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Abstract—The framework of database repairs and consis-
tent answers to queries is a principled approach to managing
inconsistent databases. We describe the first system able to
compute the consistent answers of general aggregation queries
with the COUNT(A), COUNT(*), and SUM operators, and with
or without grouping constructs. Our system uses reductions to
optimization versions of Boolean satisfiability (SAT) and then
leverages powerful SAT solvers. We carry out an extensive
set of experiments on both synthetic and real-world data that
demonstrate the usefulness and scalability of this approach.

I. INTRODUCTION

The framework of database repairs and consistent query

answering, introduced by Arenas, Bertossi, and Chomicki [1],

is a principled approach to managing inconsistent databases,

i.e., databases that violate one or more integrity constraints on

their schema. In this framework, inconsistencies are handled

at query time by considering all possible repairs of the incon-

sistent database, where a repair of an inconsistent database I
is a consistent database J that differs from I in a “minimal”

way. The consistent answers to a query q on a given database

I is the intersection of the results of q applied on each repair

of I. Thus, a consistent answer provides the guarantee that

it will be found no matter on what repair the query has

been evaluated. Computing the consistent answers can be an

intractable problem, because an inconsistent database may

have exponentially many repairs. In particular, computing

the consistent answers of a fixed Select-Project-Join (SPJ)

query can be a coNP-complete problem. By now, there is

an extensive body of work on the complexity of consistent

answers for SPJ queries (see Section II).

Range Semantics: Concept and Motivation. Aggregation

queries, the most frequently asked queries, are of the form

Q := SELECT Z, f(A) FROM T (U,Z,A) GROUP BY Z,

where f(A) is one the standard aggregation operators

COUNT(A), COUNT(*), SUM(A), AVG(A). MIN(A), MAX(A),

and T (U,Z,A) is the relation returned by a SPJ query q ex-

pressed in SQL. A scalar aggregation query is an aggregation

query without a GROUP BY clause.

What is the semantics of an aggregation query over an

inconsistent database? Since an aggregation query may re-

turn different answers on different repairs of an inconsistent

database, there is typically no consistent answer as per the

earlier definition of consistent answers. To obtain meaningful

semantics to aggregation queries, Arenas et al. [2] introduced

the range consistent answers.

Let Q be a scalar aggregation query and Σ be a set of

integrity constraints. The set of possible answers to Q on

an inconsistent instance I w.r.t. Σ is the set of the answers

to Q over all repairs of I w.r.t. Σ, i.e., Poss(Q,Σ) =
{Q(J ) | J is a repair of I w.r.t. Σ}. The range consistent
answers to Q on I is the interval [glb(Q, I), lub(Q, I)],
where the endpoints of this interval are, respectively, the

greatest lower bound (glb) and the least upper bound (lub)

of the set Poss(Q,Σ) of possible answers to Q on I. For

example, the range consistent answers to the query

SELECT SUM(ACCOUNTS.BAL) FROM ACCOUNTS,

CUSTACC WHERE ACCOUNTS.ACCID = CUSTACC.ACCID

AND CUSTACC.CID = ‘C2’

on the instance in Table I is the interval [900, 2200]. The

meaning is that no matter how the database I is repaired, the

answer to the query is guaranteed to be in the range between

900 and 2200. Arenas et al. [3] focused on scalar aggregation

queries only. Fuxman, Fazli, and Miller [4] extended the

notion of range consistent answers to aggregation queries

with grouping (see Section III).

Range semantics have become the standard semantics of

aggregation queries in the framework of database repairs (see

[5, Section 5.6]). Furthermore, range semantics have been

adapted to give semantics to aggregation queries in several

other contexts, including data exchange [6] and ontologies [7].

Finally, range semantics have been suggested as an alternative

way to overcome some of the issues arising from SQL’s

handling of null values [8].

Earlier Systems for Consistent Query Answering. Several

academic prototype systems for consistent query answering

have been developed [3], [9], [10], [4], [11], [12], [13], [14],

[15], [16]. These systems use different approaches, including

logic programming [9], [12], compact representations of re-

pairs [17], or reductions to solvers [14], [13], [16]. In partic-

ular, in [16], we reported on CAvSAT, a system that at that

time was able to compute the consistent answers of unions of

SPJ queries w.r.t. denial constraints (which include functional

dependencies as a special case) via reductions to SAT solvers.

Among all these systems, however, only the ConQuer system

by Fuxman et al. [4], [11] is capable of handling aggregation

queries. Actually, ConQuer can only handle a restricted class

of aggregation query, namely, those aggregation queries w.r.t.

key constraints for which the underlying SPJ query belongs to

the class called Cforest. For such a query Q, the range consistent

answers of Q are SQL-rewritable, which means that there is a
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Table I: Running example – an inconsistent database instance of bank account records

Customer
CID NAME CITY

f1 C1 John LA

f2 C2 Mary LA

f3 C2 Mary SF

f4 C3 Don SF

f5 C4 Jen LA

Accounts
ACCID TYPE CITY BAL

f6 A1 Check. LA 900

f7 A2 Check. LA 1000

f8 A3 Saving SJ 1200

f9 A3 Saving SF -100

f10 A4 Saving SJ 300

CustAcc
CID ACCID

f11 C1 A1

f12 C2 A2

f13 C2 A3

f14 C3 A4

SQL query Q′ such that the range consistent answers of Q on

an instance I can be obtained by directly evaluating Q′ on I.

This leaves out, however, many aggregation queries, including

all aggregation queries whose range consistent answers are not

SQL-rewritable or are NP-hard to compute. Up to now, no

system supports such queries.

Summary of Contributions. In this paper, we report on

and evaluate the performance of AggCAvSAT (Aggregate

Consistent Answers via Satisfiability Testing), which is an

enhanced version of CAvSAT and is also the first system

that is capable to compute the range consistent answers

to all aggregation queries involving the operators SUM(A),

COUNT(A), or COUNT(*) with or without grouping.

We first corroborate the need for a system that goes well

beyond ConQuer by showing that there is an aggregation

query Q involving SUM(A) such that the consistent answers

of the underlying SPJ query q w.r.t. key constraints are SQL-

rewritable, but the range consistent answers of Q are NP-hard

(Theorem III.1 in Section III).

The distinctive feature of AggCAvSAT is that it uses

polynomial-time reductions to reduce the range consistent

answers of aggregation queries to optimization variants of

Boolean Satisfiability (SAT), such as Partial MaxSAT and

Weighted Partial MaxSAT. These reductions, described in

Sections IV and V, are natural but are much more sophisticated

than the reductions used in [16] to reduce the consistent

answers of SPJ queries to SAT. After the reductions have been

carried out, AggCAvSAT deploys powerful SAT solvers, such

as the MaxHS solver [18], to compute the range consistent

answers of aggregation queries. Furthermore, AggCAvSAT

can handle databases that are inconsistent not only w.r.t. key

constraints, but also w.r.t. arbitrary denial constraints, a much

broader class of constraints.

An extensive experimental evaluation of AggCAvSAT is

reported in Section VI. We carried out a suite of experiments

on both synthetic and real-word databases, and for a variety of

aggregation queries with and without grouping. The synthetic

databases were generated using two different methods: (a) the

DBGen tool of TPC-H was used to generate consistent data and

then inconsistencies were injected artificially; (b) the PDBench

inconsistent database generator from the probabilistic database

management system MayBMS [19] was used. The experiments

demonstrated the scalability of AggCAvSAT along both the

size of the data and the degree of inconsistency in the data.

Note that AggCAvSAT was also competitive in comparison to

ConQuer (especially when the degree of inconsistency was not

excessive), even though the latter is tailored to only handle a

restricted class of aggregation queries whose range consistent

answers are SQL-rewritable.

An extended version of this paper is posted on arXiv [20].

Consistent Answers vs. Data Cleaning. There is a large body

of work on managing inconsistent databases via data cleaning.

There are fundamental differences between the framework of

the consistent answers and the framework of data cleaning (see

[5, Section 6]). In particular, the consistent answers provide

the guarantee that each such answer will be found no matter

on which repair the query at hand is evaluated, while data

cleaning provides no similar guarantee. Data cleaning has the

attraction that it produces a single consistent instance but the

process need not be deterministic and the instance produced

need not even be a repair (i.e., it need not be a maximally

consistent instance). Recent data cleaning systems, such as

HoloClean [21] and Daisy [22], [23], produce a probabilistic

database instance as the output (that need not be a repair). At

the performance level, the data cleaning approaches remove

inconsistencies in the data offline, hence the time-consuming

tasks are done prior to answering the queries; in contrast,

systems for consistent query answering work online.

It is an interesting project, left for future research, to develop

a methodology and carry out a fair comparison on a level

playing field between systems for data cleaning and systems

for consistent query answering.

II. PRELIMINARIES

Integrity Constraints and Database Queries: A relational

database schema R is a finite collection of relation symbols,

each with a fixed positive integer as its arity. The attributes

of a relation symbol are names for its columns; they can

be identified with their positions, thus Attr(R) = {1, ..., n}
denotes the set of attributes of R. An R-instance is a collection

I of finite relations RI , one for each relation symbol R in

R. An expression of the form RI(a1, ..., an) is a fact of

the instance I if (a1, ..., an) ∈ RI . A key is a minimal

subset X of Attr(R) such that the functional dependency

X → Attr(R) holds. The attributes in X are called the key
attributes of R and they are denoted by underlining their

corresponding positions; thus, R(A,B,C) denotes that the

attributes A and B form a key of R.

First-order logic has been successfully used as a database

query language [24]; in fact, it forms the core of SQL. A
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conjunctive query is expressible by a first-order formula of the

form q(z) := ∃w (R1(x1)∧...∧Rm(xm)), where each xi is a

tuple of variables and constants, z and w are tuples of variables

with no variable in common, and the variables in x1, ...,xm

appear in exactly one of the tuples z and w. A conjunctive

query with no free variables (i.e., all variables are existentially

quantified) is a boolean query, while a conjunctive query with

k free variables in z is a k-ary query. Conjunctive queries

are also known as select-project-join (SPJ) queries with equi-

joins, and are among the most frequently asked queries. For

example, on the instance I from Table I, the binary conjunctive

query q(z, x) := ∃w (CUST(w, x, y)∧CUSTACC(w, z)) returns

the set of all pairs (z, x) such that z is an account ID of an

account owned by customer named x.

Database Repairs and Consistent Answers: Let Σ be a

set of integrity constraints on a database schema R. An R-

instance I is consistent if I |= Σ, i.e., I satisfies every

constraint in Σ; otherwise, I is inconsistent. For example,

let I be the instance depicted in Table I. There are two key

constraints, namely, CUST(CID) and ACC(ACCID). Clearly, I
is inconsistent since the facts f2, f3 of CUST and facts f8, f9
of ACC violate these key constraints.

A repair of an inconsistent instance I w.r.t. Σ is a consistent

instance J that differs from I in a “minimal” way. Different

notions of minimality give rise to different types of repairs

(see [5] for a survey). Here, we focus on subset repairs, the

most extensively studied type of repairs. An instance J is a

subset repair of an instance I if J is a maximal consistent

subinstance of I, that is, J ⊆ I (where I and J are viewed

as sets of facts), J |= Σ, and there is no instance J ′ such

that J ′ |= Σ and J ⊂ J ′ ⊂ I. Arenas et al. [1] used repairs

to give rigorous semantics to query answering on inconsistent

databases. Specifically, assume that q is a query, I is an R-

instance, and t is a tuple of values. We say that t is a consistent
answer to q on I w.r.t. Σ if t ∈ q(J ), for every repair J of

I. We write CONS(q, I,Σ) to denote the set of all consistent
answers to q on I w.r.t. Σ, i.e.,

CONS(q, I,Σ) = ⋂ {q(J ) : J is a repair of I w.r.t. Σ}.
If Σ is a fixed set of integrity constraints and q is a

fixed query, then the main computational problem associated

with the consistent answers is: given an instance I, compute

CONS(q, I, Σ); we write CONS(q,Σ) to denote this problem.

If q is a boolean query, then computing the consistent answers

becomes the decision problem CERTAINTY(q,Σ): given an

instance I, is q true on every repair J of I w.r.t. Σ? When

the constraints in Σ are understood from the context, we will

write CONS(q) and CERTAINTY(q) in place of CONS(q,Σ)
and CERTAINTY(q,Σ), respectively.

Complexity of Consistent Answers: There has been an ex-

tensive study of the consistent answers of conjunctive queries

[5], [11], [25], [26], [27], [28], [29], [30], [31]. If Σ is a fixed

set of key constraints and q is a boolean conjunctive query,

then CERTAINTY(q,Σ) is always in coNP, but, depending on

the query and the constraints, CERTAINTY(q,Σ) exhibits a

variety of behaviors within coNP. The most definitive result

to date is a trichotomy theorem by Koutris and Wijsen [30],

[31]; it asserts that if q is a self-join-free (no repeated relation

symbols) boolean conjunctive query with one key constraint

per relation, then CERTAINTY(q) is either SQL-rewritable,

or in P but not SQL-rewritable, or coNP-complete. For

example, if q is the query ∃x, y, z(R(x, y) ∧ S(z, y)), then

CERTAINTY(q) is coNP-complete [25].

Boolean Satisfiability and SAT Solvers: Boolean Satisfia-

bility (SAT) is arguably the prototypical and the most widely

studied NP-complete problem. SAT is the following decision

problem: given a boolean formula ϕ, is ϕ satisfiable? Signif-

icant progress has been made on developing SAT-solvers, so

much so that the advances in this area of research are often

referred to as the “SAT Revolution” [32]). Typically, a SAT-

solver takes a boolean formula ϕ in conjunctive normal form
(CNF) as an input and outputs a satisfying assignment for ϕ
(if one exists) or tells that the formula ϕ is unsatisfiable.

SAT-solvers are capable of solving quickly SAT-instances

with millions of clauses and variables. SAT-solvers have been

widely used in both academia and industry as general-purpose

tools. Indeed, many real-world problems from a variety of

domains, including scheduling, protocol design, software ver-

ification, and model checking, can be naturally encoded as

SAT-instances, and solved quickly using solvers, such as Glu-

cose [33] and CaDiCaL [34]. Furthermore, SAT-solvers have

been used in solving open problems in mathematics [35], [36].

In [16], we used SAT-solvers to build a prototypical system

for consistent query answering, which we called CAvSAT.

This system can compute consistent answers to unions of SPJ

queries over relational databases that are inconsistent w.r.t. a

fixed set of arbitrary denial constraints.

III. RANGE CONSISTENT ANSWERS

Frequently asked database queries often involve one of

the standard aggregation operators COUNT(A), COUNT(*),

SUM(A), AVG(A), MIN(A), MAX(A), and, possibly, a GROUP
BY clause. In what follows, we will use the term aggregation
queries to refer to queries with aggregate operators and with

or without a GROUP BY clause. Thus, in full generality, an

aggregation query can be expressed as

Q := SELECT Z, f(A) FROM T (U,Z,A) GROUP BY Z,

where f(A) is one of the aforementioned aggregate operators

and T (U,Z,A) is the relation returned by a query q, which

typically is a conjunctive query or a union of conjunctive

queries expressed in SQL. This query q is called the underlying
query of Q, the attribute represented by the variable w is called

the aggregation attribute, and the attributes represented by Z
are called the grouping attributes. A scalar aggregation query

is one without a GROUP BY clause.

It is often the case that an aggregation query returns different

answers on different repairs of an inconsistent database; thus,

even for a scalar aggregation query, there is typically no
consistent answer as per the definition of consistent answers

given earlier. In fact, to produce an empty set of consistent

answers, it suffices to have just two repairs on which a scalar

aggregation query returns difference answers. To obtain more

meaningful answers to aggregation queries, Arenas et al. [2]
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proposed the range consistent answers, as an alternative notion

of consistent answers. For a scalar aggregation query Q, the set

of possible answers to Q on an inconsistent instance I consists

of the answers to Q over all repairs of I, i.e., Poss(Q,Σ) =
{Q(J ) | J is a repair of I w.r.t. Σ}. The range consistent
answers to Q on I is the interval [glb(Q, I), lub(Q, I)], where

the endpoints of this interval are, respectively, the greatest

lower bound (glb) and the least upper bound (lub) of the set

Poss(Q,Σ) of possible answers to Q on I.

For example, the range consistent answers of the query

SELECT SUM(ACCOUNTS.BAL) FROM ACCOUNTS,

CUSTACC WHERE ACCOUNTS.ACCID = CUSTACC.ACCID

AND CUSTACC.CID = ‘C2’

on the instance in Table I is the interval [900, 2200]. The

guarantee is that no matter how the database I is repaired,

the answer to the query is guaranteed to be in the range

between 900 and 2200. Note that, the glb-answer comes from

a repair of I that contains the fact f9, while the lub-answer

is from a repair that contains the fact f8.

Arenas et al. [3] focused on scalar aggregation queries only.

Fuxman, Fazli, and Miller [4] extended the notion of range

consistent answers to aggregation queries with grouping, i.e.,

to aggregation queries of the form

Q := SELECT Z, f(A) FROM T (U,Z,A) GROUP BY Z.

For such queries, a tuple (T, [glb, lub]) is a range consistent
answer to Q on I, if the following conditions hold:

• For every repair J of I, there exists d s.t. (T, d) ∈ Q(J)
and glb ≤ d ≤ lub.

• For some repair J of I, we have that (T, glb) ∈ Q(J)
• For some repair J of I, we have that (T, lub) ∈ Q(J).
If Q is an aggregation query, CONS(Q) is the problem:

given an instance I, compute the range semantics of Q on I.

Complexity of Range Consistent Answers: Arenas et al.

[2] investigated the computational complexity of the range

consistent answers for scalar aggregation queries of the form

SELECT f(A) FROM R(U,A),

where f(A) is one of the standard aggregation operators and

R(U,A) is a relational schema with functional dependencies.

Two relevant findings are as follows.

• If the relational schema R(U,A) has at most one

functional dependency and f(A) is one of the aggre-

gation operators MIN(A), MAX(A), SUM(A), COUNT(*),

AVG(A), then the range consistent answers of the query

SELECT f(A) FROM R(U,A) is in P.

• There is a relational schema R(U,A) with one key

dependency s.t. the range consistent answers of the query

SELECT COUNT(A) FROM R(U,A) are NP-complete.

It remains an open problem to pinpoint the complexity of

the range consistent answers for richer aggregation queries

Q := SELECT Z, f(A) FROM T (U,Z,A) GROUP BY Z,

where T (U,Z,A) is the relation returned by a conjunctive

query q or by a union q := q1∪· · ·∪qk of conjunctive queries.

It can be shown, however, that if computing the consistent

answers CONS(q) of the underlying query q is a hard problem,

then computing the range consistent answers CONS(Q) of

the aggregation query Q is a hard problem as well. This

gives rise to the following question: what can we say about

the complexity of the range consistent answers CONS(Q) if

computing the consistent answers CONS(q) of the underlying

query is an easy problem?

Fuxman and Miller [25] identified a class, called Cforest,

of self-join free conjunctive queries whose consistent answers

are SQL-rewritable. In his PhD thesis, Fuxman [37] introduced

the class Caggforest consisting of all aggregation queries such

that the aggregation operator is one of MIN(A), MAX(A),

SUM(A), COUNT(*), the underlying query q is a conjunctive

query in Cforest, and there is one key constraint for each

relation in the underlying query q. Fuxman [37] showed that

the range consistent answers of every query in Caggforest are

SQL-rewritable (earlier, similar results for a proper subclass

of Caggforest were obtained by Fuxman, Fazli, and Miller).

It is known that there are self-join free conjunctive queries

outside the class Cforest whose consistent answers are SQL-

rewritable. Koutris and Wijsen [31] characterized the self-

join free conjunctive queries whose consistent answers are

SQL rewritable. However, the SQL rewritability of aggregation

queries beyond those in Caggforest has not been investigated.

Here, we show that there exists a self-join-free conjunctive

query whose consistent answers are SQL-rewritable, but this

property is not preserved when an aggregation operator is

added on top of it. For this, we reduce the NP-complete

problem MAXIMUM CUT [38] to the problem of computing

the range consistent answers to an aggregation query involv-

ing SUM and whose underlying conjunctive query has SQL-

rewritable consistent answers. The proof of the next result is

given in the extended version of this paper on arXiv [20].

Theorem III.1. Let R be a relational schema with three re-
lations R1(A1, B1), R2(A2, B2), and R3(A1, B1, A2, B2, C).
Let Q be the aggregation query:

Q := SELECT SUM(A) FROM q(A),
where q(A) is the following self-join-free conjunctive query:

∃x∃y R1(x, ‘r’) ∧R2(y, ‘b’) ∧R3(x, ‘r’, y, ‘b’, A).

Then the following two statements hold.
1) CONS(q) is SQL-rewritable.
2) CONS(Q) is NP-hard.

IV. CONSISTENT ANSWERS VIA SAT SOLVING

Here, we give polynomial-time reductions from computing

the range consistent answers of aggregation queries with the

operators COUNT(∗), COUNT(A), SUM(A) to variants of SAT.

In the extended version of this paper on arXiv [20], we give

reductions of the range consistent answers of aggregation

queries with the operators MIN(A), MAX(A) to iterative SAT.

The reductions in this section assume that the database schema

has one key constraint per relation; in Section V, we show how

these reductions can be extended to schemata with arbitrary

denial constraints. Our reductions rely on several well known

optimization variants of SAT that we describe next.

• Weighted MaxSAT (or WMaxSAT) is the maximization

variant of SAT in which each clause is assigned a positive

weight and the goal is to find an assignment that maximizes
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the sum of the weights of the satisfied clauses. We write (l1∨
· · · ∨ lk, w) to denote a clause (l1 ∨ · · · ∨ lk) with weight w.

• Partial MaxSAT (or PMaxSAT) is the maximization

variant of SAT in which some clauses of the formula are

assigned infinite weight (hard clauses), while each of the rest

is assigned weight one (soft clauses). The goal is to find an

assignment that satisfies all hard clauses and the maximum

number of soft clauses. If the hard clauses of a PMaxSAT

instance are not simultaneously satisfiable, then we say that

the instance is unsatisfiable. For simplicity, a hard clause

(l1 ∨ · · · ∨ lk,∞) is denoted as (l1 ∨ · · · ∨ lk).
• Weighted Partial MaxSAT (or WPMaxSAT) is the max-

imization variant of SAT where some of the clauses of the

formula are assigned infinite weight (hard clauses), while each

of the rest is assigned a positive weight (soft clauses). The

goal is to find an assignment that satisfies all hard clauses and

maximizes the sum of weights of the satisfied soft clauses.

Modern solvers, such as MaxHS [18], can efficiently solve

large instances of these maximization variants of SAT. Note

that these maximization problems have dual minimization

problems, called WMinSAT, PMinSAT, and WPMinSAT, re-

spectively. For example, in WPMinSAT, the goal is to find

an assignment that satisfies all hard clauses and minimizes

the sum of weights of the satisfied soft clauses. These min-

imization problems are of interest to us, because some of

the computations of the range consistent answers have natural

reductions to such minimization problems. At present, the only

existing WPMinSAT solver is MinSatz [39]. Since this solver

has certain size limitations, we will deploy Kügel’s technique

[40] to first reduce WPMinSAT to WPMaxSAT, and then use

the MaxHS solver in our experiments. This technique uses the

concept of CNF-negation – see [40], [41].

We also need to consider the notions of key-equal groups of

facts and the bag of witnesses to queries. Let I be a database

instance and let vals(I) be the set of values occurring in I.

• We say that two facts of a relation R of I are key-equal,
if they agree on the key attributes of R. A set S of facts of I
is called a key-equal group of facts if every two facts in S are

key-equal, and no fact in S is key-equal to some fact in I\S.

• Let q(z) := ∃w (R1(x1)∧...∧Rm(xm)) be a conjunctive

query, where each xi is a tuple of variables and constants, and

let a ∈ q(I) be an answer to q on I. Let vars(q) and cons(q) be

the sets of variables and constants occurring in q. A function

f : vars(q) ∪ cons(q) → vals(I) is a witnessing assignment
to a if the following hold: f(z) = a; if xj is a constant in

q, then f(xj) = xj ; and if Ri(x1, · · · , xn) is an atom of q,

then Ri(f(x1), · · · , f(xn)) is a fact of I. We say that a set

S of facts from I is a witness to a if there is a witnessing

assignment f to a such that S = {Ri(f(x1), · · · , f(xn)) :
Ri(x1, · · · , xn) is an atom of q}.

Note that two distinct witnessing assignments to an answer

may give rise to the same witness. Thus, we consider the bag
of witnesses to an answer, i.e., the bag consisting of witnesses

arising from all witnessing assignments to that answer, where

each witness S is accompanied by its multiplicity, an integer

denoting the number of witnessing assignments that gave rise

to S. Finally, we define the bag of witnesses to a conjunctive
query as the bag union of the bags of witnesses over all

answers to q on I (in the bag union the multiplicities of

the same set are added). The bag of witnesses to a union
q := q1 ∪ · · · ∪ qk of conjunctive queries is the bag union

of the bags of witnesses to each conjunctive query qi in q.

The bag of witnesses will be used in computing the range

consistent answers to aggregation queries. In effect, the bag

of witnesses corresponds to the provenance polynomials of

conjunctive queries and their unions [42], [43].

It is easy to verify that both the key equal groups and the

bag of the witnesses can be computed using SQL queries.

A. Answering Queries without Grouping

Let R be a database schema with one key constraint

per relation, and let Q be the scalar aggregation query

SELECT f FROM T (U,A), where f is one of the operators

COUNT(∗), COUNT(A), SUM(A), and T (U,A) is a union of

conjunctive queries over R.

We will reduce the range consistent answers CONS(Q) of

Q to PMaxSAT and to WPMaxSAT. We first give the intuition

behind Reduction IV.1. We represent each fact of the database

instance with a boolean variable, which allows us to encode

the inconsistencies in the database into α-clauses (Step 1), and

the answers to the input query into β-clauses and γ-clauses

of the CNF formula φ (Steps 2a and 2b). Reduction IV.1

makes sure that every repair of the database instance uniquely

corresponds to an assignment to φ. Importantly, the repairs

that contain the glb-answer and the lub-answer to the query

correspond to the optimal assignments to φ, namely, maximum

satisfying assignment and the minimum satisfying assignment

respectively (Proposition IV.1).

Reduction IV.1. Let Q := SELECT f FROM T (U,A) be an
aggregation query, where f is one of the operators COUNT(*),
COUNT(A), and SUM(A). Let I be an R-instance and G be
the set of key-equal groups of facts of I. For each fact fi
of I, introduce a boolean variable xi. Let W be the bag of
witnesses to the query q∗ on I, where

q∗ :=

{
∃U∃A T (U,A) if f is COUNT(*)

∃U T (U,A) if f is COUNT(A) or SUM(A).

Construct a partial CNF-formula φ (if f is COUNT(*) or
COUNT(A)) or a weighted partial CNF-formula φ (if f is
SUM(A)) as follows:
(1) For each Gj ∈ G,

• construct a hard clause αj = ∨
fi∈Gj

xi.

• for each pair (fm, fn) of facts in Gj such that m �= n,
construct a hard clause αmn

j = (¬xm ∨ ¬xn).
(2a) If f is COUNT(*) or COUNT(A), then for each witness

Wj ∈ W , construct a soft clause βj =
( ∨
fi∈Wj

¬xi,mj

)
,

where mj is the multiplicity of Wj in W .

Construct a partial CNF-instance

φ =
( |G|∧

j=1
αj

)
∧
( |G|∧

j=1

(∧
fm∈Gj

fn∈Gj

αmn
j

))
∧
( |W|∧

j=1
βj

)
.
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(2b) If f is SUM(A), let WP and WN be the subsets of
W such that for each Wj ∈ W , we have Wj ∈ WP

iff q∗(Wj) > 0, and Wj ∈ WN iff q∗(Wj) < 0. Let
also wj = mj ∗ ||q∗(Wj)||, where ||q∗(Wj)|| is the
absolute value of q∗(Wj). Construct a weighted soft
clause βj and a conjunction γj of hard clauses as
follows. If Wj ∈ WN , introduce a new variable yj and
let βj = (yj , wj) and

γj =
((

∨
fi∈Wj

¬xi

)
∨ yj

)
∧
(

∧
fi∈Wj

(¬yj ∨ xi)
)
;

else, let βj =
(

∨
fi∈Wj

¬xi, wj

)
and do not construct γj .

Construct a weighted partial CNF-instance

φ =
( |G|∧

j=1
αj

)
∧
( |G|∧

j=1

(
∧fm∈Gj

fn∈Gj

αmn
j

))

∧
( |W|∧

j=1
βj

)
∧
(

∧
Wj∈WN

γj

)
Purpose of the components of φ in Reduction IV.1
• Each αj-clause encodes the “at-least-one” constraint for

each key-equal group Gj in the sense that satisfying αj

requires setting at least one variable corresponding to a fact

in Gj to true. Similarly, each αm
j n-clause encodes the “at-

most-one” constraint for Gj . In effect, every assignment that

satisfies all α-clauses sets exactly one variable correspond-

ing to the facts from each key-equal group to true, and thus

uniquely corresponds to a repair of I.

• Satisfying a βj-clause constructed in Step 2a requires setting

at least one variable corresponding to the facts of a witness

Wj to q∗ on I to false. Thus, if s is an assignment that

satisfies all α-clauses, then βj is satisfied by s if and only

if Wj �∈ J , where J is a repair corresponding to s.

• The βj-clauses constructed in Step 2b serve the same pur-

pose as the ones from Step 2a, but here they are constructed

only for the witnesses in WP . For the witnesses in WN , the

βj-clauses encode the condition that βj is satisfied if and

only if all variables corresponding to the facts in Wj are set

to true. The hard γj-clauses are used solely to express the

equivalence yj ↔ ( ∧
fi∈Wj

xi) in conjunctive normal form.

The number of α-clauses is O(n), where n is the size of the

database; the number of β-clauses and γ-clauses combined is

O(nk), where k is the number of relation symbols in Q.

Proposition IV.1. Let Q := SELECT f FROM T (U,A) be an
aggregation query, where f is one of the operators COUNT(*),
COUNT(A), and SUM(A). In a maximum (a minimum) sat-
isfying assignment of the WPMaxSAT-instance φ constructed
using Reduction IV.1, the sum of weights of the falsified clauses
is the glb-answer (lub-answer) in CONS(Q) on I.

Example IV.1. Let I be a database instance from Table I,
and Q be the following aggregation query which counts the
number of customers who have an account in their own city:

SELECT COUNT(*) FROM CUST, ACC, CUSTACC

WHERE CUST.CID = CUSTACC.CID AND ACC.ACCID

= CUSTACC.ACCID AND CUST.CITY = ACC.CITY

From Reduction IV.1, we construct the following clauses:
α-clauses: x1, (x2 ∨ x3), x4, x5, x6, x7, (x8 ∨ x9), x10;
αmn-clauses: (¬x2 ∨ ¬x3), (¬x8 ∨ ¬x9);
β-clauses: (¬x1 ∨ ¬x6, 1), (¬x2 ∨ ¬x7, 1), (¬x3 ∨ ¬x9, 1).
By Proposition IV.1, we have that CONS(Q, I) = [1, 2].

Example IV.2. Let us again consider the database instance
I from Table I, and the following aggregation query Q:
SELECT SUM(ACC.BAL) FROM CUST, ACC, CUSTACC

WHERE CUST.CID = CUSTACC.CID AND ACC.ACCID =

CUSTACC.ACCID AND CUST.CNAME = ‘Mary’

The hard clauses constructed using Reduction IV.1 are same
as the ones from Example IV.1. The rest of the clauses are:
β-clauses: (¬x2 ∨ ¬x7, 1000), (¬x3 ∨ ¬x7, 1000), (¬x2 ∨
¬x8, 1200), (¬x3 ∨ ¬x8, 1200), (y1, 100), (y2, 100).
γ-clauses: (¬x2 ∨¬x9 ∨ y1), (¬y1 ∨ x2), (¬y1 ∨ x9), (¬x3 ∨
¬x9 ∨ y2), (¬y2 ∨ x3), (¬y2 ∨ x9).
By Proposition IV.1, we have that CONS(Q, I) = [900, 2200].

B. Handling the DISTINCT Keyword

Let Q := SELECT f FROM T (U,A) be an aggregation query,

where f is either COUNT(DISTINCT A) or SUM(DISTINCT

A). Solving the PMaxSAT or the WPMaxSAT instance con-

structed using Reduction IV.1 may yield incorrect glb and

lub answers to Q, if the database contains multiple witnesses

with the same value for attribute A. For example, consider the

database instance I from Table I, and a query Q:

SELECT COUNT(DISTINCT ACC.TYPE) FROM ACC.

The correct glb and lub-answers in CONS(Q, I) are both

2, but solutions to the PMaxSAT and PMinSAT instances

constructed using Reduction IV.1 yield both answers as 4. The

reason behind this is that the soft clauses ¬x6 and ¬x7 both

correspond to the account type Checking, and similarly ¬x8,

¬x9, and ¬x10 all correspond to the account type Saving. The

hard clauses in the formula ensure that x6, x7, x10, and one of

x8 and x9 are true, thus counting both Checking and Saving

account types exactly twice in every satisfying assignment to

the formula. This can be handled by modifying the β-clauses

in Reduction IV.1 as follows.

Let A denote a set of distinct answers to the query q∗(A) :=
∃U T (U,A). For each answer b ∈ A, let Wb denote a subset

of W such that for every minimal witness W ∈ Wb, we have

that q∗(W ) = b. The idea is to use auxiliary variables to

construct one soft clause for every distinct answer b ∈ A, such

that it is true if and only if no witness in Wb is present in

a repair corresponding to the satisfying assignment. First, for

every witness W b
j ∈ Wb, we introduce an auxiliary variable zbj

that is true if and only if W b
j is not present in the repair. Then,

we introduce an auxiliary variable vb which is true if and only

if all zb-variables are true. These constraints are encoded in

the set Hb returned by Algorithm 1, and are forced by making

clauses in Hb hard. For every answer b ∈ A, Algorithm 1 also

returns one βb-clause, which serves the same purpose as the β-

clauses in Reduction IV.1. Now, a PMaxSAT or a WPMaxSAT

instance can be constructed by taking in conjunction all α-

clauses from the key-equal groups, the hard γ-clauses if any,
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the hard clauses from all Hb-sets, and all soft βb-clauses. With

this, it is easy to see that a maximum (or minimum) satisfying

assignment to PMaxSAT or WPMaxSAT instance give us the

glb-answer (or lub-answer) in CONS(Q) – see Example IV.3.

Algorithm 1 Handling DISTINCT

1: procedure HANDLEDISTINCT(Wb)

2: let Hb = ∅ //Empty set of clauses

3: for W b
j ∈ Wb do

4: Hb = Hb
⋃{(

¬zbj ∨
( ∨
fi∈W b

j

¬xi

))}
5: for fi ∈ W b

j do
6: Hb = Hb

⋃ {(zbj ∨ xi)}
7: Hb = Hb

⋃{(
¬vb ∨

( ∨
W b

j ∈Wb

¬zbj
))}

8: for W b
j ∈ Wb do

9: Hb = Hb
⋃ {(¬vb ∨ zbj)}

10: let βb = (vb, 1)
11: if (f is SUM(DISTINCT A)) then
12: βb = (vb, ||b||)
13: if b < 0 then βb = (¬vb, ||b||)
14: return Hb, βb

Example IV.3. Consider the following aggregation query Q
on the database instance I from Table I:

SELECT COUNT(DISTINCT ACC.TYPE) FROM ACC

We have that A = {‘Checking’, ‘Saving’}. Let us denote these
two answers by a1 and a2 respectively. Since every witness
to the query consists of a single fact, every ya-variable is
equivalent to a single literal, for example, ya1

1 ↔ ¬x6 and
ya1
2 ↔ ¬x7. As a result, it is unnecessary to introduce any
ya-variables at all. Thus, we construct the following clauses
from Reduction IV.1 and Algorithm 1:
α-clauses: x6, x7, (x8 ∨ x9), x10; αmn-clauses: (¬x8 ∨¬x9);
Ha1 : (x6 ∨ x7 ∨ va1), (¬va1 ∨ ¬x6), (¬va1 ∨ ¬x7);
Ha2 : (x8∨x9∨x10∨va2), (¬va2∨¬x8), (¬va2∨¬x9), (¬va2∨
¬x10); β-clauses: (va1 , 1), (va2 , 1).
The maximum and minimum satisfying assignments to the
PMaxSAT and PMinSAT instances constructed using these
clauses falsify both β-clauses, since CONS(Q, I) = [2, 2].

C. Answering Queries with Grouping

Let Q be the aggregation query

SELECT Z, f FROM T (U,Z,w) GROUP BY Z,

where f is one of COUNT(∗), COUNT(A), SUM(A), MIN(A), or

MAX(A), and T (U,A) is a relation expressed by a union of

conjunctive queries on R. We refer to the attributes in Z as

the grouping attributes. For aggregation queries with grouping,

it does not seem feasible to reduce CONS(Q) to a single

PMaxSAT or a WPMaxSAT instance because for each group

of consistent answers, the glb-answer and the lub-answer may

realize in different repairs of the inconsistent database. To

illustrate this, consider the database from Table I and a query

Q := SELECT COUNT(*) FROM CUST GROUP BY CITY.

Notice that, the glb-answers (LA, 2) and (SF, 1) in CONS(Q)
come from two different repairs of relation CUST, namely,

{f1, f3, f4, f5} and {f1, f2, f4, f5} respectively. However, the

reductions from the preceding section can be used to compute

the bounds to each consistent group of answers independently.

For a given aggregation query Q with grouping, we first

compute the consistent answers to an underlying conjunctive

query q(Z) := ∃U,A T (U,Z,A). Then, for each answer b in

CONS(q), we compute the glb and lub-answers to the query

Q′ := SELECT f FROM T (U,Z,A)∧(Z = b) via PMaxSAT

or WPMaxSAT solving as shown in Algorithm 2.

Algorithm 2 Consistent Answers to Queries With Grouping

Let I be an inconsistent database instance, and Q be an

aggregation query of the form

Q := SELECT Z, f FROM T (U,Z,A) GROUP BY Z.

1: procedure CONSAGGGROUPING(Q)

2: let Ans = ∅
3: let q(Z) := ∃U,A T (U,Z,A)
4: let Ac = CONS(q, I)
5: for b ∈ Ac do
6: let Q′ := SELECT f FROM T (U,Z,A) ∧ (Z = b)
7: let [GLBA, LUBA] = CONS(Q′, I)
8: Aans = Aans ∪ (b, [GLBA, LUBA])

9: return Aans

As noted earlier, the bags of witnesses used in the preceding

reductions capture the provenance of unions of conjunctive

queries in the provenance polynomials model of [42], [43].

In [44], it was shown that a stronger provenance model is

needed to express the provenance of aggregation queries, a

model that uses a tensor product combining annotations with

values. A future direction of research is to investigate whether

this stronger provenance model can be used to produce more

direct reductions of the range consistent answers to SAT.

V. BEYOND KEY CONSTRAINTS

Key constraints and functional dependencies are

important special cases of denial constraints (DCs),

which are expressible by first-order formulas of the

form ∀x1, ..., xn¬(ϕ(x1, ..., xn) ∧ ψ(x1, ..., xn)), or,

equivalently, ∀x1, ..., xn(ϕ(x1, ..., xn) → ¬ψ(x1, ..., xn)),
where ϕ(x1, ..., xn) is a conjunction of atomic formulas

and ψ(x1, ..., xn) is a conjunction of expressions of the

form (xi op xj) with each op a built-in predicate, such as

=, �=, <,>,≤,≥. In words, a denial constraint prohibits a

set of tuples that satisfy certain conditions from appearing

together in a database instance. If Σ is a fixed finite set of

denial constraints and Q is an aggregation query without

grouping, then the following problem is in coNP: given a

database instance I and a number t, is t the lub-answer (or
the glb-answer) in CONS(Q, I) w.r.t. Σ? This is so because

to check that t is not the lub-answer (or the glb-answer),
we guess a repairs J of I and verify that t > Q(J) (or
t > Q(J)). In all preceding reductions, the α-clauses capture
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the inconsistency in the database arisen due to the key

violations to enforce every satisfying assignment to uniquely

correspond to a repair of the initial inconsistent database

instance. Importantly, the α-clauses are independent of the

input query. In what follows, we provide a way to construct

clauses to capture the inconsistency arising due to the

violations of denial constraints. Thus, replacing the α-clauses

in the reductions from Section IV by the ones provided below

allows us to compute consistent answers over databases with

a fixed finite set of arbitrary denial constraints. The reduction

relies on the notions of minimal violations and near-violations
to the set of denial constraints that we introduce next.

Assume that Σ is a set of denial constraints, I is an R-

instance, and S is a sub-instance of I.

• We say that S is a minimal violation to Σ, if S �|= Σ and

for every set S′ ⊂ S, we have that S′ |= Σ.

• Let f be a fact of I. We say that S is a near-violation
w.r.t. Σ and f if S |= Σ and S ∪ {f} is a minimal violation

to Σ. As a special case, if {f} itself is a minimal violation to

Σ, we say that there is exactly one near-violation w.r.t. f , and

it is the singleton {ftrue}, where ftrue is an auxiliary fact.

Let R be a database schema, Σ be a fixed finite set of

denial constraints on R, Q be an aggregation query without

grouping, and I be an R-instance.

Reduction V.1. Given an R-instance I, compute V , the set
of minimal violations to Σ on I, and N i, the set of near-
violations to Σ, on I, w.r.t. each fact fi ∈ I. For each fact
fi of I, introduce a boolean variable xi. For the auxiliary
fact ftrue, introduce a constant xtrue = true, and for each
N i

j ∈ N i, introduce a boolean variable pij .
1) For each Vj ∈ V , construct a clause αj = ∨

fi∈Vj

¬xi.

2) For each fi ∈ I , construct a clause γi = xi∨
(

∨
Ni

j∈N i
pij

)
.

3) For each pij , construct an expression θij = pij ↔ ∧
fd∈Ni

j

xd.

4) Construct the following boolean formula φ:

φ =
( |V|∧

i=1
αi

)
∧
( |I|∧

i=1

(( |N i|∧
j=1

θij

)
∧ γi

))
Proposition V.1. The boolean formula φ constructed using
Reduction V.1 can be transformed to an equivalent CNF-
formula φ whose size is polynomial in the size of I. The
satisfying assignments to φ and the repairs of I w.r.t. Σ are
in one-to-one correspondence.

Proof. (Sketch) The first part is proved using basic rules of

propositional logic. For the second part, consider a satisfying

assignment s to φ and construct a database instance J such

that fi ∈ J if and only if s(xi) = 1. The α-clauses assert

that no minimal violation to Σ is present in J , i.e., J is a

consistent subset of I. The γ-clauses and the θ-expressions

encode the condition that, for every fact f ∈ I, either f ∈ J
or at least one near-violation w.r.t. Σ and f is in J , making

sure that J is indeed a repair of I. In the other direction, one

can construct a satisfying assignment s to φ from a repair J
of I by setting s(xi) = 1 if and only if fi ∈ J .

VI. EXPERIMENTAL EVALUATION

We evaluate the performance of AggCAvSAT over both

synthetic and real-world databases. The first set of experiments

includes a comparison of AggCAvSAT with an existing SQL-

rewriting-based CQA system, namely, ConQuer, over synthet-

ically generated TPC-H databases having one key constraint

per relation. This set of experiments is divided into two parts,

based on the method used to generate the inconsistent database

instances. In the first part, we use the DBGen tool from TPC-H

and artificially inject inconsistencies in the generated data; in

the second part, we employ the PDBench inconsistent database

generator from MayBMS [19] (see Section VI-A1 for details).

Next, we assess the scalability of AggCAvSAT by varying

the size of the database and the amount of inconsistency

present in it. Lastly, to evaluate the performance of the

reductions from Section V, we use a real-world Medigap [45]

dataset that has three functional dependencies and one denial

constraint. All experiments were carried out on a machine

running on Intel Core i7 2.7 GHz, 64 bit Ubuntu 16.04,

with 8GB of RAM. We used Microsoft SQL Server 2017

as an underlying DBMS, and MaxHS v3.2 solver [18] for

solving the WPMaxSAT instances. The AggCAvSAT system

is implemented in Java 9.04 and its code is open-sourced

at a GitHub repository https://github.com/uccross/cavsat via a

BSD-style license. Various features of AggCAvSAT, including

its graphical user interface, are presented in a short paper in

the demonstration track of the 2021 SIGMOD conference [46].

A. Experiments with TPC-H Data and Queries

1) Datasets: For the first part of the experiments, the

data is generated using the DBGen data generation tool from

the TPC-H Consortium. The TPC-H schema comes with

exactly one key constraint per relation, which was ideal for

comparing AggCAvSAT against ConQuer [4], [25] (the only

existing system for computing the range consistent answers to

aggregation queries), because ConQuer does not support more

than one key constraint per relation or classes of integrity

constraints broader than keys. The DBGen tool generates

consistent data, so we artificially injected inconsistency by

updating the key attributes of randomly selected tuples from

the data with the values taken from existing tuples of the same

relation. The sizes of the key-equal groups that violate the

key constraints were uniformly distributed between two and

seven. The database instances were generated in such a way

that every repair had the specified size. We experimented with

varied degrees of inconsistency, ranging from 5% up to 35%

of the tuples violating a key constraint, and with a variety of

repair sizes, starting from 500 MB (4.3 million tuples) up to 5

GB (44 million tuples). For the second part, we employed the

PDBench database generator from MayBMS [19] to generate

four inconsistent database instances with varying degrees of

inconsistency (see Table II). In all four instances, the data is

generated in such a way that every repair is of size 1 GB.

2) Queries: The standard TPC-H specification comes with

22 queries (constructed using the QGen tool). Here, we focus

on queries 1, 3, 4, 5, 6, 10, 12, 14, and 19; the other 13
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Table II: Inconsistent TPC-H instances using PDBench

Inconsistency
Table Inst. 1 Inst. 2 Inst. 3 Inst. 4
CUSTOMER 4.42% 8.5% 16.14% 29.49%
LINEITEM 6.36% 12.09% 22.53% 39.82%
NATION 7.69% 0% 7.69% 7.69%
ORDERS 3.51% 6.77% 12.87% 23.9%
PART 4.93% 9.33% 17.66% 32.16%
PARTSUPP 1.53% 2.96% 5.77% 11.13%
REGION 0% 0% 0% 0%
SUPPLIER 3.69% 7.44% 14.11% 26.51%
Overall 5.36% 10.25% 19.29% 34.72%

Database size and Repair size (in GB)
1.04 & 1.00 1.07 & 1.01 1.14 & 1.02 1.3 & 1.02

Size of the Largest Key-equal Groups
8 tuples 16 tuples 16 tuples 32 tuples

queries have features such as nested subqueries, left outer

joins, and negation that are beyond the aggregation queries

defined in Section III. In Section VI-A3, we describe our

results for queries without grouping. Since six out of the nine

queries contained the GROUP BY clause, we removed it and

added appropriate conditions in the WHERE clause based on the

original grouping attributes to obtain queries without grouping.

We refer to these queries as Q′
1, Q

′
3, · · · , Q′

19.

3) Results on Queries without Grouping: In the first set

of experiments, we computed the range consistent answers

of the TPC-H-inspired aggregation queries without grouping

via WPMaxSAT solving over a database instance with 10%

inconsistency and having repairs of size 1 GB (8 million

tuples). Figure 1 shows that much of the evaluation time used

by AggCAvSAT is consumed in encoding the CQA instance

into a WPMaxSAT instance, while the solver comparatively

takes less time to compute the optimal solution. Note that, Q′
5

is not in the class Caggforest and thus ConQuer cannot compute

its range consistent answers. AggCAvSAT performs better than

ConQuer on seven out of the remaining eight queries.
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Figure 1: AggCAvSAT vs. ConQuer on TPC-H data generated

using the DBGen-based tool (10% inconsistency, 1 GB repairs)

Next, we compared the performance of AggCAvSAT and

ConQuer on database instances generated using PDBench. Fig-

ure 2 shows that AggCAvSAT performs better than ConQuer

on PDBench instances with low inconsistency. As the inconsis-

tency increases, the WPMaxSAT solver requires considerably

long time to compute the optimal solutions (especially for Q′
6,

Q′
12, and Q′

14). One reason is that the sizes of key-equal groups

in PDBench instances with higher inconsistency percentage

are large, which translates into clauses of large sizes in

the WPMaxSAT instances, hence the solver works hard to

solve them. Also, Kügel’s reduction [40] from WPMinSAT

to WPMaxSAT significantly increases the size of the CNF

formula, resulting in higher time for the lub-answers.
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Figure 2: AggCAvSAT vs. ConQuer on PDBench instances

Table III: Average size of CNF formulas for Q′
1, Q′

6, and Q′
14

5% 15% 25% 35%
Q′

1 10.2 34.3 60.6 95.3
Q′

6 28.4 96.2 175.0 271.2
Q′

14 6.4 21.1 40.6 62.3

(a) # of variables (in thousands)

5% 15% 25% 35%

27.6 92.2 163.6 258.1
76.8 259.9 472.9 734.0
15.6 51.9 101.0 156.6

(b) # of clauses (in thousands)
1 GB 3 GB 5 GB

Q′
1 21.3 44.1 105.6

Q′
6 60.9 127.13 304.4

Q′
14 13.9 32.9 67.7

(c) # of variables (in thousands)

1 GB 3 GB 5 GB

57.7 104.1 258.8
165.3 300.7 823.1
34.0 73.7 166.6

(d) # of clauses (in thousands)

Next, we varied the inconsistency in the database instances

created using the DBGen-based data generator while keeping

the size of the database repairs constant (1 GB). Figure 3
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shows that the evaluation time of AggCAvSAT stays well

under ten seconds (except for Q′
6), even if there is more

inconsistency in the data. Tables IIIa and IIIb show the average

size of the CNF formulas for the top three queries that

exhibited the largest CNF formulas. The size of the formulas

grows nearly linearly as the inconsistency present in the data

grows. The CNF formulas for Q′
6 are significantly larger than

the ones corresponding to the other queries since Q′
6 has high

selectivity and it is posed against the single largest relation

LINEITEM which has over 8.2 million tuples in an instance

with 35% inconsistency. This also explains why AggCAvSAT

takes more time for computing its range consistent answers

(Figure 3). In database instances with low inconsistency,

the consistent answers to the queries having low selectivity

(e.g., Q′
3, Q′

10) are sometimes contained in the consistent part

of the data, and AggCAvSAT does not need to construct a

WPMaxSAT instance at all.
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Figure 3: AggCAvSAT on TPC-H data generated using the

DBGen-based tool (varying inconsistency, 1 GB repairs)

We then evaluated AggCAvSAT’s scalability by increasing

the sizes of the databases while keeping the inconsistency to

a constant 10%. Figure 4 shows that the evaluation time of

AggCAvSAT for queries Q′
1, Q′

6, and Q′
12 increases faster

than that for the other queries. This is because the queries

Q′
1 and Q′

6 are posed against LINEITEM while Q′
12 involves a

join between LINEITEM and ORDERS resulting in AggCAvSAT

spending more time on computing the minimal witnesses to

these queries as the size of the database grows. Table IIIc

and IIId show that the size of the CNF formulas grows almost

linearly w.r.t. the size of the database. The largest CNF formula

consisted of over 304000 variables and 823000 clauses and

was exhibited by Q′
6 on a database of size 5 GB (47 million

tuples). The low selectivity of queries Q′
3, Q′

10, and Q′
19

resulted in very small CNF formulas, even on large databases.

4) Results on Queries with Grouping: In this set of ex-

periments, we focus on TPC-H queries 1, 3, 4, 5, 10, and

12, as the queries 6, 14, and 19 did not contain grouping. We

evaluated the performance of AggCAvSAT and compared it to

ConQuer on a database with 10% inconsistency w.r.t. primary

keys (Figure 5). The repairs are of size 1 GB. AggCAvSAT

computes the consistent answers to the underlying conjunctive

query using the reductions from [16] which are, precisely, the

consistent groups in the range consistent answers to the aggre-

gation query. For each of these groups, it computes the glb-
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Figure 4: AggCAvSAT on TPC-H data generated using the

DBGen-based tool (varying database sizes, 10% inconsistency)

answer and the lub-answer using reductions to WPMaxSAT.
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Figure 5: AggCAvSAT vs. ConQuer on TPC-H data generated

using the DBGen-based tool (10% inconsistency, 1 GB repairs)

The overhead of computing the range consistent answers to

aggregation queries with grouping is higher than that for the

aggregation queries without grouping because for an aggre-

gation query with grouping, AggCAvSAT needs to construct

and solve twice as many WPMaxSAT instances as there are

consistent groups, i.e., one for the lub-answer and one for the

glb-answer per consistent group. For queries that involved the

SELECT TOP k construct of SQL, we chose top k consistent

groups ordered by one or more grouping attributes present

in the ORDER BY clause of the query. AggCAvSAT computes

the range consistent answers to each query under ten seconds

except for Q1. It took under three seconds to compute the

consistent groups of Q1, but took over forty seconds to encode

the range consistent answers of the groups and over fifteen

minutes to solve the corresponding WPMaxSAT instances.

This is because some consistent groups have over 3M tuples

and so the WPMaxSAT instances have over 600 thousand

variables and over 1.3 million clauses. ConQuer took slightly

over two minutes to compute the range consistent answers

to Q1. We did not include Q1 in experiments with larger

databases and higher inconsistency.

In the comparison of AggCAvSAT and ConQuer for aggre-

gation queries with grouping on PDBench instances (Figure

6), AggCAvSAT beats ConQuer on all queries on the database

instance with the lowest amount of inconsistency, but as the

inconsistency grows, AggCAvSAT takes longer time to encode

and solve for the consistent groups of the queries Q3 and Q10.

In Figure 7, we first plot the evaluation time of AggCAvSAT
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Figure 6: AggCAvSAT vs. ConQuer on PDBench instances

as the percentage of inconsistency in the data grows from 5%

to 35% in the instances generated using the DBGen-based data

generator. The size of the database repairs is kept constant at

1 GB (8 million tuples).

Since AggCAvSAT constructs and solves many WP-

MaxSAT instances having varying sizes for an aggregation

query involving grouping, we also plot the overall number of

SAT calls made by the solver in Figure 7. Note that the Y-

axis has logarithmic scaling in the second plot of Figure 7.

There are ten consistent groups in the answers to Q3, and

just five and two consistent groups in the answers to Q5 and

Q12 respectively. In each consistent group, the aggregation

operator is applied over a much larger set of tuples in Q5 and

Q12 than in Q3. As a result, the evaluation time for Q3 is

high but the number of SAT calls is comparatively less, while

AggCAvSAT makes more SAT calls for Q5 and Q12, even

though their consistent answers are computed much faster.

The query Q10 requires long time to construct and solve the

WPMaxSAT instances for its consistent groups due to its high

selectivity and the presence of joins between four relations.
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Figure 7: AggCAvSAT on TPC-H data generated using the

DBGen-based tool (varying inconsistency, 1 GB repairs)

The evaluation time of computing the range consistent an-

swers to aggregation queries with grouping increases almost

linearly w.r.t. the size of the database when the percentage

of inconsistency is constant (Figure 8). The second plot in

Figure 8 depicts the number of SAT calls made by the solver

as the size of the database grows. Due to low selectivity, the

answers to Q4 are encoded into small CNF formulas even on

databases with high inconsistency or large sizes, resulting in

fast evaluations.
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Figure 8: AggCAvSAT on TPC-H data generated using the

DBGen-based tool (varying database sizes, 10% inconsistency)

5) Discussion: The experiments show that AggCAvSAT

performed well across a broad range of queries and databases;

it performed worse on queries with high selectivity because,

in such cases, very large CNF formulas were generated.

AggCAvSAT slowed down on databases with high degree of

934

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 29,2022 at 19:10:12 UTC from IEEE Xplore.  Restrictions apply. 



inconsistency (> 30%) and with key-equal groups of large

sizes (> 15). These are rather corner cases that should not be

encountered in real-world databases.

B. Experiments with Real-world Data

1) Dataset: For this set experiments, we use the schema

and the data from Medigap [45], an openly available real-

world database about Medicare supplement insurance in the

United States. We combine the data from 2019 and 2020

to obtain a database with over 61K tuples (Table IVa). We

evaluated the performance of Reduction V.1, since we consider

two functional dependencies and one denial constraint on the

Medigap schema, as shown in Table IVb. The actual data was

inconsistent so no additional inconsistency was injected.

Table IV: Medigap real-world database

Relation Acronym # of attributes # of tuples
OrgsByState OBS 5 3872
PlansByState PBS 18 21002
PlansByZip PBZ 20 4748
PlanType PT 4 2434
Premiums PR 7 29148
SimplePlanType SPT 4 70

(a) Medigap schema

Type Constraint Definition Inconsistency
FD OBS (orgID → orgName) 2.58%
FD PBS (addr, city, abbrev → zip) 1.5%
DC ∀ t ∈ PBS (t.webAddr �= ‘’) 0.15%

(b) Integrity constraints and inconsistency

2) Queries: We use 12 natural aggregation queries

(Qm
1 , · · · , Qm

12) on the Medigap database that involve the

aggregation operators COUNT(*), COUNT(A), and SUM(A).

The first six queries contain no grouping, while the rest of

them do. The definitions of some of these queries are in Table

V, the remaining are given in [47].

Table V: Aggregation Queries on Medigap database

# Query

Qm
2 SELECT COUNT(*) FROM PBZ, SPT WHERE PBZ.Description

= SPT.Simple_plantype_name AND SPT.Contract_year =
2020 AND SPT.Simple_plantype = ‘B’

Qm
3 SELECT SUM(PBZ.Over65) FROM PBZ WHERE PBZ.State_-

name = ‘Wisconsin’ AND PBZ.County_name = ‘GREEN
LAKE’

Qm
4 SELECT SUM(PBZ.Community) FROM PBZ WHERE

PBZ.State_name = ‘New York’
Qm

7 SELECT SPT.Contract_year, COUNT(*) FROM SPT GROUP
BY SPT.Contract_year ORDER BY SPT.Contract_year
DESC

Qm
8 SELECT PBZ.State_name, COUNT(*) FROM PBZ GROUP BY

PBZ.State_name
Qm

12 SELECT TOP 10 PT.Simple_plantype,
COUNT(PR.Premium_range) FROM PT, PR WHERE
PT.State_abbrev = PR.State_abbrev AND PT.Plan_-
type = PR.Plan_type AND PT.Contract_year =
PR.Contract_year and PT.Contract_year = 2020 GROUP
BY PT.Simple_plantype ORDER BY PT.Simple_plantype

3) Results on Real-world Database: In Figure 9, we plot

the overall time taken by AggCAvSAT to compute the range

consistent answers to the twelve aggregation queries on the

Medigap database. Since the Medigap schema has functional

dependencies and a denial constraint, the encoding of CQA
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Figure 9: Evaluation on real-world aggregation queries

into WPMaxSAT instances is based on Reduction V.1. Conse-

quently, the size of the CNF formulas is much larger compared

to that of the ones produced by Reduction IV.1, resulting in

longer encoding times. For all twelve queries, the encoding

time is dominated by the time required to compute the near-

violations and hence the γ-clauses. This part of the encoding

time is equal for all queries, but the computation time for

minimal witnesses depends on the query. The solver takes

comparatively minuscule amount of time to compute the

consistent answers to the underlying conjunctive query. For

the queries Qm
7 , · · · , Qm

12, the glb-answer and the lub-answer

are encoded and then solved for for each consistent group,

causing high overhead. The longest evaluation time is taken

by queries Qm
10, Qm

12, and Qm
6 since they consist of 10, 10,

and 6 consistent groups, respectively.

VII. CONCLUDING REMARKS

First, we showed that computing the range consistent an-

swers to an aggregation query involving the SUM(A) operator

can be NP-hard, even if the consistent answers to the underly-

ing conjunctive query are SQL-rewritable. We then designed,

implemented, and evaluated AggCAvSAT, a SAT-based system

for computing range consistent answers to aggregation queries

involving COUNT(A), COUNT(∗), SUM(A), and grouping. It is

the first system able to handle aggregation queries whose range

consistent answers are not SQL-rewritable. Our experimental

evaluation showed that AggCAvSAT is not only competitive

with systems such as ConQuer but it is also scalable. The

experiments on the Medigap data showed that AggCAvSAT

can handle real-world databases having integrity constraints

beyond primary keys. The next step in this investigation is to

first delineate the complexity of the range consistent answers

to aggregation queries with the operator AVG(A) and then

enhance the capabilities of AggCAvSAT to compute the range

consistent answers of such aggregation queries. Finally, we

note that the SAT-based methods used here are applicable to

broader classes of SQL queries, such as queries with nested

subqueries, as long as denial constraints are considered.
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