
Static Analysis of ReLU Neural Networks
with Tropical Polyhedra

Eric Goubault1 , Sébastien Palumby1, Sylvie Putot1 , Louis Rustenholz1 ,
and Sriram Sankaranarayanan2(B)

1 LIX, Ecole Polytechnique, CNRS and Institut Polytechnique de Paris,
91128 Palaiseau, France

{eric.goubault,sebastien.palumby,sylvie.putot,
louis.rustenholz}@polytechnique.edu

2 Engineering Center Computer Science, University of Colorado at Boulder,
Boulder, USA

sriram.sankaranarayanan@colorado.edu

Abstract. This paper studies the problem of range analysis for feedfor-
ward neural networks, which is a basic primitive for applications such as
robustness of neural networks, compliance to specifications and reacha-
bility analysis of neural-network feedback systems. Our approach focuses
on ReLU (rectified linear unit) feedforward neural nets that present spe-
cific difficulties: approaches that exploit derivatives do not apply in gen-
eral, the number of patterns of neuron activations can be quite large
even for small networks, and convex approximations are generally too
coarse. In this paper, we employ set-based methods and abstract inter-
pretation that have been very successful in coping with similar difficulties
in classical program verification. We present an approach that abstracts
ReLU feedforward neural networks using tropical polyhedra. We show
that tropical polyhedra can efficiently abstract ReLU activation func-
tion, while being able to control the loss of precision due to linear com-
putations. We show how the connection between ReLU networks and
tropical rational functions can provide approaches for range analysis of
ReLU neural networks. We report on a preliminary evaluation of our
approach using a prototype implementation.

1 Introduction and Related Work

Neural networks are now widely used in numerous applications including speech
recognition, natural language processing, image segmentation, control and plan-
ning for autonomous systems. A central question is how to verify that they

E. Goubault—Supported in part by the academic Chair “Engineering of Complex
Systems”, Thalès-Dassault Aviation-Naval Group-DGA-Ecole Polytechnique-ENSTA
Paris-Télécom Paris, and AID project “Drone validation and swarms of drones”.
S. Sankaranarayanan—Supported by US National Science Foundation (NSF) award #
1932189. All opinions expressed are those of the authors and not necessarily of the
sponsors.

c© Springer Nature Switzerland AG 2021
C. Drăgoi et al. (Eds.): SAS 2021, LNCS 12913, pp. 166–190, 2021.
https://doi.org/10.1007/978-3-030-88806-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88806-0_8&domain=pdf
http://orcid.org/0000-0002-3198-1863
http://orcid.org/0000-0001-5624-3755
http://orcid.org/0000-0002-1599-2431
http://orcid.org/0000-0001-7315-4340
https://doi.org/10.1007/978-3-030-88806-0_8

Static Analysis of ReLU Neural Networks with Tropical Polyhedra 167

are correct with respect to some specification. Beyond correctness, we are
also interested in questions such as explainability and fairness, that can in turn
be specified as formal verification problems. Recently, the problem of verifying
properties of neural networks has been investigated extensively under a variety
of contexts. A natural neural network analysis problem is that of range estima-
tion, i.e. bounding the values of neurons on the output layer, or some function
of the output neurons, given the range of neurons on the input layer. A pro-
totypical application of range estimation is the verification of the ACAS Xu -
the next generation collision avoidance system for autonomous aircrafts, which
is implemented by a set of neural networks [23]. Such a verification problem is
translated into a range estimation problem over these neural network wherein
the input ranges concern a set of possible scenarios and the outputs indicate the
possible set of advisories provided by the network [24].

Another prototypical application concerns the robustness of image classifica-
tion wherein we wish to analyze whether a classification label remains constant
for images in a neighborhood of a given image that is often specified using ranges
over a set of pixels. Robustness is akin to numerical stability analysis, and for
neural nets used as decision procedures (e.g. control of a physical apparatus), this
is a form of decision consistency. It is also linked to the existence or non-existence
of adversarial inputs, i.e. those inputs close to a well classified input data, that
dramatically change the classification [38], and may have dire consequences in
the real world [16].

Many formal methods approaches that have been successfully used in the
context of program verification seem to be successfully leveraged to the case of
neural net verification: proof-theoretic approaches, SMT techniques, constraint
based analyzers and abstract interpretation. In this paper, we are interested in
developing abstract interpretation [10] techniques for feedforward networks with
ReLU activation functions. ReLU feedforward networks can be seen as loop-free
programs with affine assignments and conditionals with affine guards, deciding
whether the corresponding neuron is activated or not. For researchers in program
analysis by abstract interpretation, this is a well known situation. The solutions
range from designing a scalable but imprecise analyses by convexifications of the
set of possible values of each neurons throughout all layers to designing a poten-
tially exponentially complex analysis by performing a fully disjunctive analysis.
In between, some heuristics have been successfully used in program analysis,
that may alleviate the burden of disjunctive analysis, see e.g. [9,28]. Among
classical convex abstractions, the zones [29] are a nice and scalable abstraction,
successfully used in fully-fledged abstract interpretation based static analyzers
[7]. In terms of disjunctive analysis, a compact way to represent a large class of
disjunctions of zones are the tropical polyhedra, used for disjunctive program
analysis in e.g. [3,4]. Tropical polyhedra are, similarly to classical convex poly-
hedra, defined by sets of affine inequalities but where the sum is replaced by
max operator and the multiplication is replaced by the addition.

Zones are interesting for synthesizing properties such as robustness of neural
networks used for classifying data. Indeed, classification relies on determining
which output neuron has the greatest score, translating immediately into zone-

168 E. Goubault et al.

like constraints. ReLU functions x �→ max(0, x) are tropically linear, hence an
abstraction using tropical polyhedra will be exact. A direct verification of classi-
fication specifications can be done from a tropical polyhedron by computing the
enclosing zone, see [4] and Sect. 2.1. In Fig. 1, we pictured the graph of the ReLU
function y = max(x, 0) for x ∈ [−1, 1] (Fig. 1a), and its abstraction by 1-ReLU
in DeepPoly [36] (Fig. 1b), by a zone (Fig. 1c), and by a tropical polyhedron
(Fig. 1d), which is exactly the graph of the function.

−1 0 1

1

y

x

(a) Exact

−1 0 1

1

y

x

(b) 1-ReLU (DeepPoly)

−1 0 1

1

y

x

(c) Zones

−1 0 1

1

y

x

(d) Tropical polyhedra

Fig. 1. Abstractions of the ReLU graph on [−1, 1]

Unfortunately, (classical) linear functions are tropically non-linear. But con-
trarily to program analysis where we generally discover the function to abstract
inductively on the syntax, we are here given the weights and biases for the full
network, allowing us to design much better abstractions than if directly using
the ones available from the program verification literature.

It was recently proved [42] that the class of functions computed by a feed-
forward neural network with ReLU activation functions is exactly the class of
rational tropical maps, at least when dealing with rational weights and biases.
It is thus natural to look for guaranteed approximants of these rational tropical
maps as abstractions.

Example 1 (Running example). Consider a neural network with 2 inputs x1 and
x2 given in [−1, 1] and 2 outputs. The linear layer is defined by h1 = x1−x2−1,
h2 = x1 +x2 +1 and followed by a ReLU layer with neurons y1 and y2 such that
y1 = max(0, x1 − x2 − 1) and y2 = max(0, x1 + x2 + 1).

The exact range for nodes (h1, h2) is depicted in Fig. 2a in magenta (an
octagon here), and the exact range for the output layer is shown in Fig. 2b in
cyan: (y1, y2) take the positive values of of (h1, h2). In Fig. 2c, the set of values
the linear node h1 can take as a function of x1, is represented in magenta. The
set of values of the output neuron y1 in function of x1 is depicted in Fig. 2d, in
cyan: when x1 is negative, h1 is negative as well, so y1 = 0 (this is the horizontal
cyan line on the left). When x1 is positive, the set of values y1 can take is the
positive part of the set of values h1 can take (pictured as the right cyan triangle).
The line plus triangle is a tropical polyhedron, as we will see in Sect. 2.2.

We want to check two properties on this simple neural network:

(P1): the input is always classified as belonging to the class identified by neuron
y2, i.e. we always have y2 ≥ y1

Static Analysis of ReLU Neural Networks with Tropical Polyhedra 169

−2 0 1

2

h2

h1

−2

(a) (h1, h2)

−2 0 1

2

h2/y2

h1/y1

−2

(b) (h1, h2); (y1, y2)

−1 0 1

1

h1

x1

−2

(c) (x1, h1)

−1 0 1

1

h1/y1

x1

−2

(d) (x1, h1); (x1, y1)

Fig. 2. Exact ranges for the neural net of Example 1 on [−1, 1] × [−1, 1]. (P2) is the
complement of the red square in Fig. 2d.

(P2): in the neighborhood [−0.25, 0.25] of 0 for x1, whatever x2 in [−1, 1], the
output y1 is never above threshold 0.5 (unsafe zone materialized in red in
Fig. 2d)

(P2) is a robustness property. We see on the blue part of Fig. 2b (resp. 2d) that
the first (resp. second) property is true.

As we will see in Sect. 3, our tropical polyhedron abstraction is going to give
the exact graph of y1 as a function of x1, in cyan again, Fig. 3b.

−2 0 1

2

y2/h2

y1/h1

−2

B2

B1

A

B′
2

A′

(a) With zone, trop-
ical polyhedra

−1 0 1

1

h1/y1

x1

−2

(b) (x1, h1); (x1, y1)

−2 0 1

2

y2/h2

y1/h1

−2

B′
2

A′
B1

(c) Once subdivided
tropical polyhedra

−2 0 1

2

y2/h2

y1/h1

−2

(d) twice subdivided
tropical polyhedra.

Fig. 3. Abstractions of a simple neural net on [−1, 1] × [−1, 1]. Dashed lines in (b)
enclose the classical convexification.

Therefore we will be able to prove robustness, i.e. (P2): the exact range for
y1 in cyan does not intersect the non complying states, in red. Note that all
classically convex abstractions, whatever their intricacies, will need to extend
the cyan zone up to the dashed line pictured in Fig. 3b, to get the full triangle,
at the very least. This triangle is intersecting the red region making classically
convex abstractions unable to prove (P2).

Our tropical abstraction projected on the y2, y1 coordinates is not exact:
compare the exact range in cyan in Fig. 2b with the abstraction in cyan in Fig. 3a.
However, the cyan region in Fig. 3a is above the diagonal, which is enough for
proving (P1).

170 E. Goubault et al.

Still, the abstraction has an area 2.5 times larger than the exact range, due
to the tropical linearization of the tropical rational function y1. As with classical
linearizations, a workaround is to make this linearization local, through suitable
subdivisions of the input. We show in Fig. 3c the tropical polyhedric abstraction
obtained by subdividing x1 into two sub-intervals (namely [−1, 0] and [0, 1]): the
cyan part of the picture is much closer to the exact range (1.5 times the exact
area). Subdividing further as in Fig. 3d naturally further improves the precision
(area 1.25 times the exact one).

As we will see in Sect. 2.2, tropical polyhedra are particular unions of zones:
the tropical polyhedra in cyan of Figs. 3a and 3c are composed of just one zone,
but the tropical polyhedron in cyan in Fig. 3d and the tropical polyhedron in
magenta in Fig. 3c are the union of two zones. Finally, the tropical polyhedron
in magenta in Fig. 3d is the union of four zones (generated by 9 extreme points,
or 5 constraints, obtained by joining results from the subdivisions of the inputs).

Contributions. Section 2 introduces the necessary background notions, in par-
ticular tropical polyhedra. We then describe the following contributions:

– Sect. 3 introduces our abstraction of (classical) affine functions from Rm to Rn

with tropical polyhedra. We fully describe internal and external representa-
tions, extending the classical abstractions of assignments in the zone abstract
domain [29] or in the tropical polyhedra domain [4]. We prove correctness
and equivalence of internal and external representations, allowing the use of
the double description method [2].

– Based on the analysis of one layer networks of Sect. 3, we show in Sect. 4 how
to get to multi-layered networks.

– Finally, Sect. 5 describes our implementations in C++ and using polymake
[18] and presents some promising experiments. We discuss the cost and advan-
tages of using the double description or of relying for further abstraction on
either internal or external representations of tropical polyhedra.

Related Work. There exist many approaches to neural networks verification.
We concentrate here on methods and tools designed for at least range over-
approximation of ReLU feedforward networks.

It is natural to consider constraint based methods for encoding the ReLU
function and the combinatorics of activations in a ReLU feedforward neural net.

Determining the range of a ReLU feedforward neural net amounts to solving
min and max problems under sets of linear and ReLU constraints. This can be
solved either by global optimisation techniques and branch and bound mecha-
nisms, see e.g. DeepGo [32]. The encoding of the activation combinatorics can
also be seen as mixed integer linear constraints, and MILP solver used for solv-
ing the range outer-approximation problem, see e.g. [6,39], or both branch and
bound and MILP techniques, like Venus [8]. Similarly, Sherlock [13,14] performs
range analysis using optimization methods (MILP and a combination of local
search and global branch-and-bound approach), and considers also neural nets as

Static Analysis of ReLU Neural Networks with Tropical Polyhedra 171

controllers within a feedback loop. Finally, some of these constraint-based ana-
lyzer improve the solution search by exploiting the geometry of the activation
regions, [26].

A second category of such approaches is based on SMT methods, more specif-
ically satisfiability modulo extensions of linear real arithmetic (encoding also
RELU). The network is encoded in this logics and solvers provide answers to
queries, in particular range over-approximation and robustness, see e.g. Marabou
[25], extending Reluplex [24], and [15,22].

Range estimation for ReLU activated feedforward neural nets can also be
performed using some of the abstract domains [11] that have been designed for
program analysis, and in particular convex domains for numerical program veri-
fication. These include zonotopes [19,34], especially considering that feedforward
neural nets with one hidden layer and ReLU activation functions are known to
be characterizable by zonotopes, see e.g. [42], polyhedra [36], and other sub-
polyhedric or convex abstractions like symbolic intervals [20] used in Neurify
[33] extending Reluval [40] or CROWN-IBP [41].

These abstractions allow to perform range estimation, i.e. to estimate outer
approximations of the values of the output neurons given a set of values for
the input neurons. They also allow to deal with robustness properties around
training data, by proving that the range of the neural net on a small set around
a training point gives the same class of outputs.

The main difficulty with these convex abstract domains is that they tend
to lose too much precision on (non-convex) ReLU functions. Several methods
have been proposed to cope with this phenomenon. The first one is to improve
on the abstraction of ReLU, in particular by combining the abstraction of sev-
eral ReLU functions on the same layer [35]. Another solution that has been
proposed in the literature is to combine abstraction and some level of combina-
torial exploration of the possible neuron activations, in the line of disjunctive
program analysis [9,28]. RefineZono [37] implements methods combining poly-
hedric abstract domains with MILP solvers for encoding ReLU activation and
refining the abstractions, NNENUM [5] uses combinations of zonotopes, stars
sets with case splitting methods, and Verinet [21] uses abstractions similar to
the polyhedric relaxations of DeepPoly, based on symbolic-interval propagation,
with adaptive refinement strategies.

2 Preliminaries and Notations

2.1 Zones

The zone [29] abstraction represents restricted forms of affine invariants
over variables, bounds on variable differences. Let a n-dimensional variable
x = (x1, . . . , xn) ∈ Rn. The zone domain represents invariants of the form
(
∧

1≤i,j≤n xi − xj ≤ ci,j) ∧ (
∧

1≤i≤n ai ≤ xi ≤ bi). A convenient representa-
tion is using difference bound matrices, or DBM. In order to encode interval
constraints seamlessly in this matrix, a special variable x0, which is assumed to
be a constant set to zero, is added to x ∈ Rn. A DBM is then a (n+1)× (n+1)

172 E. Goubault et al.

square matrix C = (cij), with elements in R∪{+∞}, representing (concretisation
operator) the following set of points in Rn: γ(C) = {(x1, . . . , xn) ∈ Rn| ∀i, j ∈
[0, n], xi − xj ≤ ci,j ∧ x0 = 0}.

For a matrix C that has non-empty concretization, the closure denoted C∗

will be the smallest DBM for the partial order on matrices which represents
γ(C). Formally, a closed zone C = (cij) is such that: ∀k ∈ N,∀(i0, . . . , ik) ∈
[0, n]k+1, ci0,ik ≤ ci0,i1 + · · · + cik−1,ik , ∀i ∈ [0, j], ci,i = 0. Every constraint in a
closed zone saturates the set γ(C).

The best abstraction in the sense of abstract interpretation [11] of a non-
empty set S ⊂ Rn is the zone defined by the closed DBM: (c)ij = sup{xi −
xj | (x1, . . . , xn) ∈ S ∧ x0 = 0}.

Example 2. Consider the region defined as the union of the magenta and cyan
parts of Fig. 3a in Example 1. It is a zone given by the inequalities: (−3 ≤ h1 ≤
1) ∧ (−1 ≤ h2 ≤ 3) ∧ (−4 ≤ h1 − h2 ≤ 0), i.e. given by the following DBM:

⎛

⎝
0 3 1
1 0 0
3 4 0

⎞

⎠

The octagon [30] abstraction is an extension of the zone abstraction, which
represents constraints of the form

(
∧

1≤i,j≤n

±xi ± xj ≤ ci,j) ∧ (
∧

1≤i≤n

ai ≤ xi ≤ bi)

A set of octagonal constraints can be encoded as a difference bound matrix,
similarly to the case of zones, but using a variable change to map octagonal
constraints on zone constraints. For each variable xi, two variables are considered
in the DBM encoding, that correspond respectively to +xi and −xi. Note that
unary (interval) constraints, such as xi ≤ bi, can be encoded directly as xi+xi ≤
2bi, so that no additional variable x0 is needed.

Example 3. The figure below right shows the exact range (the rotated square)
of h1, h2 of Example 1.
It is depicted in gray, as the intersection of two zones,
one in cyan, Z2, and one in olive, Z1. Z1 is the zone
defined in Example 2 and Z2 is the zone defined on
variables (h1,−h2) as follows:

(−3 ≤ h1 ≤ 1) ∧ (−1 ≤ h2 ≤ 3) ∧ (−2 ≤ h1 + h2 ≤ 2)

2.2 Tropical Polyhedra

−2 0 1

2

h2

h1

−2

Tropical polyhedra are similar to ordinary convex polyhedra. Both can be defined
either using affine constraints, known as the external description, or as convex
hulls of extremal points and rays, known as the internal description. The major

Static Analysis of ReLU Neural Networks with Tropical Polyhedra 173

difference is the underlying algebra. Instead of using the classical ring R of coef-
ficients, with ordinary sum and multiplications, we use the so-called max-plus
semiring Rmax. This semiring is based on the set Rmax = R ∪ {−∞}, equipped
with the addition x ⊕ y := max(x, y) and the multiplication x ⊗ y = x + y. This
is almost a ring: we have neutral elements 1 := 0 for ⊗, and 0 = −∞ for ⊕, and
an inverse for ⊗ on Rmax\{0} but not for ⊕. The algebra also fits in with the
usual order ≤ on R, extended to Rmax: x ≤ y if and only if x ⊕ y = y.

Tropical hyperplanes are similar to classical hyperplanes, and defined as the
set of points satisfying

⊕

1≤i≤k

ai ⊗ xi ⊕ c ≤ ⊕

1≤i≤k

bi ⊗ xi ⊕ d.

Now, as in the classical case, tropical polyhedra will be given (externally)
as an intersection of n tropical hyperplanes, i.e. will be given as the location
of points in Rk

max satisfying n inequalities of the form of above. This can be
summarized using matrices A = (aij) and B = (bij), two n × k matrices with
entries in Rmax, and vectors of size k C and D as Ax ⊕ C ≤ Bx ⊕ D.

Still similarly to the case of ordinary convex polyhedra, tropical polyhedra can
also be described internally, as generated by extremal generators (points, rays). A
tropical polyhedron can then be defined as the set of vectors x ∈ Rk

max which can
be written as a tropical affine combination of generators vi (the extreme points)
and rj (the extreme rays) as x =

⊕

i∈I

λiv
i ⊕ ⊕

j∈J

μjr
j with

⊕

i∈I

λi = 1.

Example 4 (Running example). Consider again the zone consisting of the union
of the magenta and cyan parts in Fig. 3a. This is a tropical polyhedron, defined
externally by: max (h1,−3, h2,−1, h2, h1) ≤ max (1, h1, 3, h2, h1 + 4, h2).

It can also be defined internally by the extremal point A, B1 and B2 of
respective coordinates (−3,−1), (1, 1) and (−1, 3), depicted as dots in Fig. 3a.
This means that the points z in this tropical polyhedron have coordinates (h1, h2)
with (h1, h2) = max (λ0 + A, λ1 + B1, λ2 + B2) with max(λ0, λ1, λ2) = 1 = 0,
i.e. all λis are negative or null, and one at least among the λis is zero.

For instance, when λ2 = −∞, z is on the tropical line linking A to B1:
(
h1, h2

)
=
(
max(λ0 − 3, λ1 − 1),max(λ0 − 1, λ1 + 3)

)
(1)

with λ0, λ1 �= 0 and either λ0 = 0 or λ1 = 0. Suppose λ0 = 0, and suppose first
that λ1 ≤ −4: (h1, h2) = (−3,−1) which is point A. Suppose now −4 ≤ λ1 ≤ −2,
then (h1, h2) = (−3, λ1 + 3), which is the vertical line going from A to point
(−3, 1). Finally, suppose −2 ≤ λ1 ≤ 0, (h1, h2) = (λ1 − 1, λ1 + 3) which is the
diagonal going from (−3, 1) to B1. Similarly, one can show that the tropical line
going from B1 to B2 is given by fixing λ0 = −∞ and making vary λ1 and λ2. If
λ0 < 0 then λ1 = 0 and z is point B1.

Now, applying the ReLU operator, which is linear in the tropical algebra,
defines a tropical polyhedron with internal description given by ReLU (in each
coordinate) of extreme points A, B1 and B2, i.e. A′ = (0, 0), B′

1 = B1 = (1, 1)
and B′

2 = (0, 3), see Fig. 3a. Similarly, the zone which gives h1 as a function
of x1, see Fig. 3b, can be seen as a tropical polyhedron with extreme points
(−1,−3), (1, 1) and (1,−1). Applying ReLU to the second coordinate of these

174 E. Goubault et al.

three extreme points gives three points (−1, 0), (1, 1) and (1, 0) which generate
the tropical polyhedron in cyan of Fig. 3b.

It is also easy to see that after one subdivision, Fig. 3c, the set of values
for (y1, y2) in cyan is a tropical polyhedron with three extreme points A′, B′

1

and B2. After two subdivisions, Fig. 3d, the values of y1 as a function of h1 is
a tropical polyhedron with 4 generators (depicted as dots in Fig. 3d). Note that
the tropical polyhedron of Fig. 3d is the encoding of the union of two zones, one
zone being the classical convex hull of points (0, 0), (0, 1), (0.5, 1.5), (1, 1.5) and
(1, 1), and the other being the classical convex hull of points (0, 1), (0, 2), (0.5, 2)
and (0.5, 1.5).

All tropical polyhedra can thus be described both internally and externally,
and algorithms, although costly, can be used to translate an external description
into an internal description and vice-versa. This is at the basis of the double
description method for classical polyhedra [12] and for tropical polyhedra [2].
Double description is indeed useful when interpreting set-theoretic unions and
intersections, as in validation by abstract interpretation, see [12] again for the
classical case, and e.g. [4] for the tropical case: unions are easier to compute using
the extreme generator representation (the union of the convex hulls of sets of
points is the convex hull of the union of these sets of points) while intersections
are easier to compute using the external representation (the intersection of two
polyhedra given by sets of constraints is given by the concatenation of these sets
of constraints).

In the sequel, we will be using explicitly the max and (ordinary) + operators
in place of ⊕ and ⊗ for readability purposes.

2.3 From Zone to Tropical Polyhedra and Vice-Versa

The following proposition characterizes the construction of tropical polyhedric
abstractions from zones. We show that a zone defined on n variables can be
expressed as the tropical convex hull of n + 1 points.

Proposition 1 (Internal tropical representation of closed zones)
Let Hext ⊂ Rn be the n-dimensional zone defined by the conjunction of the

(n+1)2 inequalities
∧

0≤i,j≤n(xi−xj ≤ ci,j), where ∀i, j ∈ [0, n], ci,j ∈ R∪{+∞}.
Assume that this representation is closed, then Hext is equal to the tropical
polyhedron Hint defined, with internal representation, as the tropical convex hull
of the following extreme points (and no extreme ray):

A = (ai)1≤i≤n := (−c0,1, . . . ,−c0,n),
Bk = (bki)1≤i≤n := (ck,0 − ck,1, . . . , ck,0 − ck,n), k = 1, . . . , n,

Example 5. The zone of Example 2 is the tropical polyedron with the three
extreme generators A, B1 and B2 pictured in Fig. 3a, as deduced from Proposi-
tion 1 above.

Static Analysis of ReLU Neural Networks with Tropical Polyhedra 175

Moreover, we can easily find the best zone (and also, hypercube) that outer
approximates a given tropical polyhedron, as follows [4]. Suppose we have p
extreme generators and rays for a tropical polyhedron H, A1, . . . , Ap, that we
put in homogeneous coordinates in Rn+1 by adding as last component 0 to
the coordinates of the extreme generators, and −∞ to the last component, for
extreme rays, as customary for identifying polyhedra with cones, see e.g. [17].

Proposition 2 [4]. Let A be the matrix of generators for tropical polyhedron
H stripped out of rows consisting only of −∞ entries, and A/A the residuated
matrix which entries are (A/A)i,j = min

1≤k≤p
ai,k − aj,k. Then the smallest zone

containing H is given by the inequalities:

xi − xj ≥ (A/A)i,j for alli, j = 1, . . . , n

(A/A)i,n+1 ≤ xi ≤ −(A/A)n+1,i for alli = 1, . . . , n

Example 6. Consider the graph of the ReLU function on [−1, 1], pictured in
Fig. 1d. It has as generators the two extreme points A1 = (−1, 0) and A2 = (1, 1)
(the graph is the tropical segment from A1 to A2). Homogenizing the coordinates
and putting them in a matrix A (columns correspond to generators), we have

A =

⎛

⎝
−1 1
0 1
0 0

⎞

⎠ and (A/A) =

⎛

⎝
0 −1 −1
0 0 0

−1 −1 0

⎞

⎠

meaning that the enclosing zone is given by −1 ≤ x − y ≤ 0, −1 ≤ x ≤ 1, 0 ≤
y ≤ 1, which is the zone depicted in Fig. 1c.

2.4 Feedforward ReLU Networks

Feedforward ReLU networks that we are considering in this paper are a succes-
sion of layers of neurons, input layer first, a given number of hidden layers and
then an output layer, each computing a certain affine transform followed by the
application of the ReLU activation function:

Definition 1. A n-neurons ReLU network layer L with m inputs is a function
Rm → Rn defined by, a weight matrix W ∈ Mn,m(R), a bias vector b ∈ Rn,
and an activation function ReLU : Rn → Rn given by ReLU(x1, . . . , xn) =
(max(x1, 0), . . . ,max(xn, 0)) so that for a given input x ∈ Rn, its output is
L(x) = ReLU(Wx + b).

Definition 2. A multi-layer perceptron FN is given by a list of network layers
L0, ..., LN , where layers Li (i = 0, . . . , N − 1) are ni+1-neurons layers with ni

inputs. the action of FN on inputs is defined by composing the action of successive
layers: FN = LN ◦ ... ◦ L0.

176 E. Goubault et al.

3 Abstraction of Linear Maps

3.1 Zone-Based Abstraction

We consider in this section the problem of abstracting the graph Gf = {(x, y) |
y = f(x)} of a linear map f(x) = Wx + b with x ∈ [x1, x1] × . . . [xm, xm]
where W = (wi,j) is a n × m matrix and b a n-dimensional vector, by a tropical
polyhedron Hf . We will treat the case of multilayered networks in Sect. 4.

The difficulty is that linear maps in the classical sense are not linear maps in
the tropical sense, but are rather (generalized) tropical polynomials, hence the
exact image of a tropical polyhedron by a (classical) linear map is not in general
a tropical polyhedron. We begin by computing the best zone abstracting Gf and
then represent it by a tropical polyhedron, using the results of Sect. 2.3. We then
show in Sect. 3.2 that we can improve results using an octagon abstraction.

The tightest zone containing the image of a cube going through a linear layer
can be computed as follows:

Proposition 3 (Optimal approximation of a linear layer by a zone)
Let n,m ∈ N and f : Rm → Rn an affine transformation defined, for all

x ∈ Rm and i ∈ [1, n], by
(
f(x)

)
i

=
∑m

j=1 wi,jxj + bi. Let K ⊂ Rm be an
hypercube defined as K =

∏
1≤j≤m[xj , xj], with xj , xj ∈ R. Then, the tightest

zone Hf of Rm × Rn containing S :=
{(

x, f(x)
) ∣∣
∣x ∈ K

}
is the set of all

(x, y) ∈ Rm × Rn satisfying
(∧

1≤j≤m

xj ≤ xj ≤ xj

)
∧

(∧
1≤i≤n

mi ≤ yi ≤ Mi

)
∧

(∧
1≤i1,i2≤n

yi1 − yi2 ≤ Δi1,i2

)

∧
(∧

1≤i≤n,1≤j≤m

mi − xj + δi,j ≤ yi − xj ≤ Mi − xj − δi,j
)
,

where, for all i, i1, i2 ∈ [1, n] and j ∈ [1,m]:

mi =
∑

wi,j<0

wi,jxj +
∑

wi,j>0

wi,jxj + bi,

Mi =
∑

wi,j<0

wi,jxj +
∑

wi,j>0

wi,jxj + bi,

Δi1,i2 =
∑

wi1,j<wi2,j

(wi1,j − wi2,j)xj +
∑

wi1,j>wi2,j

(wi1,j − wi2,j)xj + (bi1 − bi2),

δi,j =

⎧
⎪⎨

⎪⎩

0, if wi,j ≤ 0
wi,j(xj − xj), if 0 ≤ wi,j ≤ 1
(xj − xj), if 1 ≤ wi,j

The tightest zone is obtained as the conjunction of the bounds xj ≤ xj ≤ xj

on input x, given as hypercube K, the bounds on the yi and yi1 −yi2 obtained by
a direct computation of bounds of the affine transform of the input hypercube
K, and finally the bounds on the differences yi −xj given by a direct calculation.

Static Analysis of ReLU Neural Networks with Tropical Polyhedra 177

Figure 4 shows the three different types of zones that over-approximate the
range of a scalar function f , with f(x) = λx+b, on an interval. When λ < 0, the
best that can be done is to abstract the graph of f by a square, we cannot encode
any dependency between f(x) and x: this corresponds to the case δi,j = 0 in
Proposition 3. The two other cases for the definition of δi,j are the two remaining
cases of Fig. 4: when λ is between 0 and 1, this is the picture in the middle, and
when λ is greater than 1, this is the picture at the right hand side. As we have
seen in Proposition 1 and as we will see more in detail below in Theorem 1,
these zones can be encoded as tropical polyhedra. Only the points A, B and C
are extreme points: D is not an extreme point of the polyhedron as it is on the
tropical segment [AC] (the blue, green and red dashed lines each represent a
tropical segment).

Fig. 4. The 3 cases for approximating the graph of an affine scalar function by a tropical
polyhedron, on domain [a, b].

For f : R2 → R, there are 6 cases, depending on the values of λ1 and λ2. In all
cases, these zones can be represented as tropical polyhedra using only 4 extreme
points and 4 inequalities (instead of 8 and 6 in the classical case), as we will see
in Theorem 1. Figure 5 represents the resulting polyhedron for different values
of λ1 and λ2. Each figure shows the extreme points A, B1, B2 and C, the faces
of the polyhedron (in green), the tropical segments inside the polyhedron (in
red), and the actual graph of f(x) (in blue).We have the corresponding external
description in Theorem 1 below:

Theorem 1. The best zone abstraction Hf of of the graph Gf = {(x1, . . . , xm,
y1, . . . , yn) | xj ≤ xj ≤ xj , yi = fi(x1, . . . , xm)} ⊆ R+n of the linear function
f : Rm → Rn defined in Proposition 3 can be seen as the tropical polyhedron
defined externally with m + n + 1 inequalities, for all i ∈ [1, n] and j ∈ [1,m]:

max(x1 − x1, . . . , xm − xm, y1 − M1, . . . , yn − Mn) ≤ 0 (2)
max(0, y1 − M1 + δ1,j , . . . , yn − Mn + δn,j) ≤ xj − xj (3)

max(0, x1 − x1 + δi,1, . . . , xn − xn + δi,n, y1 − di,1, . . . , yn − di,n) ≤ yi − mi (4)

where dj1,j2 denotes the quantity Δj1,j2 + mj2 for i1 and i2 in [1, n].

178 E. Goubault et al.

Fig. 5. Over-approximation for λ1 = λ2 = 0.5 (left), λ1 = −0.5 and λ2 = 1.5 (middle),
and λ1 = λ2 = 1.2 (right).

We have the matching internal representation in Theorem 2:

Theorem 2. Hf can also be described, internally, as the tropical convex hull of
m + n + 1 extreme points:

A = (x1, . . . , xm,m1, . . . ,mn)
B1 = (x1, x2, . . . , xm,m1 + δ1,1, . . . ,mn + δn,1) . . .

Bm = (x1, . . . , xm−1, xm,m1 + δ1,m, . . . ,mn + δn,m)
C1 = (x1 + δ1,1, . . . , xm + δ1,m,M1, c1,2, . . . , c1,n) . . .

Cn = (x1 + δn,1, . . . , xm + δn,m, cn,1, . . . , cn,n−1,Mn)

where ci1,i2 = Mi1 − Δi1,i2 for i1 and i2 in [1, n].

Example 7 (Running example). Let us detail the computations for Example 1:
h1 = x1 − x2 − 1, h2 = x1 + x2 + 1. We have respectively, δ1,1 = 2, δ1,2 = 0,
δ2,1 = 2, δ2,2 = 2, Δ1,1 = 0, Δ1,2 = 0, Δ2,1 = 4, Δ2,2 = 0, d1,1 = −3, d1,2 = −1,
d2,1 = 1, d2,2 = −1, m1 = −3, m2 = −1, M1 = 1 and M2 = 3. Hence the
external description for the tropical polyhedron relating values of x1, x2, h1

and h2 are: max(x1 − 1, x2 − 1, h1 − 1, h2 − 3) ≤ 0, max(0, h1 + 1, h2 − 1) ≤
x1 + 1, max(0, h1 − 1, h2 − 1) ≤ x2 + 1, max(0, x1 + 1, x2 − 1, h1 + 3, h2 − 1) ≤
h1 + 3, max(0, x1 + 1, x2 + 1, h1 + 1, h2 + 1) ≤ h2 + 1 which encode all zones
inequalities: −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1, −3 ≤ h1 ≤ 1, −1 ≤ h2 ≤ 3, −2 ≤
h1−x1 ≤ 0, −4 ≤ h1−x2 ≤ 2, 0 ≤ h2−x1 ≤ 2, 0 ≤ h2−x2 ≤ 2, −4 ≤ h1−h2 ≤
0. Note that the zone abstraction of [29] would be equivalent to an interval
abstraction and would not infer the relations between h1, h2, x1 and x2. Now the
internal representation of the corresponding zone is A = (−1,−1,−3,−1), B1 =
(1,−1,−1, 1), B2 = (−1, 1,−3, 1), C1 = (−1,−1, 1, 1), C2 = (−1, 1,−1, 3). The
projections of these 5 extreme points on (h1, h2) give the points (−3,−1), (−1, 1),
(−3, 1), (1, 1), (−1, 3), among which (−3, 1) and (−1, 1) are in the tropical convex
hull of A = (−3,−1), B1 = (1, 1) and B2 = (−1, 3) represented in Fig. 3a.
Indeed (−3, 1) is on the tropical line (AB2) and (−1, 1) whereas (−1, 1) is on
the tropical line (AB1) as a tropical linear combination of −2+B1 and −2+B2:
(−1, 1) = max(−2 + (1, 1),−2 + (−1, 3)).

Static Analysis of ReLU Neural Networks with Tropical Polyhedra 179

Example 8. Consider now function f : R2 → R2 with f(x1, x2) = (0.9x1 +
1.1x2, y2 = 1.1x1 − 0.9x2) on (x1, x2) ∈ [−1, 1]. We have in particular M1 = 2,
M2 = 2, m1 = −2 and m2 = −2. We compute δ1,1 = 1.8, δ1,2 = 2, δ2,1 = 2
and δ2,2 = 0 and we have indeed y1 + 2 ≥ x1 − 1 + δ1,1 = x1 + 0.8, y2 + 2 ≥
x1 − 1+2 = x1 +1, y1 +2 ≥ x2 − 1+ δ2,1 = x1 +1, y2 +2 ≥ x2 − 1 and y1 − 2 ≤
x1 +1−1.8 = x1 −0.8, y2 −2 ≤ x1 +1−2 = x1 −1, y1 −2 ≤ x2 +1−2 = x2 −1,
y2 − 2 ≤ x2 + 1. Overall:

x1 − 1.2 ≤ y1 ≤ x1 + 1.2
x2 − 1 ≤ y1 ≤ x2 + 1
x1 − 1 ≤ y2 ≤ x1 + 1
x2 − 3 ≤ y2 ≤ x2 + 3

We also find d1,1 = −2, d1,2 = 0.2, d2,1 = 0.2 and d2,2 = −2. Hence y1 − d1,2 ≤
y2−m2, i.e. y1−0.2 ≤ y2+2 that is y1−y2 ≤ 2.2. Similarly, we find y2−y1 ≤ 2+0.2
hence −2.2 ≤ y1 − y2 ≤ 2.2.

Fig. 6. Over-approximation for f(x1, x2) = (0.9x1 + 1.1x2, y2 = 1.1x1 − 0.9x2).

These equations can be written as linear tropical constraints as in Theorem 1:

max

⎛

⎜
⎜
⎝

x1 − 1
x2 − 1
y1 − 2
y2 − 2

⎞

⎟
⎟
⎠ ≤ 0, max

⎛

⎝
0

y1 − 0.2
y2

⎞

⎠ ≤ x1 + 1, max

⎛

⎝
0
y1

y2 − 2

⎞

⎠ ≤ x2 + 1

max

⎛

⎜
⎜
⎜
⎜
⎝

0
x1 + 0.8
x2 + 1
y1 + 2

y2 − 0.2

⎞

⎟
⎟
⎟
⎟
⎠

≤ y1 + 2, max

⎛

⎜
⎜
⎜
⎜
⎝

0
x1 + 1
x2 − 1

y1 − 0.2
y2 + 2

⎞

⎟
⎟
⎟
⎟
⎠

≤ y2 + 2

180 E. Goubault et al.

We now depict in Fig. 6 both the image of f as a blue rotated central square,
and its over-approximation by the convex tropical polyhedron calculated as in
Theorem 1 in green, in the plane (y1, y2). As c1,1 = 2, c1,2 = −0.2, c2,1 = −0.2
and c2,2 = 2, the extremal points are, in the (x1, x2, y1, y2) coordinates:

A =

⎛

⎜
⎜
⎝

−1
−1
−2
−2

⎞

⎟
⎟
⎠ B1 =

⎛

⎜
⎜
⎝

1
−1

−0.2
0

⎞

⎟
⎟
⎠ B2 =

⎛

⎜
⎜
⎝

−1
1
0

−2

⎞

⎟
⎟
⎠ C1 =

⎛

⎜
⎜
⎝

0.8
1
2

−0.2

⎞

⎟
⎟
⎠ C2 =

⎛

⎜
⎜
⎝

1
−1

−0.2
2

⎞

⎟
⎟
⎠

3.2 Octagon Abstractions and (max,+,−) Algebra

As in Sect. 3.1, we consider the abstraction of the image of an hypercube K
of Rm by an affine transformation f : Rm → Rn defined, for all x ∈ Rm and
i ∈ [1, n], by

(
f(x)

)
i
=
∑m

j=1 wi,jxj +bi. But we consider here the abstraction of
this image by an octagon, we will thus add some constraints on sums of variables
to the abstraction computed in Sect. 3.1.

Proposition 4 (Optimal approximation of a linear layer by an
octagon). Let K ⊂ Rm be an hypercube defined as K =

∏
j [xj , xj], with

xj , xj ∈ R. The tightest octagon of Rm ×Rn containing S :=
{(

x, f(x)
) ∣∣
∣x ∈ K

}

is the set of all (x, y) ∈ Rm × Rn satisfying
(∧

1≤j≤m

xj ≤ xj ≤ xj

)
∧

(∧
1≤i≤n

mi ≤ yi ≤ Mi

)
∧

(∧
1≤i1,i2≤m

yi1 − yi2 ≤ Δi1,i2

)

∧
(∧

1≤i1,i2≤n

Li1,i2 ≤ yi1 + yi2 ≤ Γi1,i2

)

∧
(∧

1≤i≤n,1≤j≤m

mi − xj + δi,j ≤ yi − xj ≤ Mi − xj − δi,j

)

∧
(∧

i,j

mi + xj + γi,j ≤ yi + xj ≤ Mi + xj − γi,j

)

where mi,Mi, δi,j ,Δi1,i2 are defined as in Proposition 3, and

Γi1,i2 :=
∑

wi1,j+wi2,j<0

xj(wi1,j + wi2,j) +
∑

wi1,j+wi2,j>0

xj(wi1,j + wi2,j)

Li1,i2 :=
∑

wi1,j+wi2,j<0

xj(wi1,j + wi2,j) +
∑

wi1,j+wi2,j>0

xj(wi1,j + wi2,j)

γi,j :=

⎧
⎪⎨

⎪⎩

0, if 0 ≤ wi,j

−wi,j(xj − xj), if − 1 ≤ wi,j ≤ 0
(xj − xj), if wi,j ≤ −1

Static Analysis of ReLU Neural Networks with Tropical Polyhedra 181

With the notations of Proposition 4, we have

Proposition 5. Let M be the (classically) linear manifold in Rm × Rn × Rm ×
Rn defined by (x+, y+, x−, y−) ∈ M if and only if x+ + x− = 0 and y+ +
y− = 0. The octagon S defined in Proposition 4 is equal to the intersection
of M with the tropical convex polyhedron generated by the 1 + 2n + 2m points
A,B+

1 , . . . , B+
m, B−

1 , . . . , B−
m, C+

1 , . . . , C+
n , C−

1 , . . . , C−
n , where

A = (x1, . . . , xm,m1, . . . ,mn,−x1, . . . ,−xm,−M1, . . . ,−Mn)

B+
k = (0, x+, y+, x−, y−) with x+

k = xk, x+
j �=k = xj , y+

i = mi + δi,k

x−
k = −xk, x−

j �=k = −xj , y−
i = −Mi + γi,k

B−
k = (0, x+, y+, x−, y−) with x−

k = −xk, x−
j �=k = −xj , y−

i = −Mi + δi,k

x+
k = xk, x+

j �=k = xj , y+
i = mi + γi,k

C+
l = (0, x+, y+, x−, y−) with y+

l = Ml, y+
i�=l = Ml − Δl,i, x+

j = xj + δl,j

y−
l = −Ml, y−

i�=l = Ml − Γl,i, x−
j = −xj + γl,j

C−
l = (0, x+, y+, x−, y−) with y−

l = −ml, y−
i�=l = −ml − Δi,l, x−

j = −xj + δl,j

y+
l = ml, y+

i�=l = −ml + Ll,i, x+
j = xj + γl,j

Example 9 (Running example). For the example network of Example 1, the for-
mulas of Proposition 4 give the constraints:

− 1 ≤ x1 ≤ 1
0 ≤ x1 − h1 ≤ 2
− 4 ≤ x1 + h1 ≤ 2
− 2 ≤ x1 − h2 ≤ 0
− 2 ≤ x1 + h2 ≤ 4

− 1 ≤ x2 ≤ 1
− 2 ≤ x2 − h1 ≤ 4
− 2 ≤ x2 + h1 ≤ 0
− 2 ≤ x2 − h2 ≤ 0
− 2 ≤ x2 + h2 ≤ 4

− 3 ≤ h1 ≤ 1
0 ≤ h2 − h1 ≤ 4
− 2 ≤ h2 + h1 ≤ 2
− 1 ≤ h2 ≤ 3

And the internal description is given by Proposition 5, with the following
extreme points, where coordinates are ordered as (x+

1 , x+
2 , h+

1 , h+
2 , x−

1 , x−
2 ,

h−
1 , h−

2):

(−1, −1, −3, −1, −1, −1, −1, −3)

(1, −1, −1, 1, −1, −1, −1, −3)

(−1, 1, −3, 1, −1, −1, 1, −3)

(−1, −1, −3, −1, −1, −1, −1, −3)

(1, −1, 1, 1, −1, 1, −1, −1)

(1, 1, −1, 3, −1, −1, 1, −3)

(−1, −1, −3, −1, 1, −1, 1, −1)

(−1, −1, −1, −1, −1, 1, −1, −1)

(−1, −1, −3, −1, −1, −1, −1, −3)

(−1, 1, −3, 1, 1, −1, 3, −1)

(−1, −1, −1, −1, 1, 1, 1, 1)

182 E. Goubault et al.

From the extremal points of the octagon abstraction above, we get the extremal
points for (h+

1 , h+
2), discarding the non extremal ones: (−3,−1), (1, 1) and

(−1, 3), and for (h+
1 , h−

2): (−3,−3), (1,−1) and (−1, 1) (for this last pair of
variables, this gives the zone in cyan of Example 3).

4 Validation of Multi-layered Neural Networks

General Algorithm. The method developed in Sect. 3 is the cornerstone of our
algorithm for analysing neural networks. A ReLU neural net consists of a chain
of two kinds of computations, one which applies a classical linear transformation
to their inputs, and another one one which applies a ReLU. function We have
seen that the affine map transformation can be over-approximated using tropical
polyhedra. ReLU being a tropical affine function, the ReLU transform is exact
in tropical polyhedra. It is thus possible to use tropical polyhedra to represent
reachable states for every node in the network, at least for one layer ReLU
networks.

Example 10. We carry on with Example 1 and complete the final computations
of Example 7. The external representation is given by the tropical linear inequal-
ities of Example 7 together with inequalities max(0, h1) ≤ y1 ≤ max(0, h1) and
max(0, h2) ≤ y2 ≤ max(0, h2). Now the corresponding tropical polyhedron is
generated by the linear tropical operator ReLU on each of the extremal points
A, B1, B2, C1 and C2 and gives the two extra (last) coordinates in the axes
(x1, x2, h1, h2, y1, y2), A′ = (−1,−1,−3,−1, 0, 0), B′

1 = (1,−1,−1, 1, 0, 1), B′
2 =

(−1, 1,−3, 1, 0, 1), C ′
1 = (−1,−1, 1, 1, 1, 1), C ′

2 = (−1, 1,−1, 3, 0, 3). The projec-
tions of theses 5 extreme points on (h1, y2) give the points (0, 0), (0, 1), (1, 1),
(0, 3) among which (0, 1) is in the convex hull of A′ = (0, 0), B′

2 = B2 = (1, 1)
and B′

1 = (0, 3) represented in Fig. 3a.

The polyhedron given by the method of Sect. 3 only gives relations between
2 layers (the input and the first hidden layer). In order to get a polyhedron that
represents the whole network when combining with e.g. another layer, we need
to embed the first polyhedron from a space that represents only 2 layers to a
higher space that represents the complete network, with one dimension per node.
We will then need to intersect the polyhedra generated by each pair of layers
to get the final result. Finally, as we are only interested in the input-output
abstraction of the whole network, we can reduce computing costs by removing
the dimensions corresponding to middle layers once those are calculated.

To this end, we use the following notations. Let L ⊂ {L0, . . . , LN} be a set
of layers, layer i containing ni+1 neurons as in Definition 2. Let n be the sum
of all ni+1, with i such that Li ∈ L and SL ≡ Rn

max be the tropical space in
which we are going to interpret the values of the neurons on layers in L, with
each dimension of SL corresponding to a node of a layer of L.

For L1,L2 ⊂ {L0, . . . , LN}, for H ⊂ SL1 a tropical polyhedron, we denote
by Proj(H,L2) ⊂ SL2 the projection of H onto SL2 when SL2 ⊆ SL1 and let
Emb(H,L2) ⊂ SL2 be the embedding of H into SL2 when SL1 ⊆ SL2 .

Static Analysis of ReLU Neural Networks with Tropical Polyhedra 183

The main steps of our algorithm for over-approximating the values of neurons
in a multi-layer ReLU network are the following:

– We start with an initial tropical polyhedron H0 ⊂ S{L0} that represents the
interval ranges of the input layer L0.

– For each additional layer Li+1:
• Calculate an enclosing hypercube Ci for the nodes of layer Li, given the

current abstraction Hi ⊂ SLi
(Sect. 2.3).

• Calculate the polyhedron Pi+1 representing relationships between layer
Li and the new layer Li+1, for nodes of layer Li taking values in Ci,
as described in Sect. 3: Theorem 1 for the external description, and
Theorem 2 for the internal description

• Let L′
i+1 = Li ∪ {Li+1}. Calculate P ′

i+1 = Emb(Pi+1,L′
i+1) (see below)

• Intersect P ′
i+1 with the projection (using the internal description, see

below) of the previous abstraction Hi to get H′
i+1 = Emb(Hi,L′

i+1)∩P ′
i+1

(using the external description).
• Choose Li+1 ⊃ {Li+1}, and calculate Hi+1 = Proj(H′

i+1,Li+1). Usually,
we would use Li+1 = {L0, Li+1} if we only want relations between the
input and output layers, or Li+1 = {L0, . . . , Li+1} if we want relations
between every layer.

We need now to describe the projection and embedding functions Proj and
Emb. Let L2 ⊂ L1 ⊂ {L0, . . . , LN} be two sets of layers. Let H be a polyhedron
on SL1 . We have H′ = Proj(H,L2) = {(xi)Li∈L2 , (xi)Li∈L1 ∈ H}, i.e. for each
point in H, we only keep the dimensions corresponding to layers in L2, and
discard the other dimensions. Projecting is easy with the internal description of
polyhedron, as we can project the extreme points of H to get generators of H′.
However, we do not have a simple algorithm to project the external description
of a polyhedron.

Let L1 ⊂ L2 ⊂ {L0, . . . , LN} be two sets of layers, and Δ be the sum of
ni+1, the number of neurons of layer Li, for i such that Li ∈ L2 \ L1. Let
H be a polyhedron on SL1 . We note that S2 ≡ S1 × RΔ

max, and thus H′ =
Emb(H,L2) ≡ H × RΔ

max, i.e. we add dimensions corresponding to each node
in L2 which are not in L1, and let points in H′ take any value of Rmax on
these dimensions. Embedding is based on simple matrices concatenations in the
external description, for more details. Embedding using the internal description
is more involved and is explained after exemplifying things on a simple example.

Example 11. We consider the 1-layer neural net of Example 1, and add a second
layer. The new linear layer is defined by u1 = y2 − y1 − 1, u2 = y1 − y2 + 1
and the output neurons are z1 = max(0, u1) = max(0, y2 − y1 − 1) and z2 =
max(0, u2) = max(0, y1 − y2 + 1).

The enclosing cube for the tropical polyhedron H containing the values
of neurons of the first layer L1: y1, y2 of Example 1 is [0, 1] × [0, 3]. The
analysis of the second layer L2, supposing its input belongs to [0, 1] × [0, 3]
gives the constraint (an extract of the external representation of the result-
ing tropical polyhedron H′) −3 ≤ u1 − y1 ≤ 2, −2 ≤ u1 − y2 ≤ −1, −2 ≤

184 E. Goubault et al.

u2 − y1 ≤ 1, −5 ≤ u2 − y2 ≤ 2, z1 = max(0, u1), z2 = max(0, u2).
The intersection of the embedding Emb(H′, {L0, L1, L2}) with the embedding
Emb(H, {L0, L1, L2}) consists, as we saw above, in concatenating the tropical
constraints, in the common space of variables. This implies in particular that we
add the constraint −3 ≤ y1 − y2 ≤ 0 to the above equations. The intersection
is actually a zone intersection, where we have to normalize the corresponding
DBM. A manual calculation shows that this will make use of the equalities
u2 − y2 = (u2 − y1) + (y1 − y2), u1 − y1 = (u1 − y2) + (y2 − y1). By combining
equations, we get the refined bounds (refined lower bound for the first equation,
refined upper bound for the second equation) −2 ≤ u1−y1 ≤ 2, −5 ≤ u2−y2 ≤ 1.

Embedding a Tropical Polyhedron: Internal Description. In this paragraph,
we embed a polyhedron into a higher dimensional space, using the internal
description.

Suppose H is a tropical polyhedron in Rn (such as Pi in the previous section)
that we want to embed H into a larger space, with an extra coordinate, which
we consider bounded here within [a, b]. So we need to determine a presentation
of the tropical polyedron H′ = H × [a, b].

Supposing we have m extreme points pi for representing H, a naive method
consists in noticing that the family (pi, a), (pi, b) is a generator of H′ and remov-
ing non-extreme points from that list. But that would exhibit poor performance,
as we get m × 2k extreme points for H′′. We can in fact do better:

Theorem 3. The extreme points of H′ are {(pi, a), 1 ≤ i ≤ m}∪{(pi, b), i ∈ I},
where I is a subset of indexes of generators of H, I ⊂ [1,m], such that:

∀i ∈ I,∀j ∈ [1,m] \ {i}, pi ⊕ pj �= pi (5)
∀i ∈ [1,m] \ I,∃j ∈ [1,m] \ {i} s.t. pi ⊕ pj = pi (6)

Passing to the limit, this shows that the extreme points of H×R are (pi,−∞),
i = 1, . . . , m and the extreme rays are (pi, 0), i ∈ I for the smallest I verifying
Eq. (5) and (6). In the current implementation, we do not use extreme rays and
embed H into larger state spaces by using large enough values for a and b.

Checking Properties on ReLU Neural Nets. Given an affine guard

h(x, y) =
m∑

i=1

hixi +
n∑

j=1

h′
jyj + c

where xi, resp. yj are the input, resp. output neurons, we want to determine
whether, for all input values in [−1, 1], we have h(x) ≥ 0 (this can encode
properties (P1) and (P2) of Example 1).

There are two ways to check such properties. The first one, that we have
implemented, is as follows. We abstract the input output relation that the net-
work under analysis encodes, using a tropical polyhedron H as described in
Sect. 4. From this, we derive the smallest zone Z containing H as in Sect. 2.3.

Static Analysis of ReLU Neural Networks with Tropical Polyhedra 185

Finally, we solve the linear programming problem m = min
x,y∈Z

h(x, y) using any

classical algorithm (we used glpk in our prototype). This is enough for checking
(P1) in Example 1 since m ≥ 0 proves our property true, but not (P2). The
second way can be useful to check (P2): here we have no choice but try to solve
m = min

x,y∈H
h(x, y) which is not a convex optimization problem, in any sense

(tropical nor classical). This could be encoded as MILP problem instead.

5 Implementation, Experiments and Benchmarks

Internal, External and Double Description Methods. Overall, we have
developed methods for propagating an outer-approximation of the values that
the different layers of neurons can take, within a MLP with ReLU activation. Let
us discuss the pros and cons of using the internal description, external description
and double description methods:

– The double description method allows for possibly using subdivisions, propa-
gating values in multiple layers and projecting them onto a subset of interest-
ing neurons (e.g. input and output layers), as well as computing an enclosing
zone, for synthesizing classification properties. We have implemented this in
a prototype using Polymake [18], whose results we briefly discuss below.

– The internal description allows for analyzing one layer networks, using sub-
divisions, project onto an interesting subset of neurons, as well as computing
an enclosing zone (Sect. 2.3). We have implemented this method in C++ in a
standalone prototype, nntrop, that takes as input a Sherlock file [14] describ-
ing the one hidden layer neural net to analyze plus a linear formula to be
checked, and returns the tropical abstraction of the values that neurons can
take, its over-approximation by a zone, and whether the linear specification
is satisfied or not.

– The external description allows for analyzing multiple layer networks (see
Sect. 4).

The double description method is much more expensive since the translation
between the internal and external representations may be quite complex.

Experiments and Benchmarks. We briefly compare the computation times
between internal description only and double description in Table 1. For each
example, we indicate in the columns # inp. the number of input neurons, #
out. the number of output neurons, # hid. the number of hidden layers, #
neur. is the total number of neurons (input, output and hidden), t. intern
is the time spent for computing the internal representation and t. double for
the double description of the tropical polyhedron abstracting the corresponding
neural net. Experiments are performed on a simple computer with ArchLinux
and a Intel(R) Core(TM) i5-7200U CPU @ 2.50 GHz.

We of course see the influence of a potential exponential complexity for going
back and forth between internal and external descriptions, but also the fact that

186 E. Goubault et al.

we relied on a perl (interpreted) implementation of tropical polyhedra (the one of
polymake [18], with exact rational arithmetics), which is much slower than the
C++ implementation we wrote for the internal description method (although
the internal description method does work in a twice as big space because it
considers the octagon instead of just zone abstraction).

Table 1. Execution times (internal and double description) on sample networks.

Example # inp. # out. # hid. # neur. t. intern. (s) t. double (s)

running 2 2 0 4 0.006 1.83

running2 2 2 1 6 0.011 4.34

multi 2 8 1 13 0.005 3.9

krelu 2 2 0 4 0.011 1.94

tora modified controller 4 1 1 6 0.005 14.57

tora modified controller 1 4 1 1 105 0.75 815.12

quadcopter trial controller 3 18 1 1 49 0.009 102.54

quadcopter trial controller 1 18 1 1 69 0.2 469.77

quad modified controller 18 1 1 20 0.005 14

car nn controller 2 4 2 1 506 104.75 –

car nn controller 1 4 2 1 506 88.8 –

ex 2 1 5 59 0.195 1682.28

In Table 1, running is the network of Example 1, and running2 is the exten-
sion with an extra layer of Example 11, discussed in great length in these exam-
ples. Example krelu is the running example from [35] that we discuss at the end
of this section, and tora modified controller, tora modified controller 1,
quadcopter trial controller 3, quadcopter trial controller 1, quad mo-
dified controller, car nn controller 2, car nn controller 1 and ex are
examples from the distribution of Sherlock [14]. ex is a multi-layer example for
which the algorithm using only the internal representation does not compute the
intersection of tropical polyhedra between layers (involving the external repre-
sentation), contrarily to the double description prototype. We now discuss some
of these examples below.

Network multi is a simple 2-layer, 13 neurons example with inputs x1, x2,
outputs y1, y2, . . . , y8 and

⎡

⎣
h1

h2

h3

⎤

⎦ = ReLU

⎛

⎝

⎡

⎣
1 1
1 −1

−1 −1

⎤

⎦
[
x1

x2

]
⎞

⎠

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1
y2
y3
y4
y5
y6
y7
y8

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= max

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1
1 1 −1
1 −1 1
1 −1 −1

−1 1 1
−1 1 −1
−1 −1 1
−1 −1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
h1

h2

h3

⎤

⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Static Analysis of ReLU Neural Networks with Tropical Polyhedra 187

Our zone based abstraction returns the following ranges: y1 ∈ [0, 6], y2 ∈
[0, 4], y3 ∈ [0, 4], y4 ∈ [0, 2], y5 ∈ [0, 4], y6 ∈ [0, 2], y5 ∈ [0, 2] and y8 = 0, whereas
the exact ranges for y1 to y7 is [0, 2]. Our algorithm is thus exact for y4, y6, y7
and y8 but not y1, y2, y3 nor y5. This is due to the fact that the zone-based
tropical abstraction does represent faithfully the differences of neuron values,
but not sums in particular. For instance, y2 = max(0, 2x1) which cannot be
represented exactly by our method.

Network krelu is a 2 layer 4 neurons example from [35]. We get the correct
bounds on the outputs: 0 ≤ z1, z2 ≤ 2, as well as relations between the inputs and
the outputs: zj ≤ xi + 1. However, we do not have significant relations between
z1 and z2, as those are not tropically linear. We refer to the results obtained
with 1-ReLU and 2-ReLU in [35]: they both get better relations between z1 and
z2, in particular z1 + z2 ≤ 2 which is not representable in a tropical manner
(except by using an octagon based abstraction, which is outside the scope of
this paper). However 1-ReLU does not keep track of relations between the inputs
and the outputs, and has sub-optimal relations between the outputs, as it cannot
represent the non linear ReLU function exactly. 2-ReLU, on the other hand gets
both the relation between the output variables, and between the inputs and
outputs correct, but is more computationally expensive.

In order to assess the efficiency of the internal
description methods, we have run a number of exper-
iments, with various number of inputs and ouputs
for neural nets with one hidden layer only. The linear
layers are generated randomly, with weights between
-2 and 2. Timings are shown in the figure on the right
(demonstrating the expected complexity, cubical in
the number of neurons), where the x-axis is num-
ber of input neurons, y-axis is the number of output
neurons, and z-axis is time. For 100 inputs and 100
neurons in the hidden layer, the full pipeline (checking the linear specification
in particular) took about 35 s, among which the tropical polyhedron analysis
took 6 s.

6 Conclusion and Future Work

We have explored the use of tropical polyhedra as a way to circumvent the
combinatorial complexity of neural networks with ReLU activation function.
The first experiments we made show that our approximations are tractable when
we are able to use either the internal or the external representations for tropical
polyhedra, and not both at the same time. This is akin to the results obtained in
the classical polyhedron approach, where most of the time, only a sub polyhedral
domain is implemented, needing only one of the two kinds of representations.
It is interesting to notice that a recent paper explores the use of octohedral
constraints, a three-dimensional counterpart of our octagonal representations,
in the search of more tractable yet efficient abstraction for ReLU neural nets

188 E. Goubault et al.

[31]. This work is a first step towards a hierarchy of approximations for ReLU
MLPs. We have been approximating the tropical rational functions that these
neural nets compute by tropical affine functions, and the natural continuation of
this work is to go for higher-order approximants, in the tropical world. We also
believe that the tropical approach to abstracting ReLU neural networks would
be particularly well suited to verification of ternary nets [27]. These ternary nets
have gained importance, in particular in embedded systems: simpler weights
mean smaller memory needs and faster evaluation, and it has been observed [1]
that they can provide similar performance to general networks.

References

1. Alemdar, H., Caldwell, N., Leroy, V., Prost-Boucle, A., Pétrot, F.: Ternary neural
networks for resource-efficient AI applications. CoRR abs/1609.00222 (2016)

2. Allamigeon, X., Gaubert, S., Goubault, E.: The tropical double description method.
In: 27th International Symposium on Theoretical Aspects of Computer Science,
STACS 2010 (2010)

3. Allamigeon, X.: Static analysis of memory manipulations by abstract interpreta-
tion - Algorithmics of tropical polyhedra, and application to abstract interpre-
tation. Ph.D. thesis, École Polytechnique, Palaiseau, France (2009). https://tel.
archives-ouvertes.fr/pastel-00005850

4. Allamigeon, X., Gaubert, S., Goubault, É.: Inferring min and max invariants using
max-plus polyhedra. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol.
5079, pp. 189–204. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-69166-2 13

5. Bak, S., Tran, H.-D., Hobbs, K., Johnson, T.T.: Improved geometric path enumer-
ation for verifying ReLU neural networks. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020. LNCS, vol. 12224, pp. 66–96. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-53288-8 4

6. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., Criminisi, A.:
Measuring neural net robustness with constraints. In: Advances in Neural Infor-
mation Processing Systems (NIPS) (2016)

7. Blanchet, B., et al.: A static analyzer for large safety-critical software. In: PLDI,
pp. 196–207. ACM Press, June 2003

8. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient ver-
ification of relu-based neural networks via dependency analysis. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, pp. 3291–3299
(2020). https://vas.doc.ic.ac.uk/software/neural/

9. Bourdoncle, F.: Abstract interpretation by dynamic partitioning. J. Func. Pro-
gram. 2(4), 407–435 (1992)

10. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages,
Los Angeles, California, USA, pp. 238–252, January 1977

11. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL.
ACM (1977)

https://tel.archives-ouvertes.fr/pastel-00005850
https://tel.archives-ouvertes.fr/pastel-00005850
https://doi.org/10.1007/978-3-540-69166-2_13
https://doi.org/10.1007/978-3-540-69166-2_13
https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-030-53288-8_4
https://vas.doc.ic.ac.uk/software/neural/

Static Analysis of ReLU Neural Networks with Tropical Polyhedra 189

12. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among vari-
ables of a program. In: Proceedings of the 5th ACM SIGACT-SIGPLAN Sympo-
sium on Principles of Programming Languages, pp. 84–96. POPL 1978, Association
for Computing Machinery, New York, NY, USA (1978). https://doi.org/10.1145/
512760.512770

13. Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feed-
back systems using regressive polynomial rule inference. In: HSCC (2019)

14. Dutta, S., Chen, X., Jha, S., Sankaranarayanan, S., Tiwari, A.: Sherlock - A tool for
verification of neural network feedback systems: demo abstract. In: HSCC (2019)

15. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: ATVA (2017)

16. Evtimov, I., et al..: Robust physical-world attacks on machine learning models.
CoRR abs/1707.08945 (2017). http://arxiv.org/abs/1707.08945

17. Gaubert, S., Katz, R.: The Minkowski theorem for max-plus convex sets. Linear
Algebra Appl. 421, 356–369 (2006)

18. Gawrilow, E., Joswig, M.: polymake: a Framework for Analyzing Convex Polytopes,
pp. 43–73. Birkhäuser Basel (2000)

19. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: AI2: safety and robustness certification of neural networks with abstract inter-
pretation. In: Conférence IEEE S&P 2018 (2018)

20. Gowal, S., et al.: On the effectiveness of interval bound propagation for training
verifiably robust models. CoRR abs/1810.12715 (2018). http://arxiv.org/abs/1810.
12715

21. Henriksen, P., Lomuscio, A.R.: Efficient neural network verification via adaptive
refinement and adversarial search. In: ECAI. Frontiers in Artificial Intelligence and
Applications, vol. 325 (2020)

22. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

23. Julian, K., Kochenderfer, M.J., Owen, M.P.: Deep neural network compression
for aircraft collision avoidance systems. AIAA J. Guidance Control Dyn. (2018).
https://arxiv.org/pdf/1810.04240.pdf

24. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient SMT solver for verifying deep neural networks. In: CAV 2017 (2017)

25. Katz, G., et al.: The Marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

26. Khedr, H., Ferlez, J., Shoukry, Y.: Effective formal verification of neural networks
using the geometry of linear regions (2020)

27. Li, F., Liu, B.: Ternary weight networks. CoRR abs/1605.04711 (2016)
28. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static

analyzers. In: Programming Languages and Systems (2005)
29. Miné, A.: A new numerical abstract domain based on difference-bound matrices. In:

Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44978-7 10

30. Miné, A.: The octagon abstract domain. High. Order Symb. Comput. 19(1), 31–100
(2006)

31. Müller, M.N., Makarchuk, G., Singh, G., Püschel, M., Vechev, M.: Precise multi-
neuron abstractions for neural network certification (2021)

32. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural net-
works with provable guarantees. In: IJCAI (2018)

https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
http://arxiv.org/abs/1707.08945
http://arxiv.org/abs/1810.12715
http://arxiv.org/abs/1810.12715
https://doi.org/10.1007/978-3-319-63387-9_1
https://arxiv.org/pdf/1810.04240.pdf
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/3-540-44978-7_10

190 E. Goubault et al.

33. Shiqi, W., Pei, K., Justin, W., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: NIPS (2018)

34. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective
robustness certification

35. Singh, G., Ganvir, R., Püschel, M., Vechev, M.: Beyond the single neuron con-
vex barrier for neural network certification. In: Advances in Neural Information
Processing Systems (NeurIPS) (2019)

36. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. In: Proceedings ACM Programming Language 3(POPL), January
2019

37. Singh, G., Gehr, T., Püschel, M., Vechev, M.: Boosting robustness certification of
neural networks. In: ICLR (2019)

38. Szegedy, C., et al.: Intriguing properties of neural networks (2013). https://arxiv.
org/abs/1312.6199

39. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. https://arxiv.org/abs/1711.07356

40. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. USENIX Security (2018)

41. Zhang, H., et al.: Towards stable and efficient training of verifiably robust neural
networks. In: ICLR (2020)

42. Zhang, L., G.Naitzat, Lim, L.H.: Tropical geometry of deep neural networks. In:
Proceedings of the 35th International Conference on Machine Learning, vol. 80,
pp. 5824–5832. PMLR (2018)

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1711.07356

	Static Analysis of ReLU Neural Networks with Tropical Polyhedra
	1 Introduction and Related Work
	2 Preliminaries and Notations
	2.1 Zones
	2.2 Tropical Polyhedra
	2.3 From Zone to Tropical Polyhedra and Vice-Versa
	2.4 Feedforward ReLU Networks

	3 Abstraction of Linear Maps
	3.1 Zone-Based Abstraction
	3.2 Octagon Abstractions and (max, +, -) Algebra

	4 Validation of Multi-layered Neural Networks
	5 Implementation, Experiments and Benchmarks
	6 Conclusion and Future Work
	References

