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ABSTRACT
Since the early days of relational databases, it was realized
that acyclic hypergraphs give rise to database schemas with
desirable structural and algorithmic properties. In a by-
now classical paper, Beeri, Fagin, Maier, and Yannakakis
established several different equivalent characterizations of
acyclicity; in particular, they showed that the sets of at-
tributes of a schema form an acyclic hypergraph if and only
if the local-to-global consistency property for relations over
that schema holds, which means that every collection of pair-
wise consistent relations over the schema is globally consis-
tent. Even though real-life databases consist of bags (mul-
tisets), there has not been a study of the interplay between
local consistency and global consistency for bags. We em-
bark on such a study here and we first show that the sets
of attributes of a schema form an acyclic hypergraph if and
only if the local-to-global consistency property for bags over
that schema holds. After this, we explore algorithmic as-
pects of global consistency for bags by analyzing the com-
putational complexity of the global consistency problem for
bags: given a collection of bags, are these bags globally con-
sistent? We show that this problem is in NP, even when the
schema is part of the input. We then establish the follow-
ing dichotomy theorem for fixed schemas: if the schema is
acyclic, then the global consistency problem for bags is solv-
able in polynomial time, while if the schema is cyclic, then
the global consistency problem for bags is NP-complete. The
latter result contrasts sharply with the state of affairs for re-
lations, where, for each fixed schema, the global consistency
problem for relations is solvable in polynomial time.

1. INTRODUCTION
This paper bring together two different strands of research

in database theory: the study of global consistency and the
study of bag semantics. Before presenting an overview of
our main results, we provide some background to each of
these two strands.

Minor revision of the paper with the same title pub-
lished in the Proceedings of the 40th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Sys-
tems (PODS 2021), ISBN978-1-4503-8381-3/21/06, June 20-
25, 2021. DOI:10.1145/3452021.3458329
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The study of global consistency in relational databases
arose from the universal relation model, which is the as-
sumption that all relations at hand are projections of a single
relation, called the universal relation. Much of the work on
database dependencies and normalization during the 1970s
made this assumption first implicitly and then explicitly, as
for instance in the paper by Beeri, Bernstein, and Good-
man [8]. The universal relation model implies that occur-
rences of the same attribute in different relations have the
same meaning; it also provides a framework to study depen-
dencies across different relations. Furthermore, it has been
argued that the universal relation model yields logical inde-
pendence and access-path independence [22], thus it can be
regarded as an early model of data integration. At times,
the universal relation model was surrounded by controversy
with arguments both against it [18] and in favor of it [24].
The controversy notwithstanding and instead of assuming
the presence of a universal relation, researchers also investi-
gated when a universal relation exists.

On the algorithmic side, the universal relation problem
(also known as the global consistency problem) is the follow-
ing decision problem: given relations R1, . . . , Rm, is there a
relation R such that, for every i ≤ m, the projection of R on
the attributes of Ri is equal to Ri? If the answer is positive,
then the relations R1, . . . , Rm are said to be globally consis-
tent and R is said to be a universal relation for them or a
witness to their global consistency. Honeyman, Ladner, and
Yannakakis [15] showed that the universal relation problem
is NP-complete, even for relations of arity 2.

On the structural side, the problem is to characterize when
a collection of relations is globally consistent. It is easy to
see that if the relations R1, . . . , Rm are globally consistent,
then they are pairwise consistent (i.e., every two of them are
globally consistent). As pointed out in [15], however, the
converse does not hold in general; in other words, pairwise
consistency is a necessary but not sufficient condition for
global consistency. This state of affairs raised the question:
can we identify the settings in which pairwise consistency
is both a necessary and sufficient condition for global con-
sistency? Let R1, . . . , Rm be a collection of relations over
a schema with X1, . . . , Xm as the sets of attributes. The
sets X1, . . . , Xm can be viewed as the hyperedges of a hy-
pergraph. Beeri et al. [9] showed that the sets of attributes
of a schema form an acyclic hypergraph if and only if the
local-to-global consistency property for relations over that
schema holds, which means that every collection of pairwise
consistent relations over the schema is globally consistent.
Thus, for acyclic schemas, pairwise consistency is necessary
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and sufficient for global consistency. Consequently, the uni-
versal relation problem is solvable in polynomial time, if the
sets of attributes of the schema form an acyclic hypergraph.

Much of the research in database theory assumes that rela-
tions are sets. In 1993, Chaudhuri and Vardi [12] pointed out
that there is a gap between database theory and database
practice because“real”databases use bags (multisets). They
called for a re-examination of the foundations of databases
where the fundamental concepts and algorithmic problems
are investigated under bag semantics, instead of set seman-
tics. In particular, Chaudhuri and Vardi [12] raised the ques-
tion of the decidability of the conjunctive query containment
problem under bags semantics (the same problem under set
semantics is known to be NP-complete [11]). In spite of var-
ious efforts in the past and some recent progress [19, 20],
this question remains unanswered at present.

It is perhaps surprising that a study of consistency notions
under bag semantics has not been carried so far. Our main
goal here is to embark on such a study and to explore both
structural and algorithmic aspects of pairwise consistency
and of global consistency under bag semantics. In this study,
the consistency notions for bags are, of course, defined using
bag semantics in the computation of projections.

Summary of Results In general, properties of relations need
not carry over automatically to similar properties of bags.
This phenomenon manifests itself in the context of consis-
tency properties. Indeed, it is well known that if a collection
of relations is globally consistent, then their relational join is
a witness to their global consistency (see, e.g., [15]); in other
words, their relational join is a universal relation for them
and, in fact, it is the largest universal relation. In contrast,
we point out that this property fails for bags, i.e., there is a
collection of bags that is globally consistent but the bag-join
of the bags in the collection is not a witness to their global
consistency; furthermore, there may be no biggest witness
to the consistency of these bags.

Our first result asserts that two bags are consistent if and
only if they have the same projection on their common at-
tributes. While the analogous fact for relations is rather
trivial, here we need to bring in tools from the theory of lin-
ear programming and maximum flow problems. As a corol-
lary, we obtain a polynomial-time algorithm for checking
whether two given bags are consistent and returning a wit-
ness to their consistency, if they are consistent. After this,
we establish our main result concerning the structure of bag
consistency. Specifically, we show that the sets of attributes
of a schema form an acyclic hypergraph if and only if the
local-to-global consistency for bags over that schema holds.
Thus, the main finding by Beeri et al. [9] about acyclicity
and consistency extends to bags. The architecture of the
proof, however, is different from that in [9]. In particular,
if a schema is cyclic, we give an explicit construction of a
collection of bags that are pairwise consistent, but not glob-
ally consistent; the inspiration for our construction comes
from an earlier construction of hard-to-prove tautologies in
propositional logic by Tseitin [23].

We then explore algorithmic aspects of global consistency
for bags by analyzing the computational complexity of the
global consistency problem for bags: given a collection of
bags, are these bags globally consistent? Using a sparse-
model property of integer programming that is reminiscent
of Carathéodory’s Theorem for conic hulls [13], we first show
that this problem is in NP, even when the schema is part of

the input. After this, we establish the following dichotomy
theorem for fixed schemas: if the schema is acyclic, then
the global consistency problem for bags is solvable in poly-
nomial time, while if the schema is cyclic, then the global
consistency problem for bags is NP-complete. The latter
result contrasts sharply with the state of affairs for rela-
tions, where, for each fixed schema, the global consistency
problem for relations is solvable in polynomial time. Our
NP-hardness results build on an earlier NP-hardness result
about three-dimensional statistical data tables by Irving and
Jerrum [17], which was later on refined by De Loera and Onn
[21]. Translated into our context, this result asserts the NP-
hardness of the global consistency problem for bags over the
triangle hypergraph, i.e., the hypergraph with hyperedges of
the form {A1, A2}, {A2, A3}, {A3, A1}.

We conclude the paper with a brief overview of extensions
of the results reported here to relations over semirings.

Related Work The interplay between local consistency and
global consistency arises naturally in several different set-
tings. Already in 1962, Vorob’ev [25] studied this interplay
in the setting of probability distributions and characterized
the local-to-global consistency property for probability dis-
tributions in terms of a structural property of hypergraphs
that turned out to be equivalent to hypergraph acyclicity.
It appears that Beeri et al. [9] were unaware of Vorob’ev
work, but later on Vorob’ev’s work was cited in a survey
of database theory by Yannakakis [27]. In recent years, the
interplay between local consistency and global consistency
has been explored at great depth in the setting of quantum
information by Abramsky and his collaborators (see, e.g.,
[3, 4, 5]). In that setting, the interest is in contextuality
phenomena, which are situations where collections of mea-
surements are locally consistent but globally inconsistent -
Bell’s celebrated theorem [10] is an instance of this. The
similarities between these different settings (probability dis-
tributions, relational databases, and quantum mechanics)
were pointed out explicitly by Abramsky [1, 2]. This also
raised the question of developing a unifying framework in
which, among other things, the results by Vorob’ev and the
results by Beeri et al. are special cases of a single result.
Using a relaxed notion of consistency, we established such a
result for relations over semirings [6]. For the bag semiring,
however, the relaxed notion of consistency that we studied in
[6] is essentially equivalent to the consistency of probability
distributions with rational values (and not to the consistency
of bags). This left open the question of exploring the inter-
play between (the standard notions of) local consistency and
global consistency for bags, which is what we set to do in
the present paper.

2. RELATIONAL CONSISTENCY
Basic Notions An attribute A is a symbol with an associated
set Dom(A) called its domain. If X is a finite set of at-
tributes, then we write Tup(X) for the set of X-tuples; this
means that Tup(X) is the set of functions that take each
attribute A ∈ X to an element of its domain Dom(A). Note
that Tup(∅) is non-empty as it contains the empty tuple, i.e.,
the unique function with empty domain. If Y ⊆ X is a sub-
set of attributes and t is an X-tuple, then the projection of t
on Y , denoted by t[Y ], is the unique Y -tuple that agrees
with t on Y . In particular, t[∅] is the empty tuple.

Let X be a set of attributes. A relation over X is a func-
tion R : Tup(X) → {0, 1}. We write R(X) to emphasize
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the fact that R is a relation over schema X. The support
Supp(R) of R is the set of X-tuples t with a non-zero value,
i.e., Supp(R) := {t ∈ Tup(X) : R(t) ̸= 0}. Whenever no
confusion arises, we write R′ to denote Supp(R). We say
that R is finite if its support R′ is a finite set. In what fol-
lows, we will make the blanket assumption that all relations
considered are finite, so we will omit the term“finite”. Every
relation R can be identified with its support R′, thus every
relation R can be viewed as a finite set of X-tuples.

Let R be a relation over X and assume that Z ⊆ X. The
projection R[Z] of R on Z is the relation over Z consisting
of all projections t[Z], for t ∈ R. It is easy to see that for
all W ⊆ Z ⊆ X, we have R[Z][W ] = R[W ]).

If X and Y are sets of attributes, then we write XY as
shorthand for the union X ∪ Y . Accordingly, if x is an X-
tuple and y is a Y -tuple such that that x[X∩Y ] = y[X∩Y ],
then we write xy to denote the XY -tuple that agrees with x
on X and on y on Y . We say that x joins with y, and that y
joins with x, to produce the tuple xy.

The join R ✶ S of two relations R(X) and S(Y ) is the
relation over XY consisting of all XY -tuples t such that t[X]
is in R and t[Y ] is in S, i.e., all tuples of the form xy such
that x ∈ R, y ∈ S, and x joins with y.

Consistency of Two Relations Assume that R(X) and S(X)
are two relations over the schemas X and Y . We say that
R(X) and S(Y ) are consistent if there is a relation T over
XY such that T [X] = R and T [Y ] = S. We also say that T
witnesses the consistency of R and S. The next proposition,
whose proof is straightforward, gives a useful criterion for
the consistency of R and S.

Proposition 1. Let R(X) and S(Y ) be two relations.
The following statements are equivalent:

1. R and S are consistent.

2. R[X ∩ Y ] = S[X ∩ Y ].

Global Consistency of Relations Let R1(X1), . . . , Rm(Xm)
be relations over the schemas X1, . . . , Xm. We say that
the collection R1, . . . , Rm is globally consistent if there is
a relation T over X1 ∪ · · · ∪ Xm such that Ri = T [Xi] for
all i ∈ [m] = {1, . . . ,m}. We say that T witnesses the global
consistency of R1, . . . , Rm, and we call it a universal relation
for R1, . . . , Rm. The next result presents well known and
easy to prove facts about global consistency (see, e.g., [15]).

Proposition 2. Assume that R1(X1), . . . , Rm(Xm) are
relations over the schemas X1, . . . , Xm.

• If T is a relation witnessing the global consistency of
the relations R1, . . . , Rm, then T ⊆ R1 ✶ · · · ✶ Rm.

• The collection R1, . . . , Rm is globally consistent if and
only if (R1 ✶ · · · ✶ Rm)[Xi] = Ri for all i = 1, . . . ,m.

Consequently, if the collection R1, . . . , Rm is globally con-
sistent, then the join R1 ✶ · · · ✶ Rm is the largest universal
relation for R1, . . . , Rm.

In relational database theory, there has been an extensive
study of both the structural and the algorithmic aspects of
global consistency. We begin by surveying some of the re-
sults concerning the structural aspects of global consistency.
The main problem is to characterize when a collection of re-
lations is globally consistent.

We say that the relations R1(X1), . . . , Rm(Xm) are pair-
wise consistent if for every i, j ∈ [m], the relations Ri(Xi)
and Rj(Xj) are consistent. Clearly, if a relation T wit-
nesses the global consistency of R1, . . . , Rm, then the re-
lation T [XiXj ] witnesses the consistency of Ri and Rj , for
every i, j ∈ [m]. Thus, if the collection R1, . . . , Rm is glob-
ally consistent, then the relations R1, . . . , Rm are pairwise
consistent. The converse, however, is not true, in general.
Indeed, let X1 = {A1, A2}, X2 = {A2, A3}, X3 = {A3, A1}
and consider the relations R1(A1A2) = {00, 11}, R2(A2A3) =
{01, 10}, R3(A3A1) = {00, 11}. By Proposition 1, these re-
lations are pairwise consistent. By Proposition 2, however,
they are not globally consistent because R1 ✶ R2 ✶ R3 = ∅.

Beeri, Fagin, Maier, and Yannakakis [9] characterized the
set of schemas for which pairwise consistency is a neces-
sary and sufficient condition for global consistency of rela-
tions. Their characterization involves notions from hyper-
graph theory that we now review.

Acyclic Hypergraphs A hypergraph is a pair H = (V,E),
where V is a set of vertices and E is a set of hyperedges,
each of which is a non-empty subset of V . Every collec-
tion X1, . . . , Xm of sets of attributes can be identified with a
hypergraph H = (V,E), where V = X1 ∪ · · · ∪Xm and E =
{X1, . . . , Xm}. Conversely, every hypergraph H = (V,E)
gives rise to a collection X1, . . . , Xm of sets of attributes,
where X1, . . . , Xm are the hyperedges of H. Thus, we can
move from collections of sets of attributes to hypergraphs,
and vice versa. The notion of an acyclic hypergraph gen-
eralizes the notion of an acyclic graph. Since we will not
work directly with the definition of an acyclic hypergraph,
we refer the reader to [9] for the precise definition. Instead,
we focus on other notions that are equivalent to hypergraph
acyclicity and will be of interest to us in the sequel.

Conformal and Chordal Hypergraphs The primal graph of a
hypergraph H = (V,E) is the undirected graph that has V
as its set of vertices and has an edge between any two distinct
vertices that appear together in at least one hyperedge of H.
A hypergraph H is conformal if the set of vertices of every
clique (i.e., complete subgraph) of the primal graph of H
is contained in some hyperedge of H. A hypergraph H is
chordal if its primal graph is chordal, that is, if every cycle
of length at least four of the primal graph of H has a chord
(i.e., an edge that connects two nodes on the cycle, but is not
one of the edges of the cycle). To illustrate these concepts,
let Vn = {A1, . . . , An} be a set of n vertices and consider
the hypergraphs

Pn = (Vn, {A1, A2}, . . . , {An−1, An}) (1)

Cn = (Vn, {A1, A2}, . . . , {An−1, An}, {An, A1}) (2)

Hn = (Vn, {Vn \ {Ai} : 1 ≤ i ≤ n}) (3)

If n ≥ 2, then the hypergraph Pn is both conformal and
chordal. The hypergraph C3 = H3 is chordal, but not con-
formal. For every n ≥ 4, the hypergraph Cn is conformal,
but not chordal, while the hypergraph Hn is chordal, but
not conformal.

Running Intersection Property A hypergraph H has the run-
ning intersection property if there is a listing X1, . . . , Xm of
all hyperedges of H such that for every i ∈ [m] with i ≥ 2,
there exists a j < i such that Xi ∩ (X1 ∪ · · · ∪Xi−1) ⊆ Xj .

Join Tree A join tree for a hypergraph H is an undirected
tree T with the set E of the hyperedges of H as its vertices
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and such that for every vertex v of H, the set of vertices
of T containing v forms a subtree of T , i.e., if v belongs to
two vertices Xi and Xj of T , then v belongs to every vertex
of T in the unique simple path from Xi to Xj in T .

Local-to-Global Consistency Property for Relations Let H be
a hypergraph and let X1, . . . , Xm be a listing of all hyper-
edges of H. We say that H has the local-to-global consis-
tency property for relations if every pairwise consistent col-
lection R1(X1), . . . , Rm(Xm) of relations over the schemas
X1, . . . , Xm is globally consistent.

We are ready to state the main result in Beeri et al. [9].

Theorem 1 (Theorem 3.4 in [9]). Let H be a hyper-
graph. The following statements are equivalent:

(a) H is an acyclic hypergraph.

(b) H is a conformal and chordal hypergraph.

(c) H has the running intersection property.

(d) H has a join tree.

(e) H has the local-to-global consistency property for rela-
tions.

As an illustration, if n ≥ 2, the hypergraph Pn is acyclic,
hence it has the local-to-global consistency property for rela-
tions. In contrast, if n ≥ 3, the hypergraphs Cn and Hn are
cyclic, hence they do not have the local-to-global consistency
property for relations.

Complexity of Global Consistency for Relations We now dis-
cuss the algorithmic aspects of global consistency. The global
consistency problem for relations (also known as the univer-
sal relation problem for relations) asks: given a hypergraph
H = (V, {X1, . . . , Xm}) and relations R1, . . . , Rm over H, is
the collection R1, . . . , Rm globally consistent? Honeyman,
Ladner, and Yannakakis [15] established the following result.

Theorem 2. The global consistency problem for relations
is NP-complete.

The NP-hardness of the global consistency problem for re-
lations is proved via a reduction from 3-Colorability in
which each relation has arity 2 and consists of just six pairs.
Specifically, each edge (u, v) in a given graph G gives rise to a
relation of arity 2 with attributes u and v; the six pairs in the
relation are the pairs of different colors chosen from the three
colors “red”, “blue”, and “green”. The membership in NP
uses the observation that if a collection R1, . . . , Rm of rela-
tions is globally consistent, then a witness W of this fact can
be obtained as follows: for each i ≤ m and each tuple t ∈ Ri,
pick a tuple in the join R1 ✶ · · · ✶ Rm that extends t and
insert it in W . In particular, the cardinality |W | of W is
bounded by the sum

∑m
i=1 |Ri| ≤ mmax{|Ri| : i ∈ [m]}, and

thus the size of W is bounded by a polynomial in the size of
the input hypergraph H and the input relations R1, . . . , Rm.

Several restricted cases of the global consistency problem
for relations turn out to be solvable in polynomial time.

First, Proposition 1 implies that the consistency prob-
lem for two relations is solvable in polynomial time, since it
amounts to checking that the two given relations R(X) and
S(Y ) have the same projection on X ∩ Y .

Second, from the preceding fact and from Theorem 1, it
follows that the global consistency problem for relations is
solvable in polynomial time when restricted to acyclic hy-
pergraphs, since, in this case, the global consistency of a

collection of relations is equivalent to the pairwise consis-
tency of the relations in the collection.

Finally, for every fixed hypergraph H = (V, {X1, . . . , Xm})
(be it cyclic or acyclic), the global consistency problem re-
stricted to relations R1(X1), . . . , Rm(Xm) with sets of at-
tributes X1, . . . , Xm is also solvable in polynomial time. This
is so because, by Proposition 2, one can first compute the
join J = R1 ✶ · · · ✶ Rm in polynomial time and then
check whether J [Xi] = Ri holds, for i = 1, . . . ,m. While
the cardinality |J | of this witness J can only be bounded
by

∏m
i=1 |Ri| ≤ max{|Ri| : i ∈ [m]}m, this cardinality is still

polynomial in the size of the input because, in this case, the
exponent m is fixed and not part of the input.

3. BAG CONSISTENCY
Basic Notions Let X be a set of attributes. A bag over X
is a function R : Tup(X) → {0, 1, 2, . . .}. As with relations,
we write R(X) to emphasize the fact that R is a bag over
X; the support Supp(R) (also denoted by R′) of R is the
set of X-tuples t that are assigned non-zero value. We say
that R is finite if its support R′ is a finite set. In the sequel,
we will assume that all bags are finite.

If R is a bag and t is an X-tuple, then the non-negative
integer R(t) is called the multiplicity of t in R; we write t :
R(t) to denote that the multiplicity of t in R is equal to R(t).
Every bag R can be viewed as a finite set of elements of the
form t : R(t), where t ∈ R′ and R(t) ̸= 0. A bag can also be
represented in tabular form. For example, the table

A B #
a1 b1 : 2
a2 b2 : 1
a3 b3 : 5

represents the bag R = {(a1, b1) : 2, (a2, b2) : 1, (a3, b3) : 5}.
Let R be a bag over X and assume that Z ⊆ X. If t is
a Z-tuple, then the marginal of R over t is defined by

R(t) :=
∑

r∈R′:
r[Z]=t

R(r). (4)

Thus, every bag R over X induces a bag over Z, called the
marginal of R on Z and denoted by R[Z]. It is easy to verify
that for all W ⊆ Z ⊆ X, we have R[Z][W ] = R[W ].

Let R be a bag over X and S a bag over Y . The bag
join R ✶b S of R and S is the bag over XY having sup-
port R′ ✶ S′ and such that every XY -tuple t ∈ R′ ✶ S′ has
multiplicity (R ✶b S)(t) = R(t[X]) × S(t[Y ]).

Consistency of Two Bags Two bags R(X) and S(Y ) are
consistent if there is a bag T (XY ) such that T [X] = R
and T [Y ] = S, where now the projections are computed
according to Equation (4); we say that T witnesses the con-
sistency of R and S. It is easy to see that if R(X) and S(Y )
are consistent bags and T is a bag that witnesses their con-
sistency, then T ′ ⊆ R′ ✶ S′, that is, the support of T is
contained in the join of the supports of R and S.

By Proposition 1, if two relations R(X) and S(Y ) are
consistent, then their join R ✶ S witnesses their consis-
tency; moreover, R ✶ S is the largest relation that has
this property. In contrast, this is not true for bags be-
cause there are consistent bags R(X) and S(Y ) such that
the support T ′ of every bag T witnessing their consistency
is a proper subset of R′ ✶ S′. For example, consider the
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bags R1(AB) = {(1, 2) : 1, (2, 2) : 1} and S1(BC) =
{(2, 1) : 1, (2, 2) : 1}; their consistency (as bags) is wit-
nessed by the bags T1(ABC) = {(1, 2, 2) : 1, (2, 2, 1) : 1}
and T2(ABC) = {(1, 2, 1) : 1, (2, 2, 2) : 1}, but no other
bag. This example can be extended as follows. For n ≥ 2,
let Rn−1(A,B) and Sn−1(B,C) be the bags

{(1, 2) : 1, (2, 2) : 1, . . . , (1, n) : 1, (n, n) : 1}
{(2, 1) : 1, (2, 2) : 1, . . . , (n, 1) : 1, (n, n) : 1},

respectively. For every n ≥ 2, the bags Rn−1 and Sn−1 are
consistent. In fact, there are exactly 2n−1 bags witnessing
their consistency; these witnesses are pairwise incomparable
in the bag-containment sense and their supports are prop-
erly contained in the support (Rn−1 ✶b Sn−1)′ of the bag
join Rn−1 ✶b Sn−1. Note that the bags Rn−1 and Sn−1 are
actually relations and that their join Rn−1 ✶ Sn−1 witnesses
their consistency as relations, but not as bags.

By Proposition 1, two relations R(X) and S(Y ) are con-
sistent if and only if R[X∩Y ] = S[X∩Y ]. It is natural to ask
if an analogous result holds true for bags. If two bags R(X)
and S(Y ) are consistent, then clearly R[X ∩Y ] = S[X ∩Y ].
The converse turns out to also be true, but its proof is far
from obvious. We will establish the converse by bringing into
the picture concepts from linear programming and from the
theory of maximum flows.

With each pair of bags R(X) and S(Y ), we associate the
following linear program P (R,S). Let J = R′ ✶ S′ be the
join of the supports of R and S. For each t ∈ J , there is
a variable xt. For each t ∈ J and r ∈ R′, define ar,t = 1
if t[X] = r and ar,t = 0 if t[X] ̸= r. Similarly, for each t ∈ J
and s ∈ S′, define as,t = 1 if t[Y ] = s and as,t = 0 if t[Y ] ̸= s.
The constraints of P (R,S) are:

∑
t∈J ar,txt = R(r) for r ∈ R′,∑
t∈J as,txt = S(s) for s ∈ S′,

xt ≥ 0 for t ∈ J .
(5)

The linear program P (R,S) can be viewed as the set of
the flow constraints of an instance of the max-flow problem.
A network N = (V,E, c, s, t) is a directed graph G = (V,E)
with a non-negative weight c(u, v), called the capacity, as-
signed to each edge (u, v) ∈ E, and two distinguished ver-
tices s, t ∈ V , called the source and the sink. A flow for the
network is an assignment of non-negative weights f(u, v) on
the edges (u, v) ∈ E so that both the capacity constraints
and the flow constraints are respected, that is,

f(u, v) ≤ c(u, v) for (u, v) ∈ E,∑
v∈N−(u) f(v, u) =

∑
w∈N+(u) f(u,w) for u ∈ V \ {s, t},

where N−(u) and N+(u) denote the sets of in-neighbors
and out-neighbors of u in G. The value of such a flow is the
quantity

∑
w∈N+(s) f(s, w) =

∑
v∈N−(t) f(v, t), where the

equality follows from the flow constraints. In the max-flow
problem, the goal is to find a flow of maximum value. A
flow is saturated if f(s, w) = c(s, w) for every w ∈ N+(s)
and f(v, t) = c(v, t) for every v ∈ N−(t). It is obvious that
if a saturated flow exists, then every max flow is saturated.

With each pair R(X) and S(Y ) of bags, we associate the
following network N(R,S). The network has 1+|R′|+|S′|+1
vertices: one source vertex s∗, one vertex for each tuple r
in the support R′ of R, one vertex for each tuple s in the
support S′ of S, and one target vertex t∗. There is an arc
of capacity R(r) from s∗ to r for each r ∈ R′, an arc of

capacity S(s) from s to t∗ for each s ∈ S′, and an arc of
unbounded (i.e., very large) capacity from t[X] to t[Y ] for
each t ∈ R′ ✶ S′.

The next result yields several different characterizations
of the consistency of two bags.

Lemma 1. Let R(X) and S(Y ) be two bags. The follow-
ing statements are equivalent:

1. R(X) and S(Y ) are consistent.

2. R[X ∩ Y ] = S[X ∩ Y ].

3. P (R,S) is feasible over the rationals.

4. P (R,S) is feasible over the integers.

5. N(R,S) admits a saturated flow.

Proof. (Sketch) The equivalence of the statements (1)
and (4) is immediate from the definitions. As discussed
earlier, (1) implies (2). To show that (2) implies (3), we
assume that R[Z] = S[Z] and show that P (R,S) is fea-
sible over the rationals. For each t ∈ J = R′ ✶ S′, we
set xt := R(t[X])S(t[Y ])/R(t[Z]) = R(t[X])S(t[Y ])/S(t[Z])
(where the equality follows from the assumption that R[Z] =
S[Z]) and verify that this is a rational solution of P (R,S).
For (3) implies (5), let x∗ = (x∗

t )t∈J be a rational solution
for P (R,S) and let f be the following assignment for N(R,S):

f(s∗, r) := c(s∗, r) = R(r) for each r ∈ R′;
f(t[X], t[Y ]) := x∗

t for each t ∈ J ;
f(s, t∗) := c(s, t∗) = S(s) for each s ∈ S′.

This assignment is a flow since the equations of P (R,S) say
that the flow-constraints are satisfied; furthermore, it is a
saturated flow by construction. For (5) implies (1), let g be
a saturated flow for N(R,S); in particular, this is a max flow
for N(R,S). Since all capacities in N(R,S) are integers, the
integrality theorem for the max-flow problem asserts that
there is a max flow f consisting of integers (see, e.g., [26]),
which, of course, is also a saturated flow. Let T (XY ) be
the bag defined by setting T (t) := f(t[X], t[Y ]) for each t ∈
R′ ✶ S′. Since f is saturated, we have that f(s∗, r) =
c(s∗, r) = R(r) for each r ∈ R′ and f(s, t∗) = c(s, t∗) = S(s)
for each s ∈ S′. This means that the flow-constraints imply
that T witnesses the consistency of R and S. Thus, the
statements (1), (2), (3), and (5) are equivalent.

The equivalence of statements (1) and (2) in Lemma 1
yields a simple polynomial-time test to determine the con-
sistency of two bags, namely, given two bags R(X) and S(y),
check whether or not R[X ∩ Y ] = S[X ∩ Y ]. Later on, we
will see that the equivalence of statements (1) and (5) implies
that there is a polynomial-time algorithm for constructing a
witness to the consistency of two consistent bags.

Global Consistency for Bags Let R1(X1), . . . , Rm(Xm) be
bags over the schemas X1, . . . , Xm. We say that the col-
lection R1, . . . , Rm is globally consistent if there a bag T
over X1 ∪ · · · ∪ Xm such that Ti[Xi] = Ri for all i ∈ [m].
We say that the bag T witnesses the global consistency of
the bags R1, . . . , Rm. As with relations, pairwise consis-
tency of a collection of bags is a necessary, but not suf-
ficient, condition for the global consistency of the collec-
tion. Let H be a hypergraph and let X1, . . . , Xm be a
listing of all hyperedges of H. We say that H has the
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local-to-global consistency property for bags if every pairwise
consistent collection R1(X1), . . . , Rm(Xm) of bags over the
schemas X1, . . . , Xm is globally consistent. The main struc-
tural result of this paper asserts that the acyclic hypergraphs
are precisely the hypergraphs for which the local-to-global
consistency property for bags holds.

Theorem 3. Let H be a hypergraph. The following state-
ments are equivalent:

(a) H is an acyclic hypergraph.

(b) H is a conformal and chordal hypergraph.

(c) H has the running intersection property.

(d) H has a join tree.

(e) H has the local-to-global consistency property for bags.

Proof. (Outline) Let H be a hypergraph. By Theorem
1, statements (a), (b), (c), and (d) are equivalent, because
these statements express “structural” properties of hyper-
graphs, i.e., they involve only the vertices and the hyper-
edges of the hypergraph at hand. So, we only have to show
that statement (e), which involves “semantic” notions about
bags, is equivalent to (one of) the other three statements.
This will be achieved in two steps. First, we show that state-
ment (c) implies statement (e), i.e., if H has the running
intersection property, then H has the local-to-global consis-
tency property for bags. Second, we show that statement (e)
implies statement (b) by showing the contrapositive: if H
is not conformal or H is not chordal, then H does not have
the local-to-global consistency property for bags.

Step 1. If the hypergraph H has the running intersection
property, then there is a listing X1, . . . , Xm of its hyper-
edges such that for every i ∈ [m] with i ≥ 2, there is
a j ∈ [i − 1] such that Xi ∩ (X1 ∪ · · · ∪ Xi−1) ⊆ Xj .
Let R1(X1), . . . , Rm(Xm) be a collection of pairwise consis-
tent bags over the schemas X1, . . . , Xm. By induction on i =
1, . . . ,m, we show that there is a bag Ti over X1∪· · ·∪Xi that
witnesses the global consistency of the bags R1, . . . , Ri. The
claim is obvious for the base case i = 1. Assume that i ≥ 2
and that the claim is true for all smaller indices. Let X :=
X1 ∪ · · · ∪ Xi−1 and, by the running intersection property,
let j ∈ [i− 1] be such that Xi ∩X ⊆ Xj . By induction hy-
pothesis, there is a bag Ti−1 over X that witnesses the global
consistency of R1, . . . , Ri−1. We show that Ti−1 and Ri are
consistent by showing that Ti−1[X∩Xi] = Ri[X∩Xi] and in-
voking Lemma 1. After this, we show that if Ti is a bag that
witnesses the consistency of the bags Ti−1 and Ri, then Ti

witnesses the global consistency of R1, . . . , Ri.

Step 2. We have to show that if if H is not conformal or H is
not chordal, then H does not have the local-to-global consis-
tency property for bags. We first establish that it is enough
to show that certain “minimal” hypergraphs do not have the
local-to-global consistency property for bags. Specifically, it
is enough to show the following two statements:

1. No hypergraph Hn = (Vn, {Vn \ {Ai} : 1 ≤ i ≤ n})
with Vn = {A1, . . . , An} and n ≥ 3 has the local-to-
global consistency property for bags. Recall that Hn

is not conformal.

2. No hypergraph Cn = (Vn, {{Ai, Ai+1} : i ∈ [n]}) with
Vn = {A1, . . . , An}, An+1 := A1, and n ≥ 4 has the
local-to-global consistency property for bags. Recall
that Cn is not chordal.

The preceding “minimal” non-conformal and non-chordal
hypergraphs share the following properties: all their hyper-
edges have the same number of vertices and all their ver-
tices appear in the same number of hyperedges. Let H∗ =
(V ∗, E∗) be a hypergraph and let d and k be positive in-
tegers. The hypergraph H∗ is called k-uniform if every
hyperedge of H∗ has exactly k vertices. It is called d-
regular if every vertex of H∗ appears in exactly d hyperedges
of H. Thus, the “minimal” non-conformal hypergraph Hn is
(n−1)-uniform and (n−1)-regular. Likewise, the “minimal”
non-chordal hypergraph Cn is 2-uniform and 2-regular.

Assume that H∗ is a k-uniform and d-regular hypergraph
with d ≥ 2 and with hyperedges E∗ = {X1, . . . , Xm}. We
construct a collection C(H∗) := {R1(X1), . . . , Rm(Xm)} of
bags and show that the bags in this collection are pairwise
consistent but are not globally consistent. This will imply
that the local-to-global consistency property for bags fails
for the hypergraphs Hn and Cn above.

For each i ∈ [m] with i ̸= m, let Ri be the bag over Xi

defined as follows: (a) the support R′
i of Ri consists of all

tuples t : Xi → {0, . . . , d−1} whose total sum
∑

C∈Xi
t(C) is

congruent to 0 mod d; (b) Ri(t) := 1 for each such Xi-tuple,
and Ri(t) := 0 for every other Xi-tuple.

For i = m, let Rm be the bag over Xm defined as follows:
(a) the support R′

m of Rm consists of all tuples t : Xm →
{0, . . . , d−1} whose total sum

∑
C∈Xm

t(C) is congruent to 1

mod d; (b) Rm(t) := 1 for each such Xm-tuple, and Rm(t) :=
0 for every other Xm-tuple.

To show that the bags R1, . . . , Rm are pairwise consistent,
it suffices (by Lemma 1) to show that for distinct i, j ∈ [m],
we have Ri[Z] ≡ Rj [Z], where Z := Xi ∩Xj . In turn, this
follows from the claim that for every i ∈ [m] and every Z-

tuple t : Z → {0, . . . , d − 1}, we have Ri(t) = dk−|Z|−1.
Indeed, since by k-uniformity every hyperedge of H has ex-
actly k vertices, for every u ∈ {0, . . . , d − 1}, there are ex-

actly dk−|Z|−1 many Xi-tuples ti,u,1, . . . , ti,u,dk−|Z|−1 that
extend t and have total sum congruent to u mod d. It follows
then that Ri[Z] = Rj [Z] for every two distinct i, j ∈ [m],
regardless of whether m ∈ {i, j} or m ̸∈ {i, j}.

To show that the relations R1, . . . , Rm are not globally
consistent, we proceed by contradiction. If T were a bag
that witnesses their consistency, then T would be non-empty
and its support would contain a tuple t such that the projec-
tions t[Xi] belong to the supports R′

i of the Ri, for each i ∈
[m]. In turn this means that

∑
C∈Xi

t(C) ≡ 0 mod d, for i ̸= m (6)
∑

C∈Xi
t(C) ≡ 1 mod d, for i = m. (7)

Since by d-regularity each C ∈ V belongs to exactly d many
sets Xi, adding up all the equations in (6) and (7) gives

∑
C∈V dt(C) ≡ 1 mod d, (8)

which is absurd since the left-hand side is congruent to 0
mod d and the right-hand side is congruent to 1 mod d.

It should be pointed out that the proof of Theorem 1 in [9]
has a different architecture than the proof of our Theorem 3.
In particular, to prove the equivalence between the local-
to-global consistency property for relations and acyclicity,
Beeri et al. make use of Graham’s algorithm, which is an
algorithm for testing if a given hypergraph is acyclic. More
importantly, for every cyclic hypergraph H, the proof of
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Theorem 1 in [9] yields a collection of relations over H that
are pairwise consistent but not globally consistent; these re-
lations, however, are not pairwise consistent as bags, there-
fore they cannot be used to prove Theorem 3.

As an immediate consequence of Theorems 1 and 3, we
obtain the following result.

Corollary 1. Let H be a hypergraph. The following
statements are equivalent:

(a) H has the local-to-global consistency property for rela-
tions.

(b) H has the local-to-global consistency property for bags.

Complexity of Global Consistency for Bags The global con-
sistency problem for bags asks: given a hypergraph H =
(V, {X1, . . . , Xm}) and bags R1, . . . , Rm over H, is the col-
lection R1, . . . , Rm globally consistent? Using an integral
version of Carathéodory’s Theorem due to Eisenbrand and
Shmonin [13], we can show that this problem is in NP.

At the end of Section 2, we saw that for every fixed hyper-
graph H, the global consistency problem for relations over
the hyperedges of H is solvable in polynomial time. As we
shall see next, the state of affairs is by far more nuanced
for bags. Every fixed hypergraph H gives rise to the deci-
sion problem GCPB(H), which asks: given bags R1, . . . , Rm

over H, is the collection R1, . . . , Rm globally consistent?
The next result is a dichotomy theorem that classifies the
complexity of all decision problems GCPB(H), where H is
a hypergraph.

Theorem 4. Let H = (V, {X1, . . . , Xm}) be a hypergraph.
Then the following statements are true.

1. If H is acyclic, then GCPB(H) is in P.

2. If H is cyclic, then GCPB(H) is NP-complete.

Proof. (Hint) The first part of the theorem follows from
Lemma 1 and Theorem 3. For the second part of the theo-
rem, NP-hardness is proved via a series of reductions.

We first show the NP-hardness of each of the problems
GCPB(Cn) and GCPB(Hn), where n ≥ 3, as follows.

The problem GCPB(C3) generalizes the consistency prob-
lem for 3-dimensional contingency tables (3DCT): given a
positive integer n and, for each i, j, k ∈ [n], non-negative in-
tegers R(i, k), C(j, k), F (i, j), is there an n× n× n table of
non-negative integers X(i, j, k) such that

∑n
q=1 X(i, q, k) =

R(i, k),
∑n

q=1 X(q, j, k) = C(j, k),
∑n

q=1 X(i, j, q) = F (i, j)

for all indices i, j, k ∈ [n]? This problem was shown to be
NP-complete in [17]. To see that GCPB(C3) generalizes
the consistency problem for 3DCT, let X,Y, Z be three at-
tributes with domain [n], and let R(XZ), C(Y Z), F (XY )
be the bags given by the three tables R(i, k), C(j, k), F (i, j).
Therefore, GCPB(C3) is NP-hard. For n ≥ 4, we show that
there is a polynomial time reduction from GCPB(Cn−1) to
GCPB(Cn). As for the problems GCPB(Hn), the prob-
lem GCPB(H3) is NP-hard because H3 = C3; after this,
we show that for every n ≥ 4, there is a polynomial-time
reduction from GCPB(Hn−1) to GCPB(Hn).

Finally, if H is a cyclic hypergraph, then we show that
there exists some n ≥ 4 such that GCPB(Cn) or GCPB(Hn)
reduces in polynomial time to GCPB(H).

Table 1 compares the structural and algorithmic aspects
of global consistency for relations vs. those for bags.

4. RELATIONS OVER SEMIRINGS
What do relations and bags have in common? For quite

some time, it has been realized that relations and bags can
be viewed as different instances of a single generalized con-
cept of a relation in which tuples have “labels” that come
from the domain of some algebraic structure.

Ioannidis and Ramakrishnan [16] considered relations over
labeled systems and studied the query containment prob-
lem for relations over such systems. Later on Green, Kar-
vounarakis, and Tannen [14] considered relations over semir-
ings and studied the provenance of query answers. A semir-
ing is an algebraic structure of the form K = (A,+,×, 0, 1)
such that (A,+, 0) is a commutative monoid, (A,×, 1) is a
monoid, × distributes over +, and a × 0 = 0 × a = 0, for
every a ∈ A. A semiring K is positive if the following two
properties hold: (i) if a + b = 0, then a = 0 and b = 0;
(ii) if a × b = 0, then a = 0 or b = 0 (i.e., K has no zero
divisors). If K is a semiring and X is a set of attributes,
then a K-relation over X is a function R : Tup(X) → A.
Thus, relations are B-relations where B = ({0, 1},∨,∧, 0, 1)
is the Boolean semiring, while bags are N-relations, where
N = ({0, 1, 2, . . .},+,×, 0, 1) is the semiring of non-negative
integers with the standard arithmetic operations.

In the PODS 2021 proceedings version of the present pa-
per [7], we raised the question of whether or not the results
about the global consistency for bags extend to K-relations,
where K is a positive semiring. In particular, does the ana-
log of Theorem 3 for K-relations hold, where K is an arbi-
trary positive semiring? If not, are there broad classes of
semirings for which the analog of Theorem 3 for K-relations
holds? Since that time, we have obtained fairly complete
answers to these questions that we summarize next; these
results will appear in a forthcoming paper.

Our first finding asserts that if K is an arbitrary positive
semiring and H is a hypergraph such that the local-to-global
consistency property for K-relations holds, then H must be
acyclic. Thus, one of the two directions in Theorem 3 holds
for arbitrary positive semirings. Our second finding, how-
ever, reveals that the reverse direction does not hold for ar-
bitrary positive semirings. For this, we consider the semiring
R1 = ({0}∪ [1,∞],+,×, 0, 1) of real numbers that are either
0 or at least 1 and the acyclic hypergraph

H = ({A,B,C,D), {{A,D}, {B,D}, {C,D}}).

We show that there are three R1-relations T1, T2, T3 over H
that are pairwise consistent but not globally consistent.

According to Proposition 1 and to Lemma 1, both rela-
tions and bags have the following property: two relations
R(X), S(Y ) (or two bags R(X), S(Y )) are consistent if and
only if R[X ∩ Y ] = S[X ∩ Y ]. We say that a semiring K
has the inner consistency property if the preceding prop-
erty holds for all pairs of K-relations. Our third finding
tells that if K is a positive semiring with the inner consis-
tency property and if H is an acyclic hypergraph, then the
local-to-global consistency property holds for H. Thus, for
positive semirings with the inner consistency property, the
acyclicity of a hypergraph H is equivalent to the local-to-
global consistency property for H. This result provides a
common generalization of Theorem 1 for relations and of
Theorem 3 for bags.

Finally, we identify several different sufficient conditions
for a semiring to have the inner consistency property. As
a result, we establish that the equivalence between acyclic-
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Table 1: Relational Consistency vs. Bag Consistency
Relations Bags

Witness of global consistency Join is a witnesses Join need not be a witness
Local-to-global consistency property for H H is acyclic H is acyclic
Global Consistency Problem for acyclic H in P in P
Global Consistency Problem for cyclic H in P NP-complete

ity and the local-to-global consistency property holds for a
plethora of semirings, including the tropical semirings, the
log semirings,  Lukasiewicsz’ semiring, and every semiring
that is a bounded distributive lattice.
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