

1267 Weintraub, S., Besser, L., Dodge, H. H., Teylan, M., Ferris, S., Goldstein, F. C., et al. 1325 (2018). Version 3 of the Alzheimer Disease Centers' Neuropsychological Test 1326 Battery in the Uniform Data Set (UDS). *Alzheimer Dis. Assoc. Disord.* 32, 10–17. 1327 doi: 10.1097/WAD.0000000000000223

1271 1328

1272 Whitfield-Gabrieli, S., and Nieto-Castanon, A. (2012). Conn: a 1329 functional connectivity toolbox for correlated and anticorrelated 1330 1331

1273 1332

1274 1333

1275 1334

1276 1335

1277 1336

1278 1337

1279 1338

1280 1339

1281 1340

1282 1341

1283 1342

1284 1343

1285 1344

1286 1345

1287 1346

1288 1347

1289 1348

1290 1349

1291 1350

1292 1351

1293 1352

1294 1353

1295 1354

1296 1355

1297 1356

1298 1357

1299 1358

1300 1359

1301 1360

1302 1361

1303 1362

1304 1363

1305 1364

1306 1365

1307 1366

1308 1367

1309 1368

1310 1369

1311 1370

1312 1371

1313 1372

1314 1373

1315 1374

1316 1375

1317 1376

1318 1377

1319 1378

1320 1379

1321 1380

1322 1381

1323 1382

1324 1383

1325 1384

1326 1385

1327 1386

1328 1387

1329 1388

1330 1389

1331 1390

1332 1391

1333 1392

1334 1393

1335 1394

1336 1395

1337 1396

1338 1397

1339 1398

1340 1399

1341 1400

1342 1401

1343 1402

1344 1403

1345 1404

1346 1405

1347 1406

1348 1407

1349 1408

1350 1409

1351 1410

1352 1411

1353 1412

1354 1413

1355 1414

1356 1415

1357 1416

1358 1417

1359 1418

1360 1419

1361 1420

1362 1421

1363 1422

1364 1423

1365 1424

1366 1425

1367 1426

1368 1427

1369 1428

1370 1429

1371 1430

1372 1431

1373 1432

1374 1433

1375 1434

1376 1435

1377 1436

1378 1437

1379 1438

1380 1439

1381 1440

1382 1441

1383 1442

1384 1443

1385 1444

1386 1445

1387 1446

1388 1447

1389 1448

1390 1449

1391 1450

1392 1451

1393 1452

1394 1453

1395 1454

1396 1455

1397 1456

1398 1457

1399 1458

1400 1459

1401 1460

1402 1461

1403 1462

1404 1463

1405 1464

1406 1465

1407 1466

1408 1467

1409 1468

1410 1469

1411 1470

1412 1471

1413 1472

1414 1473

1415 1474

1416 1475

1417 1476

1418 1477

1419 1478

1420 1479

1421 1480

1422 1481

1423 1482

1424 1483

1425 1484

1426 1485

1427 1486

1428 1487

1429 1488

1430 1489

1431 1490

1432 1491

1433 1492

1434 1493

1435 1494

1436 1495

1437 1496

1438 1497

1439 1498

1440 1499

1441 1500

1442 1501

1443 1502

1444 1503

1445 1504

1446 1505

1447 1506

1448 1507

1449 1508

1450 1509

1451 1510

1452 1511

1453 1512

1454 1513

1455 1514

1456 1515

1457 1516

1458 1517

1459 1518

1460 1519

1461 1520

1462 1521

1463 1522

1464 1523

1465 1524

1466 1525

1467 1526

1468 1527

1469 1528

1470 1529

1471 1530

1472 1531

1473 1532

1474 1533

1475 1534

1476 1535

1477 1536

1478 1537

1479 1538

1480 1539

1481 1540

1482 1541

1483 1542

1484 1543

1485 1544

1486 1545

1487 1546

1488 1547

1489 1548

1490 1549

1491 1550

1492 1551

1493 1552

1494 1553

1495 1554

1496 1555

1497 1556

1498 1557

1499 1558

1500 1559

1501 1560

1502 1561

1503 1562

1504 1563

1505 1564

1506 1565

1507 1566

1508 1567

1509 1568

1510 1569

1511 1570

1512 1571

1513 1572

1514 1573

1515 1574

1516 1575

1517 1576

1518 1577

1519 1578

1520 1579

1521 1580

1522 1581

1523 1582

1524 1583

1525 1584

1526 1585

1527 1586

1528 1587

1529 1588

1530 1589

1531 1590

1532 1591

1533 1592

1534 1593

1535 1594

1536 1595

1537 1596

1538 1597

1539 1598

1540 1599

1541 1600

1542 1601

1543 1602

1544 1603

1545 1604

1546 1605

1547 1606

1548 1607

1549 1608

1550 1609

1551 1610

1552 1611

1553 1612

1554 1613

1555 1614

1556 1615

1557 1616

1558 1617

1559 1618

1560 1619

1561 1620

1562 1621

1563 1622

1564 1623

1565 1624

1566 1625

1567 1626

1568 1627

1569 1628

1570 1629

1571 1630

1572 1631

1573 1632

1574 1633

1575 1634

1576 1635

1577 1636

1578 1637

1579 1638

1580 1639

1581 1640

1582 1641

1583 1642

1584 1643

1585 1644

1586 1645

1587 1646

1588 1647

1589 1648

1590 1649

1591 1650

1592 1651

1593 1652

1594 1653

1595 1654

1596 1655

1597 1656

1598 1657

1599 1658

1600 1659

1601 1660

1602 1661

1603 1662

1604 1663

1605 1664

1606 1665

1607 1666

1608 1667

1609 1668

1610 1669

1611 1670

1612 1671

1613 1672

1614 1673

1615 1674

1616 1675

1617 1676

1618 1677

1619 1678

1620 1679

1621 1680

1622 1681

1623 1682

1624 1683

1625 1684

1626 1685

1627 1686

1628 1687

1629 1688

1630 1689

1631 1690

1632 1691

1633 1692

1634 1693

1635 1694

1636 1695

1637 1696

1638 1697

1639 1698

1640 1699

1641 1700

1642 1701

1643 1702

1644 1703

1645 1704

1646 1705

1647 1706

1648 1707

1649 1708

1650 1709

1651 1710

1652 1711

1653 1712

1654 1713

1655 1714

1656 1715

1657 1716

1658 1717

1659 1718

1660 1719

1661 1720

1662 1721

1663 1722

1664 1723

1665 1724

1666 1725

1667 1726

1668 1727

1669 1728

1670 1729

1671 1730

1672 1731

1673 1732

1674 1733

1675 1734

1676 1735

1677 1736

1678 1737

1679 1738

1680 1739

1681 1740

1682 1741

1683 1742

1684 1743

1685 1744

1686 1745

1687 1746

1688 1747

1689 1748

1690 1749

1691 1750

1692 1751

1693 1752

1694 1753

1695 1754

1696 1755

1697 1756

1698 1757

1699 1758

1700 1759

1701 1760

1702 1761

1703 1762

1704 1763

1705 1764

1706 1765

1707 1766

1708 1767

1709 1768

1710 1769

1711 1770

1712 1771

1713 1772

1714 1773

1715 1774

1716 1775

1717 1776

1718 1777

1719 1778

1720 1779

1721 1780

1722 1781

1723 1782

1724 1783

1725 1784

1726 1785

1727 1786

1728 1787

1729 1788

1730 1789

1731 1790

1732 1791

1733 1792

1734 1793

1735 1794

1736 1795

1737 1796

1738 1797

1739 1798

1740 1799

1741 1800

1742 1801

1743 1802

1744 1803

1745 1804

1746 1805

1747 1806

1748 1807

1749 1808

1750 1809

1751 1810

1752 1811

1753 1812

1754 1813

1755 1814

1756 1815

1757 1816

1758 1817

1759 1818

1760 1819

1761 1820

1762 1821

1763 1822

1764 1823

1765 1824

1766 1825

1767 1826

1768 1827

1769 1828

1770 1829

1771 1830

1772 1831

1773 1832

1774 1833

1775 1834

1776 1835

1777 1836

1778 1837

1779 1838

1780 1839

1781 1840

1782 1841

1783 1842

1784 1843

1785 1844

1786 1845

1787 1846

1788 1847

1789 1848

1790 1849

1791 1850

1792 1851

1793 1852

1794 1853

1795 1854

1796 1855

1797 1856

1798 1857

1799 1858

1800 1859

1801 1860

1802 1861

1803 1862

1804 1863

1805 1864

1806 1865

1807 1866

1808 1867

1809 1868

1810 1869

1811 1870

1812 1871

1813 1872

1814 1873

1815 1874

1816 1875

1817 1876

1818 1877

1819 1878

1820 1879

1821 1880

1822 1881

1823 1882

1824 1883

1825 1884

1826 1885

1827 1886

1828 1887

1829 1888

1830 1889

1831 1890

1832 1891

1833 1892

1834 1893

1835 1894

1836 1895

1837 1896

1838 1897

1839 1898

1840 1899

1841 1900

1842 1901

1843 1902

1844 1903

1845 1904

1846 1905

1847 1906

1848 1907

1849 1908

1850 1909

1851 1910

1852 1911

1853 1912

1854 1913

1855 1914

1856 1915

1857 1916

1858 1917

1859 1918

1860 1919

1861 1920

1862 1921

1863 1922

1864 1923

1865 1924

1866 1925

1867 1926

1868 1927

1869 1928

1870 1929

1871 1930

1872 1931

1873 1932

1874 1933

1875 1934

1876 1935

1877 1936

1878 1937

1879 1938

1880 1939

1881 1940

1882 1941

1883 1942

1884 1943

1885 1944

1886 1945

1887 1946

1888 1947

1889 1948

1890 1949

1891 1950

1892 1951

1893 1952

1894 1953

1895 1954

1896 1955

1897 1956

1898 1957

1899 1958

1900 1959

1901 1960

1902 1961

1903 1962

1904 1963

1905 1964

1906 1965

1907 1966

1908 1967

1909 1968

1910 1969

1911 1970

1912 1971

1913 1972

1914 1973

1915 1974

1916 1975

1917 1976

1918 1977

1919 1978

1920 1979

1921 1980

1922 1981

1923 1982

1924 1983

1925 1984

1926 1985

1927 1986

1928 1987

1929 1988

1930 1989

1931 1990

1932 1991

1933 1992

1934 1993

1935 1994

1936 1995

1937 1996

1938 1997

1939 1998

1940 1999

1941 2000

1942 2001

1943 2002

1944 2003

1945 2004

1946 2005

1947 2006

1948 2007

1949 2008

1950 2009

1951 2010

1952 2011

1953 2012

1954 2013

1955 2014

1956 2015

1957 2016

1958 2017

1959 2018

1960 2019

1961 2020

1962 2021

1963 2022

1964 2023

1965 2024

1966 2025

1967 2026

1968 2027

1969 2028

1970 2029

1971 2030

1972 2031

1973 2032

1974 2033

1975 2034

1976 2035

1977 2036

1978 2037

1979 2038

1980 2039

1981 2040

1982 2041

1983 2042

1984 2043

1985 2044

1986 2045

1987 2046

1988 2047

1989 2048

1990 2049

1991 2050

1992 2051

1993 2052

1994 2053

1995 2054

1996 2055

1997 2056

1998 2057

1999 2058

2000 2059

2001 2060

2002 2061

2003 2062

2004 2063

2005 2064

2006 2065

2007 2066

2008 2067

2009 2068

2010 2069

2011 2070

2012 2071

2013 2072

2014 2073

2015 2074

2016 2075

2017 2076

2018 2077

2019 2078

2020 2079

2021 2080

2022 2081

2023 2082

2024 2083

2025 2084

2026 2085

2027 2086

2028 2087

2029