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Neural networks are now widely used in numerous applications including speech
recognition, natural language processing, image segmentation, control and plan-
ning for autonomous systems. A central question is how to verify that they
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Abstract. This paper studies the problem of range analysis for feedfor-
ward neural networks, which is a basic primitive for applications such as
robustness of neural networks, compliance to specifications and reacha-
bility analysis of neural-network feedback systems. Our approach focuses
on ReLU (rectified linear unit) feedforward neural nets that present spe-
cific difficulties: approaches that exploit derivatives do not apply in gen-
eral, the number of patterns of neuron activations can be quite large
even for small networks, and convex approximations are generally too
coarse. In this paper, we employ set-based methods and abstract inter-
pretation that have been very successful in coping with similar difficulties
in classical program verification. We present an approach that abstracts
ReLU feedforward neural networks using tropical polyhedra. We show
that tropical polyhedra can efficiently abstract ReLLU activation func-
tion, while being able to control the loss of precision due to linear com-
putations. We show how the connection between ReLU networks and
tropical rational functions can provide approaches for range analysis of
ReLU neural networks. We report on a preliminary evaluation of our
approach using a prototype implementation.
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are correct with respect to some specification. Beyond correctness, we are
also interested in questions such as explainability and fairness, that can in turn
be specified as formal verification problems. Recently, the problem of verifying
properties of neural networks has been investigated extensively under a variety
of contexts. A natural neural network analysis problem is that of range estima-
tion, i.e. bounding the values of neurons on the output layer, or some function
of the output neurons, given the range of neurons on the input layer. A pro-
totypical application of range estimation is the verification of the ACAS Xu -
the next generation collision avoidance system for autonomous aircrafts, which
is implemented by a set of neural networks [23]. Such a verification problem is
translated into a range estimation problem over these neural network wherein
the input ranges concern a set of possible scenarios and the outputs indicate the
possible set of advisories provided by the network [24].

Another prototypical application concerns the robustness of image classifica-
tion wherein we wish to analyze whether a classification label remains constant
for images in a neighborhood of a given image that is often specified using ranges
over a set of pixels. Robustness is akin to numerical stability analysis, and for
neural nets used as decision procedures (e.g. control of a physical apparatus), this
is a form of decision consistency. It is also linked to the existence or non-existence
of adversarial inputs, i.e. those inputs close to a well classified input data, that
dramatically change the classification [38], and may have dire consequences in
the real world [16].

Many formal methods approaches that have been successfully used in the
context of program verification seem to be successfully leveraged to the case of
neural net verification: proof-theoretic approaches, SMT techniques, constraint
based analyzers and abstract interpretation. In this paper, we are interested in
developing abstract interpretation [10] techniques for feedforward networks with
ReLU activation functions. ReLU feedforward networks can be seen as loop-free
programs with affine assignments and conditionals with affine guards, deciding
whether the corresponding neuron is activated or not. For researchers in program
analysis by abstract interpretation, this is a well known situation. The solutions
range from designing a scalable but imprecise analyses by convexifications of the
set of possible values of each neurons throughout all layers to designing a poten-
tially exponentially complex analysis by performing a fully disjunctive analysis.
In between, some heuristics have been successfully used in program analysis,
that may alleviate the burden of disjunctive analysis, see e.g. [9,28]. Among
classical convex abstractions, the zones [29] are a nice and scalable abstraction,
successfully used in fully-fledged abstract interpretation based static analyzers
[7]. In terms of disjunctive analysis, a compact way to represent a large class of
disjunctions of zones are the tropical polyhedra, used for disjunctive program
analysis in e.g. [3,4]. Tropical polyhedra are, similarly to classical convex poly-
hedra, defined by sets of affine inequalities but where the sum is replaced by
max operator and the multiplication is replaced by the addition.

Zones are interesting for synthesizing properties such as robustness of neural
networks used for classifying data. Indeed, classification relies on determining
which output neuron has the greatest score, translating immediately into zone-
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like constraints. ReLU functions z — max(0,x) are tropically linear, hence an
abstraction using tropical polyhedra will be exact. A direct verification of classi-
fication specifications can be done from a tropical polyhedron by computing the
enclosing zone, see [4] and Sect. 2.1. In Fig. 1, we pictured the graph of the ReL.U
function y = max(z,0) for z € [—1,1] (Fig. 1a), and its abstraction by 1-ReLU
in DeepPoly [36] (Fig.1b), by a zone (Fig.1c), and by a tropical polyhedron
(Fig. 1d), which is exactly the graph of the function.

Ya aY Ya Ya
Zﬁ
............ TP RPN
-1 6 1 = -1 6 1

(b) 1-ReLU (DeepPoly) (c) Zones (d) Tropical polyhedra

Fig. 1. Abstractions of the ReLU graph on [—1,1]

Unfortunately, (classical) linear functions are tropically non-linear. But con-
trarily to program analysis where we generally discover the function to abstract
inductively on the syntax, we are here given the weights and biases for the full
network, allowing us to design much better abstractions than if directly using
the ones available from the program verification literature.

It was recently proved [42] that the class of functions computed by a feed-
forward neural network with ReLU activation functions is exactly the class of
rational tropical maps, at least when dealing with rational weights and biases.
It is thus natural to look for guaranteed approximants of these rational tropical
maps as abstractions.

Ezample 1 (Running example). Consider a neural network with 2 inputs z; and
2o given in [—1, 1] and 2 outputs. The linear layer is defined by h; = x1 —x9 —1,
ho = 1+ 22+ 1 and followed by a ReLU layer with neurons y; and y, such that
y1 = max(0,z1 — 29 — 1) and yo = max(0,z1 + 22 + 1).

The exact range for nodes (hy,hs) is depicted in Fig.2a in magenta (an
octagon here), and the exact range for the output layer is shown in Fig.2b in
cyan: (y1,y2) take the positive values of of (hi, hs). In Fig. 2¢, the set of values
the linear node h; can take as a function of 1, is represented in magenta. The
set of values of the output neuron y; in function of z; is depicted in Fig. 2d, in
cyan: when x; is negative, hy is negative as well, so y; = 0 (this is the horizontal
cyan line on the left). When x; is positive, the set of values y; can take is the
positive part of the set of values hy can take (pictured as the right cyan triangle).
The line plus triangle is a tropical polyhedron, as we will see in Sect. 2.2.

We want to check two properties on this simple neural network:

(Py): the input is always classified as belonging to the class identified by neuron
Yo, i.e. we always have yo > 11
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Fig. 2. Exact ranges for the neural net of Example 1 on [—1,1] x [-1,1]. (P) is the
complement of the red square in Fig. 2d.

(P2): in the neighborhood [—0.25, 0.25] of 0 for x1, whatever x5 in [—1, 1], the
output y; is never above threshold 0.5 (unsafe zone materialized in red in
Fig. 2d)

(P2) is a robustness property. We see on the blue part of Fig. 2b (resp. 2d) that
the first (resp. second) property is true.

As we will see in Sect. 3, our tropical polyhedron abstraction is going to give
the exact graph of y; as a function of z1, in cyan again, Fig. 3b.

,ay2/he
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A : : :
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(a) With zone, trop- (b) (z1,h1); (x1,91) (¢) Once subdivided (d) twice subdivided
ical polyhedra T h tropical polyhedra  tropical polyhedra.

Fig. 3. Abstractions of a simple neural net on [—1,1] x [—1,1]. Dashed lines in (b)
enclose the classical convexification.

Therefore we will be able to prove robustness, i.e. (P»): the exact range for
y1 in cyan does not intersect the non complying states, in red. Note that all
classically convex abstractions, whatever their intricacies, will need to extend
the cyan zone up to the dashed line pictured in Fig. 3b, to get the full triangle,
at the very least. This triangle is intersecting the red region making classically
convex abstractions unable to prove (FPs).

Our tropical abstraction projected on the yo, y;1 coordinates is not exact:
compare the exact range in cyan in Fig. 2b with the abstraction in cyan in Fig. 3a.
However, the cyan region in Fig. 3a is above the diagonal, which is enough for
proving (Py).
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Still, the abstraction has an area 2.5 times larger than the exact range, due
to the tropical linearization of the tropical rational function y;. As with classical
linearizations, a workaround is to make this linearization local, through suitable
subdivisions of the input. We show in Fig. 3c the tropical polyhedric abstraction
obtained by subdividing z; into two sub-intervals (namely [—1,0] and [0, 1]): the
cyan part of the picture is much closer to the exact range (1.5 times the exact
area). Subdividing further as in Fig. 3d naturally further improves the precision
(area 1.25 times the exact one).

As we will see in Sect. 2.2, tropical polyhedra are particular unions of zones:
the tropical polyhedra in cyan of Figs. 3a and 3c are composed of just one zone,
but the tropical polyhedron in cyan in Fig.3d and the tropical polyhedron in
magenta in Fig. 3c are the union of two zones. Finally, the tropical polyhedron
in magenta in Fig. 3d is the union of four zones (generated by 9 extreme points,
or 5 constraints, obtained by joining results from the subdivisions of the inputs).

Contributions. Section 2 introduces the necessary background notions, in par-
ticular tropical polyhedra. We then describe the following contributions:

— Sect. 3 introduces our abstraction of (classical) affine functions from R™ to R™
with tropical polyhedra. We fully describe internal and external representa-
tions, extending the classical abstractions of assignments in the zone abstract
domain [29] or in the tropical polyhedra domain [4]. We prove correctness
and equivalence of internal and external representations, allowing the use of
the double description method [2].

— Based on the analysis of one layer networks of Sect. 3, we show in Sect. 4 how
to get to multi-layered networks.

— Finally, Sect.5 describes our implementations in C++ and using polymake
[18] and presents some promising experiments. We discuss the cost and advan-
tages of using the double description or of relying for further abstraction on
either internal or external representations of tropical polyhedra.

Related Work. There exist many approaches to neural networks verification.
We concentrate here on methods and tools designed for at least range over-
approximation of ReLU feedforward networks.

It is natural to consider constraint based methods for encoding the ReLU
function and the combinatorics of activations in a ReLU feedforward neural net.

Determining the range of a ReLU feedforward neural net amounts to solving
min and max problems under sets of linear and ReLLU constraints. This can be
solved either by global optimisation techniques and branch and bound mecha-
nisms, see e.g. DeepGo [32]. The encoding of the activation combinatorics can
also be seen as mixed integer linear constraints, and MILP solver used for solv-
ing the range outer-approximation problem, see e.g. [6,39], or both branch and
bound and MILP techniques, like Venus [8]. Similarly, Sherlock [13,14] performs
range analysis using optimization methods (MILP and a combination of local
search and global branch-and-bound approach), and considers also neural nets as
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controllers within a feedback loop. Finally, some of these constraint-based ana-
lyzer improve the solution search by exploiting the geometry of the activation
regions, [26].

A second category of such approaches is based on SMT methods, more specif-
ically satisfiability modulo extensions of linear real arithmetic (encoding also
RELU). The network is encoded in this logics and solvers provide answers to
queries, in particular range over-approximation and robustness, see e.g. Marabou
[25], extending Reluplex [24], and [15,22].

Range estimation for ReLU activated feedforward neural nets can also be
performed using some of the abstract domains [11] that have been designed for
program analysis, and in particular convex domains for numerical program veri-
fication. These include zonotopes [19,34], especially considering that feedforward
neural nets with one hidden layer and ReLU activation functions are known to
be characterizable by zonotopes, see e.g. [42], polyhedra [36], and other sub-
polyhedric or convex abstractions like symbolic intervals [20] used in Neurify
[33] extending Reluval [40] or CROWN-IBP [41].

These abstractions allow to perform range estimation, i.e. to estimate outer
approximations of the values of the output neurons given a set of values for
the input neurons. They also allow to deal with robustness properties around
training data, by proving that the range of the neural net on a small set around
a training point gives the same class of outputs.

The main difficulty with these convex abstract domains is that they tend
to lose too much precision on (non-convex) ReLU functions. Several methods
have been proposed to cope with this phenomenon. The first one is to improve
on the abstraction of ReLU, in particular by combining the abstraction of sev-
eral ReLU functions on the same layer [35]. Another solution that has been
proposed in the literature is to combine abstraction and some level of combina-
torial exploration of the possible neuron activations, in the line of disjunctive
program analysis [9,28]. RefineZono [37] implements methods combining poly-
hedric abstract domains with MILP solvers for encoding ReLU activation and
refining the abstractions, NNENUM [5] uses combinations of zonotopes, stars
sets with case splitting methods, and Verinet [21] uses abstractions similar to
the polyhedric relaxations of DeepPoly, based on symbolic-interval propagation,
with adaptive refinement strategies.

2 Preliminaries and Notations

2.1 Zones

The zone [29] abstraction represents restricted forms of affine invariants
over variables, bounds on variable differences. Let a n-dimensional variable
xz = (x1,...,2,) € R™ The zone domain represents invariants of the form
(/\197an o —x; < cig) A (/\195” a; < x; < b;). A convenient representa-
tion is using difference bound matrices, or DBM. In order to encode interval
constraints seamlessly in this matrix, a special variable xg, which is assumed to
be a constant set to zero, is added to z € R". A DBM is then a (n+ 1) x (n+1)
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square matrix C' = (¢;;), with elements in RU{+oc0}, representing (concretisation
operator) the following set of points in R™: v(C) = {(z1,...,2z,) € R"| Vi,j €
[O,TL},ZL’Z' — Xy S Ci,j A To — 0}

For a matrix C' that has non-empty concretization, the closure denoted C*
will be the smallest DBM for the partial order on matrices which represents
~(C). Formally, a closed zone C' = (¢;;) is such that: Vk € N,V(ig,...,ix) €
[0, L) i i < Cigin 0+ Cip_1ins Vi € [0,74], ¢iy = 0. Every constraint in a
closed zone saturates the set v(C).

The best abstraction in the sense of abstract interpretation [11] of a non-
empty set S C R" is the zone defined by the closed DBM: (c¢);; = sup{z; —
x| (z1,...,2n) € S Axo = 0}.

Ezxample 2. Consider the region defined as the union of the magenta and cyan
parts of Fig. 3a in Example 1. It is a zone given by the inequalities: (—3 < hy <
DA(=1<hy <3)A(—4 < hy —hy <0), i.e. given by the following DBM:

031
100
340

The octagon [30] abstraction is an extension of the zone abstraction, which
represents constraints of the form

( /\ :EIZ‘:E.(L‘]'SCZ‘J)/\( /\ algngbz)

1<i,5<n 1<i<n

A set of octagonal constraints can be encoded as a difference bound matrix,
similarly to the case of zones, but using a variable change to map octagonal
constraints on zone constraints. For each variable x;, two variables are considered
in the DBM encoding, that correspond respectively to +z; and —z;. Note that
unary (interval) constraints, such as x; < b;, can be encoded directly as z; +x; <
2b;, so that no additional variable zg is needed.

Ezample 3. The figure below right shows the exact range (the rotated square)
of hy, ho of Example 1.

. s . . . ~ho
It is depicted in gray, as the intersection of two zones, :
one in cyan, Zs, and one in olive, Z;. Z; is the zone
defined in Example 2 and Z5 is the zone defined on
variables (h1, —hs) as follows:

(—3<hi <DA(-1<ha<3)A(-2<h +hy<2) "ED A0 o

2.2 Tropical Polyhedra ‘—2

Tropical polyhedra are similar to ordinary convex polyhedra. Both can be defined
either using affine constraints, known as the external description, or as convex
hulls of extremal points and rays, known as the internal description. The major
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difference is the underlying algebra. Instead of using the classical ring R of coef-
ficients, with ordinary sum and multiplications, we use the so-called max-plus
semiring R,q.. This semiring is based on the set R0 = RU {—00}, equipped
with the addition  ® y := maz(z,y) and the multiplication z ® y = x +y. This
is almost a ring: we have neutral elements 1 := 0 for ®, and 0 = —oo for @, and
an inverse for ® on R4, \{0} but not for @. The algebra also fits in with the
usual order < on R, extended to R4, @ < y if and only if z & y = y.

Tropical hyperplanes are similar to classical hyperplanes, and defined as the
set of points satisfying @ a; @z, ®c< P b;R@x; & d.

1<i<k 1<i<k

Now, as in the classical case, tropical polyhedra will be given (externally)
as an intersection of n tropical hyperplanes, i.e. will be given as the location
of points in RE  satisfying n inequalities of the form of above. This can be
summarized using matrices A = (a;;) and B = (b;;), two n x k matrices with
entries in R,,q., and vectors of size k C and D as Ax ® C < Bx & D.

Still similarly to the case of ordinary convex polyhedra, tropical polyhedra can
also be described internally, as generated by extremal generators (points, rays). A
tropical polyhedron can then be defined as the set of vectors x € R, which can
be written as a tropical affine combination of generators v* (the extreme points)
and r7 (the extreme rays) as x = @ \jv' & @ p;r? with @ \; = 1.

i€l jed i€l
Ezample 4 (Running example). Consider again the zone consisting of the union
of the magenta and cyan parts in Fig. 3a. This is a tropical polyhedron, defined
externally by: max (hy,—3, ha, —1, ho, h1) < max (1, hq, 3, he, b1 + 4, hs).

It can also be defined internally by the extremal point A, By and By of
respective coordinates (—3,—1), (1,1) and (—1,3), depicted as dots in Fig. 3a.
This means that the points z in this tropical polyhedron have coordinates (h, ha)
with (hl, hQ) = max ()\0 + A, )\1 + Bl, )\2 + Bg) with max()\g, )\1, AQ) =1= 0,
i.e. all \;s are negative or null, and one at least among the \;s is zero.

For instance, when Ao = —o0, 2 is on the tropical line linking A to By:

(hl,hg) = (max()\o—&)\l—1),max()\0—17/\1—|—3)) (1)

with A\g, A1 # 0 and either A\g = 0 or A\; = 0. Suppose A\g = 0, and suppose first
that \y < —4: (hq, he) = (=3, —1) which is point A. Suppose now —4 < \; < =2,
then (h1,ha) = (=3, + 3), which is the vertical line going from A to point
(=3,1). Finally, suppose —2 < Ay < 0, (h1,h2) = (A — 1, A1 + 3) which is the
diagonal going from (—3,1) to Bj. Similarly, one can show that the tropical line
going from Bj to Bs is given by fixing \g = —oo and making vary Ay and A,. If
Ao < 0 then A\; =0 and z is point Bj.

Now, applying the ReLU operator, which is linear in the tropical algebra,
defines a tropical polyhedron with internal description given by ReLU (in each
coordinate) of extreme points A, By and Bs, i.e. A’ = (0,0), B} = B; = (1,1)
and B) = (0,3), see Fig.3a. Similarly, the zone which gives h; as a function
of x1, see Fig.3b, can be seen as a tropical polyhedron with extreme points
(=1,-3), (1,1) and (1,—1). Applying ReLU to the second coordinate of these
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three extreme points gives three points (—1,0), (1,1) and (1,0) which generate
the tropical polyhedron in cyan of Fig. 3b.

It is also easy to see that after one subdivision, Fig.3c, the set of values
for (y1,y2) in cyan is a tropical polyhedron with three extreme points A’, Bj
and Bsy. After two subdivisions, Fig.3d, the values of y; as a function of h; is
a tropical polyhedron with 4 generators (depicted as dots in Fig. 3d). Note that
the tropical polyhedron of Fig. 3d is the encoding of the union of two zones, one
zone being the classical convex hull of points (0,0), (0, 1), (0.5,1.5), (1,1.5) and
(1,1), and the other being the classical convex hull of points (0, 1), (0, 2), (0.5, 2)
and (0.5,1.5).

All tropical polyhedra can thus be described both internally and externally,
and algorithms, although costly, can be used to translate an external description
into an internal description and vice-versa. This is at the basis of the double
description method for classical polyhedra [12] and for tropical polyhedra [2].
Double description is indeed useful when interpreting set-theoretic unions and
intersections, as in validation by abstract interpretation, see [12] again for the
classical case, and e.g. [4] for the tropical case: unions are easier to compute using
the extreme generator representation (the union of the convex hulls of sets of
points is the convex hull of the union of these sets of points) while intersections
are easier to compute using the external representation (the intersection of two
polyhedra given by sets of constraints is given by the concatenation of these sets
of constraints).

In the sequel, we will be using explicitly the max and (ordinary) 4 operators
in place of @ and ® for readability purposes.

2.3 From Zone to Tropical Polyhedra and Vice-Versa

The following proposition characterizes the construction of tropical polyhedric
abstractions from zones. We show that a zone defined on n variables can be
expressed as the tropical convex hull of n + 1 points.

Proposition 1 (Internal tropical representation of closed zones)

Let Heyy C R™ be the n-dimensional zone defined by the conjunction of the
(n+1)? inequalities No<i j<n(@i—2j < ¢ j), where Vi, j € [0,n], ¢; ; € RU{+o0}.
Assume that this representation is closed, then H..; is equal to the tropical
polyhedron H;pn; defined, with internal representation, as the tropical convexr hull
of the following extreme points (and no extreme ray):

A = (ai)1<i§n = (—0071, ey _CO,n)a
Bi, = (bri)i<i<n = (Ckyo = Chy1y -+, Cho — Chn) K =1,...,1,

Example 5. The zone of Example 2 is the tropical polyedron with the three
extreme generators A, B; and Bs pictured in Fig. 3a, as deduced from Proposi-
tion 1 above.



Static Analysis of ReLU Neural Networks with Tropical Polyhedra 175

Moreover, we can easily find the best zone (and also, hypercube) that outer
approximates a given tropical polyhedron, as follows [4]. Suppose we have p
extreme generators and rays for a tropical polyhedron H, Ai,...,A,, that we
put in homogeneous coordinates in R"*! by adding as last component 0 to
the coordinates of the extreme generators, and —oo to the last component, for
extreme rays, as customary for identifying polyhedra with cones, see e.g. [17].

Proposition 2 [4]. Let A be the matriz of generators for tropical polyhedron
H stripped out of rows consisting only of —oo entries, and A/A the residuated

matriz which entries are (A/A);; = 1I<nk11<1 a; k — aj k. Then the smallest zone
<p

containing H is given by the inequalitie_s:

x; —xj > (AJA); foralli,j=1,....n
(AJA)int1 <z < —(A/A)nt1. foralli=1,....n

Ezample 6. Consider the graph of the ReLU function on [—1,1], pictured in
Fig. 1d. It has as generators the two extreme points A; = (—1,0) and A3 = (1,1)
(the graph is the tropical segment from A; to As). Homogenizing the coordinates
and putting them in a matrix A (columns correspond to generators), we have

-11 0 -1-1
A= 01] and (4/A)=| 0 0 O
00 -1-10

meaning that the enclosing zone is given by —1 < x —y <0, -1 <2 <1, 0 <
y < 1, which is the zone depicted in Fig. lc.

2.4 Feedforward ReLU Networks

Feedforward ReLU networks that we are considering in this paper are a succes-
sion of layers of neurons, input layer first, a given number of hidden layers and
then an output layer, each computing a certain affine transform followed by the
application of the ReLU activation function:

Definition 1. A n-neurons ReLU network layer L with m inputs is a function
R™ — R™ defined by, a weight matric W € M, m(R), a bias vector b € R™,
and an activation function ReLU : R™ — R™ given by ReLU(x1,...,z,) =
(max(z1,0),...,mazx(x,,0)) so that for a given input x € R™, its output is

L(z) = ReLU(Wx + b).

Definition 2. A multi-layer perceptron Fy is given by a list of network layers
Lg,...,Ln, where layers L; (i = 0,...,N — 1) are n;y1-neurons layers with n;
inputs. the action of Fy on inputs is defined by composing the action of successive
layers: Fy = Ly o...o Lg.
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3 Abstraction of Linear Maps

3.1 Zone-Based Abstraction

We consider in this section the problem of abstracting the graph G; = {(z,y) |
y = f(z)} of a linear map f(z) = Wz + b with € [z1,Z1] X ... |2, Tm]
where W = (w; ;) is a n x m matrix and b a n-dimensional vector, by a tropical
polyhedron Hy. We will treat the case of multilayered networks in Sect. 4.

The difficulty is that linear maps in the classical sense are not linear maps in
the tropical sense, but are rather (generalized) tropical polynomials, hence the
exact image of a tropical polyhedron by a (classical) linear map is not in general
a tropical polyhedron. We begin by computing the best zone abstracting G; and
then represent it by a tropical polyhedron, using the results of Sect. 2.3. We then
show in Sect. 3.2 that we can improve results using an octagon abstraction.

The tightest zone containing the image of a cube going through a linear layer
can be computed as follows:

Proposition 3 (Optimal approximation of a linear layer by a zone)
Let nym € N and f : R™ — R™ an affine transformation defined, for all

r € R™ and i € [1,n], by (f(z)), = doimywijxy + b Let K C R™ be an

hypercube defined as K = H1<j<m[§j 7;], with z;,7; € R. Then, the tightest

zone Hy of R™ x R™ containing S = {(a:,f(a:)) ‘m € K} is the set of all
(z,y) € R™ x R™ satisfying

/\ gjnggfj)/\< /\ ngyzSMz)/\( /\ yil_in’SAilvi?)

1<j<m 1<i<n 1<iy,ig<n

/\( /\ mi_ij‘f'&i,jSyi_l‘jSMi_ﬁj_éi,j),
1<i<n,1<j<m

where, for all i,i1,i2 € [1,n] and j € [1,m]:

m; = E wi,jfj + E wm-gj + bi,

w;,; <0 w;, ;>0
M,; = E Wi T + E w4 ;T + b,
w;, ;<0 w;, ;>0
Aivin = Y (wij—wi)z;+ Y (Wi —wi, )T + (b, — biy),
Wiq,; <Wigy,j Wiy ,j>Wig,j
0, Zf Wi, 5 <0
dij =y wij(T; —x;), if 0<wi; <1
(Tj —z;), if 1< w;;

The tightest zone is obtained as the conjunction of the bounds z; <z; <7
on input x, given as hypercube K, the bounds on the y; and y;, —y;, obtained by
a direct computation of bounds of the affine transform of the input hypercube
K, and finally the bounds on the differences y; —; given by a direct calculation.
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Figure 4 shows the three different types of zones that over-approximate the
range of a scalar function f, with f(x) = Az +0b, on an interval. When A < 0, the
best that can be done is to abstract the graph of f by a square, we cannot encode
any dependency between f(x) and x: this corresponds to the case §;; = 0 in
Proposition 3. The two other cases for the definition of J; ; are the two remaining
cases of Fig.4: when A is between 0 and 1, this is the picture in the middle, and
when \ is greater than 1, this is the picture at the right hand side. As we have
seen in Proposition 1 and as we will see more in detail below in Theorem 1,
these zones can be encoded as tropical polyhedra. Only the points A, B and C
are extreme points: D is not an extreme point of the polyhedron as it is on the
tropical segment [AC] (the blue, green and red dashed lines each represent a
tropical segment).

f(x) f(x)
| f9<f@ o B ¢ f(x) - f(b) <|x -
s x<b flx) - fla) <x-ap”’ 7
: X ” 1'

[« - [P—
ﬁ;---'--
>
-
h
Xt
Vi NN
=21 N,
N\ N
—aoN
O
=N
x N
=2
o
v
x
'
T x

A<O O0<A<1 A>1

Fig. 4. The 3 cases for approximating the graph of an affine scalar function by a tropical
polyhedron, on domain [a, b].

For f : R? — R, there are 6 cases, depending on the values of A; and Ay. In all
cases, these zones can be represented as tropical polyhedra using only 4 extreme
points and 4 inequalities (instead of 8 and 6 in the classical case), as we will see
in Theorem 1. Figure 5 represents the resulting polyhedron for different values
of A1 and As. Each figure shows the extreme points A, By, By and C, the faces
of the polyhedron (in green), the tropical segments inside the polyhedron (in
red), and the actual graph of f(x) (in blue).We have the corresponding external
description in Theorem 1 below:

Theorem 1. The best zone abstraction Hy of of the graph Gy = {(x1,...,Zm,
Yi, - Un) | 2; < x5 < Ty, yi = filwr,..,2m)} C RT™ of the linear function
f : R™ — R” defined in Proposition 3 can be seen as the tropical polyhedron
defined externally with m + n + 1 inequalities, for all i € [1,n] and j € [1,m]:

max(xy —T1, .y Tm — Ty Y1 — M1, ..o yn — M) <0 (2)
max(0,y1 — M1 + 015, Yn — My + 0 j) < x5 — z; (3)
max (0,21 —T1 + 051, .-, T — Tp +0in Y1 —di1, -, Yn — din) < yi —my; (4)

where dj, j, denotes the quantity A;, ;, +mj, for iy and iz in [1,n].
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B,= (1+10)

B =110

Fig. 5. Over-approximation for Ay = A2 = 0.5 (left), Ay = —0.5 and A2 = 1.5 (middle),
and )\1 = )\2 =1.2 (right).

We have the matching internal representation in Theorem 2:

Theorem 2. H; can also be described, internally, as the tropical convex hull of
m +n+ 1 extreme points:

A:(a;l,... Ly MLy« -+« 3 M)

»=m

gm,ml—i—él Ty mn—l—én,l)...

= (ZT1,2q,. ..,
= (21, L1, T, M1+ Olms oo, My + O )
=(z;+01,. Ty +O01m, Mi,c12,...,C10) ...
( +6n17-~-7£m+6n7mvcn,17-~-7cn,n—17Mn)

where ¢;, 1, = My, — Ay, 4, for iy and iz in [1,n].

Ezample 7 (Running example). Let us detail the computations for Example 1:
h1 = x1 —x9 — 1, ho = 21 + 22 + 1. We have respectively, §;,1 = 2, 412 = 0,
021 =2,000=2,411=0,A12=0,A1=4,A35=0,d1,; =3, dy 2 = —1,
d2’1 = 1, d2,2 = —1, mp = —3, mo = —1, M1 =1 and Mg = 3. Hence the
external description for the tropical polyhedron relating values of x1, x2, hy
and hg are: max(zq1 — 1,29 — 1,hy — 1,ho — 3) < 0, max(0,hy + 1,he — 1) <
z1+1, max(0,h; — 1,hy — 1) <o+ 1, max(0,21 + 1,20 — 1,hy +3,ha — 1) <
hi1 + 3, max(0,21 + 1,29 + 1,hy + 1,he + 1) < hy + 1 which encode all zones
inequalities: —1 < 1 <1, -1 <23 <1, -3<h; <1, -1 <hy <3, —2<
hi—21 <0, =4<h—22<2,0< hp—21 <2, 0< ho—22 <2, =4 < hy—hy <
0. Note that the zone abstraction of [29] would be equivalent to an interval
abstraction and would not infer the relations between hy, ho, 1 and x5. Now the
internal representation of the corresponding zoneis A = (—1,-1,-3,-1), By =
(1,—1,—1,1), By =(-1,1,-3,1), C; = (=1,—1,1,1), Cy = (~1,1,-1,3). The
projections of these 5 extreme pomts on (hq, hz) give the points (-3, —1), (=1, 1),
(=3,1), (1,1), (-1, 3), among which (—3,1) and (—1, 1) are in the tropical convex
hull of A = (-3,-1), By = (1,1) and By = (—1,3) represented in Fig. 3a.
Indeed (—3,1) is on the tropical line (AB3) and (—1,1) whereas (—1,1) is on
the tropical line (AB;) as a tropical linear combination of —24 By and —2+ Ba:
(=1,1) = max(—2+ (1,1), -2 + (-1, 3)).
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Ezample 8. Consider now function f : R? — R? with f(z1,22) = (0.92; +
1.1z9,y2 = 1.1z1 — 0.923) on (x1,22) € [—1,1]. We have in particular M; = 2,
My =2, m; = —2 and ma = —2. We compute d1; = 1.8, §12 = 2, do1 = 2
and d22 = 0 and we have indeed y; +2 > 23 — 14+ 611 =21 +08, y2+2 >
r1—14+2=21+1, 1 +2>22—-1+61=21+1, y2+2>a3—1landy; —2 <
$1+1—1.8:$1—0.8, y2—2 S$1—|—1—2:$1—1, y1—2 §$2+1—2=I2—1,
yo — 2 < xy + 1. Overall:

$1—12§y1§l‘1+12
ro—1<y1 <ao+1
21 —1<y <z +1
o —3<y2<x2+3

We also find di,1 = =2, d12 = 0.2, da2;1 = 0.2 and da o = —2. Hence y1 — dy 2 <
Yo—ma, i.e. y1 —0.2 < yo+2 that is y1 —yo < 2.2. Similarly, we find yo—1y1 < 2+0.2
hence —2.2 <y —yo < 2.2.

C2=(-0.2,2) y2 <max2 =2

yl<maxl=2

C1=(2,0.2)

yl>minl=-2

A=(2-2" \osmin2=-2

Fig. 6. Over-approximation for f(z1,z2) = (0.9z1 + 1.1z2,y2 = 1.1z1 — 0.922).

These equations can be written as linear tropical constraints as in Theorem 1:

$1—1

0 0
max ZQ_; <0,mazx |y —02 | <2141, max Y1 <xo+1
-
-2
Yo — 2 Y2 Y2
0 0
z1 + 0.8 ) +1
max | x2+1 <y1+2,max| 2z2—1 | <ya+2
y1+2 y1 — 0.2

y2 — 0.2 Y2 + 2
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We now depict in Fig.6 both the image of f as a blue rotated central square,
and its over-approximation by the convex tropical polyhedron calculated as in
Theorem 1 in green, in the plane (yi,y2). As c11 =2, ¢c12 = —0.2, cg1 = —0.2
and cg 2 = 2, the extremal points are, in the (21,22, y1,y2) coordinates:

1 1 1 0.8 1
~1 1 1 1 1

A= o Bi=| _go|B2=] | ©r=| o | —0.2
-2 0 —2 —0.2 2

3.2 Octagon Abstractions and (max, 4+, —) Algebra

As in Sect. 3.1, we consider the abstraction of the image of an hypercube K
of R™ by an affine transformation f : R™ — R™ defined, for all z € R™ and
i€[l,n], by (f(x)), = > i Wi jx;+b;. But we consider here the abstraction of
this image by an octagon, we will thus add some constraints on sums of variables
to the abstraction computed in Sect. 3.1.

Proposition 4 (Optimal approximation of a linear layer by an
octagon). Let K C R™ be an hypercube defined as K = Hj[gj,fj], with

z;,T; € R. The tightest octagon of R™ x R™ containing S := {(x, f(2)) ‘ x € K}
is the set of all (x,y) € R™ x R™ satisfying

( /\ xjngﬁxj)A< /\ miSyiSMi)/\< /\ yilyiQSAi1»i2)

1<i<m 1<i<n 1<iy,ip<m
/\< /\ Liyis <Yy +Yip < Fz'l,i2>
1<iy,ig<n

/\< /\ mi$j+6i,j§yi$j§Mixj5i,j>

1<isn,1<j<m

A(/\mi-Fﬂ?j-l-%‘,j <yitz; <M+ —’Ym)

0,7

where my, M;, 6; j, Ay, i, are defined as in Proposition 3, and

L ip = ) 2 (wiy 5+ wiy,5) + ) Tj(wi,,j + Wiy )
Wiy it Wiy, ;<0 Wiy, j+wiy, ;>0
Li iy = > Tj(wiy 5+ Wiy 5) + > z; (Wi, + Wiy )
Wiy ,j+ Wiy, ;<0 Wiy, jtwiy, ;>0
0, sz é wi,j
Vig =\ ~wi (T —zy), i —1<wi; <0

(T —zy), ifwi; < -1
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With the notations of Proposition 4, we have

Proposition 5. Let M be the (classically) linear manifold in R™ x R™ x R™ x
R™ defined by (z*,yT,27,y7) € M if and only if z* + 2~ = 0 and y© +
y~ = 0. The octagon S defined in Proposition 4 is equal to the intersection
of M with the tropical convex polyhedron generated by the 1 + 2n + 2m points

A,Bi",...,B;CL,B;,...,B;L,C’f',...,Cf{,Cl_,...,C’;, where
A= (Zyye Ty My ey My, =Ty ey — Ty — My, ..., —M,y,)
Bf =(0,z",yT, 27, y7) with =z ==, a:;;k =z, yt =mi+ ik
Ty, = —Tk, Tz = —Tj, Y; = —Mi+vik
By =(0,z",yT, 27 ,y7) with =z, = —Ty, Ty = —Tj, Yy, = —M; + ik
af =z, aly =z, yi = mi + ik
cf = 0,27,y 27, y7) with yt =My, y;;l =M, — Ay, a:;r =xz;+ 0,
Yy =—M, yu=M-T: x; =-T;+n,
c; = (0, :r+,y+,:c_,y_) with  y; = —mu, Yy =—m— Ay, x; =-T;+0,;
y=my, y;;gl:_ml"rLl,i, xf—x + Y5

Ezample 9 (Running example). For the example network of Example 1, the for-
mulas of Proposition 4 give the constraints:

—1<z <1 —1<z, <1

-3<h <1
0<x —hy <2 —2<xy—h; <4

0<hy—hy <4
—4<z1+h <2 —2<2+h <0

—2<hy+h; <2
—2<21—ha <0 —=2<22—-hy <0

—1<hy <3
—2<z21+hy <4 —2<zx9+hy <4

And the internal description is given by Proposition 5, with the following
extreme points, where coordinates are ordered as (xf,x;,hi‘,h;,xf,x;,
hi,hy):

(-1,-1,-3,-1,—-1,-1,—-1,-3)
(1,-1,— 1,17 1,-1,-1,-3)
(— ,17 -1,-1,1,-3)
(-1, 7—17—1,—1,—1,—3)
(1,— 1,1,1, 1,1,-1,-1)
(1,1, -1,-1,1,-3)
(-1,— -1,1,-1,1,-1)
(-1,— -1,-1,1,-1,-1)
(-1,-1, —3 -1,-1,-1,-1,-3)
(— 1,1, 3,1,17 1,3,-1)
(-1,— -1,1,1,1,1)
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From the extremal points of the octagon abstraction above, we get the extremal

points for (hj,h3), discarding the non extremal omes: (—3,—1), (1,1) and
(—1,3), and for (h{,hy): (—3,-3), (1,—1) and (—1,1) (for this last pair of
variables, this gives the zone in cyan of Example 3).

4 Validation of Multi-layered Neural Networks

General Algorithm. The method developed in Sect. 3 is the cornerstone of our
algorithm for analysing neural networks. A ReLU neural net consists of a chain
of two kinds of computations, one which applies a classical linear transformation
to their inputs, and another one one which applies a ReLLU. function We have
seen that the affine map transformation can be over-approximated using tropical
polyhedra. ReLU being a tropical affine function, the ReLU transform is exact
in tropical polyhedra. It is thus possible to use tropical polyhedra to represent
reachable states for every node in the network, at least for one layer ReLU
networks.

Example 10. We carry on with Example 1 and complete the final computations
of Example 7. The external representation is given by the tropical linear inequal-
ities of Example 7 together with inequalities maz(0, h1) < y1 < maz(0, hy) and
maz(0,he) < yo < max(0,hs). Now the corresponding tropical polyhedron is
generated by the linear tropical operator ReLU on each of the extremal points
A, B1, By, C; and C5 and gives the two extra (last) coordinates in the axes
(1‘171'2, h17 h27y1, yg)7 A= (—1, —1, —37 —1, 0, 0)7 Bi = (1, —1, —1, 1, 0, 1), Bé =
(-1,1,-3,1,0,1), C} = (-1,-1,1,1,1,1), C} = (=1,1,—1,3,0,3). The projec-
tions of theses 5 extreme points on (hy,ys) give the points (0,0), (0,1), (1,1),
(0,3) among which (0,1) is in the convex hull of A’ = (0,0), B} = By = (1,1)
and Bj = (0, 3) represented in Fig. 3a.

The polyhedron given by the method of Sect. 3 only gives relations between
2 layers (the input and the first hidden layer). In order to get a polyhedron that
represents the whole network when combining with e.g. another layer, we need
to embed the first polyhedron from a space that represents only 2 layers to a
higher space that represents the complete network, with one dimension per node.
We will then need to intersect the polyhedra generated by each pair of layers
to get the final result. Finally, as we are only interested in the input-output
abstraction of the whole network, we can reduce computing costs by removing
the dimensions corresponding to middle layers once those are calculated.

To this end, we use the following notations. Let £ C {Lo,..., Ly} be a set
of layers, layer i containing n;y; neurons as in Definition 2. Let n be the sum
of all n;yy, with ¢ such that L; € £ and S = R}, be the tropical space in
which we are going to interpret the values of the neurons on layers in £, with
each dimension of Sz corresponding to a node of a layer of L.

For £y,L5 C {Lg,...,Ln}, for H C S¢, a tropical polyhedron, we denote
by Proj(H,Ls) C Sz, the projection of H onto S, when Sz, C Sz, and let
Emb(H, L2) C 8¢, be the embedding of H into Sz, when Sz, C Se,.
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The main steps of our algorithm for over-approximating the values of neurons
in a multi-layer ReLU network are the following:

— We start with an initial tropical polyhedron Ho C Sy} that represents the
interval ranges of the input layer L.
— For each additional layer L;:

e Calculate an enclosing hypercube C; for the nodes of layer L;, given the
current abstraction H; C Sg, (Sect. 2.3).

e (Calculate the polyhedron P;;; representing relationships between layer
L; and the new layer L;y1, for nodes of layer L; taking values in Cj,
as described in Sect.3: Theorem 1 for the external description, and
Theorem 2 for the internal description

o Let £i | = L; U{Li41}. Calculate P;,; = Emb(Pi11, L], ) (see below)

e Intersect P/, ; with the projection (using the internal description, see
below) of the previous abstraction H; to get Hj_, ; = Emb(H;, L, 1)NPi
(using the external description).

e Choose L;y1 D {Liy1}, and calculate H;y1 = Proj(Hj,,, Liy1). Usually,
we would use L;11 = {Lg, Li11} if we only want relations between the
input and output layers, or £L;11 = {Lo,...,L;+1} if we want relations
between every layer.

We need now to describe the projection and embedding functions Proj and
Emb. Let Lo C L1 C {Lg,...,Ln} be two sets of layers. Let H be a polyhedron
on Sg,. We have H' = Proj(H,L2) = {(vi) ey, (Ti)L,ec, € H}, L.e. for each
point in H, we only keep the dimensions corresponding to layers in Lo, and
discard the other dimensions. Projecting is easy with the internal description of
polyhedron, as we can project the extreme points of H to get generators of H’.
However, we do not have a simple algorithm to project the external description
of a polyhedron.

Let £1 C Lo C {Lo,...,Ly} be two sets of layers, and A be the sum of
ni+1, the number of neurons of layer L;, for ¢ such that L; € Lo\ £y. Let
H be a polyhedron on S;,. We note that S = S; x R4, and thus H' =
Emb(H, Ly) = H x R4,,, i.e. we add dimensions corresponding to each node
in Lo which are not in £1, and let points in H' take any value of R,,q,; on
these dimensions. Embedding is based on simple matrices concatenations in the
external description, for more details. Embedding using the internal description
is more involved and is explained after exemplifying things on a simple example.

Example 11. We consider the 1-layer neural net of Example 1, and add a second
layer. The new linear layer is defined by u; = yo —y1 — 1, ue = y1 —y2 + 1
and the output neurons are z; = maz(0,u1) = maxz(0,y2 —y1 — 1) and 2o =
maz(0,us) = max(0,y; — y2 + 1).

The enclosing cube for the tropical polyhedron H containing the values
of neurons of the first layer Lq: y1, y2 of Example 1 is [0,1] x [0,3]. The
analysis of the second layer Lo, supposing its input belongs to [0,1] x [0, 3]
gives the constraint (an extract of the external representation of the result-
ing tropical polyhedron H') -3 < uy —y; < 2, -2 <wu; —ys < -1, =2 <
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up —y1 < 1, =5 < ug —ys < 2, 21 = max(0,uy), z2 = max(0,us).
The intersection of the embedding Emb(H’, {Lo, L1, L2}) with the embedding
Emb(H,{Lo, L1, Lo}) consists, as we saw above, in concatenating the tropical
constraints, in the common space of variables. This implies in particular that we
add the constraint —3 < y; — y2 < 0 to the above equations. The intersection
is actually a zone intersection, where we have to normalize the corresponding
DBM. A manual calculation shows that this will make use of the equalities
up — Yo = (uz —y1) + (Y1 — ¥2), ur —y1 = (u1 — y2) + (y2 — y1). By combining
equations, we get the refined bounds (refined lower bound for the first equation,
refined upper bound for the second equation) =2 < u1—y; <2, =5 < us—ys < 1.

Embedding a Tropical Polyhedron: Internal Description. In this paragraph,
we embed a polyhedron into a higher dimensional space, using the internal
description.

Suppose H is a tropical polyhedron in R™ (such as P; in the previous section)
that we want to embed H into a larger space, with an extra coordinate, which
we consider bounded here within [a, b]. So we need to determine a presentation
of the tropical polyedron H' = H X [a, b].

Supposing we have m extreme points p; for representing H, a naive method
consists in noticing that the family (p;, a), (p;, b) is a generator of H' and remov-
ing non-extreme points from that list. But that would exhibit poor performance,
as we get m x 2¥ extreme points for H”'. We can in fact do better:

Theorem 3. The extreme points of H' are {(p;,a),1 <i <m}U{(p;,b),i € I},
where I is a subset of indexes of generators of H, I C [1,m], such that:

Vi€ I,Yj € [1,m]\ {i},pi ®p; # pi (5)
Vie[l,m]\I,3j €[1,m]\{i} st p;,Bp; =p; (6)

Passing to the limit, this shows that the extreme points of H xR are (p;, —o0),
i =1,...,m and the extreme rays are (p;,0), i € I for the smallest I verifying
Eq. (5) and (6). In the current implementation, we do not use extreme rays and
embed H into larger state spaces by using large enough values for a and b.

Checking Properties on ReLU Neural Nets. Given an affine guard
h(z,y) = Z hix; + Z hjy; +c
i=1 j=1

where z;, resp. y; are the input, resp. output neurons, we want to determine
whether, for all input values in [—1,1], we have h(z) > 0 (this can encode
properties (P;) and (P») of Example 1).

There are two ways to check such properties. The first one, that we have
implemented, is as follows. We abstract the input output relation that the net-
work under analysis encodes, using a tropical polyhedron H as described in
Sect. 4. From this, we derive the smallest zone Z containing H as in Sect.2.3.
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Finally, we solve the linear programming problem m = minZ h(zx,y) using any
x,ye

classical algorithm (we used glpk in our prototype). This is enough for checking

(P1) in Example 1 since m > 0 proves our property true, but not (P;). The

second way can be useful to check (P2): here we have no choice but try to solve

m = mg%_t h(z,y) which is not a convex optimization problem, in any sense
Ty

)

(tropical nor classical). This could be encoded as MILP problem instead.

5 Implementation, Experiments and Benchmarks

Internal, External and Double Description Methods. Overall, we have
developed methods for propagating an outer-approximation of the values that
the different layers of neurons can take, within a MLP with ReLLU activation. Let
us discuss the pros and cons of using the internal description, external description
and double description methods:

— The double description method allows for possibly using subdivisions, propa-
gating values in multiple layers and projecting them onto a subset of interest-
ing neurons (e.g. input and output layers), as well as computing an enclosing
zone, for synthesizing classification properties. We have implemented this in
a prototype using Polymake [18], whose results we briefly discuss below.

— The internal description allows for analyzing one layer networks, using sub-
divisions, project onto an interesting subset of neurons, as well as computing
an enclosing zone (Sect. 2.3). We have implemented this method in C++ in a
standalone prototype, nntrop, that takes as input a Sherlock file [14] describ-
ing the one hidden layer neural net to analyze plus a linear formula to be
checked, and returns the tropical abstraction of the values that neurons can
take, its over-approximation by a zone, and whether the linear specification
is satisfied or not.

— The external description allows for analyzing multiple layer networks (see
Sect. 4).

The double description method is much more expensive since the translation
between the internal and external representations may be quite complex.

Experiments and Benchmarks. We briefly compare the computation times
between internal description only and double description in Table 1. For each
example, we indicate in the columns # inp. the number of input neurons, #
out. the number of output neurons, # hid. the number of hidden layers, #
neur. is the total number of neurons (input, output and hidden), t. intern
is the time spent for computing the internal representation and t. double for
the double description of the tropical polyhedron abstracting the corresponding
neural net. Experiments are performed on a simple computer with ArchLinux
and a Intel(R) Core(TM) i5-7200U CPU @ 2.50 GHz.

We of course see the influence of a potential exponential complexity for going
back and forth between internal and external descriptions, but also the fact that
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we relied on a perl (interpreted) implementation of tropical polyhedra (the one of
polymake [18], with exact rational arithmetics), which is much slower than the
C++ implementation we wrote for the internal description method (although
the internal description method does work in a twice as big space because it
considers the octagon instead of just zone abstraction).

Table 1. Execution times (internal and double description) on sample networks.

Example # inp.|# out.|# hid. |# neur. |t. intern. (s) |t. double (s)
running 2 2 0 4 0.006 1.83
running?2 2 2 1 6 0.011 4.34
multi 2 8 1 13 0.005 3.9
krelu 2 2 0 4 0.011 1.94
tora_modified_controller 4 1 1 6 0.005 14.57
tora_modified_controller_1 4 1 1 105 0.75 815.12
quadcopter_trial_controller_3 | 18 1 1 49 0.009 102.54
quadcopter_trial_controller_1 |18 1 1 69 0.2 469.77
quad_modified_controller 18 1 1 20 0.005 14
car_nn_controller_2 4 2 1 506 104.75 -
car_nn-_controller_1 2 1 506 88.8 -

ex 2 1 5 59 0.195 1682.28

In Table 1, running is the network of Example 1, and running?2 is the exten-
sion with an extra layer of Example 11, discussed in great length in these exam-
ples. Example krelu is the running example from [35] that we discuss at the end
of this section, and toramodified controller, toramodified controller_1,
quadcopter_trial_controller_3, quadcopter_trial_controller_1, quad_mo-
dified_controller, car nn controller_2, car nn _controller_1 and ex are
examples from the distribution of Sherlock [14]. ex is a multi-layer example for
which the algorithm using only the internal representation does not compute the
intersection of tropical polyhedra between layers (involving the external repre-
sentation), contrarily to the double description prototype. We now discuss some
of these examples below.

Network multi is a simple 2-layer, 13 neurons example with inputs x;, x2,
outputs y1,ys2, ..., ys and

i (1 1 17

Y2 1 1 -1
h 11 Ya I
hol =ReLU [ | 1 —1 [“] Y41 — max Lt I P I
hy —1 1] R B

Y6 11 -1

yr —-1-11

L ys | —1-1-1]
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Our zone based abstraction returns the following ranges: y; € [0,6], y2 €
[0,4], y3 € [0,4], ya € [0,2], y5 € [0,4], ys € [0,2], y5 € [0,2] and ys = 0, whereas
the exact ranges for y; to yr is [0,2]. Our algorithm is thus exact for ya, ys, y7
and yg but not y1, y2, y3 nor ys. This is due to the fact that the zone-based
tropical abstraction does represent faithfully the differences of neuron values,
but not sums in particular. For instance, yo = maxz(0,2x1) which cannot be
represented exactly by our method.

Network krelu is a 2 layer 4 neurons example from [35]. We get the correct
bounds on the outputs: 0 < 21, 2o < 2, as well as relations between the inputs and
the outputs: z; < x; + 1. However, we do not have significant relations between
z1 and z9, as those are not tropically linear. We refer to the results obtained
with 1-ReLU and 2-ReLU in [35]: they both get better relations between z; and
Zo, in particular z; + 2o < 2 which is not representable in a tropical manner
(except by using an octagon based abstraction, which is outside the scope of
this paper). However 1-ReLU does not keep track of relations between the inputs
and the outputs, and has sub-optimal relations between the outputs, as it cannot
represent the non linear ReLLU function exactly. 2-ReLLU, on the other hand gets
both the relation between the output variables, and between the inputs and
outputs correct, but is more computationally expensive.

In order to assess the efficiency of the internal
description methods, we have run a number of exper-
iments, with various number of inputs and ouputs
for neural nets with one hidden layer only. The linear
layers are generated randomly, with weights between ]
-2 and 2. Timings are shown in the figure on the right y ¢
(demonstrating the expected complexity, cubical in
the number of neurons), where the x-axis is num- 2 5 10 5
ber of input neurons, y-axis is the number of output
neurons, and z-axis is time. For 100 inputs and 100
neurons in the hidden layer, the full pipeline (checking the linear specification
in particular) took about 35s, among which the tropical polyhedron analysis
took 6s.

Time (in sec) - logscale

50 100
Nb of input neyrons

6 Conclusion and Future Work

We have explored the use of tropical polyhedra as a way to circumvent the
combinatorial complexity of neural networks with ReLLU activation function.
The first experiments we made show that our approximations are tractable when
we are able to use either the internal or the external representations for tropical
polyhedra, and not both at the same time. This is akin to the results obtained in
the classical polyhedron approach, where most of the time, only a sub polyhedral
domain is implemented, needing only one of the two kinds of representations.
It is interesting to notice that a recent paper explores the use of octohedral
constraints, a three-dimensional counterpart of our octagonal representations,
in the search of more tractable yet efficient abstraction for ReLU neural nets
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[31]. This work is a first step towards a hierarchy of approximations for ReLU
MLPs. We have been approximating the tropical rational functions that these
neural nets compute by tropical affine functions, and the natural continuation of
this work is to go for higher-order approximants, in the tropical world. We also
believe that the tropical approach to abstracting ReLLU neural networks would
be particularly well suited to verification of ternary nets [27]. These ternary nets
have gained importance, in particular in embedded systems: simpler weights
mean smaller memory needs and faster evaluation, and it has been observed [1]
that they can provide similar performance to general networks.
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