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Abstract In this paper, we present the fundamentals of a hierarchical algo-
rithm for computing the N-dimensional integral ¢(a, b; A) = f; H(x)f(x]|A)dx
representing the expectation of a function H(X) where f(x|A) is the truncated
multi-variate normal (TMVN) distribution with zero mean, x is the vector of
integration variables for the N-dimensional random vector X, A is the inverse
of the covariance matrix X, and a and b are constant vectors. The algorithm
assumes that H(x) is “low-rank” and is designed for properly clustered X
so that the matrix A has “low-rank” blocks and “low-dimensional” features.
We demonstrate the divide-and-conquer idea when A is a symmetric posi-
tive definite tridiagonal matrix and present the necessary building blocks and
rigorous potential theory based algorithm analysis when A is given by the
exponential covariance model. The algorithm overall complexity is O(N) for
N-dimensional problems, with a prefactor determined by the rank of the off-
diagonal matrix blocks and number of effective variables. Very high accuracy
results for N as large as 2048 are obtained on a desktop computer with 16G
memory using the fast Fourier transform (FFT) and non-uniform FFT to val-
idate the analysis. The current paper focuses on the ideas using the simple yet
representative examples where the off-diagonal matrix blocks are rank 1 and
the number of effective variables is bounded by 2, to allow concise notations
and easier explanation. In a subsequent paper, we discuss the generalization
of current scheme using the sparse grid technique for higher rank problems
and demonstrate how all the moments of kq, order or less (a total of O(N¥)
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integrals) can be computed using O(N¥) operations for k > 2 and O(N log N)
operations for k = 1.
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1 Introduction

In this paper, we study the efficient computation of the expectation of a func-
tion H(X) given by

b
o, b; A) = / H(x) f (x| 4)dx

b1 bN
_ / H(x)|E|71/2(27r)7N/267%xTAxd:EN"'dfCh (1)
al a

N

where the N-dimensional random vector X = (X1, ..., Xx)? follows the trun-
cated multivariate normal distribution (TMVN), f(x|A) is the N-dimensional
multivariate Gaussian probability density function with zero mean and covari-
ance matrix X, A is the inverse of the symmetric positive definite (SPD) N x N
covariance matrix X, x is the integration variable, and the integration limits
are a = (a1,...,an)? and b = (by,...,byx)T which form a hyper-rectangle in
RY. The efficient computation of ¢ is very important for many applications,
including those in spatial and temporal statistics and in the study of other high
dimensional random data sets where the Gaussian distribution is commonly
used, see [3,4,5,6,15,43,23,24,56] and references therein. Due to the “curse of
dimensionality”, direct evaluation of this N-dimensional integral using stan-
dard quadrature rules is computationally demanding (and impossible for many
settings using today’s supercomputers). Classical Newton-Cotes or Gaussian
quadrature schemes work well when N < 4 ~ 6. Under proper assumptions
of the integrand, the sparse grid techniques [9,28,55] can accurately integrate
a function with N < 10 ~ 20 variables. In practical applications, as N can
be as large as several thousands, most existing schemes either assume simple
models (e.g., X is tridiagonal), or rely on the Monte Carlo methods. A good
review of existing techniques can be found in [26], also see [7,11,12,17,18,25,
27,29,38,45,46,49,50,52,53,54,57].

The purpose of this paper is to present a new algorithm for the fast evalu-
ation of a more general class of the N-dimensional integrals when there exist
special structures in H and A (or equivalently in X'). In many applications,
the function H(x) is “low-rank” and when the physical distance or pseudo-
distance is defined in the model, the correlations between well-separated data
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sets are often low-rank and low-dimensional, i.e., if the data is properly clus-
tered, the corresponding matrix A has hierarchical low-rank blocks with “low-
dimensional” singular vectors in their singular value decompositions. Finding
and computing these properties in A have been extensively studied: Classical
re-ordering algorithms often perform well when the number of variables N
is in the order of several thousands. There exist efficient clustering and pre-
processing algorithms for compressing the symmetric positive definite matrices
to reveal its low-rank and low-dimension structures for much larger N values
[19,58]. The classical matrix decomposition algorithms (e.g., SVD or rank-
revealing QR decompositions) in numerical linear algebra can easily handle a
matrix when N < 1000 ~ 10000, and when X has low-rank properties, |E|_1/2
can be evaluated efficiently using existing low-rank linear algebra techniques
[31,35,37,40]. Therefore in this paper, we ignore the details of the data clus-
tering, computation of | X |*1/ 2, and decomposition of the matrices to simplify
our discussions. We focus on the high-dimensional (very large N) integration
problem when both the rank K of the off-diagonal matrix blocks and number
P (P > K) of the effective variables are bounded by a constant independent of
N. The main contribution of this paper is a new hierarchical algorithm which
achieves asymptotically optimal O(N) complexity, by utilizing the compact
features and efficiently processing them “locally” on a hierarchical tree struc-
ture. We leave the mathematical rigorous definitions of the “low-rank” and
“low-dimensional” concepts to later sections.

This paper presents the ideas, algorithm analysis, and implementation de-
tails for two representative matrices: (a) when A is a tridiagonal SPD matrix;
and (b) when A has the same form as the covariance matrix in the exponen-
tial covariance model in the one dimensional setting. In case (b) when A is
the exponential covariance matrix, the original covariance matrix ¥ = A~! is
approximately a tridiagonal system. Case (a) can be generalized to a banded
matrix with bandwidth 2K + 1, and case (b) can be considered as a hierarchi-
cal generalization of the diagonal and reduced rank correlation matrices (see
p-16 in [26]). Both matrices in (a) and (b) are special cases of the H-matrices
[35,37]. In the new algorithm, a downward pass is first performed on a hierar-
chical tree structure, by introducing a number K = rank (off-diagonal matrix)
of t-variables to divide the parent problem (involving a function with P “ef-
fective” variables) into two child problems, each involving a function with no
more than P “effective” variables. The relation coefficients between the par-
ent’s effective variables, new ¢-variables, and children’s effective variables are
constructed and stored for each tree node. At the leaf level, as the tree leaf
node only contains one x;-variable, the one dimensional integral is evaluated
either analytically or numerically, and then approximated numerically by a
proper function of the effective variables. An upward pass is then performed,
recursively forming the approximating function of the parent with P effective
variables from its two children’s functions. The function value ¢ in Eq. (1) is
simply given by the constant function (with “null variables”) at the root level
of the tree structure. The presented hierarchical algorithm shares many similar
features as many existing fast hierarchical algorithms in scientific computing,
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including the classical fast Fourier transform (FFT) [16], multigrid method
(MG) [14,36], fast multipole method (FMM) [33,34], and fast direct solvers
(FDS) and hierarchical matrix (H-matrix) algorithms [31,40,35,37].

As the new algorithm requires the approximation, interpolation, and inte-
gration of a function with both the ¢- and (compressed) effective variables for
each tree node, the prefactor of the O(N) algorithm complexity grows rapidly
when K + P increases. Therefore the application of the new scheme is limited
by the current capability in scientific computing to handle K + P dimensional
functions. We have K = 1 and P = 2 for the two cases (a) and (b), which
allow the efficient applications of existing fast Fourier transform (FFT) [20]
and non-uniform FFT (NUFFT) solvers [8,32,47] for function manipulations
when the dimension is 4 or less. These two cases are sufficient for presenting
the ideas, revealing the internal connections of the algorithm with traditional
elliptic partial differential equation theory, demonstrating the accuracy and
efficiency of the algorithm, and identifying any numerical stability issues. We
focus on these two cases in this paper, and present more technical and optimal
implementation details in a subsequent paper, where we introduce the sparse
grid technique for K + P < 10 ~ 20.

This paper is organized as follows. In Sec. 2, we introduce the mathemati-
cal definitions of the “low-rank” and “low-dimensional” concepts and discuss
a class of targeted application problems. In Sec. 3, we present a hierarchical
algorithm for computing the expectations of the TMVN distributions with
compressible features. In particular, in Sec. 3.1, we present the details when
A is a tridiagonal matrix which is a representative case of banded matrices. In
Sec. 3.2, we show how the algorithm can be generalized to the case when A has
the same form as the exponential covariance matrix in one dimensional setting
which is a representative case of the more general H-matrices with low-rank
and low-dimensional structures. We present the rigorous analysis using poten-
tial theory from ordinary and partial differential equation analysis, as many
covariance models are closely related with the Green’s functions and integral
equation solutions of the boundary value elliptic differential equations. The
parent’s and children’s “effective” variables and their relations in the banded
matrix cases are explicitly available, while they have to be analyzed through
a downward pass for the exponential covariance matrix and more general H-
matrix cases. We also discuss how the algorithm can be generalized to more
complicated cases as well as its current limitations. In particular, our algo-
rithm implementation relies heavily on existing numerical tools and software
packages for accurately processing multi-variable functions, and many of these
tools are unfortunately still unavailable even when the number of independent
variables is approximately 5 ~ 20, e.g., high dimensional non-uniform FFT
is currently only available when the number is < 3 and existing sparse grid
solvers need revisions to better handle the numerical stability issues for large
N values. We leave the detailed discussions of these topics in a subsequent
paper. In Sec. 4, numerical results are presented to demonstrate the accu-
racy, stability, and O(N) complexity of the new hierarchical algorithm for the
tridiagonal and exponential cases. Finally in Sec. 5, we summarize our results.
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2 Low-rank Low-dimensional Properties in High Dimensional
Datasets

2.1 Definitions of Low-rank and Low-dimensional Properties

Our algorithm can be applied to a function H(x) with the following structure,

K K N
H(x) =) ura(en)ura(@z) - uen(@n) =Y [ wenlza),  (2)
k=1

k=1n=1

where K is assumed to be a small constant independent of IV, and each function
Ug,n is & univariate and not necessarily continuous function. As the separation

of variables
K

Hz,y) = 3 un(@)on(y)

k=1

can be considered as the non-orthogonalized function version of the singular
value matrix decomposition

T
men = mXKAKXKVKXna

we refer to a function H with a representation in Eq. (2) as a low-rank (rank-
K) function. Practical determination of the rank of a given multi-variable
function H(x) (or the discretized tensor) and finding its canonical decomposi-
tion are still considered open problems in multilinear algebra. Plugging Eq. (2)
into Eq. (1), the original problem of evaluating ¢ now becomes the evaluations
of K integrals, each has the form

b by N
1 N 1
or(a,b; A) = c/ . / H Uk, n () €XP (—QXTAX> dey---dxy. (3)

N n=1

We focus on ¢y in the following discussions, and simply denote ¢ as ¢.

For the inverse A of the covariance matrix Y, we assume it belongs to a
class of hierarchical matrices (H-matrices) [35,37] with low-rank off-diagonal
blocks. A sample Hierarchical matrix after 2 (left) and 3 (right) divisions
is demonstrated in Fig. 1, where the blue square block represents the self-
correlation within each cluster of random variables X,,, and the green block
shows the correlation between two different clusters. We define a cluster in the
original domain as a set of indices of the column vectors, and a cluster in the
target space as a set of indices of the row vectors. The correlation between the
cluster S of the original domain and cluster T of the target space is described by
the matrix block formed by only extracting the T-entries from the S-columns.
We consider H-matrices with low-rank off-diagonal blocks, by assuming
that the ranks of all the off-diagonal blocks are bounded by a constant K,
which is independent of the block matrix size. We use K to represent the rank
of a function or matrix in this paper, and the rank K of the off-diagonal blocks
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can be different from the rank K in Eq. (2). In numerical linear algebra, “low-
rank off-diagonal block” means that the off-diagonal block A; ; of size n x n
has the following singular value decomposition

Ai,j =~ Ui,in,jV;‘?;‘;
where U and V are of size n x K (K << n) and respectively contain the
orthonormal vectors in the target space and original domain, and A is a size
K x K diagonal matrix with ordered and non-negative diagonal entries. A
more general low-rank definition can be found in [10], which requires K to
satisfy both a preset approximation error tolerance for ||[A — UAVT|| and the
condition K < &. As the random variables {X,,,n = 1,..., N} are clustered
hierarchically, we index the block matrices A, ; differently from those com-
monly used in matrix theory to emphasize this hierarchical structure in the
‘H-matrix, where ¢ represents the level of the matrix block, and j is its index
in that particular level. The original matrix A is defined as the level 0 matrix.
After the 1% division, the 4 matrix blocks are indexed (1,1), (1,2), (1,3), and
(1,4). The diagonal matrix blocks will be further divided and the off-diagonal
matrices become leaf nodes to form an adaptive quad-tree structure. In
the left of Fig. 1, the matrix A; 5 denotes the second matrix block at level
1, representing the correlations between the second cluster in the original do-
main and first cluster in the target space. For the covariance matrix, as the
target space and original domain are one and the same, the indices of the
random variables X (and integration variables x) will be used to cluster the
indices of both the target space and original domain, to form a uniform bi-
nary tree structure. In the following, we focus on the integration variables

{zn,n=1,..., N}, which are referred to as the z-variables.
Az | Az
A1 A1
Azz | Az
Ags | A2
A1 Aqa
Azr | Asg

Fig. 1 H-matrix after 2 (left) and 3 (right) divisions, with low-rank off-diagonal blocks
(green).

Next, we consider the “low-dimensional” concept, by studying a function
with M t-variables tq, to, ..., tps of the form

F(t1u1 + tzllg + -+ tMllM)
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When the dimension P of the vector space span{uj,uz,...,up} is much less
than M, P << M, we say F is a “low-dimensional” function. Assuming the
basis for the vector space span{uj,us,...,up} is given by {vi,va,...,vp},
the function F' can be considered as an “effective” P-variable function, where
the new w-variables {wy,ws,...,wp} are combinations of the t-variables and
satisfy the relation

w1Vy + wave + - Fwpvp =t1ug +lous + -+ iUy

Similar low-dimensional concept was used in the field of multivariate statistics,
i.e., the effective dimension reducing space (EDR-space) in the “sliced inverse
regression” (SIR) technique, see [48] and references therein.

2.2 Low-rank and Low-Dimensional Features in Applications

The low-rank and low-dimensional structures exist in many practical systems.
The well studied low-rank concept measures the rank of a matrix block and is
closely related with the principal component analysis in statistics and singular
value decomposition (SVD) in numerical linear algebra. When the data are
properly clustered, e.g., by using the physical location or pseudo-distance of the
data points, the “interactions” between well-separated data blocks are often
“smooth” and the covariance matrix block describing the relations between the
two clusters becomes low-rank. Both the storage of a low-rank matrix block
and related operations can be reduced significantly using today’s low-rank
linear algebra techniques.

The low-dimensional property in this paper considers the special structures
in the singular vectors of the SVD decomposition of the low-rank off-diagonal
blocks. Consider two clusters of z-variables and the space formed by extracting
all the corresponding sub-vectors describing the relations of these two clusters
from the singular vectors in the SVD decompositions of all the off-diagonal
matrices. When the covariance matrix is defined by a covariance function us-
ing the spatial or temporal locations (or pseudo-locations) zs; and z; of the
corresponding random “source” variables X, and “target” variables X, the
covariance function is often “smooth” and only contains “low-frequency” in-
formation when s # ¢, it can be well approximated by a few terms of truncated
Taylor expansion (or other basis functions) when a separation of variables is
performed on the covariance function determined by the two location variables
zs and z;. In this case, all the singular vectors are the discretized versions
of the polynomial basis functions at locations corresponding to the cluster
index sets. The dimension of the space formed by these singular vectors is
therefore determined by the highest degree of the polynomial basis functions.
When the u; vectors are extracted from these singular vectors, the function
F(tjuy +taug +- - - + tprups) will be low-dimensional and the number of effec-
tive variables is also determined by the highest degree of the polynomial basis
functions. The special structures in the singular vectors were also used in [40,
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41,42]. The low-rank and low-dimensional concepts will be further studied in
next section.

Finding, extracting, and computing the low-rank and low-dimensional fea-
tures in A have been extensively studied. Classical clustering algorithms often
perform well when the number of variables N is in the order of several thou-
sands. For larger IV values, there exist efficient pre-processing algorithms for
compressing the symmetric positive definite matrices to reveal its compressible
features [19,58]. The classical rank-revealing matrix decomposition algorithms
(e.g., SVD or rank-revealing QR decompositions) in numerical linear algebra
can easily handle a matrix when N < 1000 ~ 10000, and there exist random-
ized algorithms [39] or analysis based techniques (e.g. separation of variables)
to more efficiently extract the compressible features for larger N values. When
Y has low-rank properties, algebraic operations on X (e.g. X! and |X|~1/?)
can be computed efficiently using existing low-rank linear algebra techniques
[31,35,37,40]. Therefore in this paper, we ignore the details of the well-studied
data clustering, computation of | X |*1/ 2, and decomposition of the matrices in
the pre-processing step. We assume the entries in the matrix A are optimally
clustered to reveal the low-rank and low-dimensional features in the underlying
model, and both the extracted rank K of the off-diagonal matrix blocks and
number P of the effective variables are bounded by a constant independent of
N. We focus on one of the main challenges in today’s high-dimensional data
analysis — the integration of high dimensional functions with compressible
features. Without these compressible features, computation is simply impos-
sible due to the “curse of dimensionality”.

3 A Fast Hierarchical Algorithm for Computing TMVN
Expectations

In this section, we study two systems with low-rank and low-dimensional fea-
tures: (a) when A is tridiagonal and (b) when A is the dense exponential
covariance matrix in one-dimension. Case (a) is a representative example of
banded matrices and the matrices in both cases are special H-matrices with
low-rank off-diagonal blocks. In Sec. 3.3, we discuss the algorithm for more
general H-matrices.
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3.1 Case I: Tridiagonal System

We demonstrate the basic ideas of the hierarchical algorithm for a simple
symmetric positive definite tridiagonal system

[a11 a1 0 0]
a1 22 23 0. 0
0 a3,2 3.3 434 0 . 0
A= (4)
L 0 . . .OaN7N,1 a’N7N_N><N

where a; ; = a;;. We assume N = 2& and first consider a constant function
H (x) to simplify the notations and discussions. The algorithm for more general
low-rank H(x) in Eq. (3) only requires a slight change in the code for the leaf
nodes, which will become clear after we present the algorithm details for the
simplified integration problem

OabiA) = [1 o [N e Xy diy

2 2 2 2
— f e_%(‘11,1$1+"“1k,k1k+2’1k.k+117k17k+1+‘1k+1,k+1$k+1+”‘+aN,NmN)dX
a )

where k = 2L~1 = N/2. The tridiagonal matrix is a very special H-matrix,
where each off-diagonal matrix block only contains one non-zero number either
at the lower-left or upper-right corner of the matrix block and is rank 1. The
singular vectors are either u; = [1,0,0,...,0]7 or u; = [0,0,...,0,1]7. For
any given cluster of indices, the number of effective variables in t1u; + taus +
-+ 4 tprups is therefore no more than 2, and the only non-zero numbers are
located either at the first or last entry in the singular vectors uy, us, ..., uy.

Divide and Conquer on a Hierarchical Tree. Note that the z-variables
[€1,...,2%] and [zg41,...,2N] are coupled in the integrand only through the
term (ag g+1 + Ckt1,k)ThTha1 = 20k k+1TKTk+1. 1f this “weak coupling” term
had not been there, then we would have two completely decoupled “child
problems”, and the integral could be evaluated as

2 2 2 2
f e—%(a1.1$1+“'ak,kwk+ak+1,k+1$k+1+“~+aN,N$N)dX
a

_ (fln L j’bk: e—%(al,llf?-‘r*.--‘rak,kmz)dxk e dl‘l) .

ai Qg

br+1 bn 7l(ak z2, | +-Fan nx2 )
2 +1,k+1Tk 41 N.NTN
(fak+1 faN e dey---drryr ).

If the same assumptions could be made to each “child problem”, then the
high-dimensional integral would become the product of N one-dimensional
integrals.

A convenient tool to decouple the z-variables in order to have two child
problems is to use the Fourier transform formula for the Gaussian distribution

as
e}

oo
e 3@ ty) = c/ etEHY =3t 4t — c/ eitTeity =3t 4y (6)
— 0o

—0Q0
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where i = v/—1 and ¢ = \/% Eq. (6) presents the key idea of our algorithm:
By introducing one additional ¢t-variable, the zy coupling on the left hand side
is decoupled on the right hand side. Completing the square in Eq. (5) and
applying the key observation in Eq. (6) to the resulting (4L ’““ T+ YTpr1)?
term (in red) in the integral, we get

(b(a b'A) — f e—%(al,l13%"“"+ak,k-7«'i+2ak,k+lﬁl»’k¢1§k+1+ak+1,k+1w2k+1+"‘+aN,N7J?v)dX
» M a

= f 67%("'+(ak B—( ak’i“ )2)ri+(ak‘f+] Th+y 1) H(Arg1, kb1 =7 )T g o )dX
= Cf hl 1 )hl)g(t)dt

where hq 1(t) and hq 2(t) are both single ¢-variable functions given by

Ikt)

hy 1( ) fbl . fbk, 67%(a1’11f+...(ak7k7(¢) Vi +2i2 doy -+ d.’l?]_,

aq ag
_ fbeta by -1 2i’7$k+1t+(ak+1,k+1*’y Yz +'”+CLN.NJU2
hia(t) = [0t [0V 3 bratrtann o) dgy o gy,

the blue and red terms are where completing the square is applied, and = is
a number to be determined by the algorithm so that the children’s matrices
representing the quadratic forms of

Ak k+1
(—)2)2? and (apr1pe1 — V2)They + 0 +an NTH

al,lx% 4+ (ak;k _

are also positive definite, respectively. The existence of « is guaranteed by
Theorem 4 in the appendix, however its solution is not unique. One strategy
is to choose 7 so that the positive definiteness of the two children’s problems
are “balanced”. The optimal choice of this parameter will be further studied
in subsequent papers. Note that the a-variables in the original problem (asso-
ciated with a root node at level 0 of a binary tree structure) are divided into
two subsets of the same size, each set is associated with a “child node” and a
single ¢-variable function hy ;(t), k=1 or k = 2.

By introducing two new t-variables ¢;; and t;2 for the functions h;
and hq 2, respectively, the same technique can be applied to decouple the z-
variables [1,. .., zx]and [xxy, ..., zx] in by 1 () and z-variables [Tg41, . . ., 22 ]
and [x%ﬂ, ..., xN] in hy o(t), to derive

hi1(t) = C/ 67%*1h2,1(t1,1)h2,2(f1,17t)dt1,1

— 00

o0 2
hia(t) = C/ e "2hy 5(t, 11 2)he a(ts 2)dt 2.

Repeating this procedure recursively on the hierarchical tree structure derived
by recursively dividing the parent’s x-variable set into two child subsets of
the same size, an h-function h;; will be defined for each tree node, where
{l,k} is the index of the tree node defined in the same way as that of the -
variable sets. One can show that for a parent node with index p, its h-function
hp(tr,t,) (with at most two t-variables ¢; and ¢,) can be computed from the two
child functions he, (t;,t,) and he, (t,,t.) (each with at most two t-variables)



Hierarchical Algorithm for TMVN Expectation 11

by integrating the t-variable t,, used to decouple the parent problem using
Eq. (6) as

hy(tstr) = / e~ hor (t1, ton ey (b )l (M)

— 00
At the finest level when the z-variable set only contains one z-variable x;, the
two t-variable function is given by
b; .
Pua,, i) = [ ez,
aj

where > 0 and « and 8 are constants. For each boundary node in the tree
structure, its associated h-function only involves one t-variable as the other
becomes a null variable. In Fig. 2, we show the detailed decoupling procedure
and the functions hj;j, when N = 8 where the matrix A entries are a;; = 4
and a;—1,; = a;;+1 = —2. In the formulas, the first index j of ¢;; indicates
the level at which the new t¢-variable is introduced, and the second index k is
its index at this level, ordered from bottom (left boundary of x-variables) to
top (right boundary). The parameter v (used to separate the parent’s problem
into two child problems) is chosen so that 1 = 0 for all interior leaf nodes and
1n = 1 for the two boundary nodes. Note that the positive definiteness is not
balanced for this particular simple choice.

h38(t2,4) = j'e””g’zi”“l‘?dzg
.
ha,a(t1,2)

ha7(ti2,t2,4) = [e2@7(t2.a=t12) gy

hae(t2,3,t1,2) = [e2@6(t1,2=t2.8) dug

hi,2(to)

/ h23(to, t1,2) <
\

hs5(to,t2,3) = [e?iws(tz3=t0)dgs

a,b; A
d)( Y ) h3.4(t2,2,t0) :fe?'V-T~1(‘r0*/r2,2)dlv4
ha,2(t1,1,t0)
haa(tia,ta,2) = [e2iwaltz2=t11) g
hl,l(tO) f 2ia t —t
haa(taa,t11) = [e w2 (t,1—42,1) qgq
ha21(t1,1)
\

h31(t21) = fc*’”?“”%‘”ldzl

Fig. 2 A three-level partition that decomposes the original N-dimensional (N = 8) integral.

Remark: Each parent’s h-function has no more than two t-variables, and it
can be computed using the two children’s A-functions, each with no more
than two t-variables, as shown in Eq. (7). Note that the decoupling pro-
cess is performed on a hierarchical binary tree structure, by introducing one
new t-variable and dividing parent’s z-variable set into two children’s sub-
sets of the same size. As there are a total number of O(N) tree nodes and
one new t-variable is introduced for each node, so the total number of ¢-
variables is also O(N). However, as the depth of the tree is O(log N), so a
total number of O(log N) t-variables will be introduced for each tree branch
from the root to leaf level. More importantly, as the singular vectors are ei-
ther u; = [1,0,0,...,0]7 or u; = [0,0,...,0,1]7, for a tree node containing a
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particular set of z-variable indices from ;41 to x4, there are at most two
non-zero vectors in the vector set {uj,us,...,uy}, with the non-zero entry
located either at the first or the last entry in one of the two non-zero singular
vectors of size k. The number of effective variables in t;u; +tous +---+tpups
is therefore no more than 2, and

(@41, Tjg2s s Tk - (B1ug +tous + - -+ tarung) = (ot + Brjprty)

for some constants o and . Therefore all the h-functions in the hierarchical
tree structure have no more than two effective variables (explicitly given by
the ¢-variables in the tridiagonal case) and are “low-dimensional” functions.
Algorithm Details. Notice that in Eq. (7), because of the rapid decay of the
weight function e’tz, one only needs to accurately approximate the function
h(t;,t,) in the region [—7,7]2. In our algorithm implementation, we define a
filter function

filter(z, €) = % (erf(w) - erf(x/:_l"r))>

1

where we set € = so that the function is approximately filter =~ 1 when

14
—7 <z <7 (1—filter(7, f5) = 2.09¢-23), and smoothly decays to filter ~ 0
at +£14 (filter(14, ;) = 2.09e-23) , as shown in Fig. 3. This filter function

Fig. 3 Filter function in —14 < x < 14.

is a particular smoothed “top-hat” function which is also referred to as a
“bell” function in wavelet and local Fourier basis theory, see [13] and references
therein. At a leaf node, the integral is computed analytically either using

b
2 . 1 2 . 2 .
/ e Rty — /7 (Fadd(ia — #)e~a"=2iat _ Fadd(ib — t)e " *W)

when 1 > 0 or

b .

/ o 2iwt g r (e—Qibt _ e—th)
a 2t

when 7 = 0, and then evaluated at a set of uniformly distributed (2M)? sample

points in [—14,14]? for the two t-variables. The function values are then fil-

tered by the pointwise multiplication with the filter function for each variable.
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The Fourier series of the leaf node function, when needed, can be derived by a
2D FF'T using the filtered function values. In the formula, we use the Faddeeva
function [1,2,22,44] defined as Fadd(z) = e’ZQerfc(fiz) for a complex num-
ber z, to avoid the possible overflow/underflow when computing small et
times large erf(a +it) values. An upward pass is then performed to recursively
compute the parent’s filtered function h, values at the Fourier interpolation
points using its children’s filtered function values at different ¢;, t,,, and ¢,
interpolation points through 5 steps: (i) multiplying two children’s values at
each sample point; (ii) point-wise multiplication with the filter function; (iii)
applying the 1D fast Fourier transform (FFT) to the ¢, variable in the region
[—14,14] to get the 2M Fourier coefficients from the filtered function values
at each t;,t, interpolation point; (iv) the parent’s h-function value at each ¢;
and t, interpolation point is derived by applying the formula

1 o0 42 _ k272
et ezkﬂ’t/Ldt — e~ 4T
VT oo

to integrate the Fourier series expansion of ¢,, variable from (iii) analytically;
and (v) the function values will be further filtered. If needed, a 2D FFT can
be performed to derive the parent’s Fourier series expansion coefficients. Note
that the Fourier series in the region [—14,14]% can be extended periodically
to the whole space (—00,00)? as such extension will only introduce an error
within machine precision when evaluating the integral in Eq. (7). At the root
node, its A-function returns the ¢ value we are searching for.

The algorithm for efficiently evaluating Eq. (5) can be summarized as the
following two passes. In the downward pass, the parent problem is explicitly
decoupled by applying the Fourier transform to the coupling term, to obtain
two child problems. At the finest level, a function with two ¢-variables is cre-
ated for each leaf node followed by an upward pass to obtain each parent’s
function values at the Fourier interpolation points from those of its two chil-
dren’s functions. At the root level, the constant function (with null ¢-variables)
gives the result of the integral in Eq. (5). The recursively implemented Matlab
code for the upward pass is presented in Algorithm 1.

Generalization to Banded Matrices. The algorithm for the tridiagonal
matrix (with rank = 1 off-diagonal matrix blocks) can be generalized to a
more general banded matrix with bandwidth 2K + 1 (with rank = K off-
diagonal matrix blocks) after the following modifications. First, instead of
introducing one t-variable, a length K of ¢-variable vector has to be intro-
duced to separate the parent’s problem into two children’s problems. Second,
the parameter v becomes a K x K matrix translation operator, which can be
computed numerically. Third, the number of effective variables in the function
for each tree node may become as large as P = 2K. Consequently, the trans-
formation to get parent’s function from its two children requires a mapping
from two functions each with P < 2K effective variables to a new function
of P < 2K effective variables. We denote this children-to-parent mapping as
C2P, which is the most time consuming part in the algorithm.
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function compute_tri (inode)

global NODES $%NODES contains the node information.

if NODES (5, inode) == % current node is a leaf node.
leafnode (inode) ;

else
child1=NODES (5, inode); child2=NODES (6, inode); % find children
compute_tri (childl); % find childl coefficients.
compute_tri(child2); % find child2 coefficients.

% combine children coefficients to get parent coefficients.
if NODES (3,childl)==1 && NODES (3,child2)==2

root (childl,child2); % parent is the root node.
elseif NODES (3,childl)==1 && NODES (3,child2)==

leftbdry (childl,child2); % parent is a left boundary node.
elseif NODES (3,childl)==3 && NODES (3,child2)==

rightbdry (childl,child2); % parent is a right boundary node
else

interiornode (childl, child2); % parent is an interior node.
end

end

return
end

Table 1 Algorithm 1: Recursive Matlab function for evaluating Eq. (5): upward pass

Although each C2P translation only requires a constant number of oper-
ations, the constant grows rapidly when the parameters K and P increases.
Note that the classical fast Fourier transform is mostly designed for problems
in < 4 dimensions, therefore when P ~ 5 ~ 10, FFT is no longer applica-
ble and the sparse grid or sparse Fourier transform needs to be applied [9,
28,30,55]. We present the sparse grid based algorithm analysis and numerical
implementation details in a subsequent paper.

3.2 Case II: Exponential Matrix

We demonstrate the ideas for a more general H-matrix with low-rank and
low-dimensional features by considering a matrix A defined by the ezponential
covariance function

Ai,j = €7|Ziizj‘/ﬁ,,6 > 0. (8)

To simplify the discussions, we consider a simple 1D setting from spatial or
temporal statistics and assume that the rate of decay § = 1 and each random
number X is observed at a location z; € [0,b,]. We assume the z-locations
{z; € 0,b.], i =1,...,N = 2L} are ordered from smallest to largest and the
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matrix entries are ordered accordingly. We demonstrate how to evaluate the
N-dimensional integral

b b1 by
¢(a,b; A) = / f(x|A)dx = / / exp (—;XTAX> dey---dxy (9)

for the given constant vectors a and b using O(N) operations. Results for
different 3 values can be derived by rescaling the z-locations and x-variables.
The presented algorithm can be easily generalized to f; H(x)f(x|A)dx when
H(x) is a low-rank function.

Similar to the tridiagonal matrix case, we generate a binary tree by recur-
sively dividing the parent’s z-location set (or equivalently the z-variable set)
into two child subsets, each containing exactly half of its parent’s points. The
hierarchical binary tree is then reflected as a hierarchical matrix as demon-
strated in Fig. 1. Unlike the (uniform) binary tree generated for the z-location
set, the corresponding structure in the matrix sub-division process can be con-
sidered as an adaptive quad-tree, where only the diagonal blocks of the matrix
are subdivided. Once an off-diagonal block is generated, it becomes a leaf
node and no further division is required. Because of the hierarchical structure
of the matrix and low-rank properties of the off-diagonal blocks (which will be
discussed next), the exponential matrix is a representative H-matrix.

Divide and Conquer on a Hierarchical Tree. Unlike the tridiagonal sys-
tem, each off-diagonal matrix in this case is a dense matrix. For this expo-
nential matrix, all the off-diagonal matrices are rank-1 matrices, which can be
seen from the separation of variables

olemul _ J et a2y
efe”Y, z<y
In matrix language, the off-diagonal block A; 3 can be written as

[A13(ys, 25)] = [e79n7240 L, e_yN]T[ezl7 ., €7N2) (10)

fori=N/2+1,...,N and j =1,..., N/2. The singular value decomposition
of A; 3 can be easily derived using Eq. (10) as

A1’3 = u)\vT

where the left and right singular vectors u and v are of size % x 1 and are the
normalized vectors of the discretized functions e~¥ and e?, respectively.
When the z-variables are divided into 2 subsets x;; and x; 2, the root

matrix A can be subdivided accordingly into 4 blocks

A— A171 ALQ = V)\llT o X1,1
T A s =uwwT Aia X X1,2|’

where the first index of A; ; is the current level of the block matrix and the
second index is its order in this level. Same indexing rules are used for the
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z-locations and z-variables. Completing the square, the quadratic form in the
integrand can be reformulated as

xTAx = x{ 1 A1 1x11 + %] vau”xg o + x7 oudvTxy 1+ x7 5 A1 4%

2
— T T T 1T
= X171A171X1’1 + X1’2A1’4X1_’2 + ((«,/u X1,2 + ;V Xl’l)\/x>
T .2 T T 1 T
—Xj 9y uAu" X1 2 —XLl?V)\V X1,1
= +

2
—+ <(’}/HTX1_2 + }/VTXl_’l)\/X>

where the first two terms are the child problems to be processed re-
cursively at finer levels in the divide-and-conquer strategy, v is a constant to
be determined, and the last red term shows how the two child problems are
coupled. Similar to the tridiagonal case, by introducing a single t-variable and
applying the Fourier transform formula in Eq. (6) to the coupling term (in
red), we get
fb 6_%xTAde = Cfoo e_tzhl 1(t)h1 Q(t)dt
a — 00 kl ’

where hq1(t) and hq o(t) are the single ¢-variable functions for the two child
nodes given by

b1 b, —2ixT (A= vvT)xg 1+t 22y T %,
hia(t) = [, o [ore > ! ! dx.1,
_ bt by —IxT (A1 4=y uuT)x; o —itv/2xyuTx; 2
h172(t) - fak+1 T faN e 272 ' 2dx

(1)

1,2-

Note that the x-variables are completely decoupled in the two child problems,
and the coupling is now through the single ¢-variable.

In order to have a divide-and-conquer algorithm on the hierarchical tree
structure, the two child problems should have the following properties:

— By properly choosing the parameter v, the new matrices 4, ; — V)‘—QVVT and

Aq4 —y?* uu’ should be symmetric positive definite.
— The off-diagonal blocks of these new matrices should be low-rank.

The choice of v is not unique, and there exist a range of v values for the child
problems to have these properties. We use 7 to represent the “optimal” . The
choice of 4 and potential theory based rigorous analysis are presented in the
Appendix. Here we only point out that all the matrix blocks are the discretized
Green’s functions for certain ODE boundary value problems. These Green’s
functions are always in the form of

_ Jeoef g.(2)-q(y), 2=y,
Glzy) = {Coef : gr(y) -gi(z), z2<y.

For the root level, coef = 3, gi(z) = e*~! and g,(z) = ! 2.

Parent-children Relations. In the matrix form, for a general parent node
at level [ in the hierarchical tree structure with left child 1 and right child 2,
its h-function N

a.

P
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can be decomposed into two child problems as

1 S
hy(tp) = ﬁ/ € tiewhl(tl)h2(t2)dtnewv

where

hi(t1) = fbl e—%xlTAlxl eitnewﬁ/g?(zl)'xl eitEDp,lxldxl = fbl e_%x{Alxl eit{Dlxl dx;
a‘; 1,T 1 1,7 4T aﬁ, 1,.T T '
h2 (tg) _ fa; e~ 3%1 Asxy eltnewigT (z2)-x2 eztp Dy 2x2 dXQ = fa; e 2%2 Azxa elt2 D2X2dx2.
In the formulas, t, is the vector containing all the t-variables introduced at
coarser levels to subdivide p’s parents’ h-functions. x, = [x1;X2], X1, and X
are respectively the vectors containing the x-variables of the parent p, child
1, and child 2. {a,.b,}, {a1,b1}, and {as,ba} are respectively the lower and
Arg Aip
As Aix |’ Aq, and A,
are respectively the matrices in the quadratic forms (corresponding to certain
discretized Green’s functions as discussed in the Appendix) of the parent p,
child 1, and child 2, which satisfy

upper integration bounds of x,, x1, and X2. A, = [

. 1
Al =An -7 gilz1) g (z1), Ay =A— &) - gr(22) - g} (22),

z, = [21;22], 21, and 2y are respectively the z-location vectors of the parent p
and child 1 and 2, and g;(z1) and g,.(z2) are the discrete function values of ¢;(z)
and g,(z) in the parent’s Green’s function evaluated at different z-locations.
We use g;(z1) and g, (z2) (instead of u and v) in the notations to emphasize the
relations between the matrices and discretized Green’s functions, see details
in the Appendix. thpxp is a scalar term representing the linear combination
of the ¢; - x; terms, and by separating the z-variables, it can be written as

thpxp = thp71X1 + tZ:Dp,ZXQ'
After introducing the new t-variable t,,¢,, to divide the parent’s problem to two

subproblems of child 1 and child 2, each with half of the parent p’s z-variables,
we have t1 = [t,;thew], t2 = [tp;tnew], and

{t{D1X1 = tTDp,lxl + tnew:}/ng(Zl) " X1,

13
thQXQ = tp Dp,QXQ + tnew%gf(ZQ) - Xo. ( )

For the root node, A, is the given matrix A and t, is an empty set. At a leaf
node, we have
bk 1 2 T
hleaf(tleaf) = / e P eZ(tleafDleaf)xkdwk
a

where Dj.qf is a column vector of the same size as tjeqf (the size equals to
the number of levels in the hierarchical tree structure). Analytical formula is
available for evaluating hjeq(tieqs) using

b
. 1
/ e e 2T gy = 5\/7?@42 (exf(b + it) — erf(a + it)). (14)
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Dimension Reduction and Effective Variables. Note that for a node at
level I, its h-function h(t) will contain as many as [ ¢-variables introduced
at parent levels. Therefore for a N-dimensional problem, the number of t-
variables for a leaf node can be as many as log(N). However, inspecting the
term (tlj;afDleaf)xk for the function hjeqf(tieaf), if one introduces a new single

variable w = tﬁa fDlea £, then hyeqr is effectively a single variable function of
w. We therefore study the effective variables and their properties next.

From Eq. (13), we see that when a new t-variable t,.,, is introduced to
divide the parent problem into two child problems, the additional terms added
to the linear terms of the z-variables in the exponent are tnew’yng(zl) - X4
for child 1 and tmw%gf(zQ) - Xg for child 2, where g;(z1) and g,(z2) are the
discrete function values of g;(z) and g, (z) in the Green’s functions evaluated at
different z-locations. For all the Green’s functions, g;(z) and g..(z) are always
a combination of the basis functions e* and e~ *. This can be seen from the
ODE problems or Green’s functions in the Appendix. Therefore, switching the
basis to e and e ™%, the term t” Dx can always be written as

tT Dx = (wie® + wae )T - x, (15)

where e? and e™* are the vectors derived by evaluating the functions e* and

e~ % at the z-locations. Clearly, after this change of variables from ¢-variables
to {w1, wa}, each h-function is effectively a function with no more than 2
variables. We define w; and w, as the effective w-variables.

Our numerical experiments show that at finer levels of the hierarchical
tree structure when the interval size of the tree node becomes smaller, the
two basis functions e and e~ % are closer to linear dependent which will cause
numerical stability issues. For better stability properties, orthogonal or near
orthogonal basis functions are used. A sample basis is {®#1(z) = cosh(z —

), P2(2) = %} when the z-locations of the z-variables are in the interval
[a,b]. When c is the center of the interval, the two functions are orthogonal
to each other when measured using the standard L, norm with a constant
weight function. For a parent node with effective w-variables {w?, w5} and
basis functions {®7, ®L}, where the vector ® represents the discretized @(z)
at the z-locations, in the divide-and-conquer strategy, the effective w-variables

should satisfy the relations

{wf@f + WP + thewy1(2) = widt + widl, (16)

WYY + whPh + tnews gr(2) = wiPT + wid3,

where {®), @L}, {P1, BL}, {P%, P3} are respectively the continuous (or discrete)
basis for the parent, child 1, and child 2, and {wi,wi} and {w}, w2} are the
effective w-variables of child 1 and child 2, respectively. In the Appendix, we
present detailed formulas demonstrating the relations between parent p’s and
children’s effective w-variables for the basis choice {cosh(z — ¢), % .
In the tridiagonal case discussed in Section 3.1, we only need to study the

h-functions when their t-variables satisfy |¢;| < 7, as outside the interval the

t

integrand value is controlled by the factor e~ 7 and hence can be neglected.
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Similar results can be obtained for the exponential case, when a proper set
of basis is chosen. Assuming all the z-locations are approximately uniformly
distributed in the interval [0, 1], we have the following theorem for the effective
w-variables w; and ws.

Theorem 1 Assume the N x N matriz A is defined by the exponential covari-
ance function, the z-locations are uniformly distributed in the interval [0, 1],
and all the t-variables satisfy |t;| < 7. When the basis functions are chosen as
{P1(z) = cosh(z —¢), P2(2) = sz(_iza_c)} for each tree node, then there exists a
constant C independent of N, such that the corresponding effective w-variables
wy and we (combination of the t-variables) satisfy the conditions |wi| < C and

The proof of this theorem is simply the leading order analysis of the parent-
2
children effective w-variable relations, and the fact that cos(h) = 1 + 2= +

O (n*), 7Sin2h}§h) =1+ }f—; + O (h*), sinh (%) y/sinh(h)csch(2h)csch(h) = % -

Zgi//; + 0 (h9/2), and Eﬁ:o 2% < V2 + 2, where L is the number of levels

in the tree structure. We skip the proof details. Interested readers can request
a copy of our Mathematica file for further details. We point out that when
the basis functions are chosen as {e*, e ?}, the effective w-variables become
unbounded.

Remark: In the numerical implementation, instead of using the upper bound
C for a tree node j, the ranges C and CJ of the effective w-variables w,
and wy are computed using the parent-children effective w-variable relations
in Eq. (16) and stored in the memory. Similar to the tridiagonal case, a filter
function is applied to the h-functions so that the filtered function smoothly
decays to zero in the region |wi| € [C1,2C1] or |ws| € [Ca,2C5], see Fig. 3.
Then the Fourier series of the filtered h-function is constructed in the re-
gion [—2C4,2C4] x [-2C5,2C5], and finally the constructed Fourier series is
expanded periodically to the whole space when deriving parent’s h-function
values. In the algorithm implementation, when the uniform FFT [20] can no
longer be applied, we use the open source NUFFT packages developed in [8,
32,47] to accelerate the computation of the Fourier series.

Pseudo-algorithm. Similar to the tridiagonal case, the algorithm can be
summarized as the following two passes: In the downward pass, the parent
problem is decoupled by applying the Fourier transform to the coupling term,
to obtain two child problems. Six coefficients {c1, ¢a, ¢3, ¢4, ¢5, 6} are derived
so that the effective w-variables of the current node satisfy

_ P P _ p p
w1 = QW] + W + C3tpew, W2 = cqwy + cswh + Cotpew, (17)

where w} and w} are the parent’s effective w-variables. Also, the ranges Cy
and Cy of the effective w-variables w; and wy are computed. A total of 8
numbers are stored for each node. Note that both the storage and number of
operations are constant for each tree node. The pseudo-algorithm is presented
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in Algorithm 2, where the details of computing the 8 numbers for each node
is presented in the Appendix.

function compexp-downward (inode)

global NODES %NODES contains the node informations.
global TRANSCoef $TRANSCoef contains the $8$ numbers.

if NODES (5, inode) == % the node is a leaf node.
return;
else
child1=NODES (5, inode); child2=NODES (6, inode); % find children
compute the 8 numbers using the formulas in Appendix when inode
is a root, left boundary, right boundary, or interior node.

compexp-downward (childl); % find childl $8$ numbers.
compexp_-downward (child2); % find child2 $8$ numbers.
end

return
end

Table 2 Algorithm 2: Recursive Matlab function for exponential case: downward pass

At the finest level, a function with one effective variable is constructed an-
alytically using Eq. (14). A numerically equivalent two-variable {w!**/ wl*/}
Fourier series expansion is then constructed by evaluating the analytical solu-
tion at the interpolation points, applying the filter function, and then applying
FFT to derive the 2D Fourier series expansion which is considered valid in
the whole space. An upward pass is then performed, to obtains each parent’s
Fourier coefficients from those of its two children’s functions. For each parent
node, we first replace the child’s effective w-variables with wf, w! and e
using Eq. (17) and the 6 numbers from the downward pass, then evaluate each
child’s global Fourier series at the uniform interpolation points of wf, wh and
tnew (determined by the ranges C; and Cs from the downward pass, we set
the range of t,ey to 7). In this step, we have to use the NUFFT as the 8
numbers for different tree nodes are different so the uniform FFT is not appli-
cable. Multiplying the two children’s function values and filter function values
at each interpolation point, we then apply the FFT to the t,., variable and
derive the Fourier series of t,., at each wlf and wg interpolation point. The
integral

1 R
hp (Wi, wh) = ﬁ/ e newhy hodtpew
— 00

is then evaluated analytically at each w! and w! interpolation point. Finally,
another 2D FFT is performed to derive the coefficients of h,. At the root level,
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the constant function (with no t-variables) gives the result of the integral. In
the implementation, as we use unified formulas for both the boundary nodes
and interior nodes, the two functions leftbdry and rightbdry become unneces-
sary, see Appendix for details. Except for the detailed implementations in the
functions leafnode, root, and interiornode, the recursively implemented Mat-
lab algorithm for the upward pass is identical in structure as the presented
Algorithm 1 for the tridiagonal case, we therefore skip the pseudo-code.

The algorithm complexity can be computed as follows. In both the up-
ward pass and downward pass, constant numbers of operations and storage
are required for each tree node. The overall algorithm complexity and mem-
ory requirement are therefore both asymptotically optimal O(N) for the N-
dimensional integration problem. We also mention that the storage for the
Fourier coefficients of the h-function at a specific node can be allocated only
when necessary, and released right after the node sends the information to
its parent. Therefore the storage required for the Fourier coefficients is only a
constant independent of V.

3.3 General H(x) and H-matrices with Low-rank and Low-dimensional
Features

In both the tridiagonal and exponential cases, we present the algorithm for
the case H(x) = constant. For a general H with low-rank properties, i.e.,

P N
H(x) =Y [ upnlan),
p=1k=1

as P is a small number, we can evaluate the expectation of each p term
HkN:1 Up i (zx) and then add up the results. As the z-variables are already
separated in the representation, the downward decoupling process can be per-
formed the same as that in the tridiagonal or exponential case. At the finest
level, the leaf node’s function hj..s becomes

b
C1a.22 (4T
hleaf(tleaf):/ U/p7k($k:)e 2akwkez(tleafDleaf)xkdmk.

ag

Note that analytical formula is in general not available for evaluating hjeqy,
a numerical scheme has to be developed to compute the Fourier coefficients
of hjeqy. This is clearly numerically feasible as the integral is one-dimensional
and hjeqy is effectively a single variable function.

Next we consider more general A matrices. We restrict our attention to
the symmetric positive definite H-matrices, and discuss the required low-rank
and low dimensional properties in order for our method to become asymptot-
ically optimal O(N). A minimal requirement from the algorithm is that the
off-diagonal matrices should be low rank. For example, the ranks of the off-
diagonal matrices for both the tridiagonal and exponential cases discussed in
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previous sections are one. More generally, consider a parent’s matrix A with
low rank off-diagonals and the corresponding x-variables,

Al 1 Al 2 = VAUT:| |:Xl 1:|
A= ’ x=|"

Al 3 = UAVT Al’4 X1,2

where the first index [ is the current level of the block matrices and point sets,
and we assume rank(A) = K. Then we can rewrite the quadratic term in the
exponent of the integrand as

xTAx = X, 1Al 1X,1 + X3 1V/lU X2 + X, 2U/lVT)q 1+ X 2Al 4%72

= (BUTX[ 2+ B~ VTX 1)TA(BUTX1 2 + B~ TVTXZ 1)

X 1Al 1X,1 — Xl 2 BTABUTXl 2+

x1, A X/ "VBAB-TVT

1,244,4X1,2 — X7 1 Xi,1
= +
+
(BUTXI’Q —+ BiTVTXLl)TA(BUTX],Q + BiTVTXl_l),

where the first two terms are the child problems to be processed re-
cursively at finer levels after we use a number K of t-variables to decouple
the x;1 and x;2 variables using Eq. (6). Clearly, the number of effective P
variables cannot be smaller than K. There are several issues that need to
be addressed in this divide-and-conquer strategy. First, the K x K constant
matrix B should be chosen so that the resulting children’s matrices are also
symmetric positive definite. As the choice of B is not unique, its computation
is currently done numerically using numerical linear algebra tools, and we are
still searching for additional conditions so that we can have uniqueness in B
and better numerical stabilities in the algorithm. Second, consider a covariance
matrix of a general data set, compared with the original off-diagonal matrix
blocks in A; ; and A; 4, the numerical rank of the off-diagonal blocks of the new
child matrices 4;7 — VB 'AB~TVT and 4,4 — UBTABUT, may increase.
In the worst case, the new rank can be as high as the old rank plus K. When
this happens, the number of ¢-variables required will increase rapidly when
decoupling the finer level problems, and the number P of effective variables
also increases dramatically. Fortunately, for many problems of interest today,
the singular vectors U and V also have special structures. For example, the
singular vectors are either u; = [1,0,0,...,0]7 or u; = [0,0,...,0,1]7 for the
tridiagonal case, or are combinations of the discretized basis functions e* and
e # for the exponential case. The number P of effective variables for both
cases are therefore no more than two. More generally, when the off-diagonal
covariance function can be well-approximated by a low degree polynomial ex-
pansion using the separation of variables, then the singular vectors are just the
discretized versions of these polynomials, therefore the rank of all the old and
new off-diagonal matrix blocks cannot be higher than the number of the poly-
nomial basis functions, and the number P of effective variables is also bounded
by this number. In numerical linear algebra language, this means that all the
left (or right) singular vectors of the off-diagonal blocks belong to the same
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low-dimensional subspace, so that the singular vectors of the new child ma-
trices 4;1 — VB™1AB™TVT and A4;4 — UBTABUT can be represented by
the same set of basis vectors in the subspace. For problems with this property,
our algorithm can be generalized, by numerically finding the relations between
the effective variables in the downward pass, and finding the parent’s function
coefficients using its children’s in the upward pass. The numerical complexity
of the resulting algorithm remains asymptotically optimal O(N).

The presented algorithm can be applied to very large dimension N prob-
lems as long as the transformation from the two children’s functions to the
parent’s (each function has P effective variables and the transformation also
involves K t-variables) can be computed using existing multi-variable function
manipulating tools. When both K and P (P > K) are bounded by a constant
independent of N, the algorithm achieves O(N) complexity. However the pref-
actor grows rapidly when the rank K of the off-diagonal blocks and number
P of the effective variables increase. We presented the results when P < 2
in this paper and apply the fast algorithms such as the FFT and NUFFT to
accelerate the computation. However, due to the curse of dimensionality, the
complexity of the FFT grows exponentially when K and P increase, and as far
as we know, existing NUFFT tools are only available in 1, 2, and 3 dimensions.
In a subsequent paper, we apply the sparse grid ideas [9,28,51,55] to further
compress the approximation, interpolation, and integration operators of the
multi-variable h-functions when P + K increases to 5 ~ 20. The prefactor in a
sparse grid implementation heavily depends on the compressibility properties
of the h-function and accuracy requirement. When P + K > 20, as far as
we know, current direct integration techniques become impractical. Finally, as
the condition number of the problem increases exponentially as N increases
in any direct evaluation technique, it is important to have very accurate rep-
resentations of the h-functions for the hierarchical tree nodes so reasonable
accurate results are possible in higher dimensions. We are currently study-
ing possible strategies to overcome these hurdles, by studying smaller matrix
blocks so the rank can be lower, and more promisingly, by coupling the Monte
Carlo approach with our divide-and-conquer strategy [24]. Results along these
directions will be reported in subsequent papers.

4 Preliminary Numerical Results

We present some preliminary results to demonstrate the accuracy and effi-
ciency of the numerical algorithm for the tridiagonal system in Eq. (5) and
exponential case in Eq. (8). All numerical tests are performed on a desktop
computer with Intel Xeon CPU E3-1225 v6 @3.30GHz and 16.00G RAM.

4.1 Tridiagonal Case

In the numerical experiment, we consider the matrix with a;; = 4 and off-
diagonal entries a;_1,; = a;4+1, = —2. The integration interval parameters a;s
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are set to —1, by = 0.5, by = 2, and all other b}s to +1. We first study the
accuracy of the algorithm. For N = 4, we compute a reference solution using
Mathematica with PrecisionGoal — 30 and WorkingPrecision — 60, the
result is ¢ = 2.2893342150887782603. For N = 8, Mathematica returns the
result ¢ = 6.6242487478171897 with an estimated error 4.25e-5, even though
PrecisionGoal — 20 and WorkingPrecision — 40 are requested. For NV > 8,
direct computation using Mathematica simply becomes impossible. In Table 3,
we show the Matlab results for different dimensions N and numbers of terms
2M in the Fourier series expansion. For all cases, our results converge when
M increases. For N = 4, our result matches Mathematica result to machine
precision as soon as enough Fourier terms are used. For N = 8, our converged
results agree with Mathematica result in the first 10 digits, and we strongly
believe our results are more accurate.

N
M 4 8 16
16 2.326607912389401 | 6.736597967982384 56.44481808043047
32 2.289334215119377 | 6.624246691958165 55.44625398858155
64 2.289334215088778 | 6.624246691490006 55.44625397830180
128 2.289334215088779 | 6.624246691490009 55.44625397830178
256 2.289334215088778 | 6.624246691490005 55.44625397830176
512 2.289334215088778 | 6.624246691490003 55.44625397830172
Mathematica | 2.289334215088778 | 6.6242487+4.25e-5 N/A
N
M 32 64 1024
16 3962.697712673563 | 19531008.87334120 | 1.182324449792241e+118
32 3884.575992952042 | 19067179.07844248 | 1.019931849681238e+118
64 3884.575991340509 | 19067179.06178229 | 1.019931834748418e+118
128 3884.575991340506 | 19067179.06178229 | 1.019931834748411e+118
256 3884.575991340500 | 19067179.06178224 | 1.019931834748369e+118
512 3884.575991340498 | 19067179.06178220 | 1.019931834748320e+118

Table 3 Computed ¢ values for different dimensions and number of Fourier terms.

We demonstrate the efficiency of our algorithm by presenting the Matlab
simulation time for different dimensions. In the experiment, we present the
CPU times for different M and N values, and the unit is in seconds. Clearly,
the CPU time grows approximately linearly as the dimension N increases.
As a 3-variable {t;, t,,, and t,} function has to be processed in the current
implementation when finding the parent’s values at the Fourier interpolation
points, the CPU time grows approximately by a factor of 8 as M doubles.

Our algorithm requires O(N) memory storage with a prefactor only de-
pending on K and P (at most quadratically). For the tridiagonal system, the
required storage is approximately 12N + 4(2M + 1)2, where the 12N stores
the generated tree structure and 4(2M + 1)? stores the parent and its two
children’s Fourier expansion coefficients.
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N

M 4 8 16 32 64
32 0.01 | 0.02 | 0.05 0.11 0.27
64 0.02 | 0.08 | 0.26 | 0.63 1.52

128 0.02 | 0.59 | 2.25 6.05 14.6
256 0.05 | 6.31 | 20.3 54.2 114

M N 128 256 512 1024 | 2048
32 0.58 | 0.92 | 2.26 | 4.75 9.44
64 3.33 | 6.69 | 13.3 26.6 54.1
128 29.4 | 62.8 127 255 531
256 249 516 | 1084 | 2170 | 4401

Table 4 CPU time (in seconds) for different N and M values.

4.2 Exponential Case

The N z-location points are randomly chosen in [0, 1] and sorted. A uniform
tree is then generated by recursively subdividing the z-locations and corre-
sponding z-variables, and the same settings of a and b are used as in the
tridiagonal case. We first study the accuracy of the algorithm. For N = 4, we
compute a reference solution ¢ = 9.63128791560604001 using Mathematica,
with an estimated error 5.99e-8. For N = 8, Mathematica returns the result
¢ = 1.16750673314578¢e 4 02 with an estimated error 0.064. For N > 8, direct
computation using Mathematica becomes impossible. In Table 5, we show the
Matlab results for different dimensions N when 2M Fourier series terms are
used in the approximation. The error tolerance for the NUFFT solver is set to
le-12. For all cases, our results converge when M increases. For both N = 4
and N = 8, our converged results match those from Mathematica within the
estimated error from Mathematica.

In the current implementation, as the exponential case involves operations
on a 3-variable function fun(w},w), t,e) for each child when forming the
parent’s Fourier series expansion, while both the storage and operations for the
tridiagonal case can be compressed so one only works on 2-variable functions
(variables {t;,t,,} for child 1 and {¢,,,t,} for child 2), the exponential solver
therefore requires more operations and memory than the tridiagonal case.
When 2048 Fourier terms are used for the w’f , wg , and %, variables in the
exponential case, the required storage for fun(w?,w!, t,e.) becomes 2048 x
2048 x 2048 which is approximately 64G.

Remark: We explain the large errors when M = 16 (and M = 32) for large
N values. When the dimension of the problem increases, its condition number
also increases exponentially. For each leaf node, if we assume the numerical
solution has a relative error € in each leaf node function hje.f, in the worst
case, the relative error for the N dimensional integral can be approximated
by (1 +¢)" — 1 as the N leaf node functions will be “multiplied” together in
the upward pass to get the final integral value. Clearly, the condition number
of the analytical problem grows exponentially as N increases. In our current
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N
M 4 8 16
16 9.646301617204299 118.8260790816760 21594.43676761628
32 9.631244805483258 116.7475848966488 17592.18271523017
64 9.631287915305332 116.7505122381643 17591.75082916860
128 9.631287915311097 116.7505122544810 17591.75095515863
256 9.631287915311061 116.7505122544801 17591.75095515877
Mathematica | 9.6312879156+6e-8 116.750673340.064 N/A
N
M 32 64 128
16 1131582930.741270 | 4.332761307147880e+18 | 7.074841023044070e+-37
32 550963842.9679267 | 1.046292247268069e+18 | 9.380354831605098e+-36
64 540456718.9698794 | 8.163524406713720e+17 | 3.432262767034514e-+36
128 540456737.4129881 | 8.163182314210313e+17 | 3.394537652388589¢e+36
256 540456737.4129064 | 8.163182314206217e+17 | 3.394537652164628e-+36

Table 5 Computed ¢ values for different dimensions and numbers of Fourier terms, expo-
nential case.

implementation, we set the error tolerance of the NUFFT solver to 10712
relative error. Therefore, a very rough estimate for the error when N = 128,
assuming M is large enough so the leaf node function hjeqs is resolved to
machine precision, is given by (1 4+ 1072)128 ~ 1 + 10710 i.e., at most 10
digits are correct if the worst case happens. Our numerical results show that
for the same N value, all the converged results match at least in the first 10
significant digits in Table 5.

We demonstrate the efficiency of our algorithm by presenting the Matlab
simulation time for different M and N values, and the unit for the CPU time
is in seconds. The current Matlab code has not been fully vectorized or paral-
lelized, and significant performance improvement in the prefactor of the O(N)
algorithm is expected from a future optimized code. However, the numerical
results in Table 6 using our existing code sufficiently and clearly show the
asymptotic algorithm complexity: the CPU time grows approximately linearly
as the dimension N increases, and it increases by a factor of approximately 8
as M doubles.

N
M 4 8 16 32 64
M = 32 1.03 2.96 6.67 14.1 29.2
M = 64 8.06 23.4 53.8 115 238
M =128 | 65.2 191 445 949 1965
0 N 128 256 512 1024 2048
M =32 59.4 119 244 471 951
M =64 491 988 1924 3889 7766
M =128 | 4049 | 8029 | 16068 | 32465 | 65073

Table 6 CPU time (in seconds) for different M and N values, exponential case.
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5 Conclusions

The main contribution of this paper is an asymptotically optimal O(N) algo-
rithm for evaluating the expectation of a function H(X)

b
¢@bun:/'HQVQMMx

where f(x|A) is the truncated multi-variate normal distribution with zero
mean for the N-dimensional random vector X, when the off-diagonal blocks of
A are “low-rank” with “low-dimensional” features and H(x) is “low-rank”. In
the algorithm, a downward pass is performed to obtain the relations between
the parent’s and children’s effective variables, followed by an upward pass to
construct the h-functions for each node on the hierarchical tree structure. The
function at the tree root returns the desired expectation. Numerical results
are presented to demonstrate the accuracy and efficiency of the algorithm.
In a subsequent paper, we demonstrate how the current algorithm structure
allows very efficient computation of the expectations of all the 0*", 1°¢, and 2"¢
moments, as well as the generalization of current scheme using the sparse grid
techniques for higher off-diagonal matrix rank and larger number of effective
variables.
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Appendix: Potential Theory based Analysis

The covariance matrix and covariance functions are often related to the solu-
tions of elliptic partial differential equations. In the following, we apply the
potential theory from the analysis of ordinary and partial differential equations
and show how the divide-and-conquer strategy can be successfully performed
on the hierarchical tree structure when A is the exponential matrix. A statis-
tical analysis based approach for a general H-matrix with rank 1 off-diagonals
is presented in Theorem 4. Purely numerical linear algebra based approaches
for more general cases will be addressed in subsequent papers.

Green’s Functions: We present the results for b, = 1 to simplify the nota-
tions and assume z; € [0, 1]. We start from the observation that

Ly Jceoef g (2) - aiy), z>y,
G“”‘ze'y‘ﬂmfw@»&@,z<y
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is the domain Green’s function of the ordinary differential equation (ODE)
two-point boundary value problem

{u(z) —u'(z) = f(2), =z€[0,1], (18)

where coef = % gl(z) =e*” and g (2) = e'=*. The proof is a straightforward

validation that u fo y)dy satisfies both the ODE and boundary
conditions.

In the following discussions, we consider the continuous version of the orig-
inal matrix problem, where the matrix A is the discretized Green’s function
G(z,y), the two off-diagonal submatrices Ay and A3 are the discretized
9r(2) - qi(y) and g,(y) - qi(2), respectively Some simple algebra manipulations
show that the submatrices A1 11— >‘ A vvT and A a— 2)\uu can be considered

as the discretized G(z,y) — 7> gl( )-gi(y) and G(z,y) — ;/—2 gr(2) - 9r(y), and

the coefficients it ‘ﬂ/ﬁ T and itv/2 yuT for the linear terms of the z-variables
x1,1 and x; 2 in Eq. (11) are the discretized ityg;(z) and it%gr(z), respectively.

Remark: The observation also allows easy proof of the positive definiteness
of the matrix A, which is the discretized Green’s function G(z,y). In order to
show that for any vector f # 0, the quadratic form satisfies 7fTAf > 0, we
consider its continuous version deﬁned as

[ 16 ([ censom)as= [ e

where u( fo z,9)f(y)dy and f (y) is the continuous version of the (dis-
cretized) vector f. As f(z ) u(z) — u’(z), applying the integration by parts,
we have

/ f(2)u(z)dz = /0 (u?(z) + (W' (2))?) dz — /(1) - u(1) 4+ u/(0) - u(0).

As f(z) # 0, therefore u( ) # 0, and applying the boundary conditions of
the ODE, we have fo u(z)dz > 0. We refer to the two-variable function
G(z,y) as a positive deﬁnlte function. The positive definiteness of the matrix
A can be proved in a similar way using the discretized integration by parts.

A particular choice of 7 can be determined by considering the correspond-
ing child ODE problems as follows. We first study the root problem and define
its two children as the left child and right child, and the locations z; of the left
child and z; of the right child satisfy the condition z; < z; as the z-locations
of the x-variables in the two child problems are separated and ordered. We
pick a location ¢ between the two clusters of z-locations. Note that the choice
of ¢ is not unique, and a particular choice is the midpoint of the two sets. We
have the following results for the root node.

Theorem 2 If we choose ¥ = then

f ’
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1. for the left child, the new function Gi(z,y) = G(z,y) — 7% - 1(2) - qi(y) s
the Green’s function of the ODE problem

{ul(z) - ull/(z) = f(Z), Z € [O,C],
u(0) = uj(0), w(¢)=0.

The function Gi(z,y) is positive definite.
2. For the right child, the new function G(z,y) = G(z,y) — % <gr(2) - 9r(y)
is the Green’s function of the ODE problem

{u2<z> —W(z) = f(2), zelG),
ws(Q) =0, wy(1) = —uh(1).

The function G,(z,y) is positive definite.

3. The two child ODE problem solutions ui(z) and us(z) can be derived by
subtracting a single layer potential defined at z =  from the parent’s so-
lution u(z) of Eq. (18), so that solutions uy(z) and ug(z) satisfy the zero
interface condition at z = (. The other boundary condition for each child
ODE problem is the same as its parent’s boundary condition.

These results can be easily validated by plugging in the functions to the ODE
problems. The positive definiteness of the child Green’s function can be proved
using the same integration by part technique as we did for the parent’s Green’s
function.

For a general parent node on the tree structure, we have the following
generalized results.

Theorem 3 Consider a parent node with the corresponding function Gp(z,y)
defined on the interval [a,b], and ¢ is a point separating the two children’s
z-locations. Then there exists a number v which depends on (, such that

1. for the left child, the new function Gi(z,y) = G(z,y) — 7% - g1(2) - qi(y) s
the Green’s function of the ODE problem

{ul(Z) —uf(z) = f(2), z¢€]a(],

same boundary condition as parent at x = a, and ui(¢) = 0.

The function G(z,y) is positive definite.
2. For the right child, the new function G.(z,y) = G(z,y) — % -9 (2) - gr(y)
is the Green’s function of the ODE problem

{UQ(Z) - uIZI(Z> = f(2)7 Z € [C7b]7

us(¢) =0, and same boundary condition as parent at x = b.

The function G, (z,y) is positive definite.

3. The two child ODE problem solutions ui(z) and uz(z) can be derived by
subtracting a single layer potential defined at z = ( from the parent’s so-
lution u(z) of Eq. (18), so that solutions ui(z) and ua(z) satisfy the zero
interface condition at z = (. The other boundary condition for each child
ODE problem is the same as its parent’s boundary condition.
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The detailed formulas for the number 4 and Green’s functions are presented
next. The proof of the theorem is simply validations of the formulas.

The Green’s function G,(z,y) of a parent node p and the functions G1(z, y)
and Ga(z,y) of p’s left child 1 and right child 2 are defined as

_ [coefP-gl(2) g/ (y), <z

Gpl(2,y) = {coef” 97 (2) ~9§5’(y), y>z

_ Jcoeft-gl(z)-g}(y), y<z,

Gl(z7y) - {CO€f1 . gll(Z) . gé(y)’ y >z

_ [coef? - g2(2) - gh(y), <z

G2(27y) - {Coef2gl2(2)gz)(y)7 y >z
b]

We assume parent’s z-locations satisfy z € [a, b]. We choose ( = ¢ to separate
the parent’s locations, and the child intervals are therefore [a,c] and |c,b],
respectively.

Case 1: p is the root node (a =0, b =1): The functions are

g7(z) = e, gP(z) =e'77, coef? = 3;
g (2) =€, g,(2) =sinh(c—2), coef' =1;
G2(2) = sinh(z — ¢), g2(z) = e, coef? = 1;

g’ (z) = e*7", gP(z) = sinh(b—z), coefP =1;
g} (z) = 7€, gi(z) =sinh(c — 2), coef! = 1;
g7(z) = sinh(z — ¢), g2(z) = sinh(b — z), coef? = %;

Case 3: p is a right boundary node(b = 1): The functions are

g7 (2) = sinh(z — a), g2 () = e+, coefr =1
g} (z) = sinh(z — a), g}(z) = sinh(c — 2), coef! = %;
62(2) = sinh(x — ), g2(2) = e, coef? = 1

Case 4: p is an interior node: The functions are

. . a+b
g; (2) = sinh(z — a), g¥(z) = sinh(b — 2),  coef? = 9225?
g; (z) = sinh(z — a), g}(z) =sinh(c — 2), coef! = 6225177;
g7(z) = sinh(z — ¢), g2(z) =sinh(b—z), coef? = e?fj,

Next, we present the relations of the parent p’s two w-variables w! and
wh with the left child 1’s two w-variables {w?, wi} and right child 2’s two w-
variables {w?, w3}. We use t,,.,, to represent the new t-variable introduced to
divide the parent problem into two sub-problems of child 1 and child 2. We use
a unified set of basis functions for each node on the hierarchical tree structure.
For the parent node, the basis functions are {®} = cosh(z—c), ®} = %}

The basis functions for the left and right children are {#1 = cosh(z — p), P} =
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W} and {®? = cosh(z — q),®3 = %}, respectively, where p and
q are either the interface ¢ points when further subdividing the two child
problems, or the mid-point of the child intervals when they become leaf nodes.

Case 1: p is the root node (¢ = 0, b = 1): Parent has no effective w-
variables.

1 _ tnewe?” € 1 _ tnew(a_c)epic.
W= o e g
2 _ tpewe® 1 2 tpew(b—cle™1
Wi = Tewm—, wh = e

Case 2: p is a left boundary node(a = 0):

P P —2c_g—2b
1 _ w) sinh(c—p) ePlpewy/ e 2¢—e P
wy = P + 73 + w? cosh(c — p),
P p Ir/e—2c_e—2b
1 _ w¥ cosh(c—p) D - ePtnew(a—c)y/ e —e .
wy = (a —¢) | —2———— +wysinh(c—p)) — 7 ;

w? = wgsmih(bch) + tnew/coth(b — ¢) — 1sinh(b — q) + w} cosh(c — q),

w? = (b=c)(wy (b=a) sinh(c—q)—wj coshle=a)) | 4 (¢ — b)y/coth(b — ¢) — 1 cosh(b — q).

a—b

Case 3: p is a right boundary node(b = 1):

wi = % + tnew/— coth(a — ¢) — Isinh(p — a) + w} cosh(c — p),

l=(a—c) (7“)g C(;Silgc_p) + w} sinh(c — p))

+tnew(c — a)y/— coth(a — ¢) — 1cosh(a — p);
2= washena) 4 e aen T L P cosh(c - g),

S
i~}
I

wy =

a—b
w2 = e YtnewVe2c—e2%(c—b) + (b—c)(w} (b—a) sinh(c—q)—w? cosh(c—q))
2 V2 a—b :

Case 4: p is an interior node:

W} = tyeq sinh(p — a)y/csch(a — b)esch(a — ¢) sinh(b — ¢)
w} sinh(c—p)

+=2=—== 4wl cosh(c — p),
WY = tpew(c — a) cosh(a — p)y/csch(a — b)esch(a — ¢) sinh(b — ¢)

+(a—c) (W + w! sinh(c — p)) ;
W? = tpey sinh(b — g)y/csch(a — b) sinh(a — ¢)esch(b — ¢)
N Rl S B SI;IEE)C_Q) + w} cosh(c — q),
W3 = tpew(c — b) cosh(b — g)/csch(a — b) sinh(a — ¢)esch(b — ¢)
+ (b—c)(w¥ (b—a) sinh(cbfq)fwg cosh(c—q)) )

Mathematica files for computing these formulas are available.

Finally, we present a theorem which guarantees the positive definiteness
of the child problems when a proper parameter is chosen in the divide-and-
conquer scheme for a H-matrix with rank 1 off-diagonal blocks. The theorem
applies to both the tridiagonal and exponential cases.



32 Huang, Cao, Fang, Genton, Keyes, Turkiyyah

Theorem 4 Consider a positive definite covariance matrix of two random
vectors X and 'Y with rank one off-diagonal blocks in the form

A2 0
. cviu
= (S 50 [ »
’ 2vx Yvy ol 0
cutv
0 O’i
where ¢ is a constant and u = [uy,us, -+ ,Uy,] and v = [v1,ve, -+ ,v,] are row

vectors. Then there exist an interval of v values such that the matrices

A3 0 o3 0
—cyviv and . —c—u‘u
- - ~
0 AL 0 o,

are both symmetric positive definite.

Proof: Without loss of generality, we assume ¢ > 0. Note that any symmetric

”» . . A, A
positive definite matrix ( 1.1 A1,2> can be reduced to the standard form
2,1 A22

in Eq. (19) using an orthogonal transformation (g 3) where U and V are
the normalized eigenvectors for A; ; and Aj o, respectively. Apply Lemma 2.2

from [21], we need to find ~ such that

1 1
0<ey<——— and 0<e—<—— . (20)

- 2 2
PDHEE Y ko1 o

2|~
2

=0

We consider the conditional variance

Zyix = Dyy — Dyx Xk Exy

1
o'f 0 22 0
_ t t
= —cu' | v cvt | u
0 a2 0 va
o'f 0
2
_ 2 n v t
= —c (Zk:l,\f?)uu
0 o2

which is symmetric positive definite from statistics theory (or linear algebra).
Therefore using Lemma 2.2 from [21], we have

1

=RV

3N
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2
which is equivalent to ¢Y;_; 25 < ———. Clearly, any v value in the
‘ Dy ﬁ
2
interval [¢>)_, %, ﬁ] will satisfy the conditions in Egs. (20), e.g., one
DD

can choose the mid-point of this interval to “balance” the positive definiteness
of the two child problems. This completes the proof.
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