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Abstract—The framework of database repairs and consis-
tent answers to queries is a principled approach to managing
inconsistent databases. We describe the first system able to
compute the consistent answers of general aggregation queries
with the COUNT (A), COUNT (%), and SUM operators, and with
or without grouping constructs. Our system uses reductions to
optimization versions of Boolean satisfiability (SAT) and then
leverages powerful SAT solvers. We carry out an extensive
set of experiments on both synthetic and real-world data that
demonstrate the usefulness and scalability of this approach.

1. INTRODUCTION

The framework of database repairs and consistent query
answering, introduced by Arenas, Bertossi, and Chomicki [1],
is a principled approach to managing inconsistent databases,
i.e., databases that violate one or more integrity constraints on
their schema. In this framework, inconsistencies are handled
at query time by considering all possible repairs of the incon-
sistent database, where a repair of an inconsistent database 7
is a consistent database J that differs from Z in a “minimal”
way. The consistent answers to a query g on a given database
7 is the intersection of the results of ¢ applied on each repair
of Z. Thus, a consistent answer provides the guarantee that
it will be found no matter on what repair the query has
been evaluated. Computing the consistent answers can be an
intractable problem, because an inconsistent database may
have exponentially many repairs. In particular, computing
the consistent answers of a fixed Select-Project-Join (SPJ)
query can be a coNP-complete problem. By now, there is
an extensive body of work on the complexity of consistent
answers for SPJ queries (see Section II).

Range Semantics: Concept and Motivation. Aggregation
queries, the most frequently asked queries, are of the form

Q@ := SELECT Z, f(A) FROM T(U, Z, A) GROUP BY Z,
where f(A) is one the standard aggregation operators
COUNT (A), COUNT (x), SUM(A), AVG (A). MIN (A), MAX (A),
and T'(U, Z, A) is the relation returned by a SPJ query ¢ ex-
pressed in SQL. A scalar aggregation query is an aggregation
query without a GROUP BY clause.

What is the semantics of an aggregation query over an
inconsistent database? Since an aggregation query may re-
turn different answers on different repairs of an inconsistent
database, there is typically no consistent answer as per the
earlier definition of consistent answers. To obtain meaningful
semantics to aggregation queries, Arenas et al. [2] introduced
the range consistent answers.
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Let ) be a scalar aggregation query and X be a set of
integrity constraints. The set of possible answers to () on
an inconsistent instance Z w.r.t. X is the set of the answers
to @ over all repairs of Z wrt. X, ie., Poss(Q,X) =
{Q(J) | J is arepair of Z w.rt. ¥}. The range consistent
answers to () on T is the interval [gib(Q,Z),lub(Q,Z)],
where the endpoints of this interval are, respectively, the
greatest lower bound (glb) and the least upper bound (lub)
of the set Poss(Q,X) of possible answers to @ on Z. For
example, the range consistent answers to the query
SELECT SUM (ACCOUNTS.BAL) FROM ACCOUNTS,

CUSTACC WHERE ACCOUNTS.ACCID = CUSTACC.ACCID
AND CUSTACC.CID = ‘C2’

on the instance in Table I is the interval [900,2200]. The
meaning is that no matter how the database Z is repaired, the
answer to the query is guaranteed to be in the range between
900 and 2200. Arenas et al. [3] focused on scalar aggregation
queries only. Fuxman, Fazli, and Miller [4] extended the
notion of range consistent answers to aggregation queries
with grouping (see Section III).

Range semantics have become the standard semantics of
aggregation queries in the framework of database repairs (see
[5, Section 5.6]). Furthermore, range semantics have been
adapted to give semantics to aggregation queries in several
other contexts, including data exchange [6] and ontologies [7].
Finally, range semantics have been suggested as an alternative
way to overcome some of the issues arising from SQL’s
handling of null values [8].

Earlier Systems for Consistent Query Answering. Several
academic prototype systems for consistent query answering
have been developed [3], [9], [10], [4], [11], [12], [13], [14],
[15], [16]. These systems use different approaches, including
logic programming [9], [12], compact representations of re-
pairs [17], or reductions to solvers [14], [13], [16]. In partic-
ular, in [16], we reported on CAvSAT, a system that at that
time was able to compute the consistent answers of unions of
SPJ queries w.r.t. denial constraints (which include functional
dependencies as a special case) via reductions to SAT solvers.
Among all these systems, however, only the ConQuer system
by Fuxman et al. [4], [11] is capable of handling aggregation
queries. Actually, ConQuer can only handle a restricted class
of aggregation query, namely, those aggregation queries w.r.t.
key constraints for which the underlying SPJ query belongs to
the class called Cj,.. For such a query @, the range consistent
answers of () are SQL-rewritable, which means that there is a
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Table I: Running example — an inconsistent database instance of bank account records

Customer Accounts CustAcc
CID NAME CITY ACCID TYPE CITY BAL CID ACCID
fi| Cl  John LA fe Al Check. LA 900 fir] Cl1 Al
fa| C2 Mary LA fr | A2  Check. LA 1000 fiz| C2 A2
fa| C2 Mary SF fs A3 Saving SJ 1200 fizs| C2 A3
fa| C3 Don SF fo A3 Saving SF  -100 fia| C3 A4
fs| C4  Jen LA fio| A4  Saving SI 300

SQL query Q' such that the range consistent answers of @ on
an instance Z can be obtained by directly evaluating @’ on Z.
This leaves out, however, many aggregation queries, including
all aggregation queries whose range consistent answers are not
SQL-rewritable or are NP-hard to compute. Up to now, no
system supports such queries.

Summary of Contributions. In this paper, we report on
and evaluate the performance of AggCAvSAT (Aggregate
Consistent Answers via Satisfiability Testing), which is an
enhanced version of CAVSAT and is also the first system
that is capable to compute the range consistent answers
to all aggregation queries involving the operators SUM(A),
COUNT (A), or COUNT («) with or without grouping.

We first corroborate the need for a system that goes well
beyond ConQuer by showing that there is an aggregation
query () involving suM (A) such that the consistent answers
of the underlying SPJ query ¢ w.r.t. key constraints are SQL-
rewritable, but the range consistent answers of () are NP-hard
(Theorem III.1 in Section III).

The distinctive feature of AggCAvSAT is that it uses
polynomial-time reductions to reduce the range consistent
answers of aggregation queries to optimization variants of
Boolean Satisfiability (SAT), such as Partial MaxSAT and
Weighted Partial MaxSAT. These reductions, described in
Sections IV and V, are natural but are much more sophisticated
than the reductions used in [16] to reduce the consistent
answers of SPJ queries to SAT. After the reductions have been
carried out, AggCAvSAT deploys powerful SAT solvers, such
as the MaxHS solver [18], to compute the range consistent
answers of aggregation queries. Furthermore, AggCAvSAT
can handle databases that are inconsistent not only w.r.t. key
constraints, but also w.r.t. arbitrary denial constraints, a much
broader class of constraints.

An extensive experimental evaluation of AggCAvSAT is
reported in Section VI. We carried out a suite of experiments
on both synthetic and real-word databases, and for a variety of
aggregation queries with and without grouping. The synthetic
databases were generated using two different methods: (a) the
DBGen tool of TPC-H was used to generate consistent data and
then inconsistencies were injected artificially; (b) the PDBench
inconsistent database generator from the probabilistic database
management system MayBMS [19] was used. The experiments
demonstrated the scalability of AggCAvSAT along both the
size of the data and the degree of inconsistency in the data.
Note that AggCAvSAT was also competitive in comparison to

925

ConQuer (especially when the degree of inconsistency was not
excessive), even though the latter is tailored to only handle a
restricted class of aggregation queries whose range consistent
answers are SQL-rewritable.

An extended version of this paper is posted on arXiv [20].

Consistent Answers vs. Data Cleaning. There is a large body
of work on managing inconsistent databases via data cleaning.
There are fundamental differences between the framework of
the consistent answers and the framework of data cleaning (see
[5, Section 6]). In particular, the consistent answers provide
the guarantee that each such answer will be found no matter
on which repair the query at hand is evaluated, while data
cleaning provides no similar guarantee. Data cleaning has the
attraction that it produces a single consistent instance but the
process need not be deterministic and the instance produced
need not even be a repair (i.e., it need not be a maximally
consistent instance). Recent data cleaning systems, such as
HoloClean [21] and Daisy [22], [23], produce a probabilistic
database instance as the output (that need not be a repair). At
the performance level, the data cleaning approaches remove
inconsistencies in the data offline, hence the time-consuming
tasks are done prior to answering the queries; in contrast,
systems for consistent query answering work online.

It is an interesting project, left for future research, to develop
a methodology and carry out a fair comparison on a level
playing field between systems for data cleaning and systems
for consistent query answering.

II. PRELIMINARIES

Integrity Constraints and Database Queries: A relational
database schema R is a finite collection of relation symbols,
each with a fixed positive integer as its arity. The attributes
of a relation symbol are names for its columns; they can
be identified with their positions, thus Attr(R) = {1,...,n}
denotes the set of attributes of R. An R-instance is a collection
T of finite relations RT, one for each relation symbol R in
R. An expression of the form R%(ai,...,a,) is a fact of
the instance Z if (a1,...,a,) € RE. A key is a minimal
subset X of Attr(R) such that the functional dependency
X — Attr(R) holds. The attributes in X are called the key
attributes of R and they are denoted by underlining their
corresponding positions; thus, R(A, B,C) denotes that the
attributes A and B form a key of R.

First-order logic has been successfully used as a database
query language [24]; in fact, it forms the core of SQL. A
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conjunctive query is expressible by a first-order formula of the
form ¢(z) := 3w (Ry(x1)A... ARy (X)), where each x; is a
tuple of variables and constants, z and w are tuples of variables
with no variable in common, and the variables in x1, ..., X,,
appear in exactly one of the tuples z and w. A conjunctive
query with no free variables (i.e., all variables are existentially
quantified) is a boolean query, while a conjunctive query with
k free variables in z is a k-ary query. Conjunctive queries
are also known as select-project-join (SPJ) queries with equi-
joins, and are among the most frequently asked queries. For
example, on the instance Z from Table I, the binary conjunctive
query ¢(z,z) := Jw (cusT(w, z,y) ACUSTACC(w, z)) returns
the set of all pairs (z,z) such that z is an account ID of an
account owned by customer named x.

Database Repairs and Consistent Answers: Let Y be a
set of integrity constraints on a database schema R. An R-
instance Z is consistent if T ): Y, i.e., Z satisfies every
constraint in >; otherwise, Z is inconsistent. For example,
let 7 be the instance depicted in Table I. There are two key
constraints, namely, CUST(CID) and Acc(ACCID). Clearly, Z
is inconsistent since the facts fo, f3 of cusT and facts fs, fo
of Acc violate these key constraints.

A repair of an inconsistent instance Z w.r.t. 3 is a consistent
instance J that differs from Z in a “minimal” way. Different
notions of minimality give rise to different types of repairs
(see [5] for a survey). Here, we focus on subset repairs, the
most extensively studied type of repairs. An instance J is a
subset repair of an instance Z if J is a maximal consistent
subinstance of Z, that is, J C Z (where Z and J are viewed
as sets of facts), J = X, and there is no instance J’ such
that 7' =% and J C J' C Z. Arenas et al. [1] used repairs
to give rigorous semantics to query answering on inconsistent
databases. Specifically, assume that ¢ is a query, Z is an R-
instance, and t is a tuple of values. We say that t is a consistent
answer to g on Z w.r.t. X if t € ¢(J), for every repair J of
Z. We write CONS(q,Z,X) to denote the set of all consistent
answers to ¢ on Z w.r.t. ¥, i.e.,

CoNs(q,Z,%) =N {¢(J) : J is a repair of Z w.r.t. X}.

If ¥ is a fixed set of integrity constraints and ¢ is a
fixed query, then the main computational problem associated
with the consistent answers is: given an instance Z, compute
CoONs(q, Z, ¥); we write CONS(q, X)) to denote this problem.
If ¢ is a boolean query, then computing the consistent answers
becomes the decision problem CERTAINTY(g,Y): given an
instance Z, is ¢ true on every repair J of Z w.r.t. ¥?7 When
the constraints in > are understood from the context, we will
write CONS(¢q) and CERTAINTY(¢) in place of CONS(g¢,X)
and CERTAINTY (¢, X), respectively.

Complexity of Consistent Answers: There has been an ex-
tensive study of the consistent answers of conjunctive queries
[S], [11], [25], [26], [27], [28], [29], [30], [31]. If X is a fixed
set of key constraints and ¢ is a boolean conjunctive query,
then CERTAINTY (¢, X)) is always in coNP, but, depending on
the query and the constraints, CERTAINTY (¢, X) exhibits a
variety of behaviors within coNP. The most definitive result
to date is a trichotomy theorem by Koutris and Wijsen [30],
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[31]; it asserts that if ¢ is a self-join-free (no repeated relation
symbols) boolean conjunctive query with one key constraint
per relation, then CERTAINTY(q) is either SQL-rewritable,
or in P but not SQL-rewritable, or coNP-complete. =~ For
example, if ¢ is the query Jz,y, z(R(z,y) A S(z,v)), then
CERTAINTY(q) is coNP-complete [25].

Boolean Satisfiability and SAT Solvers: Boolean Satisfia-
bility (SAT) is arguably the prototypical and the most widely
studied NP-complete problem. SAT is the following decision
problem: given a boolean formula p, is  satisfiable? Signit-
icant progress has been made on developing SAT-solvers, so
much so that the advances in this area of research are often
referred to as the “SAT Revolution” [32]). Typically, a SAT-
solver takes a boolean formula ¢ in conjunctive normal form
(CNF) as an input and outputs a satisfying assignment for ¢
(if one exists) or tells that the formula ¢ is unsatisfiable.

SAT-solvers are capable of solving quickly SAT-instances
with millions of clauses and variables. SAT-solvers have been
widely used in both academia and industry as general-purpose
tools. Indeed, many real-world problems from a variety of
domains, including scheduling, protocol design, software ver-
ification, and model checking, can be naturally encoded as
S AT-instances, and solved quickly using solvers, such as Glu-
cose [33] and CaDiCaL [34]. Furthermore, SAT-solvers have
been used in solving open problems in mathematics [35], [36].
In [16], we used SAT-solvers to build a prototypical system
for consistent query answering, which we called CAvSAT.
This system can compute consistent answers to unions of SPJ
queries over relational databases that are inconsistent w.r.t. a
fixed set of arbitrary denial constraints.

III. RANGE CONSISTENT ANSWERS

Frequently asked database queries often involve one of
the standard aggregation operators COUNT (A), COUNT (x),
SUM (A), AVG (A), MIN (A4), MAX (A), and, possibly, a GROUP
BY clause. In what follows, we will use the term aggregation
queries to refer to queries with aggregate operators and with
or without a GROUP BY clause. Thus, in full generality, an
aggregation query can be expressed as

Q := SELECT Z, f(A) FROM T(U,Z,A) GROUP BY Z,
where f(A) is one of the aforementioned aggregate operators
and T(U, Z, A) is the relation returned by a query g, which
typically is a conjunctive query or a union of conjunctive
queries expressed in SQL. This query q is called the underlying
query of (), the attribute represented by the variable w is called
the aggregation attribute, and the attributes represented by Z
are called the grouping attributes. A scalar aggregation query
is one without a GROUP BY clause.

It is often the case that an aggregation query returns different
answers on different repairs of an inconsistent database; thus,
even for a scalar aggregation query, there is typically no
consistent answer as per the definition of consistent answers
given earlier. In fact, to produce an empty set of consistent
answers, it suffices to have just two repairs on which a scalar
aggregation query returns difference answers. To obtain more
meaningful answers to aggregation queries, Arenas et al. [2]
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proposed the range consistent answers, as an alternative notion
of consistent answers. For a scalar aggregation query @, the set
of possible answers to () on an inconsistent instance Z consists
of the answers to ) over all repairs of Z, i.e., Poss(Q, %) =
{Q(J) | J is arepair of Z w.r.t. X}. The range consistent
answers to ) on Z is the interval [glb(Q, ), lub(Q),Z)], where
the endpoints of this interval are, respectively, the greatest
lower bound (glb) and the least upper bound (lub) of the set
Poss(Q, X)) of possible answers to @ on Z.
For example, the range consistent answers of the query
SELECT SUM (ACCOUNTS.BAL) FROM ACCOUNTS,
CUSTACC WHERE ACCOUNTS.ACCID CUSTACC.ACCID
AND CUSTACC.CID c2’
on the instance in Table I is the interval [900,2200]. The
guarantee is that no matter how the database Z is repaired,
the answer to the query is guaranteed to be in the range
between 900 and 2200. Note that, the glb-answer comes from
a repair of Z that contains the fact fg, while the lub-answer
is from a repair that contains the fact fs.
Arenas et al. [3] focused on scalar aggregation queries only.
Fuxman, Fazli, and Miller [4] extended the notion of range
consistent answers to aggregation queries with grouping, i.e.,
to aggregation queries of the form
Q@ := SELECT Z, f(A) FROM T(U,Z,A) GROUP BY Z.
For such queries, a tuple (7', [glb, lub]) is a range consistent
answer to () on Z, if the following conditions hold:
e For every repair J of Z, there exists d s.t. (T, d) € Q(J)
and glb < d < lub.
e For some repair J of Z, we have that (7', glb) € Q(J)
e For some repair J of Z, we have that (7', lub) € Q(.J).
If @ is an aggregation query, CONS(Q) is the problem:
given an instance Z, compute the range semantics of () on Z.
Complexity of Range Consistent Answers: Arenas et al.
[2] investigated the computational complexity of the range
consistent answers for scalar aggregation queries of the form
SELECT f(A) FROM R(U, A),
where f(A) is one of the standard aggregation operators and
R(U, A) is a relational schema with functional dependencies.
Two relevant findings are as follows.
If the relational schema R(U,A) has at most one
functional dependency and f(A) is one of the aggre-
gation operators MIN(A), MAX(A), SUM(A), COUNT (*),
AVG (A), then the range consistent answers of the query
SELECT f(A) FROM R(U,A) is in P.
There is a relational schema R(U, A) with one key
dependency s.t. the range consistent answers of the query
SELECT COUNT(A) FrRoM R(U, A) are NP-complete.
It remains an open problem to pinpoint the complexity of
the range consistent answers for richer aggregation queries

Q := SELECT Z, f(A) FROM T'(U, Z, A) GROUP BY Z,
where T'(U, Z, A) is the relation returned by a conjunctive
query g or by a union q := g; U- - -Ug; of conjunctive queries.
It can be shown, however, that if computing the consistent
answers CONS(q) of the underlying query ¢ is a hard problem,
then computing the range consistent answers CONS((Q)) of
the aggregation query () is a hard problem as well. This
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gives rise to the following question: what can we say about
the complexity of the range consistent answers CONS(Q) if
computing the consistent answers CONS(g) of the underlying
query is an easy problem?

Fuxman and Miller [25] identified a class, called Cpes,
of self-join free conjunctive queries whose consistent answers
are SQL-rewritable. In his PhD thesis, Fuxman [37] introduced
the class Cygeforess consisting of all aggregation queries such
that the aggregation operator is one of MIN(A), MAX (A),
SUM (A), COUNT («), the underlying query ¢ is a conjunctive
query in Cpey, and there is one key constraint for each
relation in the underlying query ¢. Fuxman [37] showed that
the range consistent answers of every query in Clggforess are
SQL-rewritable (earlier, similar results for a proper subclass
of Clgeforess Were obtained by Fuxman, Fazli, and Miller).

It is known that there are self-join free conjunctive queries
outside the class Cl,; Whose consistent answers are SQL-
rewritable. Koutris and Wijsen [31] characterized the self-
join free conjunctive queries whose consistent answers are
SQL rewritable. However, the SQL rewritability of aggregation
queries beyond those in Cygeforess has not been investigated.
Here, we show that there exists a self-join-free conjunctive
query whose consistent answers are SQL-rewritable, but this
property is not preserved when an aggregation operator is
added on top of it. For this, we reduce the NP-complete
problem MAXIMUM CUT [38] to the problem of computing
the range consistent answers to an aggregation query involv-
ing SuM and whose underlying conjunctive query has SQL-
rewritable consistent answers. The proof of the next result is
given in the extended version of this paper on arXiv [20].

Theorem III.1. Let R be a relational schema with three re-
lations R, (é, Bl), Ro (&, BQ), and Rg(Al, Bl, AQ, BQ, C)
Let QQ be the aggregation query:
Q := SELECT SUM(A) FROM q(A),
where q(A) is the following self-join-free conjunctive query:
H[EHy Rl(&a ‘V’) A RQ(Q7 ‘b,) A Rg(fli, ‘r,a Y, Kb,a A)

Then the following two statements hold.

1) Cons(q) is SQL-rewritable.

2) CONS(Q) is NP-hard.

IV. CONSISTENT ANSWERS VIA SAT SOLVING

Here, we give polynomial-time reductions from computing
the range consistent answers of aggregation queries with the
operators COUNT (x), COUNT (A), SUM (A) to variants of SAT.
In the extended version of this paper on arXiv [20], we give
reductions of the range consistent answers of aggregation
queries with the operators MIN (A), MAX (A) to iterative SAT.
The reductions in this section assume that the database schema
has one key constraint per relation; in Section V, we show how
these reductions can be extended to schemata with arbitrary
denial constraints. Our reductions rely on several well known
optimization variants of SAT that we describe next.

e Weighted MaxSAT (or WMaxSAT) is the maximization
variant of SAT in which each clause is assigned a positive
weight and the goal is to find an assignment that maximizes
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the sum of the weights of the satisfied clauses. We write (I V
-+ Vg, w) to denote a clause (1 V --- V [;) with weight w.
Partial MaxSAT (or PMaxSAT) is the maximization
variant of SAT in which some clauses of the formula are
assigned infinite weight (hard clauses), while each of the rest
is assigned weight one (soft clauses). The goal is to find an
assignment that satisfies all hard clauses and the maximum
number of soft clauses. If the hard clauses of a PMaxSAT
instance are not simultaneously satisfiable, then we say that
the instance is unsatisfiable. For simplicity, a hard clause
(lh V- Vi, 00) is denoted as (I3 V -+ V Ii).

o Weighted Partial MaxSAT (or WPMaxSAT) is the max-
imization variant of SAT where some of the clauses of the
formula are assigned infinite weight (hard clauses), while each
of the rest is assigned a positive weight (soft clauses). The
goal is to find an assignment that satisfies all hard clauses and
maximizes the sum of weights of the satisfied soft clauses.

Modern solvers, such as MaxHS [18], can efficiently solve
large instances of these maximization variants of SAT. Note
that these maximization problems have dual minimization
problems, called WMinSAT, PMinSAT, and WPMinSAT, re-
spectively. For example, in WPMinSAT, the goal is to find
an assignment that satisfies all hard clauses and minimizes
the sum of weights of the satisfied soft clauses. These min-
imization problems are of interest to us, because some of
the computations of the range consistent answers have natural
reductions to such minimization problems. At present, the only
existing WPMinSAT solver is MinSatz [39]. Since this solver
has certain size limitations, we will deploy Kiigel’s technique
[40] to first reduce WPMinSAT to WPMaxSAT, and then use
the MaxHS solver in our experiments. This technique uses the
concept of CNF-negation — see [40], [41].

We also need to consider the notions of key-equal groups of
facts and the bag of witnesses to queries. Let Z be a database
instance and let vals(Z) be the set of values occurring in Z.

e We say that two facts of a relation R of 7 are key-equal,
if they agree on the key attributes of R. A set S of facts of 7
is called a key-equal group of facts if every two facts in .S are
key-equal, and no fact in S is key-equal to some fact in Z\S.

e Letg(z) := 3w (Ry(x1)A...AR, (X)) be a conjunctive
query, where each x; is a tuple of variables and constants, and
leta € ¢(Z) be an answer to g on Z. Let vars(q) and cons(q) be
the sets of variables and constants occurring in g. A function
f rvars(q) Ucons(q) — vals(Z) is a witnessing assignment
to a if the following hold: f(z) = a; if x; is a constant in
g, then f(z;) = x;; and if R;(xq, - ,xy,) is an atom of ¢,
then R;(f(z1), -+, f(zy)) is a fact of Z. We say that a set
S of facts from Z is a witness to a if there is a witnessing
assignment f to a such that S = {R;(f(x1), -+, f(zn)) :
Ri(xy,-++ ,x,) is an atom of ¢}.

Note that two distinct witnessing assignments to an answer
may give rise to the same witness. Thus, we consider the bag
of witnesses to an answer, i.e., the bag consisting of witnesses
arising from all witnessing assignments to that answer, where
each witness S' is accompanied by its multiplicity, an integer
denoting the number of witnessing assignments that gave rise
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to S. Finally, we define the bag of witnesses to a conjunctive
query as the bag union of the bags of witnesses over all
answers to ¢ on Z (in the bag union the multiplicities of
the same set are added). The bag of witnesses to a union
q = q1 U ---U gy of conjunctive queries is the bag union
of the bags of witnesses to each conjunctive query ¢; in gq.
The bag of witnesses will be used in computing the range
consistent answers to aggregation queries. In effect, the bag
of witnesses corresponds to the provenance polynomials of
conjunctive queries and their unions [42], [43].

It is easy to verify that both the key equal groups and the
bag of the witnesses can be computed using SQL queries.

A. Answering Queries without Grouping

Let R be a database schema with one key constraint
per relation, and let ) be the scalar aggregation query
SELECT f FROM T'(U, A), where f is one of the operators
COUNT (*), COUNT (A), suM(A), and T'(U, A) is a union of
conjunctive queries over R.

We will reduce the range consistent answers CONS(Q) of
@ to PMaxSAT and to WPMaxSAT. We first give the intuition
behind Reduction IV.1. We represent each fact of the database
instance with a boolean variable, which allows us to encode
the inconsistencies in the database into a-clauses (Step 1), and
the answers to the input query into [S-clauses and -clauses
of the CNF formula ¢ (Steps 2a and 2b). Reduction IV.1
makes sure that every repair of the database instance uniquely
corresponds to an assignment to ¢. Importantly, the repairs
that contain the glb-answer and the [ub-answer to the query
correspond to the optimal assignments to ¢, namely, maximum
satisfying assignment and the minimum satisfying assignment
respectively (Proposition IV.1).

Reduction IV.1. Let ) := serecT f FroM T(U, A) be an
aggregation query, where f is one of the operators COUNT (x),
COUNT (A), and SuM(A). Let T be an R-instance and G be
the set of key-equal groups of facts of I. For each fact f;
of Z, introduce a boolean variable x;. Let VW be the bag of
witnesses to the query q* on I, where

JUIAT(U,A) if fis COUNT (%)
U T(U,A) if f is COUNT (A) or SUM(A).
Construct a partial CNF-formula ¢ (if f is COUNT (*) or

COUNT (A)) or a weighted partial CNF-formula ¢ (if f is
SUM (A) ) as follows:

(1) For each G; € G,

e construct a hard clause o

%

= V ZTi.
fi€Gy
o for each pair (fn,, fn) of facts in G such that m # n,

mn __
construct a hard clause o' = (mxp V).

(2a) If f is COUNT (%) or COUNT (A), then for each witness
W; € W, construct a soft clause f3; (f‘é/w —\mi,mj),

J

where m; is the multiplicity of W; in W

Construct a partial CNF-instance

14 g1 . Wi
o= ( A as)A(A (Asweg, o)) a (A
J J fn€G; J

8)-
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(2b) If f is suM(A), let Wp and Wy be the subsets of
W such that for each W; € W, we have W; € Wp
iff ¢*(W;) > 0, and W; € Wy iff ¢*(W;) < 0. Let
also w; = my * ||¢"(W;)||, where ||¢*(W;)|| is the
absolute value of q*(W;). Construct a weighted soft
clause B; and a conjunction y; of hard clauses as
follows. If W; € Wy, introduce a new variable y; and

let B; = (y;,w;) and
TR P

else, let 3; (f Voo, wj) and do not construct vy;.
. > .

"))

Construct a weighted partial CNF-instance
/\fmGQj a;ﬂ

4 14

o =(,A i) A (A (
i=1 fn€G;
AR A (i )
j=1"7 W, e

Jj=1
Purpose of the components of ¢ in Reduction IV.1

vV
fieW;

A

fiGWj( Y V )

o Bach aj-clause encodes the “at-least-one” constraint for
each key-equal group G; in the sense that satisfying o
requires setting at least one variable corresponding to a fact
in G to true. Similarly, each oz;-”n—clause encodes the “at-
most-one” constraint for GG;. In effect, every assignment that
satisfies all c-clauses sets exactly one variable correspond-
ing to the facts from each key-equal group to true, and thus
uniquely corresponds to a repair of Z.
Satisfying a 3;-clause constructed in Step 2a requires setting
at least one variable corresponding to the facts of a witness
W; to ¢* on T to false. Thus, if s is an assignment that
satisfies all a-clauses, then 3; is satisfied by s if and only
if W; ¢ J, where J is a repair corresponding to s.
The fj-clauses constructed in Step 2b serve the same pur-
pose as the ones from Step 2a, but here they are constructed
only for the witnesses in VWp. For the witnesses in YWy, the
Bj-clauses encode the condition that /3; is satisfied if and
only if all variables corresponding to the facts in W} are set
to true. The hard ~;-clauses are used solely to express the
equivalence y; <> (f E/\W ;) in conjunctive normal form.

i J
The number of a-clauses is O(n), where n is the size of the
database; the number of S-clauses and y-clauses combined is
O(n*), where k is the number of relation symbols in Q.

Proposition IV.1. Let Q := serecT f FroM T(U, A) be an
aggregation query, where f is one of the operators COUNT (*),
COUNT (A), and SUM(A). In a maximum (a minimum) sat-
isfying assignment of the WPMaxSAT-instance ¢ constructed
using Reduction IV.1, the sum of weights of the falsified clauses
is the glb-answer (lub-answer) in CONS(Q) on T.

Example IV.1. Let 7 be a database instance from Table I,
and @ be the following aggregation query which counts the
number of customers who have an account in their own city:

SELECT COUNT (x) FROM CUST, ACC, CUSTACC

WHERE CUST.CID CUSTACC.CID AND ACC.ACCID
CUSTACC.ACCID AND CUST.CITY ACC.CITY

929

From Reduction IV.1, we construct the following clauses:
a-clauses: 1, (xo V x3), T4, X5, Tg, 7, (T3 V Tg), T10;

o™ -clauses: (—xo V —xg), (mxs V 1xg);

B-clauses: (—x1 V —xg, 1), (mxe V —x7, 1), (mxg V —xg, 1).
By Proposition IV.1, we have that CONS(Q,Z) = [1,2].

Example IV.2. Let us again consider the database instance
T from Table I, and the following aggregation query Q:
SELECT SUM(ACC.BAL) FROM CUST, ACC, CUSTACC
WHERE CUST.CID = CUSTACC.CID AND ACC.ACCID

CUSTACC.ACCID AND CUST.CNAME =

‘Mary’

The hard clauses constructed using Reduction IV.I are same
as the ones from Example IV.1. The rest of the clauses are:
B-clauses: (- V —x7,1000), (—x3 V —wr,1000), (-2 V
-rs, 1200), (_'Zlfg V —zg, 1200), (yh 100), (yg, 100)
v-clauses: (—xo V —xo V y1), (my1 V a2), (Y1 V xg), (masV
~rg Vy2), (Ty2 V x3), (7y2 Vo).

By Proposition IV.1, we have that CONS(Q,Z) = [900, 2200].

B. Handling the DISTINCT Keyword

Let @ := seLECT f FrOM T'(U, A) be an aggregation query,
where f is either COUNT (DISTINCT A) or SUM(DISTINCT
A). Solving the PMaxSAT or the WPMaxSAT instance con-
structed using Reduction IV.1 may yield incorrect glb and
lub answers to @, if the database contains multiple witnesses
with the same value for attribute A. For example, consider the
database instance Z from Table I, and a query Q:

SELECT COUNT (DISTINCT ACC.TYPE) FROM ACC.
The correct glb and lub-answers in CONS(Q,Z) are both
2, but solutions to the PMaxSAT and PMinSAT instances
constructed using Reduction IV.1 yield both answers as 4. The
reason behind this is that the soft clauses —xg and —x7 both
correspond to the account type Checking, and similarly —xg,
—xg, and ¢ all correspond to the account type Saving. The
hard clauses in the formula ensure that x¢, 27, 19, and one of
xg and xg are true, thus counting both Checking and Saving
account types exactly twice in every satisfying assignment to
the formula. This can be handled by modifying the S-clauses
in Reduction IV.1 as follows.

Let A denote a set of distinct answers to the query ¢*(A) :=
JU T(U, A). For each answer b € A, let W’ denote a subset
of W such that for every minimal witness W € WP, we have
that ¢*(W) = b. The idea is to use auxiliary variables to
construct one soft clause for every distinct answer b € A, such
that it is true if and only if no witness in WW? is present in
a repair corresponding to the satisfying assignment. First, for
every witness W;’ € W?, we introduce an auxiliary variable z;-’
that is true if and only if W}’ is not present in the repair. Then,
we introduce an auxiliary variable v® which is true if and only
if all z’-variables are true. These constraints are encoded in
the set H? returned by Algorithm 1, and are forced by making
clauses in H? hard. For every answer b € A, Algorithm 1 also
returns one (3’-clause, which serves the same purpose as the -
clauses in Reduction IV.1. Now, a PMaxSAT or a WPMaxSAT
instance can be constructed by taking in conjunction all a-
clauses from the key-equal groups, the hard ~-clauses if any,
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the hard clauses from all H-sets, and all soft Bb-clauses. With
this, it is easy to see that a maximum (or minimum) satisfying
assignment to PMaxSAT or WPMaxSAT instance give us the
glb-answer (or lub-answer) in CONS(Q) — see Example IV.3.

Algorithm 1 Handling DISTINCT

1: procedure HANDLEDISTINCT(W?)
2 let H* =) //Empty set of clauses
3 for WP e W’ do

b= u{(av (Y, )
5: for f; € W;’ do

6 H = H*J{(z} v )}

7: Hb:HbU{<—|Ub\/ \/ —\z;?))}

whews
8: for V[/;;’ e W do
HY = B {(~o" v 21}

9:

10 let B° = (v%,1)

11: if (f is SUM(DISTINCT A)) then
12: 8= (", []bl])

13: if b < 0 then 8° = (=", ||b]])
14: return H?, 3°

Example IV.3. Consider the following aggregation query @)
on the database instance I from Table I:

SELECT COUNT (DISTINCT ACC.TYPE) FROM ACC
We have that A = { ‘Checking’, ‘Saving’}. Let us denote these
two answers by ai and as respectively. Since every witness
to the query consists of a single fact, every y®-variable is
equivalent to a single literal, for example, yi' <> —xg and
ys' <> —wy. As a result, it is unnecessary to introduce any
y®-variables at all. Thus, we construct the following clauses
Jfrom Reduction IV.1 and Algorithm 1:
a-clauses: xg, x7, (x5 V x9), T10, ™" -clauses: (—xgV —xg);
H* 2 (x6 V xr Vo™), (—0™ V —xg), (-0™ V —x7);
H : (zgVargVaioVo®?), (-2 V-zg), (-0 Voxg), (-o®2V
—219); [B-clauses: (v, 1), (v%2,1).
The maximum and minimum satisfying assignments to the
PMaxSAT and PMinSAT instances constructed using these
clauses falsify both (-clauses, since CONS(Q,Z) = [2,2].

C. Answering Queries with Grouping

Let  be the aggregation query
SELECT Z,f FROM T(U,Z,w) GROUP BY Z,

where f is one of COUNT(x), COUNT(A), suM(A), MIN(A), or
Max(A), and T(U, A) is a relation expressed by a union of
conjunctive queries on R. We refer to the attributes in Z as
the grouping attributes. For aggregation queries with grouping,
it does not seem feasible to reduce CONS(Q) to a single
PMaxSAT or a WPMaxSAT instance because for each group
of consistent answers, the glb-answer and the lub-answer may
realize in different repairs of the inconsistent database. To
illustrate this, consider the database from Table I and a query

@ := SELECT COUNT (%) FROM CUST GROUP BY CITY.
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Notice that, the g/b-answers (LA, 2) and (SF, 1) in CONS(Q)
come from two different repairs of relation CUST, namely,
{f1. fa fa, f5} and {fy. fa, fu, f5} respectively. However, the
reductions from the preceding section can be used to compute
the bounds to each consistent group of answers independently.
For a given aggregation query () with grouping, we first
compute the consistent answers to an underlying conjunctive
query ¢(Z) :=3U,AT(U, Z,A). Then, for each answer b in
CONS(gq), we compute the glb and [ub-answers to the query
Q' := seLECT f FrRoM T(U,Z, A)A(Z = b) via PMaxSAT
or WPMaxSAT solving as shown in Algorithm 2.

Algorithm 2 Consistent Answers to Queries With Grouping

Let 7 be an inconsistent database instance, and () be an
aggregation query of the form
Q@ := sELECT Z, f FroM T'(U, Z, A) GROUP BY Z.

procedure CONSAGGGROUPING(Q)

let Ans =10

let ¢(Z):=3U,AT(U, Z,A)

let A. = CONS(q,7)

for b € A. do
let ' := sELECT f FrROM T'(U, Z, A) AN (Z
let [GLB4, LUB,] = CoNs(Q',T)
Aans = Aans U (b7 [GLBA7 LUBA])

return A,

1:
2
3
4:
5:
6 b)
7
8
9

As noted earlier, the bags of witnesses used in the preceding
reductions capture the provenance of unions of conjunctive
queries in the provenance polynomials model of [42], [43].
In [44], it was shown that a stronger provenance model is
needed to express the provenance of aggregation queries, a
model that uses a tensor product combining annotations with
values. A future direction of research is to investigate whether
this stronger provenance model can be used to produce more
direct reductions of the range consistent answers to SAT.

V. BEYOND KEY CONSTRAINTS

Key constraints and functional dependencies are
important special cases of denial constraints (DCs),
which are expressible by first-order formulas of the
form  Vaq,..,z,o(p(T1, 0 2n) A P(21,.,2,)),  oOF

equivalently, Va1, ..., 2, (p(21, .0y Zn) — (X1, ..., 20)),
where (z1,...,2,) is a conjunction of atomic formulas
and ¢(x1,...,x,) is a conjunction of expressions of the
form (x; op x;) with each op a built-in predicate, such as
=,#,<,>,<,>. In words, a denial constraint prohibits a
set of tuples that satisfy certain conditions from appearing
together in a database instance. If ¥ is a fixed finite set of
denial constraints and () is an aggregation query without
grouping, then the following problem is in coNP: given a
database instance Z and a number ¢, is ¢ the lub-answer (or
the glb-answer) in CONS(Q,Z) w.r.t. X? This is so because
to check that ¢ is not the [lub-answer (or the glb-answer),
we guess a repairs J of Z and verify that ¢ > Q(J) (or
t > Q(J)). In all preceding reductions, the a-clauses capture
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the inconsistency in the database arisen due to the key
violations to enforce every satisfying assignment to uniquely
correspond to a repair of the initial inconsistent database
instance. Importantly, the a-clauses are independent of the
input query. In what follows, we provide a way to construct
clauses to capture the inconsistency arising due to the
violations of denial constraints. Thus, replacing the a-clauses
in the reductions from Section IV by the ones provided below
allows us to compute consistent answers over databases with
a fixed finite set of arbitrary denial constraints. The reduction
relies on the notions of minimal violations and near-violations
to the set of denial constraints that we introduce next.

Assume that X is a set of denial constraints, Z is an R-
instance, and S is a sub-instance of 7.

e We say that S is a minimal violation to 3, if S [~ ¥ and
for every set S’ C S, we have that 5" = ¥.

e Let f be a fact of Z. We say that S is a near-violation
wrt. ¥ and f if S |= X and SU{f} is a minimal violation
to X. As a special case, if {f} itself is a minimal violation to
3, we say that there is exactly one near-violation w.r.t. f, and
it is the singleton { fiyc}, where fi.,. is an auxiliary fact.

Let R be a database schema, > be a fixed finite set of
denial constraints on R, () be an aggregation query without
grouping, and Z be an R-instance.

Reduction V.1. Given an R-instance I, compute V), the set
of minimal violations to ¥ on I, and N, the set of near-
violations to %, on I, w.r.t. each fact f; € I. For each fact
fi of I, introduce a boolean variable x;. For the auxiliary
fact firye, introduce a constant Tiqe = true, and for each
N; € N, introduce a boolean variable p},.

1) For each Vj € V, construct a clause a; = V -

fi€V;

2) For each f; € I, construct a clause v; = x;V | V pé)
NieNi
3) For each p', construct an expression 0. = p' < N x4.
J J I et

J

4) Construct the following boolean formula ¢:

# ( 171 ((\Nil

Sa)n (A (Ch ) rm)

i=1
Proposition V.1. The boolean formula ¢ constructed using
Reduction V.1 can be transformed to an equivalent CNF-
formula ¢ whose size is polynomial in the size of I. The
satisfying assignments to ¢ and the repairs of T w.rt. ¥ are
in one-to-one correspondence.

Proof. (Sketch) The first part is proved using basic rules of
propositional logic. For the second part, consider a satisfying
assignment s to ¢ and construct a database instance J such
that f; € J if and only if s(x;) = 1. The a-clauses assert
that no minimal violation to X is present in J, i.e., J is a
consistent subset of Z. The ~y-clauses and the O-expressions
encode the condition that, for every fact f € Z, either f € J
or at least one near-violation w.r.t. ¥ and f is in J, making
sure that 7 is indeed a repair of Z. In the other direction, one
can construct a satisfying assignment s to ¢ from a repair J
of Z by setting s(x;) = 1 if and only if f; € J. O
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VI. EXPERIMENTAL EVALUATION

We evaluate the performance of AggCAvVSAT over both
synthetic and real-world databases. The first set of experiments
includes a comparison of AggCAvSAT with an existing SQL-
rewriting-based CQA system, namely, ConQuer, over synthet-
ically generated TPC-H databases having one key constraint
per relation. This set of experiments is divided into two parts,
based on the method used to generate the inconsistent database
instances. In the first part, we use the DBGen tool from TPC-H
and artificially inject inconsistencies in the generated data; in
the second part, we employ the PDBench inconsistent database
generator from MayBMS [19] (see Section VI-A1 for details).
Next, we assess the scalability of AggCAvSAT by varying
the size of the database and the amount of inconsistency
present in it. Lastly, to evaluate the performance of the
reductions from Section V, we use a real-world Medigap [45]
dataset that has three functional dependencies and one denial
constraint. All experiments were carried out on a machine
running on Intel Core i7 2.7 GHz, 64 bit Ubuntu 16.04,
with 8GB of RAM. We used Microsoft SQL Server 2017
as an underlying DBMS, and MaxHS v3.2 solver [18] for
solving the WPMaxSAT instances. The AggCAvSAT system
is implemented in Java 9.04 and its code is open-sourced
at a GitHub repository https://github.com/uccross/cavsat via a
BSD-style license. Various features of AggCAvSAT, including
its graphical user interface, are presented in a short paper in
the demonstration track of the 2021 SIGMOD conference [46].

A. Experiments with TPC-H Data and Queries

1) Datasets: For the first part of the experiments, the
data is generated using the DBGen data generation tool from
the TPC-H Consortium. The TPC-H schema comes with
exactly one key constraint per relation, which was ideal for
comparing AggCAvSAT against ConQuer [4], [25] (the only
existing system for computing the range consistent answers to
aggregation queries), because ConQuer does not support more
than one key constraint per relation or classes of integrity
constraints broader than keys. The DBGen tool generates
consistent data, so we artificially injected inconsistency by
updating the key attributes of randomly selected tuples from
the data with the values taken from existing tuples of the same
relation. The sizes of the key-equal groups that violate the
key constraints were uniformly distributed between two and
seven. The database instances were generated in such a way
that every repair had the specified size. We experimented with
varied degrees of inconsistency, ranging from 5% up to 35%
of the tuples violating a key constraint, and with a variety of
repair sizes, starting from 500 MB (4.3 million tuples) up to 5
GB (44 million tuples). For the second part, we employed the
PDBench database generator from MayBMS [19] to generate
four inconsistent database instances with varying degrees of
inconsistency (see Table II). In all four instances, the data is
generated in such a way that every repair is of size 1 GB.

2) Queries: The standard TPC-H specification comes with
22 queries (constructed using the QGen tool). Here, we focus
on queries 1, 3, 4, 5, 6, 10, 12, 14, and 19; the other 13
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Table II: Inconsistent TPC-H instances using PDBench

Inconsistency

Table Inst. 1 Inst. 2 Inst. 3 Inst. 4
CUSTOMER 4.42% 8.5% 16.14% 29.49%
LINEITEM 6.36% 12.09% 22.53% 39.82%
NATION 7.69% 0% 7.69% 7.69%
ORDERS 3.51% 6.77% 12.87% 23.9%
PART 4.93% 9.33% 17.66% 32.16%
PARTSUPP 1.53% 2.96% 5.77% 11.13%
REGION 0% 0% 0% 0%

SUPPLIER 3.69% 7.44% 14.11% 26.51%
Overall 5.36% 10.25% 19.29% 34.72%

\ Database size and Repair size (in GB) |
\ [ 104 & 1.00 | 1.07 & 1.01 [ L14 & 1.02 | 1.3 & 102 |
\ \ Size of the Largest Key-equal Groups \
[ | 8tuples | 16 tuples | 16 tuples [ 32 tuples |

queries have features such as nested subqueries, left outer
joins, and negation that are beyond the aggregation queries
defined in Section III. In Section VI-A3, we describe our
results for queries without grouping. Since six out of the nine
queries contained the GROUP BY clause, we removed it and
added appropriate conditions in the WHERE clause based on the
original grouping attributes to obtain queries without grouping.
We refer to these queries as Q, Q%, -+ , Q-

3) Results on Queries without Grouping: In the first set
of experiments, we computed the range consistent answers
of the TPC-H-inspired aggregation queries without grouping
via WPMaxSAT solving over a database instance with 10%
inconsistency and having repairs of size 1 GB (8 million
tuples). Figure 1 shows that much of the evaluation time used
by AggCAVSAT is consumed in encoding the CQA instance
into a WPMaxSAT instance, while the solver comparatively
takes less time to compute the optimal solution. Note that, Q)
is not in the class Cyggforesr and thus ConQuer cannot compute
its range consistent answers. AggCAvSAT performs better than
ConQuer on seven out of the remaining eight queries.

> T T T T i T T T
'g 4 B WPMaxSAT enc. 1 WPMaxSAT sol.

S [J ConQuer g M Original query

2 -

P b

g 20 B
=

>

=0

Q1 Q3 Q) Q5 Q Qi Qi Quu Qo
Figure 1: AggCAVSAT vs. ConQuer on TPC-H data generated
using the DBGen-based tool (10% inconsistency, 1 GB repairs)

Next, we compared the performance of AggCAvSAT and
ConQuer on database instances generated using PDBench. Fig-
ure 2 shows that AggCAvVSAT performs better than ConQuer
on PDBench instances with low inconsistency. As the inconsis-
tency increases, the WPMaxSAT solver requires considerably
long time to compute the optimal solutions (especially for Qg,
Q' and Q' ). One reason is that the sizes of key-equal groups
in PDBench instances with higher inconsistency percentage
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are large, which translates into clauses of large sizes in
the WPMaxSAT instances, hence the solver works hard to
solve them. Also, Kiigel’s reduction [40] from WPMinSAT
to WPMaxSAT significantly increases the size of the CNF
formula, resulting in higher time for the /ub-answers.

) T T T T \ T
=] Instance 1
5 4L B WPMaxSAT enc. w
3 B WPMaxSAT sol.
o [ conQuer
g 21 M Original query N
=
0 ‘ |
Q1 @3 @y @ Q6 Qu Q Qu Qu
= T T T T T T T T
2 4] HWPMaxSAT enc. [tnsatce 2
02 B WPMaxSAT sol.
o 9| [ ConQuer |
E [ | Original query
=
2 0 ‘
Q1 Qs Qf Q5 Qp Q@ Q2 @y Qo
'§ 61 "B WPMaxSAT enct | ‘ ‘ [ Instance 3]
3 B WPMaxSAT sol.&
723 =
Z 4| - [conQuer e *
5 B Oricinal
g riginal query
2 2| N
=0 SR A
[-E 0 | — W | . m B |
Q1 @3 Qi Q5 Q Qi Qi Qu Qi
= BwpMaxSAT enc 7] [ [Instance 4]
3101 EWPMaxSAT sol. § 8
z [J ConQuer £y
o B Oricinal
E 5[ riginal query
[;% | m X . !
Qi Q5 Qf Q5 Qp Qi Q1 Qs Qo

Figure 2: AggCAvSAT vs. ConQuer on PDBench instances

Table III: Average size of CNF formulas for Q, Qg, and Q'

5% 15% 25% 35% 5% 15% 25% 35%
Q) [[102 [ 343 | 606 | 953 276 | 922 | 163.6 | 258.1
Qf | 284 | 962 | 1750 | 2712 76.8 | 259.9 | 4729 | 734.0
Q. | 64 | 211 | 406 | 623 156 | 519 | 101.0 | 156.6
(a) # of variables (in thousands) (b) # of clauses (in thousands)
1 GB 3 GB 5 GB 1 GB 3 GB 5 GB
Q4 213 441 105.6 577 | 1041 | 2588
Q5 60.9 | 127.13 | 304.4 1653 | 300.7 | 823.1
Q| 139 329 67.7 340 | 737 | 166.6

(c) # of variables (in thousands)  (d) # of clauses (in thousands)

Next, we varied the inconsistency in the database instances
created using the DBGen-based data generator while keeping
the size of the database repairs constant (1 GB). Figure 3
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shows that the evaluation time of AggCAvSAT stays well
under ten seconds (except for ), even if there is more
inconsistency in the data. Tables IIla and IIIb show the average
size of the CNF formulas for the top three queries that
exhibited the largest CNF formulas. The size of the formulas
grows nearly linearly as the inconsistency present in the data
grows. The CNF formulas for Q are significantly larger than
the ones corresponding to the other queries since Qj has high
selectivity and it is posed against the single largest relation
LINEITEM which has over 8.2 million tuples in an instance
with 35% inconsistency. This also explains why AggCAvSAT
takes more time for computing its range consistent answers
(Figure 3). In database instances with low inconsistency,
the consistent answers to the queries having low selectivity
(e.g., Q%, Q) are sometimes contained in the consistent part
of the data, and AggCAvVSAT does not need to construct a
WPMaxSAT instance at all.

[—e— Qi == ——q]
—— Q5 -~ @ —8- Qi -~
| Qi = QL ——Qp -~

DO
(e}

—_
o

)

Eval. time (seconds)

20

Percentage of inconsistency

25 30 35

Figure 3: AggCAvVSAT on TPC-H data generated using the
DBGen-based tool (varying inconsistency, 1 GB repairs)

We then evaluated AggCAvSAT’s scalability by increasing
the sizes of the databases while keeping the inconsistency to
a constant 10%. Figure 4 shows that the evaluation time of
AggCAvVSAT for queries Q}, Qp, and @}, increases faster
than that for the other queries. This is because the queries
@} and Qf are posed against LINEITEM while @, involves a
join between LINEITEM and ORDERS resulting in AggCAvSAT
spending more time on computing the minimal witnesses to
these queries as the size of the database grows. Table Illc
and I1Id show that the size of the CNF formulas grows almost
linearly w.r.t. the size of the database. The largest CNF formula
consisted of over 304000 variables and 823000 clauses and
was exhibited by Qf on a database of size 5 GB (47 million
tuples). The low selectivity of queries (%, Q%, and Qfq
resulted in very small CNF formulas, even on large databases.

4) Results on Queries with Grouping: In this set of ex-
periments, we focus on TPC-H queries 1, 3, 4, 5, 10, and
12, as the queries 6, 14, and 19 did not contain grouping. We
evaluated the performance of AggCAvSAT and compared it to
ConQuer on a database with 10% inconsistency w.r.t. primary
keys (Figure 5). The repairs are of size 1 GB. AggCAvSAT
computes the consistent answers to the underlying conjunctive
query using the reductions from [16] which are, precisely, the
consistent groups in the range consistent answers to the aggre-
gation query. For each of these groups, it computes the g/b-
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2

% 40 *+Q1‘ —a— Q3 ‘—G—sz ‘—N—Qs -‘0- Qe ," N
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o 20 [ s
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Size of the database repairs (in GB)

Figure 4: AggCAvSAT on TPC-H data generated using the
DBGen-based tool (varying database sizes, 10% inconsistency)

answer and the [ub-answer using reductions to WPMaxSAT.

@ . T T T T
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Figure 5: AggCAvVSAT vs. ConQuer on TPC-H data generated
using the DBGen-based tool (10% inconsistency, 1 GB repairs)

The overhead of computing the range consistent answers to
aggregation queries with grouping is higher than that for the
aggregation queries without grouping because for an aggre-
gation query with grouping, AggCAvSAT needs to construct
and solve twice as many WPMaxSAT instances as there are
consistent groups, i.e., one for the /ub-answer and one for the
glb-answer per consistent group. For queries that involved the
SELECT TOP k construct of SQL, we chose top k consistent
groups ordered by one or more grouping attributes present
in the ORDER BY clause of the query. AggCAvSAT computes
the range consistent answers to each query under ten seconds
except for ();. It took under three seconds to compute the
consistent groups of ()1, but took over forty seconds to encode
the range consistent answers of the groups and over fifteen
minutes to solve the corresponding WPMaxSAT instances.
This is because some consistent groups have over 3M tuples
and so the WPMaxSAT instances have over 600 thousand
variables and over 1.3 million clauses. ConQuer took slightly
over two minutes to compute the range consistent answers
to Q1. We did not include (Q; in experiments with larger
databases and higher inconsistency.

In the comparison of AggCAvVSAT and ConQuer for aggre-
gation queries with grouping on PDBench instances (Figure
6), AggCAvVSAT beats ConQuer on all queries on the database
instance with the lowest amount of inconsistency, but as the
inconsistency grows, AggCAvSAT takes longer time to encode
and solve for the consistent groups of the queries ()3 and Q1.

In Figure 7, we first plot the evaluation time of AggCAvSAT
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Q4 Qs Q1o

as the percentage of inconsistency in the data grows from 5%
to 35% in the instances generated using the DBGen-based data
generator. The size of the database repairs is kept constant at
1 GB (8 million tuples).

Since AggCAvSAT constructs and solves many WP-
MaxSAT instances having varying sizes for an aggregation
query involving grouping, we also plot the overall number of
SAT calls made by the solver in Figure 7. Note that the Y-
axis has logarithmic scaling in the second plot of Figure 7.
There are ten consistent groups in the answers to ()3, and
just five and two consistent groups in the answers to (5 and
(12 respectively. In each consistent group, the aggregation
operator is applied over a much larger set of tuples in ()5 and
Q12 than in Q3. As a result, the evaluation time for Q3 is
high but the number of SAT calls is comparatively less, while
AggCAVSAT makes more SAT calls for Q5 and @12, even
though their consistent answers are computed much faster.
The query Q1o requires long time to construct and solve the
WPMaxSAT instances for its consistent groups due to its high
selectivity and the presence of joins between four relations.
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Figure 7: AggCAvSAT on TPC-H data generated using the

DBGen-based tool (varying inconsistency, 1 GB repairs)

The evaluation time of computing the range consistent an-
swers to aggregation queries with grouping increases almost
linearly w.r.t. the size of the database when the percentage
of inconsistency is constant (Figure 8). The second plot in
Figure 8 depicts the number of SAT calls made by the solver
as the size of the database grows. Due to low selectivity, the
answers to ()4 are encoded into small CNF formulas even on
databases with high inconsistency or large sizes, resulting in
fast evaluations.

g 60 |- 2 Qs 6 Qi —w— Q5 —B— Q10 —— Q12 _

Q

i‘”)/ 40 |
5]

£ 20 ]
T; 0L I \ ! ! [
K 1 2 3 4 5

= F T T T 7
0104; —A—Q3—e—¢4—x—Q5—E—Q10—*—Q12 N
50 W E
15 F 1
5102§ W E
Na B N
5101:— | ! | | I
Z 1 2 3 4 5

Size of the database repairs (in GB)

Figure 8: AggCAvSAT on TPC-H data generated using the
DBGen-based tool (varying database sizes, 10% inconsistency)

5) Discussion: The experiments show that AggCAvSAT
performed well across a broad range of queries and databases;
it performed worse on queries with high selectivity because,
in such cases, very large CNF formulas were generated.
AggCAVSAT slowed down on databases with high degree of
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inconsistency (> 30%) and with key-equal groups of large
sizes (> 15). These are rather corner cases that should not be
encountered in real-world databases.

B. Experiments with Real-world Data

1) Dataset: For this set experiments, we use the schema
and the data from Medigap [45], an openly available real-
world database about Medicare supplement insurance in the
United States. We combine the data from 2019 and 2020
to obtain a database with over 61K tuples (Table IVa). We
evaluated the performance of Reduction V.1, since we consider
two functional dependencies and one denial constraint on the
Medigap schema, as shown in Table IVb. The actual data was
inconsistent so no additional inconsistency was injected.

Table IV: Medigap real-world database

Relation Acronym | # of attributes | # of tuples
OrgsByState OBS 5 3872
PlansByState PBS 18 21002
PlansByZip PBZ 20 4748
PlanType PT 4 2434
Premiums PR 7 29148
SimplePlanType | SPT 4 70
(a) Medigap schema
Type | Constraint Definition Inconsistency
FD OBS (orgID — orgName) 2.58%
FD PBS (addr, city, abbrev — zip) 1.5%
DC V t € PBS (t.webAddr # ) 0.15%

(b) Integrity constraints and inconsistency

2) Queries: We wuse 12 natural aggregation queries
(Q1", -+ ,QY%) on the Medigap database that involve the
aggregation operators COUNT (*), COUNT (A), and SUM (A).
The first six queries contain no grouping, while the rest of
them do. The definitions of some of these queries are in Table
V, the remaining are given in [47].

Table V: Aggregation Queries on Medigap database

Query
? SELECT COUNT (x) FROM PBZ, SPT WHERE PBZ.Description
= SPT.Simple_plantype_name AND SPT.Contract_year =
2020 AND SPT.Simple_plantype ‘B’

Q%'| SELECT SUM(PBZ.Over65) FROM PBZ WHERE PBZ.State_-
name = ‘Wisconsin’ AND PBZ.County_name = ‘GREEN
LAKE'

QY'| SELECT SUM(PBZ.Community) FROM PBZ WHERE

PBZ.State_name = ‘New York’
7'| SELECT SPT.Contract_year, COUNT (%) FROM SPT GROUP
BY SPT.Contract_year ORDER BY SPT.Contract_year
DESC

Qg'| SELECT PBZ.State_name, COUNT (%) FROM PBZ GROUP BY
PBZ.State_name
Q75| SELECT TOP 10 PT.Simple_plantype,

COUNT (PR.Premium_range) FROM PT, PR WHERE
PT.State_abbrev = PR.State_abbrev AND PT.Plan_-—
type = PR.Plan_type AND PT.Contract_year =
PR.Contract_year and PT.Contract_year = 2020 GROUP
BY PT.Simple_plantype ORDER BY PT.Simple_plantype

3) Results on Real-world Database: In Figure 9, we plot
the overall time taken by AggCAvSAT to compute the range
consistent answers to the twelve aggregation queries on the
Medigap database. Since the Medigap schema has functional
dependencies and a denial constraint, the encoding of CQA
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Figure 9: Evaluation on real-world aggregation queries

into WPMaxSAT instances is based on Reduction V.1. Conse-
quently, the size of the CNF formulas is much larger compared
to that of the ones produced by Reduction IV.1, resulting in
longer encoding times. For all twelve queries, the encoding
time is dominated by the time required to compute the near-
violations and hence the 7y-clauses. This part of the encoding
time is equal for all queries, but the computation time for
minimal witnesses depends on the query. The solver takes
comparatively minuscule amount of time to compute the
consistent answers to the underlying conjunctive query. For
the queries Q%', - -+, Q7%, the glb-answer and the [ub-answer
are encoded and then solved for for each consistent group,
causing high overhead. The longest evaluation time is taken
by queries Q7j, @75, and Q' since they consist of 10, 10,
and 6 consistent groups, respectively.

VII. CONCLUDING REMARKS

First, we showed that computing the range consistent an-
swers to an aggregation query involving the SUM (A) operator
can be NP-hard, even if the consistent answers to the underly-
ing conjunctive query are SQL-rewritable. We then designed,
implemented, and evaluated AggCAvSAT, a SAT-based system
for computing range consistent answers to aggregation queries
involving COUNT (A), COUNT (%), SUM (A), and grouping. It is
the first system able to handle aggregation queries whose range
consistent answers are not SQL-rewritable. Our experimental
evaluation showed that AggCAvVSAT is not only competitive
with systems such as ConQuer but it is also scalable. The
experiments on the Medigap data showed that AggCAvSAT
can handle real-world databases having integrity constraints
beyond primary keys. The next step in this investigation is to
first delineate the complexity of the range consistent answers
to aggregation queries with the operator AvG(A) and then
enhance the capabilities of AggCAvSAT to compute the range
consistent answers of such aggregation queries. Finally, we
note that the SAT-based methods used here are applicable to
broader classes of SQL queries, such as queries with nested
subqueries, as long as denial constraints are considered.
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