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Abstract

We investigate when non-dictatorial aggregation is possible from an algorithmic per-
spective, where non-dictatorial aggregation means that the votes cast by the members of
a society can be aggregated in such a way that there is no single member of the society
that always dictates the collective outcome. We consider the setting in which the members
of a society take a position on a fixed collection of issues, where for each issue several
different alternatives are possible, but the combination of choices must belong to a given
set X of allowable voting patterns. Such a set X is called a possibility domain if there
is an aggregator that is non-dictatorial, operates separately on each issue, and returns
values among those cast by the society on each issue. We design a polynomial-time al-
gorithm that decides, given a set X of voting patterns, whether or not X is a possibility
domain. Furthermore, if X is a possibility domain, then the algorithm constructs in poly-
nomial time a non-dictatorial aggregator for X. Furthermore, we show that the question
of whether a Boolean domain X is a possibility domain is in NLOGSPACE. We also design
a polynomial-time algorithm that decides whether X is a uniform possibility domain, that
is, whether X admits an aggregator that is non-dictatorial even when restricted to any two
positions for each issue. As in the case of possibility domains, the algorithm also constructs
in polynomial time a uniform non-dictatorial aggregator, if one exists. Then, we turn our
attention to the case where X is given implicitly, either as the set of assignments satisfying
a propositional formula, or as a set of consistent evaluations of a sequence of propositional
formulas. In both cases, we provide bounds to the complexity of deciding if X is a (uniform)
possibility domain. Finally, we extend our results to four types of aggregators that have
appeared in the literature: generalized dictatorships, whose outcome is always an element
of their input, anonymous aggregators, whose outcome is not affected by permutations of
their input, monotone, whose outcome does not change if more individuals agree with it
and systematic, which aggregate every issue in the same way.
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1. Introduction

The study of vote aggregation has occupied a central place in social choice theory. A broad
framework for carrying out this study is as follows. There is a fixed collection of issues
on each of which every member of a society takes a position, that is, for each issue, a
member of the society can choose between a number of alternatives. However, not every
combination of choices is allowed, which means that the vector of the choices made by a
member of the society must belong to a given set X of allowable voting patterns, called
feasible evaluations. The goal is to investigate properties of aggregators, which are functions
that take as input the votes cast by the members of the society and return as output a
feasible evaluation that represents the collective position of the society on each of the issues
at hand. A concrete key problem studied in this framework is to determine whether or not
a non-dictatorial aggregator exists, that is, whether or not it is possible to aggregate votes
in such a way that no individual member of the society dictates the votes on the society.
A set X of feasible evaluations is called a possibility domain if it admits a non-dictatorial
aggregator; otherwise, X is called an impossibility domain. This framework is broad enough
to account for several well-studied cases of vote aggregation, including the case of preference
aggregation for which Arrow (1951) established his celebrated impossibility theorem and
the case of judgment aggregation; for a survey of the latter, see Endriss (2016).

The investigation of the existence of non-dictatorial aggregators is typically carried out
under two assumptions: (a) the aggregators are independent and (b) the aggregators are
conservative (also known as supportive or grounded). The independence assumption means
that the aggregator is an issue-by-issue aggregator, so that an independent aggregator on
m issues can be identified with an m-tuple (f1, . . . , fm) of functions aggregating the votes
on each issue. It is not difficult to see that, if independence is not assumed, then non-
dictatorial aggregation is trivially always possible. The notion of independence corresponds
to that of independence of irrelevant alternatives (IIA) used by Arrow (1951) in the prefer-
ence aggregation framework, under a natural embedding, provided by Dokow and Holzman
(2009), of the preference aggregation framework to the framework described here. The
conservativeness (or supportiveness) assumption means that, for every issue, the position
returned by the aggregator is one of the positions held by the members of the society on
that issue. An immediate consequence of this property, is that the social decision cannot
have “compromises” between the choices of the voters.

By now, there is a body of research on identifying criteria that characterize when a given
set X of feasible evaluations is a possibility domain, that is, it admits an m-tuple of n-ary
conservative functions that are not all projections to the same coordinate. The first such
criterion was established by Dokow and Holzman (2010a) in the Boolean framework, where,
for each issue, there are exactly two alternatives (say, 0 and 1) for the voters to choose from.
Specifically, Dokow and Holzman showed that a set X ⊆ {0, 1}m is a possibility domain if
and only if X is affine or X is not totally blocked. Informally, the notion of total blockedness,
introduced first by Nehring and Puppe (2002), asserts that the social position on any issue
can be inferred from the social position on any issue. This notion appears in many of
the characterization results for possibility domains. In the non-Boolean framework (where,
for some issues, there may be more than two alternatives), Dokow and Holzman (2010b)
extended the notion of total blockedness and used it to give a sufficient condition for a set
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X to be a possibility domain. Szegedy and Xu (2015) used tools from universal algebra to
characterize when a totally blocked set X is a possibility domain. The reason for this is,
as Kirousis, Kolaitis, and Livieratos (2019) showed, that total-blockedness corresponds to a
weak notion of impossibility, specifically a set X admits a binary non-dictatorial aggregator
if and only if X is not totally blocked. A consequence of these results is that a set X
is a possibility domain if and only if X admits a binary non-dictatorial aggregator or a
ternary non-dictatorial aggregator; in other words, non-dictatorial aggregation is possible
for a society of some size if and only if it is possible for a society with just two members or
with just three members. This line of work was pursued further by Kirousis, Kolaitis, and
Livieratos (2019), who characterized possibility domains in terms of the existence of binary
non-dictatorial aggregators or ternary non-dictatorial aggregators of a particular form.

All the aforementioned results are situated in what Dokow and Holzman call the ab-
stract framework, where the domain X is given explicitly as a set of m-ary tuples. Earlier
works in this framework include, but are not limited to, Fishburn and Rubinstein (1986);
Kasher and Rubinstein (1997); Rubinstein and Fishburn (1986). Judgment aggregation has
been extensively studied in the framework of the logic-based approach, see List and Pettit
(2002); List and Puppe (2009). In that approach, there is a tuple φ̄ = (φ1, . . . , φm) of
propositional formulas, called the agenda, and the set X of feasible evaluations comprises
consistent judgments concerning the validity of the formulas. A judgment over a formula
φ amounts to deciding if φ or ¬φ is true and it is consistent if of all the formulas deemed
true can be satisfied simultaneously, by at least one assignment of values. Note that in this
setting, the allowed positions on each issue are necessarily two and thus it is situated in
the Boolean framework. In this framework, Endriss, Grandi, and Porello (2012) have stud-
ied the computational complexity of three interesting problems: the winner determination
problem, where we want to decide if a specific formula belongs to the collective decision on a
given agenda under some aggregation procedure, the strategic manipulation problem, where
we want to decide if an agent has an incentive to misrepresent his or her preferences in or-
der to change the collective decision on a given agenda under some aggregation procedure,
and the safety of the agenda problem, where we want to decide if a class of aggregators
preserves the logical consistency restrictions of an agenda. This last problem is related to
our framework, with the difference that we search for at least one aggregator of a given class
preserving the logical restrictions of our domain. Also, Terzopoulou, Endriss, and de Haan
(2018) have studied the case where the individuals do not need to make a decision on every
issue of the agenda, but can instead provide partial judgments.

A different approach is the one used by Grandi and Endriss (2013), where the set of
restrictions is provided by a propositional formula φ, called an integrity constraint, as the
set of its satisfying assignments. The agents here are required in a way to select, in a
consistent manner, which variables of the formula are true and which are not, instead of
doing so for entire propositional formulas of an agenda. Endriss, Grandi, De Haan, and
Lang (2016) study the relation of this framework with the logic-based one, in terms of the
succinctness of the corresponding languages used and of the computational complexity of
the winner determination problem.
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1.1 Summary of Results.

The aforementioned investigations have characterized possibility domains (in both the
Boolean and the non-Boolean frameworks) in terms of structural conditions. Our goal
is to investigate possibility domains using the algorithmic lens and, in particular, to study
the following algorithmic problem: given a set X of feasible evaluations, determine whether
or not X is a possibility domain. Szegedy and Xu (2015, Theorem 36) give algorithms
for this problem, but these algorithms have very high running time; in fact, they run in
exponential time in the number of issues and in the number of positions over each issue,
even when confined to the Boolean framework.

We design a polynomial-time algorithm that, given a set X of feasible evaluations (be it
in the Boolean or the non-Boolean framework), decides whether X is a possibility domain.
Furthermore, if X is a possibility domain, then the algorithm produces a binary non-
dictatorial or a ternary non-dictatorial aggregator for X.

The first step towards this result is to show that there is a polynomial-time algorithm
that given a set X of feasible evaluations, decides whether X admits a binary non-dictatorial
aggregator (as mentioned earlier, this amounts to X not being totally blocked). In fact, we
show a stronger result, namely, that this problem is expressible in Transitive Closure Logic
(TCL), an extension of first-order logic with the transitive closure operator; see Libkin
(2004) for the precise definitions. As a consequence, the problem of deciding whether X
admits a binary non-dictatorial aggregator is in NLOGSPACE. Using this result, we then
show that the problem of deciding whether a set X ⊆ {0, 1}m is a possibility domain is in
NLOGSPACE.

After this, we turn our attention to uniform possibility domains, which were introduced
by Kirousis, Kolaitis, and Livieratos (2019) and which form a proper subclass of the class of
possibility domains. Intuitively, uniform possibility domains are sets of feasible evaluations
that admit an aggregator that is non-dictatorial even when restricted to any two positions
for each issue. This requirement forces the aggregating procedure to treat each Boolean
(yes/no) decision of every issue in a non-dictatorial way. In that way, we can avoid various
trivial cases of non-dictatorial aggregation, where different “dictators” are chosen for differ-
ent sets of positions of an issue. Kirousis, Kolaitis, and Livieratos (2019) have established a
tight connection between uniform possibility domains and a variant of constraint satisfac-
tion problems by showing that multi-sorted conservative constraint satisfaction problems
are tractable on uniform possibility domains, whereas such constraint satisfaction problems
are NP-complete on all other domains. Here, using the result by Carbonnel (2016a), we give
a polynomial-time algorithm for the following decision problem: given a set X of feasible
evaluations (be it in the Boolean or the non-Boolean framework), determine whether or not
X is a uniform possibility domain; moreover, if X is a uniform possibility domain, then the
algorithm produces a suitable uniform non-dictatorial aggregator for X.

We also study the problems of non-dictatorial and uniform non-dictatorial aggregation
in case X is Boolean and provided via an integrity constraint or by an agenda. In both
cases, we provide bounds for the computational complexity of deciding if X is a (uniform)
possibility domain. Finally, we extend our results to three types of aggregators that have
been used in the literature: generalized dictatorships by Grandi and Endriss (2013) and
Diáz, Kirousis, Kokonezi, and Livieratos (2019), whose outcome is always an element of
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their input, anonymous aggregators, whose outcome is not affected by permutations of
their input and monotone aggregators, whose outcome does not change if more individuals
agree with it, as defined, for example, by Nehring and Puppe (2010) and, finally, systematic
aggregators, which aggregate every issue in the same way. This last type of aggregators
corresponds to polymorphisms, that is functions that preserve domains, which have been
extensively studied in the literature; for example, see Szendrei (1986). Polymorphisms have
also been successfully used in matters of computational complexity; for an interesting and
clear exposition, see Böhler, Creignou, Reith, and Vollmer (2003, 2004). Finally, as examples
of polymorphisms used in aggregation theory, see Szegedy and Xu (2015); Kirousis, Kolaitis,
and Livieratos (2019).

The results reported here contribute to the developing field of computational social
choice and pave the way for further exploration of algorithmic aspects of vote aggregation.
In a sense, the question we investigate is the following: given a specific voting scheme,
where some pre-defined rules of logical consistency apply, how difficult is it to decide if it is
possible to design an aggregation rule with some desired properties, and then construct it
in case it is? It should be noted that in the field of Judgment Aggregation, quite frequently
the domains that impose the logical consistency restrictions are fixed. In such a setting,
the algorithmic approach does not have much to offer, since in this case we have a one-off
problem. On the other hand, it is not difficult to imagine groups of people that constantly
need to make collective decisions over different sets of issues, where the logical restrictions
that apply change according to the dependencies between the issues. In this scenario,
algorithms that can quickly decide which aggregation rules can be applied could be useful.

In terms of the applicability of our algorithms in the abstract setting, there is an issue
with the size of the input, since a domain X given explicitly as a set of m-ary vectors, can be
too large for practical purposes. However, as small or large the domain might be, the search
space of its possible aggregators is exponentially larger, even provided characterization
results like the ones by Dokow and Holzman (2009); Kirousis, Kolaitis, and Livieratos
(2019); Szegedy and Xu (2015) that restrict the search to binary or ternary aggregators.
Thus, our tractability results in the abstract framework should be interpreted as showing
that, given access to the domain, one encounters no more problems in deciding whether non-
dictatorial aggregation is possible. Furthermore, the algorithm for finding and producing
binary non-dictatorial aggregators (or deciding their lack thereof), is used in obtaining parts
of the complexity upper bounds in the cases where the domain is given in compact form.

1.2 Structure of the paper.

Theorems, lemmas, and corollaries are numbered per section, each referring to its own type,
whereas claims are numbered within theorems.

• In Section 2, we formally describe the abstract framework and the necessary tools used
to obtain the polynomial-time algorithms for deciding if a domain X is a (uniform)
possibility domain. Specifically, in Subsection 2.1, we state the main theorems we use
to obtain our results concerning possibility domains, that is, the characterizations of
possibility domains in the Boolean framework [Theorem A], totally blocked domains
[Theorem B], and possibility domains in the non-Boolean case [Theorem C]; we also
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prove Lemma 2.3 that outlines the type of aggregators for domains that are Cartesian
products. In Subsection 2.2, we define uniform possibility domains and state Theorem
D that characterizes them. In Subsection 2.3, we discuss the Polynomial Hierarchy.

• In Section 3, we present our polynomial time algorithms. Specifically, in Subsection
3.1, we present polynomial time algorithms that check whether a domain admits bi-
nary non-dictatorial aggregators [Theorem 3.1], whether a domain is totally blocked
[Corollary 3.1], and whether a domain is a possibility domain [Theorem 3.2; first
main result]. We also show that all domains admit maximum symmetric aggregators
[Lemma 3.3] and give a polynomial time algorithm that produces one [Corollary 3.2].
In Subsection 3.2, we describe Transitive Closure Logic and Least Fixed Point Logic,
showing that detecting whether a Boolean domain admits binary non-dictatorial ag-
gregators is in TCL and in LFP [Theorem 3.3], that checking whether a Boolean
domain is affine is in LOGSPACE [Lemma 3.6], and that checking whether it is a
possibility domain is in NLOGSPACE [Theorem 3.4; second main result]. In Subsec-
tion 3.3, we present a polynomial time algorithm that checks whether a domain is a
uniform possibility domain [Theorem 3.5; third main result], using a polynomial time
algorithm by Carbonnel (2016a) that checks whether a domain admits polymorphisms
with specific properties [Theorem E]. We also state an alternative characterization
of local possibility domains in the Boolean framework [Corollary 3.4] and provide a
polynomial time algorithm that checks whether a domain is a local possibility domain
[Corollary 3.5].

• In Section 4, we present some complexity results for the case where X is given im-
plicitly, either by an integrity constraint or an agenda. Specifically, in Subsection 4.1,
we describe the logic-based framework, defining integrity constraints and agendas. In
Subsection 4.2, we define the domain Imp, show that it is an impossibility domain
[Lemma 4.2], and prove that the problem of deciding if the domain of an integrity
constraint admits non-dictatorial aggregators is in ΣP

2 ∩ ΠP
2 and coNP-hard [Theo-

rem 4.1; fourth main result], whereas the same problem for locally non-dictatorial
aggregators is in ΣP

2 ∩ ΠP
2 and coNP-hard [Theorem 4.2; fifth main result]. In Sub-

section 4.3, we show that the problem of deciding whether the domain of an agenda
admits non-dictatorial aggregators is in ∆P

3 and coNP-hard [Theorem 4.3; sixth main
result], whereas the same problem for locally non-dictatorial aggregators is in ∆P

3

and coNP-hard [Theorem 4.4; seventh main result]. In Subsection 4.4, we state a
characterization of Boolean domains admitting aggregators that are not generalized
dictatorships [Theorem F] and prove that the problem of deciding whether the do-
main of an integrity constraint (respectively, agenda) admits aggregators that are not
generalized dictatorships is in ΣP

2 ∩ΠP
2 (respectively, ∆P

3 ) and coNP-hard [Corollaries
4.2 and 4.3]. We provide the exact same results for anonymous [Corollaries 4.4 and
4.5] and monotone aggregators [Theorem G and Corollary 4.6]. Finally, we show that
deciding whether the domain of an integrity constraint admits systematic aggregators
is coNP-complete [Proposition 4.1], whereas that of an agenda is in ΠP

2 and coNP-hard
[Proposition 4.2].
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Relation to the conference version. A preliminary version of this paper appeared in
the Proceedings of the 17th International Conference on Relational and Algebraic Methods
in Computer Science (RAMiCS 2018) Kirousis, Kolaitis, and Livieratos (2018). The present
full version, in addition to detailed proofs and several improvements in the presentation,
contains the results about expressibility in Transitive Closure Logic and membership in
NLOGSPACE. Furthermore, all the results in Section 4 concerning the case in which X is
given implicitly are new.

2. Preliminaries and Earlier Work

In Subsection 2.1 we consider possibility domains both in the Boolean and non-Boolean
case, whereas in Subsection 2.2 we turn our attention to uniform possibility domains.

2.1 Possibility Domains

Let I = {1, . . . ,m} be a set of issues. Assume that the possible position values of an
individual (member of a society) for each issue are given by the finite set A. We also
assume that A has cardinality at least 2. If |A| = 2, we say that we are in the Boolean
framework; otherwise we say that we are in the non-Boolean framework.

An evaluation is an element of Am. Let X ⊆ Am be a set of permissible or feasible
evaluations. To avoid degenerate cases, we assume that for each j = 1, . . . ,m, the j-th
projection Xj of X has cardinality at least 2. Notationally, we refer to the elements of X
(or sometimes of Am) as vectors, patterns, evaluations or assignments, depending on the
context.

Let n ≥ 2 be the number of individuals. We view each element x of Xn as a n × m
matrix that represent the choices of all individuals over every issue. The element xij of such
a matrix x will be the choice of the i-th individual over the j-th issue, for i = 1, . . . , n and
j = 1, . . . ,m. The i-th row xi will represent the choices of the i-th individual over every
issue, i = 1, . . . , n, and the j-th column xj the choices of every individual over the j-th
issue, j = 1, . . . ,m.

In order to aggregate a set of n feasible evaluations, we use m-tuples F = (f1, . . . , fm)
of n-ary functions, where fj : Xn

j → Xj , j = 1, . . . ,m. Such a m-tuple F of functions will
be called an (n-ary) aggregator for X if it satisfies:

1. Collective rationality: (f1(x1), . . . , fm(xm)) ∈ X.

2. Conservativity: fj(xj) ∈ {x1
j , . . . , x

n
j }, for all j ∈ {1, . . . ,m}.

An aggregator F = (f1, . . . , fm) is called dictatorial on X if it always outputs a specific
vector of its input, that is, if there is a number d ∈ {1, . . . , n} such that (f1, . . . , fm) =
(prnd , . . . , prnd ), where prnd is the n-ary projection on the d-th coordinate; otherwise, F is
called non-dictatorial on X. We say that X has a non-dictatorial aggregator if, for some
n ≥ 2, there is a n-ary non-dictatorial aggregator on X. In such a case, we say that X is
a possibility domain. Otherwise, it is an impossibility domain. A possibility domain is, by
definition, one where non-dictatorial aggregation is possible for societies of some cardinality,
namely, the arity of a non-dictatorial aggregator.
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Observe that if X has a non-dictatorial aggregator of arity n, then it has also non-
dictatorial aggregators of arity k, for all k ≥ n. Indeed, given an n-ary non-dictatorial
aggregator F = (f1, . . . , fm) for X, we can define, for any k ≥ n, the aggregator G =
(g1, . . . , gm) whose components gj simply ignore the last k − n elements of their input and
behave like the corresponding fj ’s. On the other hand, Dokow and Holzman (2010b) provide
an example of a domain admitting a ternary non-dictatorial aggregator, but no binary ones.

The notion of an aggregator is akin to, but different from, the notion of a polymorphism
– a fundamental notion in universal algebra; see, for example, Szendrei (1986). A polymor-
phism is in fact a systematic aggregator, that is, an aggregator all of whose components
are the same operation. Let A be a finite non-empty set. A constraint language over A is
a finite set Γ of relations of finite arities. Let R be an m-ary relation on A. A function
f : An → A is a polymorphism of R if the following condition holds:

if x1, . . . , xn ∈ R, then (f(x1), . . . , f(xm)) ∈ R,

where xi = (xi1, . . . , x
i
m) ∈ R, i = 1, . . . , n and xj = (x1

j , . . . , x
n
j ), j = 1, . . . ,m. In this case,

we also say that R is closed under f or that f preserves R. Finally, we say that f is a
polymorphism of a constraint language Γ if f preserves every relation R ∈ Γ .

In fact, polymorphisms of a domain X correspond to systematic aggregators for X, that
is, aggregators F = (f1, . . . , fm) where fj = f , j = 1, . . . ,m. In what follows, we denote
m-tuples comprised of the same function f by f̄ .

A function f : An → A is conservative if, for all a1, . . . , an ∈ A, we have that
f(a1, . . . , an) ∈ {a1, . . . , an}. Clearly, if f : An → A is a conservative polymorphism of
an m-ary relation R on A, then the m-tuple f̄ = (f, . . . , f) is an n-ary aggregator for R.

We say that a ternary operation f : A3 → A on an arbitrary set A is a majority operation
if for all x and y in A,

f(x, x, y) = f(x, y, x) = f(y, x, x) = x;

we say that f is a minority operation if for all x and y in A,

f(x, x, y) = f(x, y, x) = f(y, x, x) = y.

We also say that a set X of feasible evaluations admits a majority (respectively, minority)
aggregator if it admits a ternary (n = 3) aggregator every component of which is a majority
(respectively, minority) operation. Clearly, X admits a majority aggregator if and only if
there is a ternary aggregator F = (f1, . . . , fm) for X such that, for all j = 1, . . . ,m and for
all two-element subsets Bj ⊆ Xj , we have that fj� Bj = maj, where

maj(x, y, z) =

{
x if x = y or x = z,

y if y = z.

Similarly, X admits a minority aggregator if and only if there is a ternary aggregator
F = (f1, . . . , fm) for X such that, for all j = 1, . . . ,m and for all two-element subsets
Bj ⊆ Xj , we have that fj� Bj = ⊕, where

⊕(x, y, z) =


z if x = y,

x if y = z,

y if x = z.
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In the Boolean framework, a set X ⊆ {0, 1}m admits a majority aggregator if and only
if the majority operation maj on {0, 1}3 is a polymorphism of X.

Lemma 2.1 Schaefer (1978, Lemma 3.1B) The majority operation maj on {0, 1}3 is a
polymorphism of a set X ⊆ {0, 1}m if and only if X is a bijunctive logical relation, that is,
X is the set of satisfying assignments of a 2CNF-formula.

A set X ⊆ {0, 1}m admits a minority aggregator if and only if the minority operation ⊕ on
{0, 1}3 is a polymorphism of X.

Lemma 2.2 Schaefer (1978, Lemma 3.1A) The minority operation ⊕ on {0, 1}3 is a poly-
morphism of a set X ⊆ {0, 1}m if and only if X is an affine logical relation, that is, X is
the set of solutions of a system of linear equations over the two-element field.

Both these results are part of the proof in Schaefer’s Dichotomy Theorem for the Satis-
fiability Problem, in Schaefer (1978, Theorem 2.1). Since aggregators are by definition
conservative, we identify from now on the ternary majority and minority aggregators with
maj and ⊕̄ respectively.

Example 2.1 Consider the sets X1 and X2 below.

(i) The set X1 = {0, 1}3 \ {(1, 0, 1), (0, 0, 1), (0, 0, 0)} is bijunctive, since it is the set of
satisfying assignments of the 2CNF-formula (x ∨ y) ∧ (y ∨ ¬z).

(ii) The set X2 = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)} is affine, since it is the set of solu-
tions of the equation x+ y + z = 1 over the two-element field.

(iii) Both sets X1 and X2 are possibility domains, since X1 admits a majority aggregator
and X2 admits a minority aggregator.

Finally, a binary (n = 2) aggregator is called a projection aggregator if all its components are
projections and symmetric, if all its components are symmetric, that is, fj(x, y) = fj(y, x),
for all x, y ∈ Xj and for j = 1, . . . ,m.

We now present two theorems that characterize possibility domains in the Boolean and
the non-Boolean framework. They are the stepping stones towards showing that the follow-
ing decision problem is solvable in polynomial time: given a set X of feasible evaluations,
is X a possibility domain?

Theorem A Dokow and Holzman (2010a, Theorem 2.2) Let X ⊆ {0, 1}m be a set of
feasible evaluations. The following two statements are equivalent.

1. X is a possibility domain.

2. X is affine or X is not totally blocked.

As mentioned in the Introduction, the existence of a binary non-dictatorial aggregator
on X is closely related to the total blockedness of X. We follow closely the notation and
terminology used by Dokow and Holzman (2010b).
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Let X be a set of feasible voting patterns. Given subsets Bj ⊆ Xj , j = 1, . . . ,m, a sub
box is the product B =

∏m
j=1Bj . It is called a 2- sub-box if |Bj | = 2, for all j. Elements of

a box B that belong also to X will be called feasible evaluations within B.

For a subset K ⊆ {1, . . . ,m} and a tuple x ∈
∏
j∈K Bj is a feasible partial evaluation

within B if there exists a feasible evaluation y within B that extends x, that is, xj = yj , for
all j ∈ K. Otherwise, we say that x is an infeasible partial evaluation within B. x is a B-
Minimal Infeasible Partial Evaluation (B-MIPE) if (i) it is an infeasible partial evaluation
within B and (ii) if for every j ∈ K, there is a bj ∈ Bj such that changing the j-th coordinate
of x to bj results into a feasible partial evaluation within B.

We can now define a directed graph GX as follows. The vertices of GX are the pairs
of distinct elements u, u′ in Xj , for all j = 1, . . .m, denoted by uu′j . Two vertices uu′k, vv

′
l

with k 6= l are connected by a directed edge from uu′k to vv′l if there exists a 2-sub-box
B =

∏m
j=1Bj , a set K ⊆ {1, . . . ,m}, and a B-MIPE x = (xj)j∈K such that k, l ∈ K and

Bk = {u, u′} and Bl = {v, v′} and xk = u and xl = v′.

Definition 1 Dokow and Holzman (2010b) We say that X is totally blocked if the graph
GX is strongly connected, that is, every two distinct vertices uu′k, vv

′
l are connected by a

directed path (this must hold even if k = l).

Theorem B Kirousis, Kolaitis, and Livieratos (2019, Theorem 4.3) Let X be a set of
feasible evaluations. The following two statements are equivalent.

1. X is totally blocked.

2. X admits no binary non-dictatorial aggregator.

In the Boolean framework, Theorem B can be obtained from Theorem A above and
from Dokow and Holzman (2010a, Claim 3.6). So by applying once more Theorem A, we
get the following result.

Corollary 2.1 Implicit by Dokow and Holzman (2010a) Let X ⊆ {0, 1}m be a set of feasible
evaluations. The following two statements are equivalent.

1. X is a possibility domain.

2. X is affine or X admits a binary non-dictatorial aggregator.

In the non-Boolean case, Kirousis et al. showed that:

Theorem C Kirousis, Kolaitis, and Livieratos (2019, Theorem 3.1) Let X be a set of
feasible evaluations. The following two statements are equivalent.

1. X is a possibility domain.

2. X admits a binary non-dictatorial aggregator, or a majority aggregator, or a minority
aggregator.

We illustrate the two preceding theorems with several examples.
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Example 2.2 Let X3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊆ {0, 1}3 be the set of all Boolean
triples that contain exactly one 1. By Theorems A and B, the set X3 is an impossibility
domain, since it is not affine (⊕((1, 0, 0), (0, 1, 0), (0, 0, 1)) = (0, 0, 0) /∈ X3) and it does not
have a binary non-dictatorial aggregator. For the latter, one has to check each of the 62
possible 3-tuples of conservative binary functions over {0, 1}, which is a fairly tedious but
straightforward task.

Before proceeding with the next example, let us state a straightforward result that we
will need in what follows.

Lemma 2.3 Let Y ⊆ Al, Z ⊆ Am−l and assume G = (g1, . . . , gl) and H = (h1, . . . , hm−l)
are n-ary aggregators of Y and Z respectively. Define X ⊆ Am as the Cartesian product
of Y and Z:

X := Y × Z := {(x1, . . . , xl, xl+1, . . . , xm) | (x1, . . . , xl) ∈ Y and (xl+1, . . . , xm) ∈ Z}.

Then, the m-tuple F = (f1, . . . , fm) of n-ary operations:

fj =

{
gj , if j = 1, . . . , l,

hj−l, if j = l + 1, . . . ,m,

is an aggregator for X.

Proof By the definition of X, for any āi = (ai1, . . . , a
i
m) ∈ X, it holds that (ai1, . . . , a

i
l) ∈ Y

and (ail+1, . . . , a
i
m) ∈ Z, i = 1, . . . , n. Now, since G and H are aggregators for Y and Z,

it holds that G(ai1, . . . , a
i
l) := (b1, . . . , bl) ∈ Y and H(ail+1, . . . , a

i
m) := (bl+1, . . . , bm) ∈ Z.

Thus, again by the definition of X, F (ā1, . . . , ān) = (b1, . . . , bm) ∈ X. �

Example 2.3 The following two sets X4 and X5 are possibility domains. For X4, we show
that this happens using three agents (thus the non-dictatorial aggregator attesting to that is
ternary) and, for X5, with two (and thus we find a binary non-dictatorial aggregator).

(i) Let X4 = {(0, 1, 2), (1, 2, 0), (2, 0, 1), (0, 0, 0)}. This set has been studied by Dokow and
Holzman (2010a, Example 4). Let F = (f1, f2, f3) be such that, for each j = 1, 2, 3:

fj(x, y, z) =

{
maj(x, y, z) if |{x, y, z}| ≤ 2,

0 else.

Clearly, F is a majority operation. To see that F is an aggregator for X4, we need
to check that F (a, b, c) ∈ X4, only when a, b, c are pairwise distinct vectors of X4. In
this case, F (a, b, c) = (0, 0, 0) ∈ X4, since the input of each fj contains either two
zeros or three pairwise distinct elements.

(ii) Let X5 = X3×X3, where X3 is as in Example 2.2. It is straightforward to check that
(pr2

1, pr
2
1, pr

2
1, pr

2
2, pr

2
2, pr

2
2) is a non-dictatorial aggregator for X5. In fact, a stronger

fact holds: if Y and Z are arbitrary sets, then their Cartesian product Y × Z is a
possibility domain, since it admits non-dictatorial aggregators of any arity n ≥ 2,
defined as the d-th projection prnd on coordinates from Y and as the d′-th projection
prnd′ on coordinates from Z, where 1 ≤ d, d′ ≤ n and d 6= d′.
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2.2 Uniform Possibility Domains

Let F = (f1, . . . , fm) be an n-ary aggregator for X. We say that F is a uniform non-
dictatorial aggregator for X (of arity n) if, for all j ∈ {1, . . . ,m} and for every two-element
subset Bj ⊆ Xj , it holds that:

fj�Bj 6= prnd , for all d ∈ {1, . . . , n}.

We say that a set X is a uniform possibility domain if it admits a uniform non-dictatorial
aggregator.

In the non-Boolean framework, uniform non-dictatorial aggregators were introduced by
Kirousis, Kolaitis, and Livieratos (2019). In the Boolean framework, this notion corre-
sponds to locally non-dictatorial aggregators, which were introduced by Nehring and Puppe
(2010). Following their terminology, we say that a uniform possibility domain in the Boolean
framework is a local possibility domain.

The aforementioned sets X1, X2 and X4 are uniform possibility domains, as X1 and
X4 admit a majority aggregator, while X2 admits a minority aggregator. Clearly, if X is
a uniform possibility domain, then X is also a possibility domain. The converse, however,
is not true. Indeed, suppose that X is a Cartesian product X = Y × Z, where Y ⊆ Al

and Z ⊆ Am−l, with 1 ≤ l < m. If Y or Z is an impossibility domain, then X is not a
uniform possibility domain, although it is a possibility domain, since, as seen earlier, every
Cartesian product of two sets is a possibility domain. It is also clear that if Y and Z are
uniform possibility domains, then so is their Cartesian product Y × Z. In particular, the
Cartesian product X1 ×X2 is a uniform possibility domain.

The next result characterizes uniform possibility domains. It is the stepping stone
towards showing that the following decision problem is solvable in polynomial time: given
a set X of feasible evaluations, is X a uniform possibility domain? We first need to define
some operators. Following Larose (2017), we say that f : An → A is a weak near-unanimity
operation (WNU) if, for all x, y ∈ A, we have that

f(y, x, x, . . . , x) = f(x, y, x, . . . , x) = . . . = f(x, x, x, . . . , y).

In particular, a ternary weak near-unanimity operation is a function f : A3 → A such
that for all x, y ∈ A, we have that f(y, x, x) = f(x, y, x) = f(x, x, y). Thus, the notion of
a ternary weak near-unanimity operation is a common generalization of the notions of a
majority operation and a minority operation.

As with the majority/minority aggregators, we say that X admits a ternary weak near-
unanimity aggregator F = (f1, . . . , fm), if it admits a ternary aggregator every component of
which is a weak near-unanimity operation, that is, for all j = 1, . . . ,m and for all x, y ∈ Xj ,
we have that fj(y, x, x) = fj(x, y, x) = fj(x, x, y).

Finally, consider the Boolean operations ∧,∨ : {0, 1}2 7→ {0, 1}, defined as:

∧(x, y) =

{
0 if x = 0 or y = 0,

1 else

and

∨(x, y) =

{
1 if x = 1 or y = 1,

0 else.
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For any x, y, z ∈ {0, 1}, we define the ternary operations ∧(3) and ∨(3) as follows:

∧(3)(x, y, z) = ∧(∧(x, y), z) and ∨(3) (x, y, z) = ∨(∨(x, y), z).

From now on, to make notation easier, we arbitrarily identify any binary subset B ⊆ A
with {0, 1}, in order for the two symmetric operators ∧,∨ to have meaning on its elements,
without needing to assume each time a different ordering for each such B.

Theorem D Kirousis, Kolaitis, and Livieratos (2019, Theorem 5.5) Let X be a set of
feasible evaluations. The following three statements are equivalent.

1. X is a uniform possibility domain.

2. X admits a ternary aggregator F = (f1, . . . , fm) such that, for all j ∈ {1, . . . ,m} and
for all subsets Bj ⊆ Xj of size 2, it holds that fj�Bj ∈ {∧(3),∨(3),maj,⊕}.

3. X admits a ternary weak near-unanimity aggregator.

2.3 Computational Complexity

We end this section by briefly discussing the polynomial hierarchy (PH), which consists of
a family of complexity classes that contain NP and coNP, and are, in turn, contained in
PSPACE, the class of all decision problems solvable by algorithms that use a polynomial
amount of space.

The complexity classes in the polynomial hierarchy were originally defined via oracles.
An algorithm with access to an oracle O is an algorithm that can, in one step, obtain a
yes/no answer for any instance of the decision problem O. For example, an algorithm with
access to a SAT oracle, can, in one step, learn if a propositional formula that has come up
in its execution, is satisfiable or not. Note that since SAT is NP-complete, this gives the
additional power to the algorithm of deciding any problem in NP in polynomial time. Given
two complexity classes A and B, the class of problems that can be decided by an algorithm
in A, with oracle access to the class B (i.e., with access to some complete problem of B), is
denoted by AB. In this way, the complexity classes of the PH are ΣP

k , ΠP
k and ∆P

k , k ∈ N,
which are recursively defined as follows:

• ΣP
0 = ΣP

0 = ∆P
0 = P and

• ΣP
k+1 is NP with oracle ΣP

k , ΠP
k+1 is coNP with oracle ΣP

k and ∆P
k+1 is P with oracle

ΣP
k , k ∈ N.

It is known that

ΣP
k ∪ΠP

k ⊆ ∆P
k+1 ⊆ ΣP

k+1 ∩ΠP
k+1, ∀k ∈ N.

Furthermore, if for some k ∈ N, we have ΣP
k = ΠP

k , then PH collapses to that level, in the
sense that ΠP

l = ΠP
l , for all l ≥ k. For example, if NP=coNP, then ΣP

k = ΠP
k = NP, for all

k ≥ 1. Every level of PH contains complete problems that are generalizations of SAT. For
example, Σk-SAT is complete for ΣP

k , where Σk-SAT is the following decision problem: given
an expression of the form ∃x1∀x2 . . . Qxkϕ(x1,x2, . . . ,xk), where ϕ is a Boolean formula,
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is this expression true when the quantifiers vary over the set {0, 1}? (Here, Q = ∃ if k is
odd, while Q = ∀ if k is even.)

For a more in depth discussion of the polynomial hierarchy, we refer the interested reader
to Stockmeyer (1976). Finally, recall that NP and coNP can be defined via certificates:

NP ={x ∈ {0, 1}∗ | ∃w ∈ {0, 1}p(|x|) : 〈x,w〉 ∈ P},
coNP ={x ∈ {0, 1}∗ | ∀w ∈ {0, 1}p(|x|) : 〈x,w〉 ∈ P},

Under this notation, w is the certificate, that is, a candidate solution for the instance x,
whose validity can be checked in polynomial time. Following this, we obtain an alternative
description of the polynomial hierarchy via certificates:

ΣP
k+1 =∃ΠP

k = {x ∈ {0, 1}∗ | ∃w ∈ {0, 1}p(|x|) : 〈x,w〉 ∈ ΠP
k },

ΠP
k+1 =∀ΣP

k = {x ∈ {0, 1}∗ | ∀w ∈ {0, 1}p(|x|) : 〈x,w〉 ∈ ΣP
k },

where p(|x|) is polynomial in the size of |x|. We will use both definitions of these complexity
classes to derive our results.

3. Explicitly Given Domains

In subsection 3.1, we present a polynomial-time algorithm for checking if X is a possibility
domain. In subsection 3.2, we prove that this problem is also expressible in Transitive
Closure Logic (TCL). Finally, in subsection 3.3, we provide a polynomial-time algorithm
for checking if a domain X is a uniform possibility domain.

3.1 Tractability of Possibility Domains

Theorems A and C provide necessary and sufficient conditions for a set X to be a possi-
bility domain in the Boolean framework and in the non-Boolean framework, respectively.
Admitting a binary non-dictatorial aggregator is a condition that appears in both of these
characterizations. Our first result asserts that this condition can be checked in polynomial
time.

Theorem 3.1 There is a polynomial-time algorithm for solving the following problem:
given a set X of feasible evaluations, determine whether or not X admits a binary non-
dictatorial aggregator and, if it does, produce one.

We first show that the existence of a binary non-dictatorial aggregator on X is tightly
related to connectivity properties of a certain directed graph HX defined next. If X ⊆ Am
is a set of feasible evaluations, then HX is the following directed graph:

• The vertices of HX are the pairs of distinct elements u, u′ ∈ Xj , for j ∈ {1, . . . ,m}.
Each such vertex will usually be denoted by uu′j . When the coordinate j is understood
from the context, we will often be dropping the subscript j, thus denoting such a vertex
by uu′.

Also, if u ∈ Xj , for some j ∈ {1, . . . ,m}, we will often use the notation uj to indicate
that u is an element of Xj .
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• Two vertices uu′k and vv′l, where k 6= l, are connected by a directed edge from uu′k
to vv′l, denoted by uu′k → vv′l, if there are a total evaluation z ∈ X that extends
the partial evaluation (uk, vl) and a total evaluation z′ ∈ X that extends the partial
evaluation (u′k, v

′
l), such that there is no total evaluation y ∈ X that extends (uk, v

′
l),

and has the property that yi = zi or yi = z′i, for every i ∈ {1, . . . ,m}.

For vertices uu′k, vv
′
l, corresponding to issues k, l (that need not be distinct), we write

uu′k →→ vv′l to denote the existence of a directed path from uu′k to vv′l. Note that if
uu′k → vv′l, then v′vl → u′uk, since we require for the same partial vectors to be extendable.

In the next example, we describe explicitly the graph HX for several different sets X
of feasible voting patters. Recall that a directed graph G is strongly connected if for every
pair of vertices (u, v) of G, there is a (directed) path from u to v.

Finally, consider the graph GX of Definition 1. As will become apparent in the sequel,
HX is strongly connected if and only if GX is. Nevertheless, GX can have more edges, since
the infeasible partial evaluation x can be changed in any j ∈ K in order to become feasible.

Example 3.1 Recall the two Boolean domains X2 = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}
and X3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} of Examples 2.1 and 2.2. Both HX2 and HX3 have six
vertices, namely 01j and 10j, for j = 1, 2, 3. In the figures below, we use undirected edges
between two vertices uu′k and vv′l to denote the existence of both uu′k → vv′l and vv′l → uu′k.

HX2

011

101

012

102

013 103

HX3

011

102

013

101

012

103

Consider 011, 012 of HX2. Since the partial vectors on the first two coordinates, (0, 0)
and (1, 1), extend to (0, 0, 1) and (1, 1, 1), respectively, we need to check if there is a vector
in X2 extending (0, 1), but whose third coordinate is 1. Since (0, 1, 1) /∈ X2, we have that
HX2 contains both edges 011 → 012 and 012 → 011. Now, since the partial vectors, again in
the first two coordinates, (0, 1) and (1, 0) extend to (0, 1, 0) and (1, 0, 0), respectively, and
since neither (0, 0, 0) nor (1, 1, 0) are in X2, we have that 011 ↔ 102. By the above and
because of the symmetric structure of X2, it is easy to see that every two vertices uu′i and
vv′j of HX2 are connected if and only if i 6= j.

For X3, observe that, since no partial vector containing two “1”’s, in any two positions,
extends to an element of X3, there are no edges between the vertices 01i, 01j and 10i, 10j,
for any i, j ∈ {1, 2, 3}, i 6= j. In the same way as with HX2, we get that HX3 is a cycle.

There are two observations to be made, concerning HX2 and HX3. First, they are both
strongly connected graphs. Also, neither X2 nor X3 admit binary non-dictatorial aggrega-
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HX6

011 102

101 012

tors. X2 admits only a minority aggregator (the proof is left for the interested reader) and
X3 is an impossibility domain (as shown in Example 2.2).

Finally, consider X6 := {(0, 1), (1, 0)}. The graph HX6 has four vertices, 011, 101, 012

and 102, and it is easy to see that HX6 has only the following edges:
Observe that X6 is not strongly connected (it is not even connected) and that, in contrast

to the sets X2 and X3, the set X6 admits two binary non-dictatorial aggregators, namely,
(∧,∨) and (∨,∧). In Lemma 3.2, we establish a tight connection between strong connected-
ness and the existence of binary non-dictatorial aggregators.

We now state and prove two lemmas about the graph HX .

Lemma 3.1 Assume that F = (f1, . . . , fm) is a binary aggregator on X.

1. If uu′k → vv′l and fk(u, u
′) = u, then fl(v, v

′) = v.

2. If uu′k →→ vv′l and fk(u, u
′) = u, then fl(v, v

′) = v.

Proof The first part of the lemma follows from the definitions and the fact that F is
conservative. Indeed, if uu′k → vv′l, then there are a total evaluation z = (z1, . . . , zm) ∈ X
that extends (uk, vl) (i.e., zk = u and zl = v) and a total evaluation z′ = (z′1, . . . , z

′
m) ∈ X

that extends (u′k, v
′
l) (i.e., z′k = u′ and z′l = v′), such that there is no total evaluation

in X that extends (uk, v
′
l) and agrees with z or with z′ on every coordinate. Consider

the total evaluation (f1(z1, z
′
1), . . . , fm(zm, z

′
m)), which is in X because F is an aggregator

on X. Since each fj is conservative, we must have that fj(zj , z
′
j) ∈ {zj , z′j}, for every j,

hence fl(zl, z
′
l) = fl(v, v

′) ∈ {v, v′}. Consequently, if fk(u, u
′) = u, then we must have

fl(v, v
′) = v, else (f1(z1, z

′
1), . . . , fm(zm, z

′
m)) extends (uk, v

′
l) and agrees with z or with z′

on every coordinate. The second part of the lemma easily follows from the first part by
induction. �

Lemma 3.2 X admits a binary non-dictatorial aggregator if and only if the directed graph
HX is not strongly connected.

Before delving into the proof, consider the graphs of Example 3.1. Using the fact that the
graphs HX2 and HX3 are strongly connected and also using the second item of Lemma
3.1, it is easy to see that X2 and X3 admit no binary non-dictatorial aggregator; indeed,
let F = (f1, f2, f3) be a binary aggregator of either of these two sets and suppose that
f1(0, 1) = 0. Since in both graphs HX2 and HX3 , there are paths from 011 to every other
vertex, it follows that fj = pr2

1, j = 1, 2, 3. If f1(0, 1) = 1, we get that fj = pr2
2, j = 1, 2, 3,

in the same way.
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In contrast, consider HX6 and let G = (g1, g2) be a pair of binary functions with
g1(0, 1) = 0. For G to be an aggregator, Lemma 3.1 forces us to set g2(1, 0) = 1. But
now, by setting g1(1, 0) = 0, and thus g2(0, 1) = 1, we get that (g1, g2) = (∧,∨) is a
non-dictatorial binary aggregator for X6.

Proof of Lemma 3.2 We first show that if X admits a binary non-dictatorial aggregator,
then HX is not strongly connected. In the contrapositive form, we show that if HX is
strongly connected, then X admits no binary non-dictatorial aggregator. This is an easy
consequence of the preceding Lemma 3.1. Indeed, assume that HX is strongly connected
and let F = (f1, . . . , fm) be a binary aggregator on X. Take two distinct elements x
and x′ of X1. Since F is conservative, we have that f1(x, x′) ∈ {x, x′}. Assume first
that f1(x, x′) = x. We claim that fj = pr2

1, for every j ∈ {1, . . . ,m}. To see this, let
y and y′ be two distinct elements of Xj , for some j ∈ {1, . . . ,m}. Since HX is strongly
connected, we have that xx′1 →→ yy′j . Since also f1(x, x′) = x, Lemma 3.1 implies that

fj(y, y
′) = y = pr2

1(y, y′) and so fj = pr2
1. Next, assume that f1(x, x′) = x′. We claim that

fj = pr2
2, for every j ∈ {1, . . . ,m}. To see this, let y and y′ be two distinct elements of

Xj , for some j ∈ {1, . . . ,m}. Since HX is strongly connected, we have that yy′j →→ xx′1,
hence, if fj(y, y

′) = y, then, Lemma 3.1, implies that f1(x, x′) = x, which is a contradiction
because x 6= x′. Thus, fj(y, y

′) = y′ and so fj = pr2
2.

For the converse, assume that HX is not strongly connected and let uu′k, vv
′
l be two

vertices of HX such that there is no path from uu′k to vv′l in HX , that is, it is not true
that uu′k →→ vv′l. Let V1, V2 be a partition of the vertex set such that uu′k ∈ V1, vv

′
l ∈ V2,

and there is no edge from a vertex in V1 to a vertex in V2. We will now define a binary
aggregator F = (f1, . . . , fm) and prove that it is non-dictatorial.

Given z, z′ ∈ X, we set fj(zj , z
′
j) = zj if zz′j ∈ V1, and we set fj(zj , z

′
j) = z′j if zz′j ∈ V2,

for j ∈ {1, . . . ,m}. Since uu′k ∈ V1, we have that fk 6= pr2
2; similarly, since vv′l ∈ V2, we have

that fl 6= pr2
1. Consequently, F is not a dictatorial function on X. Thus, what remains to

be proved is that if z, z,′ ∈ X, then F (z, z′) ∈ X. For this, we will show that if F (z, z′) 6∈ X,
then there is an edge from an element of V1 to an element of V2, which is a contradiction.

Assume that q = F (z, z′) 6∈ X. Let K be a minimal subset of {1, . . . ,m} such that
q� K cannot be extended to a total evaluation w in X that agrees with z or with z′ on
{1, . . . ,m} \K (i.e., if j ∈ {1, . . . ,m} \K, then wj = zj or wj = z′j). Since z′ is in X, it
does not extend q� K, hence there is a number s ∈ K such that qs = fs(zs, z

′
s) = zs 6= z′s.

It follows that the vertex zz′s is in V1. Similarly, since z is in X, it does not extend q� K,
hence there is a number t ∈ K such that qt = ft(zt, z

′
t) = z′t 6= zt. It follows that the

vertex zz′t is in V2. Consequently, there is no edge from zz′s to zz′t in HX . We will arrive
at a contradiction by showing that zz′s → zz′t, that is, there is an edge zz′s to zz′t in HX .
Consider the set K \ {t}. By the minimality of K, there is a total evaluation w in X that
extends q� K \ {t} and agrees with z or with z′ outside K \ {t}. In particular, we have that
ws = qs = zs and wt = zt. Similarly, by considering the set K \ {s}, we find that there
is a total evaluation w′ in X that extends q� K \ {s} and agrees with z or with z′ outside
K \ {s}. In particular, we have that w′s = z′s and wt = qt = z′t. Note that w and w′ agree
on K \ {s, t}. Since q� K does not extend to a total evaluation that agrees with z or with
z′ outside K, we conclude that there is no total evaluation y in X that extends (zs, z

′
t)
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and agrees with w or with w′ on every coordinate. Consequently, zz′s → zz′t, thus we have
arrived at a contradiction. �

Proof of Theorem 3.1: Given a set X of feasible evaluations, the graph HX can be
constructed in time bounded by a polynomial in the size |X| of X (in fact, in time O(|X|5).
There are well-known polynomial-time algorithms for testing if a graph is strongly connected
and, in case it is not, producing the strongly connected components (scc) of the graph; for
example, Kosaraju’s algorithm presented by Sharir (1981) and Tarjan (1972). Consequently,
by Lemma 3.2, there is a polynomial-time algorithm for determining whether or not a given
set X admits a binary non-dictatorial aggregator. Moreover, if X admits such an aggregator,
then one can be constructed in polynomial-time from the strongly connected components
of HX via the construction in the proof of Lemma 3.2. �

The next corollary follows from Theorem 3.1 and Theorem B.

Corollary 3.1 There is a polynomial-time algorithm for the following decision problem:
given a set X of feasible evaluations, is X totally blocked?

We now turn to the problem of detecting possibility domains in the non-Boolean frame-
work.

Theorem 3.2 There is a polynomial-time algorithm for solving the following problem:
given a set X of feasible evaluations, determine whether or not X is a possibility domain
and, if it is, produce a binary non-dictatorial aggregator, or a ternary majority aggregator
or a ternary minority aggregator for X.

Proof It is straightforward to check that, by Theorem C and Theorem 3.1, it suffices to
show that there is a polynomial-time algorithm that, given X, detects whether or not X
admits a majority aggregator or a minority aggregator, and, if it does, produces such an
aggregator.

Let X be a set of feasible evaluations, where I = {1, . . . ,m} is the set of issues and A
is the set of the position values. We define the disjoint union A of the set of position values
as:

A =
⊔m
j=1A =

⋃m
j=1{(x, j) | x ∈ A}.

We also set

X̃ = {((x1, 1), . . . , (xm,m)) | (x1, . . . , xm) ∈ X} ⊆ Am.

We will show that we can go back-and-forth between conservative majority or minority
polymorphisms for X̃ and majority or minority aggregators for X.

Let f : An → A be a conservative polymorphism for X̃. We define the m-tuple F =
(f1, . . . , fm) of n-ary functions f1, . . . , fm as follows: if x1

j , . . . , x
n
j ∈ Xj , for j ∈ {1, . . . ,m},

then we set fj(x
1
j , . . . , x

n
j ) = yj , where yj is such that f((x1

j , j), . . . , (x
n
j , j)) = (yj , j). Such a

yj exists and is one of the xij ’s because f is conservative, and hence f((x1
j , j), . . . , (x

n
j , j)) ∈

{(x1
j , j), . . . , (x

n
j , j)}. It is easy to see that F is an aggregator for X. Moreover, in case

154



On the Computational Complexity of Non-Dictatorial Aggregation

n = 3, if f is a majority or a minority operation on X̃, then F is a majority or a minority
aggregator on X.

Next, let F = (f1, . . . , fm) be a (ternary) majority or a minority aggregator for X. We
define a ternary function f : A3 → A as follows. Let (x, j), (y, k), (z, l) be three elements of
A.

• If j = k = l, then we set f((x, j), (y, k), (z, l)) = (fj(x, y, z), j).

• If j, k, l are not all equal, then if at least two of (x, j), (y, k), (z, l) are equal to each
other, we set

f((x, j), (y, k), (z, l)) = maj((x, j), (y, k), (z, l)),

if F is a majority aggregator on X, and we set
f((x, j), (y, k), (z, l)) = ⊕((x, j), (y, k), (z, l)),

if F is a minority aggregator on X;

• otherwise, we set f((x, j), (y, k), (z, l)) = (x, j).

It is easy to see that if F is a majority or a minority aggregator for X, then f is a conservative
majority or a conservative minority polymorphism on X̃. It follows thatX admits a majority
or a minority aggregator if and only if X̃ is closed under a conservative majority or minority
polymorphism. Bessiere, Carbonnel, Hebrard, Katsirelos, and Walsh (2013, Theorem 1)
and Carbonnel (2016b, Theorem 1) design polynomial-time algorithms that detect if a given
constraint language Γ has a conservative majority or a conservative minority polymorphism,
respectively, and, when it has, compute such a polymorphism. Here, we apply these results
to Γ = {X̃}. �

We end this subsection by showing that using the graph HX , we can compute a binary
aggregator for X that has as many symmetric components as possible. This will allow us
to obtain better complexity bounds in Section 4.

Given a domain X ⊆ Am and a binary aggregator F = (f1, . . . , fm) for X, we say that F
is a maximum symmetric aggregator for X if, for every binary aggregator G = (g1, . . . , gm)
for X, for every j ∈ {1, . . . ,m} and for all binary Bj ⊆ Xj , if gj�Bj is symmetric, then
so is fj�Bj . Note that a maximum symmetric aggregator does not necessarily have any
symmetric components, for example in case X is an impossibility domain. Furthermore, if
F and G are both maximum symmetric aggregators for X, then they necessarily have the
same symmetric components.

Lemma 3.3 Every domain X admits a maximum symmetric aggregator.

Proof Assume that there is no maximum symmetric aggregator for X. Then, there exist
two indices i, j ∈ {1, . . . ,m} and two binary subsets Bi ⊆ Xi, Bj ⊆ Xj , such that:

• there are two binary aggregators F = (f1, . . . , fm) and G = (g1, . . . , gm) such that
fi�Bi and gj�Bj are symmetric and

• there is no binary aggregator H = (h1, . . . , hm) such that both hi�Bi and hj�Bj are
symmetric.
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Let H = (h1, . . . , hm) be the m-tuple of binary functions such that, for all k ∈ {1, . . . ,m}
and for all x, y ∈ Xk: hk(x, y) := gk(fk(x, y), fk(y, x)). That H is an aggregator for X
follows easily from the fact that F and G are. Let also Bi = {a, b} and Bj = {c, d}. Since
fi�Bi is symmetric, fi(a, b) = fi(b, a), thus:

hi(a, b) = gi(fi(a, b), fi(b, a)) = gi(fi(a, b), fi(a, b)) = fi(a, b).

It follows that hi�Bi is symmetric. Now, by the hypothesis, fj�Bj is not symmetric. Assume
w.l.o.g. that fj�Bj = pr2

1. Thus, it holds that:

hj(c, d) = gi(fi(c, d), fi(d, c)) = gi(c, d),

which means that hj�Bj is symmetric. Contradiction. �

Remark 1 Note that in Lemma 3.3 we in fact show that given two binary aggregators F
and G that are symmetric on some binary Bi ⊆ Xi and Bj ⊆ Xj, then we can always
construct a binary aggregator H that is symmetric in both Bi and Bj.

To proceed, we discuss a result concerning the structure of the graph HX . We say that
two scc’s Sp and Sq of HX are related if there exists a j ∈ {1, . . . ,m} and two distinct
elements u, u′ ∈ Xj , such that uu′j ∈ Sp and u′uj ∈ Sq.

Lemma 3.4 Let X be a set of feasible voting patterns and assume that Sp, Sq and Sr are
three pairwise distinct scc’s of HX . Then, Sp, Sq and Sr cannot be pairwise related.

Proof To obtain a contradiction, assume they are. Then, there exist (not necessarily
distinct) indices i, j, k ∈ {1, . . . ,m} and pairwise distinct elements u, u′ ∈ Xi, v, v

′ ∈ Xj

and w,w′ ∈ Xk such that uu′i, vv
′
j ∈ Sp, ww

′
k, u

′ui ∈ Sq and v′vj , w
′wk ∈ Sr. Since

uu′i →→ vv′j and vv′j →→ uu′i, it follows that v′vj →→ u′ui and u′ui →→ v′vj . Thus, Sq
and Sr form together an scc of HX . Contradiction. �

We are now ready to show that we can find a maximum symmetric aggregator for a
domain X, in polynomial time in its size.

Corollary 3.2 There is a polynomial-time algorithm for solving the following problem:
given a set X of feasible evaluations, produce a maximum symmetric aggregator for X.

Proof Construct the graph HX . For a set of vertices S, let N+(S) and N−(S) be its
extended outwards and inwards neighborhood respectively in HX . That is, N+(S) = S ∪
{uu′i | ∃vv′j ∈ S : vv′j →→ uu′i} and N−(S) = S ∪ {uu′i | ∃vv′j ∈ S : uu′i →→ vv′i}.

We define the m-tuple of binary functions F = (f1, . . . , fm) as follows. If HX is strongly
connected, set fj = pr2

1 for all j ∈ {1, . . . ,m}. Else, assume w.l.o.g. that HX is connected.
If it is not, we can deal with each connected component independently in the same way.
Assume that S1, . . . , St, t ≥ 2, are the scc’s of HX , in their topological order.

1. For each uu′i ∈ S1, set fi(u, u
′) = u′.

2. Let S be the set of vertices of every scc of HX that is related with S1. For each
vv′j ∈ N+(S), set fj(v, v

′) = v.
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3. Let S′ be the set of vertices of every scc of HX that is related with an scc of S. Note
that due to Lemma 3.4, such an scc cannot be related with S1. For each ww′j ∈ N−(S),
set fj(w,w

′) = w′.

Note that any remaining scc must be in another connected component. If this is the case,
we proceed as above for each such connected component. Finally, to be formally correct,
let fj(a, b) = a for every j ∈ {1, . . . ,m} and a, b ∈ A such that either a or b /∈ Xj .

We have already shown that, given X, HX can be constructed in polynomial time in
its size and its scc’s can also be computed in linear time to the size of HX . Steps 1 − −3
can easily be implemented by checking once every scc of HX . Thus, the overall process is
clearly polynomial.

It remains to show that F = (f1, . . . , fm) is indeed a maximum symmetric aggregator
for X. To obtain a contradiction, suppose it is not. Then, there exist a i ∈ {1, . . . ,m}, a
binary subset Bi ⊆ Xi and a binary aggregator G = (g1, . . . , gm) for X such that fi�Bi is
not symmetric, whereas gi�Bi is.

Assume that Bi = {u, u′}. Since G is a binary aggregator for X and gi�Bi is symmetric,
by Lemma 3.1 there are no paths uu′i →→ u′ui or u′ui →→ uu′i in HX . Consequently, there
are two distinct scc’s of HX , say Sp and Sq, such that uu′i ∈ Sp and u′ui ∈ Sq and there
are no paths connecting a vertex in Sp with a vertex in Sq. Given the way we constructed
F = (f1, . . . , fm), the vertices of both these scc’s are either all in S or they are all in S′. We
show that in both cases, there exist three pairwise distinct scc’s of HX that are pairwise
related. This is a contradiction, by Lemma 3.4.

First, assume that the vertices of Sp and Sq are all in S. The case where the vertices
of Sp and Sq are all in S′ is analogous. If both of them are related with S1, then S1, Sp
and Sq are pairwise related. Contradiction. Else, without loss of generality, assume that
Sp is not related to S1. Then, there exists some scc Sr of HX that is related with S1, such
that Sp ⊆ N+(Sr). Since Sr is related with S1, there is some vertex vv′j ∈ S1 such that
v′vj ∈ Sr. Then v′vj →→ uu′i, which implies that u′ui →→ vv′j . Contradiction, since we
took the scc’s of HX in their topological order. �

A direct implication of Corollary 3.2, that will be used later, is the following.

Corollary 3.3 There is a polynomial-time procedure that, given the graph HX , the proce-
dure produces a maximum symmetric aggregator F for X.

3.2 Expressibility in Transitive Closure Logic

We now establish that Theorem 3.1 can be refined to show that testing whether X admits
a binary non-dictatorial aggregator can be expressed in Transitive Closure Logic. Before
spelling out the technical details, we present a minimum amount of the necessary back-
ground from mathematical logic and descriptive complexity.

First-Order Logic, Least Fixed-Point Logic, and Transitive Closure Logic First-
order logic is a formalism for specifying properties of mathematical objects, such as graphs,
trees, partial orders, and, more generally, relational structures. By definition, a relational
schema is a tuple R = (R′1, . . . , R

′
m) of relational symbols R′i, 1 ≤ i ≤ m, each of which

has a specified natural number ri as its arity. A relational structure over such a schema
R is a tuple of the form A = (A,R1, . . . , Rm), where A is a set called the universe of A
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and each Ri is a relation on A of arity ri, 1 ≤ i ≤ m. For example, a graph is a relational
structure of the form G = (V,E), where E is a binary relation on V . A finite relational
structure is a relational structure with a finite set as its universe. A formula of first-order
logic is an expression built from atomic formulas of the form xi = xj and Rk(x1, . . . , xrk)
using conjunctions, disjunctions, negations, universal, and existential quantification. The
semantics of formulas of first-order logic are given by interpreting the quantifiers ∃ and
∀ as ranging over the universe of the relational structure at hand. For example, in the
case of graphs, the first-order formula ∀x∀y(E(x, y)∨ ∃z(E(x, z)∧E(z, y)) asserts that the
graph has diameter at most 2. For the precise definition of the syntax and the semantics of
first-order logic, we refer the reader to Enderton (2001).

It is well known that first-order logic has rather limited expressive power on finite
structures. In particular, there is no formula of first-order logic that expresses connectivity
on finite graphs; this means that there is no formula ψ of first-order logic such that a finite
graph G satisfies ψ if and only if G is connected. Moreover, the same holds true for other
properties of finite graphs of algorithmic significance, such as acyclicity and 2-colorability ;
for details, see, for example, Libkin (2004). Intuitively, the reason for these limitations of
first-order logic is that first-order logic on finite structures lacks a recursion mechanism.

Least Fixed-Point Logic (LFP) augments first-order logic with a recursion mechanism
in the form of least fixed-points of positive first-order formulas. More formally, one consid-
ers first-order formulas of the form ϕ(x1, . . . , xn, S), where ϕ(x1, . . . , xn, S) is a first-order
formula over a relational schema with an extra n-ary relation symbol S such that every
occurrence of S is within an even number of negation symbols. Every such formula has
a least fixed-point, that is, for every relational structure A, there is a smallest relation S∗

such that S∗ = {(a1, . . . , an) ∈ An : A |= ϕ(a1, . . . , an, S
∗)}. We use the notation ϕ∞(x, y)

to denote a new formula that expresses the least fixed-point of ϕ(x1, . . . , xn, S). For exam-
ple, if ϕ(x1, x2, S) is the formula E(x1, x2) ∨ ∃z(E(x1, z) ∧ S(z, x2)), then, for every graph
G = (V,E), the least fixed-point ϕ∞(x1, x2) of this formula defines the transitive closure of
the edge relation E. Consequently, the expression ∀x1∀x2ϕ

∞(x1, x2) is a formula of least
fixed-point logic LFP that expresses connectivity. For a different example, let ψ(x, S) be
the formula ∀y(E(y, x) → T (y)), where T is a unary relation symbol. It can be verified
that, for every finite graph G = (V,E), the least fixed-point ψ∞(x) defines the set of all
nodes v in V such that no path containing v leads to a cycle. Consequently, the expression
∀xψ∞(x) is a formula of least fixed-logic LFP that expresses acyclicity on finite graphs.

Transitive Closure Logic (TCL) is the fragment of LFP that allows for the formation of
the transitive closure of first-order definable relations. Thus, if θ(x1, . . . , xk, xk+1, . . . , x2k)
is a first-order formula, then we can form in TCL the least fixed point of the formula:

θ(x1, . . . , xk, xk+1, . . . , x2k) ∨
∃z1 · · · ∃zk(θ(x1, . . . , xk, z1, . . . , zk) ∧ S(z1, . . . , zk, xk+1, . . . , x2k))

As regards their expressive power, it is known that FO ⊂ TCL ⊂ LFP on the class of
all finite graphs. In other words, FO is strictly less expressive than TLC, while TLC is
strictly less expressive than LFP on the class of all finite graphs. As regards connections
to computational complexity, it is known FO is properly contained in LOGSPACE, TLC
is properly contained in NLOGSPACE, and LFP is properly contained in PTIME on the
class of all finite graphs.
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The situation, however, changes if ordered finite graphs are considered, that is, finite
structures of the form G = (V,E,≤), where E is a binary relation on V and ≤ is a total
order on V that can be used in LFP and in TCL formulas. In this setting, it is known
that TLC = NLOGSPACE and that LFP = PTIME (the latter result is known as the
Immerman-Vardi Theorem); thus, separating TLC from LFP on the class of all ordered
graphs is equivalent to showing that NLOGSPACE is properly contained in PTIME, which
is an outstanding open problem in computational complexity. Furthermore, similar results
hold for the class of all finite structures and the class of all ordered finite structure over
a relational schema containing at least one relation symbol of arity at least 2. These
results have been established in the context of descriptive complexity theory, which studies
the connections between computational complexity and expressibility in logics on finite
structures. We refer the reader to the monographs Immerman (1999); Libkin (2004) for
detailed information.

Binary Non-dictatorial Aggregators and Transitive Closure Logic After the pre-
ceding digression into logic and complexity, we return to the question of when a domain X
of feasible evaluations admits a binary non-dictatorial aggregation.

We begin by first encoding a set X of feasible evaluations by a suitable finite structure.
To this effect, we consider a relational schema R consisting of three unary relations X ′,
I ′, V ′, and one ternary relation R′. Intuitively, X ′ will be interpreted by a set of feasible
evaluations, I ′ will be interpreted by the set of issues at hand, and V ′ will be interpreted
by the set of positions over all issues.

Given a set X ⊆ Am of feasible evaluations, we let A(X) = (A,X, I, V ) be the following
finite R-structure:

• A = X ∪ I ∪ V , where I = {1, . . . ,m} is the set of issues, and V is the union of all
positions over all issues.

• R is the ternary relation consisting of all triples (x, j, v) such that x ∈ X and v is the
j-th coordinate of x, that is, the position for issue j in x.

It is clear that X can be identified with the finite structure A(X). Conversely, if we are
given a finite R-structure A in which R ⊆ X × I × V , then X can be thought of as a set
of feasible evaluations over the issues I.

Lemma 3.5 There is a first-order formula ϕ(u, u′, k, v, v′, l) such that, for every set X of
feasible evaluations, we have that ϕ(u, u′, k, v, v′, l) defines the edge relation of the directed
graph HX , when interpreted on the finite structure A(X).

Proof Consider the following first-order formula ϕ(u, u′, k, v, v′, l):

∃z∃z′((X ′(z) ∧X ′(z′) ∧R′(z, k, u) ∧R′(z, l, v) ∧R(z′, k, u′) ∧R(z′, l, v′))

∧¬∃y(X ′(y) ∧R′(y, k, u) ∧R′(y, l, v′)
∧∀j∀w(R′(y, j, w)→ (R′(z, j, w) ∨R′(z′, j, w))))).

It is immediate from the definition of HX that the formula φ(u, u′, k, v, v′, l) defines indeed
the edge relation of HX . �

We now have all the concepts and tools needed to obtain the following result.
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Theorem 3.3 The following problem is expressible in Transitive Closure Logic TCL: given
a set X of feasible evaluations (encoded as the finite structure A(X)), does X admit a
binary, non-dictatorial aggregator? Hence, this problem is also expressible in Least Fixed
Point Logic LFP.

Proof The result follows immediately from Lemma 3.2, Lemma 3.5, and the definition of
Transitive Closure Logic. �

As stated earlier, every property that can be expressed in TCL is in NLOGSPACE. Thus,
the problem of detecting if X admits a binary non-dictatorial aggregator is in NLOGSPACE.
Note that membership of this problem in NLOGSPACE could also be inferred from Lemma
3.2 and the observation that the graph HX can be constructed in LOGSPACE. Lemma 3.5
strengthens this observation by showing that HX is actually definable in first-order logic,
which is a small fragment of LOGSPACE.

Now, let X ⊆ {0, 1}m. We prove the following result.

Lemma 3.6 Checking whether a domain X ⊆ {0, 1}m is affine can be done in LOGSPACE.

Proof Suppose we have a Turing Machine with a read-only tape containing the tuples of
X. In the work tape, we store triples (i1, i2, i3) of integers in {1, . . . , n} in binary. This
takes O(log n) space. The integer ij points to the ij-th element of X. We want to examine
if the sum modulo 2 of these three elements is also in X.

To do that, for each such triple, we examine all integers i4 ≤ n one at time. This adds
another log n number of cells in the work tape. We then store all integers j ≤ m binary,
one at a time, using another logm bits to the work tape.

Once we have i1, i2, i3, i4, and j on the work tape, we check whether the entry ai4j =

⊕(a11
j , a

i2
j , a

i3
j ). If it is, we go to the next j. If it is not, we go to the next i4, and when

we are done with the triple (i1, i2, i3), we go to the next such triple. If for every triple
(i1, i2, i3), we find a suitable integer i4, X is affine. Else, it is not. �

By Corollary 2.1, Lemma 3.6 and the discussion following Theorem 3.3, we obtain the
following result.

Theorem 3.4 The following problem is in NLOGSPACE: given a set X ⊆ {0, 1}m of
feasible evaluations in the Boolean framework, decide whether or not X is a possibility
domain.

3.3 Tractability of Uniform Possibility Domains

Recall that a constraint language is a finite set Γ of relations of finite arities over a finite non-
empty set A. The conservative constraint satisfaction problem for Γ , denoted by c-CSP(Γ ),
is the constraint satisfaction problem for the constraint language Γ that consists of the
relations in Γ and, in addition, all unary relations on A. Intuitively, this amounts to the
ability to arbitrarily restrict the domain of each variable in a given instance.

Bulatov (2006, 2011) established a dichotomy theorem for the computational complexity
of c-CSP(Γ ): if for every two-element subset B of A, there is a conservative polymorphism
f of Γ such that f is binary and f�B ∈ {∧,∨} or f is ternary and f�B ∈ {maj,⊕}, then
c-CSP(Γ ) is solvable in polynomial time; otherwise, c-CSP(Γ ) is NP-complete. Carbonnel
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showed that the boundary of the dichotomy for c-CSP(Γ ) can be checked in polynomial
time.

Theorem E Carbonnel (2016a, Theorem 4) There is a polynomial-time algorithm for the
following problem: given a constraint language Γ on a set A, determine whether or not for
every two-element subset B ⊆ A, there is a conservative polymorphism f of Γ such that
either f is binary and f� B ∈ {∧,∨} or f is ternary and f� B ∈ {maj,⊕}. Moreover, if
such a polymorphism exists, then the algorithm produces one in polynomial time.

The final results of this section is about the complexity of detecting uniform possibility
domains.

Theorem 3.5 There is a polynomial-time algorithm for solving the following problem:
given a set X of feasible evaluations, determine whether or not X is a uniform possibility
domain and, if it is, produce a ternary weak near-unanimity aggregator for X.

In what follows, given a two-element set B, we will arbitrarily identify its elements with 0
and 1. Consider the functions ∧(3) and ∨3 on {0, 1}3, where ∧3(x, y, z) := (∧(∧(x, y), z))
and ∨3(x, y, z) := (∨(∨(x, y), z)). It is easy to see that the only ternary, conservative, weak
near-unanimity functions on {0, 1} are ∧(3), ∨3, maj, and ⊕. We will also make use of the
following lemma, which gives an alternative formulation of the boundary of the dichotomy
for conservative constraint satisfaction.

Lemma 3.7 Let Γ be a constraint language on set A. The following two statements are
equivalent.

1. For every two-element subset B ⊆ A, there exists a conservative polymorphism f of
Γ (which, in general, depends on B), such that f is binary and f�B ∈ {∧,∨} or f is
ternary and f�B ∈ {maj,⊕}.

2. Γ has a ternary, conservative, weak near-unanimity polymorphism.

Proof (Sketch) (1 ⇒ 2) Given a two-element subset B ⊆ A and a binary conservative
polymorphism f of Γ such that f�B ∈ {∧,∨}, define f ′ to be the ternary operation such
that f ′(x, y, z) = f(f(x, y), z), for all x, y, z ∈ A. It is easy to see that f ′ is a conservative
polymorphism of Γ as well and also that f ′�B ∈ {∧(3),∨(3)}.

The hypothesis and the preceding argument imply that, for each two-element subset
B ⊆ A, there exists a ternary conservative polymorphism f of Γ (which, in general, depends
on B) such that f�B ∈ {∧(3),∨(3),maj,⊕}. For each two-element subset B ⊆ A, select such
a polymorphism and let f1, . . . , fN , N ≥ 1, be an enumeration of all these polymorphisms.
Clearly, the restriction of each f i to its respective two element subset is a weak near-
unanimity operation.

Consider the ‘�’ operator that takes as input two ternary operations f, g : A3 → A and
returns as output a ternary operation f � g defined by

(f � g)(x, y, z) := f(g(x, y, z), g(y, z, x), g(z, x, y)).
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If f, g are conservative polymorphisms of Γ , then so is (f � g). Also, if B is a two-element
subset of A such that f�B or g�B is a weak near-unanimity operation, then so is (f � g)�B.
Consider now the iterated diamond operation h with

h := f1 � (f2 � (. . . � (fN−1 � fN ) . . .)).

By the preceding discussion, h is a conservative polymorphism such that h�B is a weak
near-unanimous operation for every two-element subset B of A, hence h itself is a weak
near-unanimity, conservative, ternary operation of Γ .

(2 ⇒ 1) Let h be a ternary, conservative, weak near-unanimity polymorphism of Γ .
Thus, for every two-element subset B ⊆ A, we have that h�B ∈ {∧(3),∨(3),maj,⊕}.

If there is a two-element subset B ⊆ A such that h�B ∈ {∧(3),∨(3)}, then consider
the binary function g defined by g(x, y) := h(x, x, y) = h(pr2

1(x, y), pr2
1(x, y), pr2

2(x, y)).
Obviously, g is a binary conservative polymorphism of Γ ; moreover, for every two-element
subset B ⊆ A, if h�B ∈ {∧(3),∨(3)}, then g�B ∈ {∧,∨}. �

For a detailed proof of Lemma 3.7, see Kirousis, Kolaitis, and Livieratos (2019, Theorem
5.5).

Proof of Theorem 3.5 By Theorem D, a set X of feasible evaluations is a uniform
possibility domain if and only if there is a ternary aggregator F = (f1, . . . , fm) such that
each fj is a weak near-unanimity operation, that is, for all j ∈ {1, . . . ,m} and for all
x, y ∈ Xj , we have that fj(x, y, y) = fj(y, x, y) = fj(y, y, x). As in the proof of Theorem 3.2,
we can go back-and-forth between X and the set X̃ and verify that X is a uniform possibility
domain if and only if X̃ has a ternary, conservative, weak near-unanimity polymorphism.
Theorem E and Lemma 3.7 then imply that the existence of such a polymorphism can be
tested in polynomial time, and that such a polymorphism can be produced in polynomial
time, if one exists. �

In the Boolean case, we can prove the tractability of detecting locally non-dictatorial
aggregators without using Theorem E. This will allow us to obtain better complexity bounds
in Section 4. In the Boolean case, Theorem D has been strengthened by Diaz et al.:

Corollary 3.4 Diáz, Kirousis, Kokonezi, and Livieratos (2019, Corollary 4.1) A Boolean
domain X ⊆ {0, 1}m is a local possibility domain if and only if it admits a ternary aggregator
F = (f1, . . . , fm) such that fj ∈ {∧(3),∨(3),⊕}, for j = 1, . . . ,m.

Thus, we can obtain the following algorithm in the Boolean case.

Corollary 3.5 There is a polynomial-time algorithm for solving the following problem:
given a Boolean set X ⊆ {0, 1}m of feasible evaluations, determine whether or not X is
a local possibility domain and, if it is, produce a ternary aggregator F = (f1, . . . , fm) for X
such that fj ∈ {∧(3),∨(3),⊕}, j = 1, . . . ,m.

Proof Let F = (f1, . . . , fm) be the binary maximum symmetric aggregator obtained by
Corollary 3.2 and let I, J ⊆ {1, . . . ,m} such that fi = ∧ for all i ∈ I and fj = ∨ for all
j ∈ J (both I and J can be empty). We prove that X is a local possibility domain if and
only if it admits the ternary aggregator G = (g1, . . . , gm), where gi = ∧(3) for all i ∈ I,
gj = ∨(3) for all j ∈ J and gk = ⊕, for all k ∈ {1, . . . ,m} \ (I ∪ J). Since we can obtain F
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in polynomial-time in the size of X and since checking whether G is an aggregator for X
can be done also in polynomial time, the procedure is clearly polynomial in the size of X.

That X is a local possibility domain if it admits G is self-evident. Assume now that

X is a local possibility domain. Let also F (3) = (f
(3)
1 , . . . , f

(3)
m ) be the m-tuple of ternary

functions, where

f
(3)
j (x, y, z) = fj(fj(x, y), z),

j = 1, . . . ,m. It is straightforward to check that (i) F (3) is an aggregator for X, (ii)

f
(3)
i = ∧(3) for all i ∈ I, (iii) f

(3)
j = ∨(3) for all j ∈ J and (iv) f

(3)
k ∈ {pr3

1, pr3
3} for all

k ∈ {1, . . . ,m} \ (I ∪ J).

Now, since X is a local possibility domain, by Corollary 3.4, X admits a ternary aggre-
gator H = (h1, . . . , hm), such that hj ∈ {∧(3),∨(3),⊕}, j = 1, . . . ,m. If H = G, there is
nothing to prove.

First, assume that there is some k /∈ I ∪ J , such that hk ∈ {∧(3),∨(3)}. Now, let
G′ = (g′1, . . . , g

′
m) := H � F (3) and F ′ = (f ′1, . . . , f

′
m) be a binary m-tuple of functions such

that:

f ′j(x, y) := g′(x, x, y), for all x, y ∈ A.

It holds that G′ is an aggregator for X such that g′j ∈ {∧(3),∨(3)}, for all j ∈ I ∪ J ∪ {k}.
Thus, F ′ is a non-dictatorial aggregator and f ′j is symmetric for all j ∈ I ∪ J ∪ {k}.
Contradiction, since F is a maximum symmetric aggregator and fk is not symmetric.

Finally, suppose that there is some j ∈ I ∪ J such that hk = ⊕, for all k ∈ ({1, . . . ,m} \
(I ∪ J)) ∪ {j}. Then, G = H � F (3) and thus is an aggregator for X.

4. Implicitly Given Domains

In Subsection 4.1, we describe the logic-based approach, where the domain X is given im-
plicitly via an integrity constraint or an agenda. In Subsections 4.2 and 4.3, we establish
complexity bounds for checking whether a domain is a possibility domain or a local possibil-
ity domain in these two variants of the logic-based approach (recall that a local possibility
domain is a uniform possibility domain in the Boolean framework). Finally, in Subsection
4.4, we extend these results to other types of non-dictatorial aggregation that have been
used in the literature.

4.1 The Logic-Based Approach

In this subsection, we present two ways that a set X of feasible voting patterns can be given
implicitly: as an integrity constraint and as an agenda. Both variants are in the Boolean
framework and have been studied extensively in the literature.

Suppose that we have a propositional formula φ on m variables x1, . . . , xm. Each variable
xj corresponds to the j-th issue, j = 1, . . . ,m, where the possible positions are 0 and 1. Let
Xφ := Mod(φ) be the set consisting of all m-ary vectors of satisfying truth assignments of
φ. In this setting, we say that φ is an integrity constraint.
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For the second variant, suppose that we have an agenda φ̄ = (φ1, . . . , φm) of m propo-
sitional formulas. For a formula ψ and an x ∈ {0, 1}, let

ψx :=

{
ψ if x = 1,

¬ψ if x = 0.
.

Finally, let:

Xφ̄ :=

x̄ = (x1, . . . , xm) ∈ {0, 1}m |
m∧
j=1

φ
xj
j is satisfiable

 .

Recall that, as usual in aggregation theory, we have assumed that domains X are non-
degenerate, that is, |Xj | ≥ 2 (thus Xj = {0, 1} in the Boolean framework), for j = 1, . . . ,m.
Thus, we assume that both integrity constraints and agendas are such that their domains
are non-degenerate. On the other hand, when we consider (propositional) formulas, we do
not assume anything regarding their domain (it can even be empty).

It is well known that given a domain X ⊆ {0, 1}m, there is a formula φ such that
its set of models Mod(φ) is equal to X; see, for example, Enderton (2001). Dokow and
Holzman (2010b) prove that there is also an agenda φ̄ such that Xφ̄ = X. Thus, the
three variants (explicit representation, implicit representation via an integrity constraint,
and implicit representation via an agenda) are in some sense equivalent, as regards the
existence of (local) non-dictatorial aggregators. However, neither the integrity constraint
nor the agenda describing a given domain need be unique. Thus, there is a possible loss of
information when passing from one variant to another; as List and Puppe (2009) argue, this
can be significant for certain aspects of the aggregation problem. Consider, for example,
the agendas

φ̄1 = {p, q, p ∧ q}

and
φ̄2 = {p ∨ q ∨ ¬r, p ∨ ¬q ∨ ¬r,¬p ∨ q ∨ ¬r,¬p ∨ ¬q ∨ r}.

It is easy to see that

Xφ̄1
= Xφ̄2

= {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)}.

Nevertheless, the two agendas can have different meaning regarding the problems they
model. First of all, the formulas of φ̄1 consist of two independent propositional variables,
while those of φ̄2 by three. Furthermore, the fact that φ̄1 contains propositional variables,
whereas φ̄2 does not, can also lead to different strategies in order to use these agendas, as
in Mongin (2008) Independence of Irrelevant Propositional Alternatives axiom with which
he replaces IIA.

In terms of the computational complexity of passing from one framework to another,
Zanuttini and Hébrard (2002) show that given a domain X, one can construct a formula φ
such that Mod(φ) = X in polynomial time in the size of the domain. Also, the construction
by Dokow and Holzman (2009), where given a domain X, we obtain an agenda φ̄ such that
Xφ̄ = X can obviously be carried out in polynomial time in the size of the domain. It is very
easy to find integrity constraints and agendas whose domains are exponentially large on their
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respective sizes: consider for example the integrity constraint (x1 ∨¬x1)∧ · · · ∧ (xm ∨¬xm)
and the agenda (x1, . . . , xm), where x1, . . . , xm are pairwise distinct variables. Both have
domains equal to the full Boolean domain {0, 1}m. Finally, Endriss, Grandi, De Haan, and
Lang (2016, Proposition 9) show that, unless the polynomial hierarchy collapses, we cannot
describe any arbitrary agenda by an integrity constraint of polynomial size to that of the
agenda and that, given an integrity constraint φ, the problem of finding an agenda φ̄ such
that Xφ̄ = Xφ is FNP-complete.

Here, we examine the computational complexity of checking if a domain X is a (local)
possibility domain in both the integrity constraint variant and the agenda variant. In all
that follows, we assume that the integrity constraints are defined on at least three variables
and agendas contain at least three propositional formulas, since domains X ⊆ {0, 1}m where
m = 1 or 2 are all possibility domains.

4.2 Integrity Constraints

Let φ be an integrity constraint on m variables and let Xφ = Mod(φ) ⊂ {0, 1}m. The
following theorems provide upper and lower bounds to the complexity of checking if Xφ is a
(local) possibility domain. For the upper bounds, we work with oracles, using the definition
of the graph HX in Section 3 and make use of the following straightforward fact.

Lemma 4.1 Let F = (f1, . . . , fm) be an m-tuple of n-ary conservative and polynomial-
time computable functions. Deciding, on input φ, whether F is an aggregator for Xφ is in
ΠP

1 = coNP.

Proof The result is immediate since the problem can be cast as follows:

for all m-tuples x̄1, . . . , x̄n ∈ {0, 1}m, if all n satisfy φ, then so does the m-tuple
F (x̄1, . . . , x̄n)

and since checking if a formula φ is satisfied by a specific assignment can be done in poly-
nomial time. �

A function f is polynomial-time computable if given its input x̄, we can compute its
output f(x̄) in polynomial time. For our purposes, it suffices that the functions ∧, ∨, ⊕,
∧(3), ∨(3) and prn

i are all polynomial-time computable, for all n ∈ N and i ∈ {1, . . . , n}.
In terms of lower bounds, we provide polynomial-time reductions from two coNP -

complete problems: the semantical independence problem and the unsatisfiability problem
for propositional formulas. The latter is the well known problem of whether a formula has
no satisfying assignments. The former asks whether a given propositional formula is (se-
mantically) dependent to all its variables; that is, there is no variable (or set of variables)
such that whether an assignment of values satisfies the given formula or not, does not de-
pend on the values of the variable(s). For a systematic overview of this problem and its
variations, see Lang, Liberatore, and Marquis (2002) and Lang, Liberatore, and Marquis
(2003). In the setting of agendas, this notion has been studied under the name agenda
separability, by Lang, Slavkovik, and Vesic (2016).

For domain X ⊆ {0, 1}m and a nonempty subset I ⊂ {1, . . . ,m}, we denote by XI the
projection of X to I, that is the set of all partial vectors with indices in I that can be
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extended to elements of X. Let also X−I := X{1,...,m}\I and X ≈ Y mean that we can
obtain X by permuting the columns of Y .

Definition 2 Let φ(x1, . . . , xm) be a propositional formula, where X := Mod(φ) and let
V ⊆ {x1, . . . , xm} be a subset of its variables. Let also i ∈ {1, . . . ,m}. We say that φ is:

i. (semantically) independent from variable xi if:

X ≈ X{i} ×X−{i}

ii. (semantically) independent from the set of variables V if it is independent from every
xj ∈ V .

In our setting, an integrity constraint being independent from a variable xj means that
issue j does not contribute anything in the logical consistency restrictions imposed by the
constraint. Lang, Liberatore, and Marquis (2003) showed that the problem of checking if a
propositional formula depends on all its variables (is simplified variable-dependent in their
terminology), is coNP-complete.

To make our reductions easier to follow, we work with the specific domain:

Imp := {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}.

Observe that Imp corresponds to a natural and well studied problem in both preference and
judgment aggregation. Suppose that we have three alternatives A, B and C, where issue 1
corresponds to deciding between A and B, issue 2 corresponds to deciding between B and
C, and issue 3 corresponds to deciding between C and A. In that setting, we can assume
that, in each issue, 1 denotes preferring the former option and 0 the latter. One can easily
see now that Imp corresponds to the natural requirement of transitivity of preferences.

Consider now the following lemma, which is a version of Arrow’s impossibility result in
Judgment Aggregation.

Lemma 4.2 Imp is an impossibility domain.

Proof By Corollary 2.1, we only need to check if Imp is affine, or if it admits a binary
non-dictatorial aggregator. Easily.

⊕̄((1, 0, 0), (0, 1, 0), (0, 0, 1)) = (0, 0, 0) /∈ Imp,

thus Imp is not affine.

On the other hand, let F = (f1, f2, f3) be a binary non-dictatorial triple of functions.
There are 43 − 2 = 62 cases for F . We arbitrarily choose to show three of them. The rest
are left to the interested reader.

• If f1 = f2 = ∧ and f3 = ∨, then F ((1, 0, 0), (0, 1, 0)) = (0, 0, 0) /∈ Imp.

• If f1 = ∧, f2 = ∨ and f3 = pr2
1, then F ((1, 0, 0), (0, 0, 1)) = (0, 0, 0) /∈ Imp.

• If f1 = ∨, f2 = pr2
1 and f3 = pr2

2, then F ((0, 0, 1), (0, 1, 0)) = (0, 0, 0) /∈ Imp.
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Thus, for F to be an aggregator for Imp, it must hold that f1 = f2 = f3 = pr2
d, d = 1, 2

and, consequently Imp admits only dictatorial binary aggregators. �

Let ψ be the propositional formula:

ψ(y1, y2, y3) = (y1 ∨ y2 ∨ y3) ∧ (¬y1 ∨ ¬y2 ∨ ¬y3). (1)

Easily, Mod(ψ) = Imp. We are now ready to obtain our results.

Theorem 4.1 Deciding, on input φ, whether Xφ admits a non-dictatorial aggregator is (i)
in ΣP

2 ∩ΠP
2 and (ii) coNP-hard.

Proof (i) By Corollary 2.1, Xφ is a possibility domain if and only if it admits a binary non-
dictatorial aggregator or it is affine. The problem of whether Xφ is affine is in ΠP

1 = coNP

(and thus in ΣP
2 ∩ΠP

2 too), by Lemma 4.1, using ⊕̄ for the given m-tuple of functions (recall
also Lemma 2.2).

For the problem of the existence of binary non-dictatorial aggregators for Xφ, we show
separately that it is both in ΣP

2 and in ΠP
2 . For the former, note that there are only four

conservative (equivalently Paretian) functions from {0, 1}2 7→ {0, 1}, namely pr2
1, pr2

2, ∧ and
∨. Therefore, there are 4m−2 tuples F = (f1, . . . fm), with fj : {0, 1}2 7→ {0, 1}, j = 1, . . .m
of m conservative functions, where not all fj are the same projection function. Such an
m-tuple can be thought of as a binary (2 × 3)m-sequence, where each fj is encoded by a
sequence (01a10b), a, b ∈ {0, 1}, meaning that fj(0, 1) = a and fj(1, 0) = b.

Let us call such F candidates for non-dictatorial aggregators. The question of deciding
whether a given F is one of the 4m − 2 candidates for non-dictatorial aggregators is easily
in P. Also, the question of whether a given binary F is an aggregator for Xφ is again in
ΠP

1 by Lemma 4.1. Therefore the problem of whether Xφ admits a binary non-dictatorial
aggregator is in ΣP

2 because it can be cast as:

There exists a F = (f1, . . . fm) such that F is a candidate for non-dictatorial
aggregator and for all m-tuples x̄, ȳ ∈ {0, 1}m, if both satisfy φ, then so does
the m-tuple F (x̄, ȳ).

To show that it is also in ΠP
2 , recall that, by Lemma 3.2, the set Xφ admits a binary

non-dictatorial aggregator if and only if the graph HX is not strongly connected. We will
show that checking if HXφ is strongly connected is in ΣP

2 , which means that checking if HXφ

is not strongly connected is in ΠP
2 .

First note that the size of HX is polynomial in the size of φ, since it has 2m nodes,
where m is the number of variables of φ. Thus, it suffices to prove that testing whether two
nodes of HXφ are connected is in NP with an oracle in coNP.

To test if two nodes are connected, we first obtain a path witnessing this. To verify it
is indeed a path, we need to check if any two of its consecutive nodes, say uu′s and vv′t,
are connected by the edge uu′s → vv′t in HX . To do that, we can again take the satisfying
assignments z and z′ of φ that witness that uu′s → vv′t. Then, using the coNP oracle, we
need to check that there is no z∗ that: (i) satisfies φ, (ii) extends uv′ and (iii) agrees on
every coordinate either z or z′.
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(ii) Let χ(x1, . . . , xk) be a propositional formula on k variables. We construct, in poly-
nomial time, a formula φ such that χ is independent from at least one of its variables if and
only if Xφ is a possibility domain. In all that follows, m = k + 3.

Let:
φ(x1, . . . , xk, y1, y2, y3) = χ(x1, . . . , xl)⊕ ψ(y1, y2, y3),

where: {x1, . . . , xk} and {y1, y2, y3} are disjoint sets of variables.
First, note that the length |φ| of φ is linear to that of χ, since |φ| = |χ| + 6. Thus the

construction is polynomial.
By (1), it holds that:

Xφ =
(

Mod(χ)× {(0, 0, 0), (1, 1, 1)}
)
∪
(

Mod(¬χ)× Imp
)
. (2)

Claim 4.1.1 χ is independent from at least one of its variables if and only if Xφ is a
possibility domain.

Proof of Claim: We first consider the two extreme cases. If χ is unsatisfiable or a tautology,
then by (2) we have that:

Xφ = {0, 1}k × Imp,

or that
Xφ = {0, 1}k × {(0, 0, 0), (1, 1, 1)}

respectively. In both cases, we have that χ is independent from all its variables and Xφ is
a possibility domain, since it is a Cartesian product (recall Lemma 2.3).

Thus, we can assume that both Mod(χ) and Mod(¬χ) are not empty. We proceed with
a series of claims.

Claim 4.1.2 Xφ is not affine.

Proof of Claim: Let ā := (a1, . . . , ak) ∈ Mod(¬χ). Then, (ā, 0, 1, 1), (ā, 1, 0, 1), (ā, 1, 1, 0) ∈
Xφ and:

⊕̄((ā, 0, 1, 1), (ā, 1, 0, 1), (ā, 1, 1, 0)) = (ā, 0, 0, 0) /∈ Xφ.

Thus, Xφ is not affine. �

By Corollary 2.1 and Claim 4.1.2, Xφ is a possibility domain if and only if it admits a
binary non-dictatorial aggregator. The following claims show that such an aggregator must
be in a restricted class.

Claim 4.1.3 Assume F = (f1, . . . , fm) is a binary aggregator for Xφ. Then, fk+1 = fk+2 =
fk+3 = pr2

d, d ∈ {1, 2}.

Proof of Claim: To obtain a contradiction, assume (fk+1, fk+2, fk+3) 6= (pr2
d, pr2

d, pr2
d),

d = 1, 2. By Lemma 4.2, Imp is an impossibility domain. Thus, there exist x̄, ȳ ∈ Imp such
that

z̄ := (fk+1, fk+2, fk+3)(x̄, ȳ) ∈ {(0, 0, 0), (1, 1, 1)}.

Let ā := (a1, . . . , ak) ∈ Mod(¬χ). Then (ā, x̄), (ā, ȳ) ∈ Xφ, but:

F ((ā, x̄), (ā, ȳ)) = (ā, z̄) /∈ Xφ.
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Thus, F is not an aggregator for Xφ. Contradiction. �

The following claim states that F = (f1, . . . , fk, fk+1, fk+2, fk+3) cannot have its first k
coordinates be projections to the same coordinate d ∈ {1, 2} and the last three be projections
to the other. This can also be derived by (2), since Xφ is not a Cartesian product. For a
proof of this general and straightforward characterization, the interested reader is referred
to Diáz, Kirousis, Kokonezi, and Livieratos (2019). Here we opted to showcase the technique
we follow throughout the rest of the proof.

Claim 4.1.4 Assume F = (f1, . . . , fm) is a binary aggregator for Xφ. If fk+1 = fk+2 =
fk+3 = pr2

d, then there is at least one j ∈ {1, . . . , k} such that fj 6= pr2
d′, d, d′ ∈ {1, 2},

d 6= d′.

Proof of Claim: We show the claim for d = 2 and d′ = 1. The analogous arguments hold
for the case where d = 1 and d′ = 2.

To obtain a contradiction, assume that f1 = · · · = fk = pr2
1. Let ā := (a1, . . . , ak) ∈

Mod(χ) and b̄ := (b1, . . . , bk) ∈ Mod(¬χ). Then, (ā, 0, 0, 0) and (b̄, 0, 0, 1) ∈ Xφ, but:

F ((ā, 0, 0, 0), (b̄, 0, 0, 1)) = (ā, 0, 0, 1) /∈ Xφ.

Thus, F is not an aggregator for Xφ. Contradiction. �

Claim 4.1.5 Assume F = (f1, . . . , fm) is a binary aggregator for Xφ. Then, there is at
least one j ∈ {1, . . . , k} such that fj is not symmetric.

Proof of Claim: By Claim 4.1.3, for some d ∈ {1, 2}, fk+1 = fk+2 = fk+3 = pr2
d. To obtain

a contradiction, assume that fj is symmetric for all j ∈ {1, . . . , k}. Assume also w.l.o.g.
that d = 2. The analogous arguments work for d = 1.

Let ā := (a1, . . . , ak) ∈ Mod(χ), b̄ := (b1, . . . , bk) ∈ Mod(¬χ) and

(f1, . . . , fk)(ā, b̄) := c̄.

Then, (ā, 0, 0, 0) and (b̄, 0, 0, 1) ∈ X. Since F is an aggregator for Xφ:

f((ā, 0, 0, 0), (b̄, 0, 0, 1)) = (c̄, 0, 0, 0) ∈ Xφ,

f((b̄, 0, 0, 1), (ā, 0, 0, 0)) = (c̄, 0, 0, 1) ∈ Xφ,

which, by (2), implies that c̄ ∈ Mod(χ) ∩Mod(¬χ). Contradiction. �

The last claim deals with the case where we have both symmetric and non-symmetric
components in (f1, . . . , fk). It completely outlines the class of binary aggregators available
for Xφ. Notationally, if ā ∈ {0, 1}m and I ⊆ {1, . . . ,m}, āI denotes the projection of ā to
the coordinates in I.

Claim 4.1.6 Assume F = (f1, . . . , fm) is a binary aggregator for Xφ. Then, there exists
a non-empty subset J ⊆ {1, . . . , k} such that fj = pr2

d for all j ∈ J ∪ {k + 1, k + 2, k + 3},
d = 1, 2.
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Proof of Claim: By Claim 4.1.3, for some d ∈ {1, 2}, fk+1 = fk+2 = fk+3 = pr2
d. To obtain

a contradiction, assume that fj 6= pr2
d, for all j ∈ {1, . . . , k}. Assume also w.l.o.g. that

d = 2. The analogous arguments work for d = 1.

By Claims 4.1.4 and 4.1.5, there exists a partition (I, J) of {1, . . . , k}, such that fi is
symmetric for all i ∈ I and fj = pr2

1 for all j ∈ J . To make things easier to follow, assume
w.l.o.g. that there exists an s ∈ {1, . . . , k−1} such that I = {1, . . . , s} and J = {s+1, . . . , k}.
Let ā := (a1, . . . , ak) ∈ Mod(χ), b̄ := (b1, . . . , bk) ∈ Mod(¬χ) and assume that:

(f1, . . . , fs)(āI , b̄I) := c̄.

Then, (ā, 0, 0, 0) and (b̄, 0, 0, 1) ∈ Xφ. Since F is an aggregator for Xφ, it must hold that:

F ((ā, 0, 0, 0), (b̄, 0, 0, 1)) = (c̄, āJ , 0, 0, 1) ∈ Xφ,

which, by (2), implies that (c̄, āJ) ∈ Mod(¬χ). Furthermore, again since F is an aggregator
for Xφ, it must be the case that:

F ((c̄, āJ , 0, 0, 1), (ā, 0, 0, 0)) = (c̄, āJ , 0, 0, 0) ∈ Xφ,

which, by (2), implies that (c̄, āJ) ∈ Mod(χ). Thus, (c̄, āJ) ∈ Mod(χ) ∩Mod(¬χ). Contra-
diction. �

By Claims 4.1.6 and Corollary 2.1, Xφ is a possibility domain if and only if it admits
a binary non-dictatorial aggregator such that there exists a d ∈ {1, 2} and a non-empty
J ⊆ {1, . . . , k}, where, for all j ∈ J ∪ {k + 1, k + 2, k + 3}, fj = pr2

d. It is not difficult to
see that such an aggregator exists for d = 1 if and only if it does for d = 2. Thus, we can
safely assume that d = 1.

Before proving that our reduction works, we need some notation. For a domain Y ⊆
{0, 1}m and a non-empty set of indices I ⊆ {1, . . . ,m}, let YI be the projection of Y to the
indices of I, that is, the set of partial vectors with coordinates in I that can be extended
to vectors of Y . Also, for two domains Y,Z ⊆ {0, 1}m of size n, viewed as n×m matrices,
we write Y ≈ Z if, by permuting the columns of Z, we can obtain Y .

First, assume that there exist 1 < l < k variables xi1 , . . . , xil ∈ {x1, . . . , xk} such that
χ is independent from all of them. Let also J = {1, . . . , k} \ {i1, . . . , il}. Then, (2) can be
written as:

Xφ ≈ {0, 1}l ×

((
Mod(χ)J × {(0, 0, 0), (1, 1, 1)}

)
∪
(

Mod(¬χ)J × Imp
))

.

It is straightforward to observe that any m-tuple F = (f1, . . . , fm) of binary functions, such
that fl+1 = . . . = fm = pr2

d, d = 1, 2 is an aggregator for Xφ. Thus Xφ is a possibility
domain.

Now, assume that Xφ is a possibility domain and F = (f1, . . . , fm) a binary non-
dictatorial aggregator for Xφ. Let also (I, J) be a partition of {1, . . . , k}, such that, for all
j ∈ J ∪ {k + 1, k + 2, k + 3}, fj = pr2

1 and for all i ∈ I, fi 6= pr2
1. Again, to simplify things,

assume that there exists an s ∈ {1, . . . , k − 1} such that I = {1, . . . , s}, J = {s+ 1, . . . , k}.
We consider the following three cases:
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• If fi := pr2
2, for all i ∈ I, we show that χ is independent from x1, . . . , xs. Suppose

there exist vectors ā, b̄ ∈ {0, 1}s and c̄ ∈ {0, 1}k−s, such that (ā, c̄) ∈ Mod(χ) and
(b̄, c̄) ∈ Mod(¬χ). Then, (ā, c̄, 0, 0, 0) ∈ Xφ and (ā, c̄, 0, 0, 1) ∈ Xφ. Since F is an
aggregator for Xφ, it must hold that:

F ((ā, c̄, 0, 0, 0), (b̄, c̄, 0, 0, 1)) = (b̄, c̄, 0, 0, 0) ∈ Xφ,

which, by (2), implies that (b̄, c̄) ∈ Mod(χ)∩Mod(¬χ). Contradiction. Since ā, b̄ and
c̄ where chosen arbitrarily, it follows that χ is independent from x1, . . . , xs.

• If fi is symmetric, for all i ∈ I, we show that χ is independent from x1, . . . , xs. Suppose
there exist vectors ā, b̄ ∈ {0, 1}s and c̄ ∈ {0, 1}k−s, such that (ā, c̄) ∈ Mod(χ) and
(b̄, c̄) ∈ Mod(¬χ). Also, assume that (f1, . . . , fs)(ā, b̄) := z̄. Then, (ā, c̄, 0, 0, 0) ∈ Xφ

and (b̄, c̄, 0, 0, 1) ∈ Xφ. Since F is an aggregator for Xφ, it must hold that:

F ((ā, c̄, 0, 0, 0), (b̄, c̄, 0, 0, 1)) = (z̄, c̄, 0, 0, 0) ∈ Xφ,

F ((b̄, c̄, 0, 0, 1), (ā, c̄, 0, 0, 0)) = (z̄, c̄, 0, 0, 1) ∈ Xφ,

which, by (2), implies that (z̄, c̄) ∈ Mod(χ)∩Mod(¬χ). Contradiction. Since ā, b̄ and
c̄ where chosen arbitrarily, it follows that χ is independent from x1, . . . , xs.

• If there is a partition (I1, I2) of I, such that fi = pr2
2 for all i ∈ I1 and fi is symmetric

for all i ∈ I2, we show that χ is independent from all xi such that i ∈ I1. Assume
again w.l.o.g. that there is a t ∈ {1, . . . , s − 1} such that I1 = {1, . . . , t} and I2 =
{t + 1, . . . , s}. Suppose there exist vectors ā, b̄ ∈ {0, 1}t and c̄ ∈ {0, 1}k−t, such that
(ā, c̄) ∈ Mod(χ) and (b̄, c̄) ∈ Mod(¬χ). Then, (ā, c̄, 0, 0, 0) ∈ Xφ and (ā, c̄, 0, 0, 1) ∈
Xφ. Since F is an aggregator for Xφ, it must hold that:

F ((ā, c̄, 0, 0, 0), (b̄, c̄, 0, 0, 1)) = (b̄, c̄, 0, 0, 0) ∈ Xφ,

which, by (2), implies that (b̄, c̄) ∈ Mod(χ)∩Mod(¬χ). Contradiction. Since ā, b̄ and
c̄ where chosen arbitrarily, it follows that φ is independent from x1, . . . , xt.

This concludes the proof of both the reduction and Theorem 4.1. �

We now show the analogous result for local possibility domains. Fortunately, the proofs
of the bounds here are relatively shorter.

Theorem 4.2 Deciding, on input φ, whether or not Xφ admits a locally non-dictatorial
aggregator is (i) in ΣP

2 ∩ΠP
2 and (ii) coNP-hard.

Proof (i) We follow the proof of Theorem 4.1. By Corollary 3.4 we have only three func-
tions, namely ∧(3),∨(3),⊕, which, when combined to an m-ary tuple F = (f1, . . . , fm), form
a local non-dictatorial aggregator for X. Thus, the proof is exactly the same, with the
difference that we now have 3m tuples that can be encoded as (6 × 3)m-binary sequences
and we conclude that the problem is in ΣP

2 .
For the containment in ΠP

2 , we argue as follows. Given access to HXφ we can, by
Corollary 3.5, obtain in polynomial time a ternary WNU aggregator G = (g1, . . . , gm) such
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that Xφ is a local possibility domain if and only if it admits G. Whether Xφ admits G or
not is in coNP (in the same way we check if Xφ is affine) and thus in ΠP

2 too. Since the size
of HXφ is polynomial in that of φ, it suffices to show that testing whether there is no edge

uu′i →→ vv′j in HXφ is in ΠP
2 . This problem can be expressed as:

For all assignments ā = (a1, . . . , am), b̄ = (b1, . . . , bm), there exists an assignment
c̄ = (c1, . . . , cm) such that, if ā, b̄ satisfy φ and ai = u, bi = u′, aj = v, bj = v′,
then c̄ satisfies φ, ci = u, cj = v′ and ck ∈ {ak, bk} for all k ∈ {1, . . . ,m} \ {i, j}.

Thus, the proof is complete.

(ii) We show that the problem of whether a logical formula χ, defined on k variables
x1, . . . , xk, is unsatisfiable, reduces to that of deciding if the truth set of a formula is a local
possibility domain.

Let ψ(y1, y2, y3) be the propositional formula with Mod(ψ) = Imp, where {y1, y2, y3} ∩
{x1, . . . , xk} = ∅. Consider the formula:

φ = (χ(x1, . . . .xk) ∧ ψ(y1, y2, y3)) ∨ (z → w),

where z and w are variables not among those of χ or ψ. First note that the length of φ is
again linear to that of χ, since |φ| = |χ|+ 8 and thus the construction is polynomial.

Let m := k + 5. We prove the following claim.

Claim 4.2.1 χ is unsatisfiable if and only if

Xφ =
(

Mod(χ)× Imp× {0, 1}2
)
∪
(
{0, 1}k+3 × {(0, 0), (0, 1), (1, 1)}

)
, (3)

is a local possibility domain.

Proof of Claim: First, assume χ is unsatisfiable. Then, (3):

Xφ = {0, 1}k+3 × {(0, 0), (0, 1), (1, 1)},

which is a local possibility domain, since it admits for example the binary aggregator F =
(f1, . . . , fm), where fj = ∧, j = 1, . . . ,m.

On the other hand, let Mod(φ) be a local possibility domain, and assume χ is satisfi-
able by some assignment ā = (a1, . . . , ak). Since Mod(φ) is a local possibility domain, by
Theorem D, it admits a ternary locally non-dictatorial aggregator F = (f1, . . . , fm).

By Lemma 4.2, Imp is an impossibility domain. Thus, there exist b̄i = (bi1, b
i
2, b

i
3) ∈ Imp,

i = 1, 2, 3, such that:

c̄ := (fk+1, fk+2, fk+3)(b̄1, b̄2, b̄3) /∈ Imp.

Since b̄1, b̄2, b̄3 ∈ Imp, it holds that (ā, b̄i, 1, 0) ∈ Xφ, for i = 1, 2, 3. On the other hand:

F ((ā, b̄1, 1, 0), (ā, b̄2, 1, 0), (ā, b̄3, 1, 0)) = (ā, c̄, 1, 0) /∈ Xφ.

Thus F is not an aggregator for Xφ. Contradiction. �
This concludes the proof of Theorem 4.2.
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4.3 Agendas

Suppose now that we have an agenda φ̄ = (φ1, . . . , φm). We prove the following upper and
lower bounds to the complexity of deciding whether Xφ̄ is a (local) possibility domain. For
upper bounds, we use a version of Lemma 4.1 tailored for agendas.

Lemma 4.3 Let F = (f1, . . . , fm) be an m-tuple of n-ary conservative and polynomial-
time computable functions. Deciding, given the agenda φ̄ = (φ1, . . . , φm), whether F is an
aggregator for Xφ̄ is in ΠP

2 .

Proof The result is immediate since the problem can be cast as follows:

For all m-tuples x̄1, . . . , x̄n ∈ {0, 1}m, if
∧m
j=1 φ

x1
j

j , . . . ,
∧m
j=1 φ

xnj
j are all satisfi-

able, then so is
∧m
j=1 φ

wj
j , where wj = F (x1

j , . . . , x
n
j ), j = 1, . . . ,m

and since checking if a formula is satisfied by a specific assignment can be done in polynomial
time. �

In terms of lower bounds, a straightforward idea would be to construct, given an integrity
constraint, an agenda with the same domain, since that would immediately imply that
the lower bounds for the integrity constraints carry on to the agendas. Unfortunately, as
discussed above, this is an FNP-complete problem. However, by Endriss, Grandi, De Haan,
and Lang (2016, Proposition 3), we can obtain the following result.

Corollary 4.1 Given an integrity constraint φ and a satisfying assignment ā of φ, we
can construct an agenda φ̄, of polynomial size in the length of φ, such that Xφ̄ = Xφ.
Furthermore, this construction is polynomial in the size of φ.

Corollary 4.1 follows directly from the proof of Endriss, Grandi, De Haan, and Lang (2016,
Proposition 3). The reason this result does not imply the existence of a polynomial reduc-
tion, is that to construct φ̄, one needs a satisfying assignment of φ. And of course, finding
such an assignment is intractable. Fortunately, we can get past that in the problems we
consider.

Theorem 4.3 Given the agenda φ̄ = (φ1, . . . , φm), the question whether Xφ̄ admits a non-

dictatorial aggregator is (i) in ∆P
3 and (ii) coNP-hard.

Proof (i) We will show that the problem can be decided in P with an oracle in ΣP
2 . By

Corollary 2.1, Xφ̄ is a possibility domain if and only if it is affine or it admits a binary

non-dictatorial aggregator. The problem of whether Xφ̄ is affine is in ΠP
2 ⊆ ∆P

3 by Lemma
4.3, using ⊕̄ as the aggregator.

It remains to show that the latter problem, or equivalently the problem of checking if
HXφ̄ is strongly connected, is in ∆P

3 . Since HXφ̄ has 2m vertices, its size is polynomial in
that of the agenda. Also, checking if a graph is strongly connected is in P. Thus it suffices
to show that HXφ̄ can be constructed within polynomial time with an oracle in ΣP

2 .

Claim 4.3.1 Given the agenda φ̄ = (φ1, . . . , φm), the graph HXφ̄ can be constructed within

polynomial time in the size of φ̄ with an oracle in ΣP
2 .
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Proof of Claim: Consider two vertices uu′s and vv′t of HXφ̄ , with s 6= t. To decide if there
is an edge from uu′s to vv′t, is suffices to check the following:

There exist binary m-sequences x̄, ȳ such that:

• both
∧m
j=1 φ

xj
j and

∧m
j=1 φ

yj
j are satisfiable,

• xs = u, xt = v, ys = u′ and yt = v′ and

• for all m-sequences z̄, either
∧m
j=1 φ

zj
j is not satisfiable or at least one of

the following is not true: (i) zk = u, (ii) zl = v′, (iii) zj ∈ {xj , yj} for
j = 1, . . . ,m.

Notice that this can be done with an oracle in ΣP
2 . �

(ii) Let χ(x1, . . . , xk) be a propositional formula on k variables. We construct, in poly-
nomial time, an agenda φ̄ such that χ is independent from at least one of its variables if
and only if Xφ̄ is a possibility domain. In all that follows, m = k + 3.

Let:

φ(x1, . . . , xk, y1, y2, y3) = χ(x1, . . . , xk)⊕ ψ(y1, y2, y3),

where: {x1, . . . , xl} and {y1, y2, y3} are disjoint sets of variables and Mod(ψ) = Imp. As in
Theorem 4.1, we have that φ’s length is linear to that of χ and that:

Xφ =
(

Mod(χ)× {(0, 0, 0), (1, 1, 1)}
)
∪
(

Mod(¬χ)× Imp
)
. (4)

Pick an arbitrary vector ā = (a1, . . . , ak) ∈ {0, 1}k and set:

b̄ = (b1, . . . , bm) :=

{
(a1, . . . , ak, 0, 0, 0) if χ(a1, . . . , ak) = 1,

(a1, . . . , ak, 0, 0, 1) else.

In both cases, b̄ satisfies φ. Thus, we can use Corollary 4.1, to construct an agenda φ̄ such
that Xφ̄ = Xφ, whose size is polynomial in the length of φ and thus in that of χ too. Since
deciding whether ā satisfies χ or not can be done in polynomial time, our construction is
polynomial. Also, in Claim 4.1.1 of Theorem 4.1, we prove that χ is independent from at
least one of its variables if and only if Xφ, and thus Xφ̄ too, is a possibility domain. �

In what concerns local possibility domains, we have the analogous bounds.

Theorem 4.4 Given the agenda φ̄ = (φ1, . . . , φm), the question of whether Xφ̄ admits a

locally non-dictatorial aggregator is (i) in ∆P
3 and (ii) coNP-hard.

Proof (i) We have already argued in Claim 4.3.1 that HXφ̄ can be constructed in polynomial

time with an oracle in ΣP
2 . Then, by Corollary 3.3 we can obtain, in polynomial time,

a maximum symmetric aggregator F = (f1, . . . , fm) for X. We can easily now obtain
the aggregator G = (g1, . . . , gm) for X of the first paragraph Corollary 3.5, where gj ∈
{∧(3),∨(3),⊕}, j = 1, . . . ,m. Furthermore, testing whether Xφ̄ admits this aggregator is in

ΠP
2 by Lemma 4.3.

(ii) Let χ(x1, . . . , xk) be a propositional formula. We construct an agenda φ̄ such that
Xφ̄ is a local possibility domain if and only if χ is unsatisfiable. Let ψ(y1, y2, y3) be again the
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propositional formula with Mod(ψ) = Imp, where {y1, y2, y3} ∩ {x1, . . . , xk} = ∅. Consider
the formula:

φ = (χ(x1, . . . .xk) ∧ ψ(y1, y2, y3)) ∨ (z → w),

where z and w are variables not among those of χ or ψ.

Let m := k + 5. By (3) we have that:

Xφ =
(

Mod(χ)× Imp× {0, 1}2
)
∪
(
{0, 1}k+3 × {(0, 0), (0, 1), (1, 1)}

)
. (5)

Again, pick an arbitrary vector ā = (a1, . . . , ak) ∈ {0, 1}k and set:

b̄ = (b1, . . . , bm) := (a1, . . . , ak, 0, 0, 0, 0, 0).

b̄ satisfies φ. Thus, we can use Proposition 3 of Endriss, Grandi, De Haan, and Lang (2016),
to construct an agenda φ̄ such that Xφ̄ = Xφ, whose size is polynomial in the length of φ
and thus in that of χ too. Also, in Claim 4.2.1, we prove that χ is unsatisfiable if and only
if Xφ, and thus Xφ̄ too, is a local possibility domain. �.

A related result, that has been answered by Endriss, Grandi, and Porello (2012), is
whether the domain of an agenda admits the majority aggregator. By Nehring and Puppe
(2007) and Endriss, Grandi, and Porello (2012), such agendas are characterized as those
satisfying the median property, that is, agendas whose every inconsistent subset, contains
an inconsistent subset of size 2. Endriss, Grandi, and Porello (2012) show that checking
if an agenda satisfies the median property is ΠP

2 -complete. Unfortunately, this does not
extend to the problem of determining if the domain of an agenda is a possibility domain,
since, even though checking for the minority aggregator is in ΠP

2 , the existence of binary
non-dictatorial aggregators seems to be a harder problem.

Remark 2 It is clear that the upper and lower complexity bounds obtained here do not
match. By Theorem 4.3 and Theorem 4.4, it is also clear that the gap between the upper
and lower bounds in the case of the agendas comes from the fact that the lower bounds are
obtained via the integrity constraints.

What is not so clear, however, is why in the case of integrity constraints the upper
bound is ΣP

2 ∩ΠP
2 and in the case of the agendas the upper bound is ∆P

3 , whereas one might
except a full computational jump in the PH, or for the bounds to be the same. First, note
that, in the case of the integrity constraints, it does not seem plausible to construct HXφ in
polynomial time, with access only to an NP oracle. This is so because, to decide if there is
an edge uu′s → vv′t in HX , one needs to “guess” two satisfying assignments for φ, such that
there is no other satisfying assignment with certain properties. This naturally points to an
existential and a universal certificate, something that an NP oracle alone cannot provide.
On the other hand, for the same reason, it seems improbable that finding an aggregator F
for Xφ̄ can be in ΣP

2 , since we need to guess a candidate F , such that for all vectors of
0/1 judgments for the formulas of the agenda, we can decide the satisfiability of a specific
formula. This again needs more certificates than ΣP

2 (or ΠP
2 ) can provide.

The above arguments justify only why our proofs do not yield any better complexity
bounds. Naturally, it is conceivable that other approaches may yield tighter bounds. �
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4.4 Other Types of Non-Dictatorial Aggregation

In this subsection, we quickly extend the results of the previous subsections in four cases of
non-dictatorial aggregation that have been used in the literature. Namely, we discuss gen-
eralized dictatorships, anonymous, monotone and systematic aggregators. We only consider
the case where we search if an implicitly given Boolean domain admits such aggregators.
The case where the domain is given explicitly has been shown to be tractable by Diáz,
Kirousis, Kokonezi, and Livieratos (2019), since the results there directly provide the re-
quired aggregators.

4.4.1 Generalized Dictatorships

We begin by defining generalized dictatorships, that is, aggregators whose output is always
a vector of the input.

Definition 3 Let F = (f1, . . . , fm) be an m-tuple of n-ary conservative functions. F is a
generalized dictatorship for a domain X ⊆ {0, 1}m, if, for any x1, . . . , xn ∈ X, it holds that:

F (x1, . . . , xn) := (f1(x1), . . . , fm(xm)) ∈ {x1, . . . , xn}. (6)

Obviously, generalized dictatorships of a domain X are always aggregators for X. General-
ized dictatorships were first defined by Grandi and Endriss (2013), where they were defined
independently of a specific domain. That is, Eq. (6) holds for all x1, . . . , xn ∈ {0, 1}m in
their context. With this stronger definition, Grandi and Endriss (2013, Theorem 16) show
that the class of generalized dictators coincides with that of functions that are aggregators
for every domain X ⊆ {0, 1}m.

Generalized dictatorships select a possibly different dictator for each input. All dictato-
rial aggregators are obviously generalized dictatorships. Depending on the domain, different
kinds of non-dictatorial aggregators can be generalized dictatorships. For example, maj and
⊕̄ are both generalized dictatorships for any domain with only two elements. In fact, any
domain with only two elements admits only generalized dictatorships as aggregators. The
following characterization has been proven by Diáz, Kirousis, Kokonezi, and Livieratos
(2019).

Theorem F Diáz, Kirousis, Kokonezi, and Livieratos (2019, Theorem 11) A domain X ⊆
{0, 1}m admits an aggregator that is not a generalized dictatorship if and only if it is a
possibility domain with at least three elements.

Using that, we can easily prove the same complexity bounds we had for deciding if the
domain of an integrity constraint admits a non-dictatorial aggregator.

Corollary 4.2 Deciding, on input φ, whether Xφ admits an aggregator that is not a gen-
eralized dictatorship is (i) in ΣP

2 ∩ΠP
2 and (ii) coNP-hard.

Proof By Theorem F, it suffices to show that deciding if Xφ has at least three elements is
in ΣP

2 ∩ΠP
2 . Indeed, this can be written as:

There exist tuples x̄, ȳ, z̄ ∈ {0, 1}m that are pairwise distinct, such that all three
satisfy φ.
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Thus, deciding if |Xφ| ≥ 3 is in ΣP
1 ⊆ ΣP

2 ∩ΠP
2 . The rest of the proof is identical with that

of Theorem 4.1.
(ii) Immediate by Theorems F and 4.1, since the domain of (2) has more than two

elements. �

In case the domain is provided via an agenda, we can again easily obtain the same
bounds.

Corollary 4.3 Given the agenda φ̄ = (φ1, . . . , φm), the question whether Xφ̄ admits an

aggregator that is not a generalized dictatorship is (i) in ∆P
3 and (ii) coNP-hard.

Proof (i) Again by Theorem F, it suffices to show that deciding whether Xφ̄ has at least

three elements is in ∆P
3 . Indeed, the problem can be written as:

There exist m-tuples x̄, ȳ, z̄ ∈ {0, 1}m which are pairwise distinct and such that∧m
j=1 φ

xj
j ,
∧m
j=1 φ

yj
j and

∧m
j=1 φ

zj
j are all satisfiable.

Thus, it is in ΣP
2 ⊆ ∆P

3 . The rest of the proof is identical that of Theorem 4.3.
(ii) Immediate by Theorems F and 4.3, since the domain in (4) has more than two

elements. �

4.4.2 Anonymous Aggregators

An aggregator is anonymous if it is not affected by permutations of its input. Such an
aggregator treats each member of the population “fairly”, in the sense that the outcome of
the aggregation depends only on the votes that have been cast and not on which person
selected which options.

Definition 4 Let X ⊆ {0, 1}m. An n-ary aggregator F = (f1, . . . , fm) for X is anonymous,
if it holds that for all j ∈ {1, . . . ,m} and for any permutation p : {1, . . . , n} 7→ {1, . . . , n}:

fj(a1, . . . , an) = fj(ap(1), . . . , ap(n)),

for all a1, . . . , an ∈ {0, 1}.

It is immediate to observe that a ternary such aggregator is always WNU. Thus, using
Theorem D, Kirousis et al. proved the following result.

Corollary 4.4 Kirousis, Kolaitis, and Livieratos (2019, Corollary 5.11) X ⊆ {0, 1}m is a
local possibility domain if and only if it admits an anonymous aggregator.

In fact, a local possibility domain always admits a ternary such aggregator. We can now
obtain all the complexity bounds we have for local non-dictatorial aggregators, in the case
where we search for anonymous ones.

Corollary 4.5 A. Deciding, on input φ, whether Xφ admits an anonymous aggregator
is i. in ΣP

2 ∩ΠP
2 and ii. coNP-hard.

B. Given the agenda φ̄ = (φ1, . . . , φm), the question whether Xφ̄ admits an anonymous

aggregator is i. in ∆P
3 and ii. coNP-hard.
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Proof

Ai. Immediate by Corollary 4.4 and Theorem 4.2.

Aii. Immediate by Corollary 4.4 and Theorem 4.2.

Bi. Immediate by Corollary 4.4 and Theorem 4.4.

Bii. Immediate by Corollary 4.4 and Theorem 4.4. �

4.4.3 Monotone Aggregators

Monotone aggregators are aggregators whose output does not change if more individuals
agree with it. This is one of the features that makes majority voting appealing.

Definition 5 Let X ⊆ {0, 1}m. An n-ary aggregator F = (f1, . . . , fm) for X is monotone,
if it holds that for all j ∈ {1, . . . ,m} and for all i ∈ {1, . . . , n}:

fj(a1, . . . , ai−1, 0, ai+1, . . . , an) = 1⇒ fj(a1, . . . , ai−1, 1, ai+1, . . . , an) = 1.

It is not difficult to see that all binary aggregators (both dictatorial and non-dictatorial) have
that property. Also, by Dokow and Holzman (2009) and Kirousis, Kolaitis, and Livieratos
(2019), it has been proven that if a domain admits a majority aggregator, it also admits
a binary non-dictatorial one. Combining this with Corollary 2.1, we obtain the following
result.

Theorem G Diáz, Kirousis, Kokonezi, and Livieratos (2019, Theorem 12) A domain X ⊆
{0, 1}m admits a monotone non-dictatorial aggregator of some arity if and only if it admits
a binary non-dictatorial one.

Thus we can again easily obtain the required complexity bounds.

Corollary 4.6 A. Deciding, on input φ, whether Xφ admits a monotone non-dictatorial
aggregator is i. in ΣP

2 ∩ΠP
2 and ii. coNP-hard.

B. Given the agenda φ̄ = (φ1, . . . , φm), the question whether Xφ̄ admits a monotone

non-dictatorial aggregator is i. in ∆P
3 and ii. coNP-hard.

Proof

Ai. Immediate by Theorem G and Theorem 4.1.

Aii. Immediate by Theorem G and by noticing that the only available aggregators for the
construction of (2) in Theorem 4.2 are binary non-dictatorial ones.

Bi. Immediate by Theorem G and Theorem 4.3.

Bii. Immediate by Theorem G and by noticing that the only available aggregators for the
construction of (4) in Theorem 4.3 are binary non-dictatorial ones. �
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4.4.4 Systematic Aggregators

Systematicity is the requirement that an aggregator treats all issues in the same way. This
can be a very natural requirement for a set of issues of the same nature. We have already
seen that systematic aggregators of a domain correspond to polymorphisms. Recall that we
denote a systematic aggregator F = (f1, . . . , fm), where f1 = · · · = fm = f , by f̄ .

Polymorphisms have been extensively studied in the literature and they play a central
role in Post (1941) seminal work, where he provides a full classification of Boolean clones,
that is sets of Boolean functions closed under composition. Post’s work can provide results
in Complexity Theory too; see for example Böhler, Creignou, Reith, and Vollmer (2003,
2004); Jeavons and Cohen (1995); Jeavons, Cohen, and Gyssens (1999). Here, we use a
result concerning the unanimous polymorphisms (equivalently, the systematic aggregators),
that a Boolean domain admits. We say that an n-ary function f is essentially unary, if
there exists a unary Boolean function g and an i ∈ {1, . . . , n}, such that:

f(x1, . . . , xn) = g(xi),

for all x1, . . . , xn ∈ {0, 1}. Obviously, the only unanimous such functions are the projections.

Corollary 4.7 Let X ⊆ {0, 1}n be a Boolean domain. Then, either X admits only essen-
tially unary functions, or it is closed under ∧, ∨, maj or ⊕.

This result can be obtained directly by Post’s Lattice, without considering complexity
theoretic notions. For a direct algebraic approach, see also Szendrei (1986, Proposition
1.12) (by noting that the only Boolean semi-projections of arity at least 3 are projections).

Corollary 4.7 translates in our framework as follows.

Corollary 4.8 Let X ⊆ {0, 1}n be a Boolean domain. Then X admits a systematic non-
dictatorial aggregator if and only if it admits the aggregators ∧̄, ∨̄, maj or ⊕̄).

In case of integrity constraints, the problem of detecting if their domains admit system-
atic non-dictatorial aggregators is coNP-complete.

Proposition 4.1 Deciding, on input φ, whether Xφ admits a systematic non-dictatorial
aggregator is coNP-complete.

Proof Checking closure under ∧, ∨, maj and ⊕ is in coNP by Lemma 4.1. Thus we only need
to show coNP-hardness. We reduce from the known coNP-complete problem of tautology,
where we check if a propositional formula is satisfied by all assignments of values.

Let χ(x1, . . . , xk) be the input propositional formula on k variables, and ψ(y1, y2, y3)
be the formula such that Mod(ψ) = Imp, where {x1, . . . , xm} ∩ {y1, y2, y3} = ∅. Let also
m = k + 3.

Consider the formula:

φ(x1, . . . , xm, y1, y2, y3) = χ ∨ ψ.

If χ is a tautology, Xφ = {0, 1}m, which is closed under ∧, ∨, maj and ⊕. Otherwise:

Xφ =
(

Mod(χ)× {0, 1}3
)
∪
(

Mod(¬χ)× Imp
)
.
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Easily now, if ā = (a1, . . . , ak) does not satisfy φ, and f ∈ {∧,∨,maj,⊕}, it holds that
(ā, 0, 0, 1), (ā, 0, 1, 0), (ā, 1, 0, 0) ∈ Xφ, but:

b̄ := f̄((ā, 1, 0, 0), (ā, 0, 1, 0), (ā, 1, 0, 0)) = {(ā, 0, 0, 0), (ā, 1, 1, 1)}.

Thus, since b̄ /∈ Xφ, Xφ does not admit any systematic non-dictatorial aggregator. �

Finally, we can obtain the corresponding results in the case the domain is provided via an
agenda.

Proposition 4.2 Deciding, on input φ̄ = (φ1, . . . , φm), whether Xφ̄ admits a systematic

non-dictatorial aggregator is in ΠP
2 and coNP-hard.

Proof By Lemma 4.3, we have membership in ΠP
2 for detecting closure under ∧, ∨, maj

and ⊕. For coNP-hardness, observe that given a formula χ, we can again set φ = χ∨ψ and
construct an agenda whose domain is the same with Xφ of Proposition 4.1 in polynomial
time, by Endriss, Grandi, De Haan, and Lang (2016, Proposition 3). Thus, the same
reduction as in Proposition 4.1 works. �

5. Concluding Remarks

In this paper, we established the first results concerning the tractability of non-dictatorial
aggregation. Specifically, we gave polynomial-time algorithms that take as input a set X of
feasible evaluations and determine whether or not X is a possibility domain and a uniform
possibility domain, respectively. In these algorithms, the set X of feasible evaluations is
given to us explicitly, that is, X is given by listing all its elements. We also provided upper
and lower bounds for the complexity of deciding if a domain X is a possibility or a local
possibility domain, in case it is given implicitly, either via an integrity constraint or by an
agenda. Finally, we extended these results to other types of commonly used non-dictatorial
aggregators. These bounds are preliminary, in the sense that they are not tight, especially
in case the domains are provided via agendas. This merits further investigation, because
implicitly given domains occur frequently in the field of judgment aggregation.

The work reported here assumes that the aggregators are conservative, an assumption
that has been used heavily throughout the paper. There is a related, but weaker, notion of
an idempotent (or Paretian) aggregator F = (f1, . . . , fm) where each fj is assumed to be
an idempotent function, that is, for all x ∈ Xj , we have that f(x, . . . , x) = x. Clearly, every
conservative aggregator is idempotent. In the Boolean framework, idempotent aggregators
are conservative, but, in the non-Boolean framework, this need not hold. It remains an
open problem to investigate the computational complexity of the existence of non-dictatorial
idempotent aggregators in the non-Boolean framework.

Another line of research could be to consider the aggregators in Subsection 4.4 in the
non-Boolean framework. This changes things in a non-trivial way. For example, Theorem
F does not hold in the non-Boolean case, since for example a ternary minority aggregator
can be a generalized dictatorship for specific domains. Finally, it would be interesting to
follow along the lines of Terzopoulou, Endriss, and de Haan (2018), and consider settings
where the individuals are allowed to cast votes on subsets of issues, both in the abstract
and in the integrity constraint framework.
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