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Fig. 1. Our energetically consistent inelasticity model can not only be applied to the Material Point Method (top row), but also easily extend to the Finite

Element Method (bottom row with decreasing hardening coefficients from left to right). The stability under large time steps is guaranteed by the optimization

time integration.

In this paper, we propose Energetically Consistent Inelasticity (ECI), a

new formulation for modeling and discretizing finite strain elastoplastic-

ity/viscoelasticity in a way that is compatible with optimization-based time

integrators. We provide an in-depth analysis for allowing plasticity to be im-

plicitly integrated through an augmented strain energy density function. We

develop ECI on the associative von-Mises J2 plasticity, the non-associative

Drucker-Prager plasticity, and the finite strain viscoelasticity. We demon-

strate the resulting scheme on both the Finite Element Method (FEM) and

the Material Point Method (MPM). Combined with a custom Newton-type

optimization integration scheme, our method enables simulating stiff and

large-deformation inelastic dynamics of metal, sand, snow, and foam with

larger time steps, improved stability, higher efficiency, and better accuracy

than existing approaches.
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1 INTRODUCTION

Since the pioneering work of Terzopoulos and Fleischer [1988], the

computer graphics community has observed increasing interests

in modeling inelastic deformations governed by elastoplasticity,

viscoelasticity, and viscoplasticity. These inelastic mechanical prop-

erties govern the behaviors of a wide range of everyday objects.

Drawing inspirations from continuum mechanics, computer graph-

ics researchers have successfully modeled and simulated many in-

elastic materials, ranging from metal, sand, snow and mud to foam,

paint and organic tissues.

Inelasticity (mainly elastoplasticity and viscoplasticity) has been

widely explored using mesh-based Finite Elements. During inelastic

deformation, extreme element distortion and fracture commonly

co-exist. Thus, remeshing [O’Brien et al. 2002] and virtual node

[Hegemann et al. 2013; Molino et al. 2004] techniques are often ap-

plied. More recently, the Material Point Method (MPM) has emerged

as a popular alternative for inelastic materials [Jiang et al. 2016]

due to its natural support of topologically changing continuum

materials.

Despite a large amount of work in modeling inelasticity, a loss

of accuracy occurs in almost all existing work. In particular, when

implicit time integration schemes are performed, the plastic strain
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is often treated as a constant, and the real plastic deformation is

imagined to happen instantaneously at the beginning or the end

of a time step. Such a semi-implicit lagged treatment of inelasticity

results in unnoticeable visual artifacts for certain material models

such as the heuristic snow plasticity in Stomakhin et al. [2013] but

significant errors such as excessive artificial cohesion for others

[Gao et al. 2018; Tampubolon et al. 2017].

The choice of semi-implicity is largely due to the prominent chal-

lenge in modeling implicit inelasticity. Klár et al. [2016] was the first

to explore differentiating the plastic flow for Drucker-Prager soil

plasticity and incorporating it into the implicit momentum balance.

The authors proposed an implicit force formulation that resembles a

similar format to semi-implicit formulations [Stomakhin et al. 2013].

Unfortunately, their formulation cannot be expressed as the nega-

tive gradient of analytical energy. Resultingly, the stiffness matrix

is asymmetric, and GMRES became necessary for the associated

nonlinear root-finding problem ś a problem that by itself has no

stability or convergence guarantees when solved with Newton’s

method. Fang et al. [2019] used alternating direction method of

multipliers (ADMM) to shift the asymmetry to local small linear

systems, however without an energy, they could not perform global

convergence techniques such as line search.

This paper tackles the challenge by revisiting the derivation of

implicit plasticity. Our objective is to construct an analytical, aug-

mented potential energy function whose derivative exactly repro-

duces the implicit force. Related work in classic engineering litera-

ture [Ortiz and Stainier 1999; Radovitzky and Ortiz 1999] formulated

variational constitutive model updates based on the principle of max-

imum plastic dissipation and minimizing over the so-called dual

inelastic potential. Taking a different path, we derive our method

based on constructing a smooth energy that is consistent with exist-

ing return mapping-based plasticity treatments [Simo and Hughes

1998] in explicitly integrated inelasticity simulation systems. As a

result, our implicit inelasticity formulation can be directly incorpo-

rated into recently advanced optimization time integrators [Gast

et al. 2015; Li et al. 2020; Wang et al. 2020] to enable large time step

integration with guaranteed stability, theoretical consistency with

return mapping, and a symmetric energy Hessian. Our contributions

include:

• An implicit internal force formulation for fully implicit finite

strain elastoplasticity;

• A strain energy augmentation method that yields analytically

integrable elastoplastic forces and symmetric force derivatives

for von Mises J2 plasticity;

• An extension of our model to support strain hardening, pressure-

dependent soil plasticity, and rate-dependent viscoelasticity;

• Algorithms for incorporating our model in optimization-based

time integrators with the Material Point Method and the Finite

Element Method.

We demonstrate our results by simulating a wide range of inelas-

tic materials, including metal, sand, snow, and foam. Our method

allows the simulations of inelasticity to enjoy the advantages of

guaranteed stability, global convergence, and large time step sizes

brought by optimization-based time integrators without suffering

from inaccuracy and numerical artifacts from prior work.

2 RELATED WORK

Inelasticity with FEM. Elastoplastic simulation with FEM has been

extensively explored by the computer graphics community. O’Brien

et al. [2002] used the additive decomposition of strain to separate

elastic deformations and plastic deformations and used the von-

Mises yield criterion. However, as Irving et al. [2004] pointed out,

this decomposition does not support incompressibility for finite

strain. Instead, Irving et al. [2004] used the multiplicative decompo-

sition of deformation gradient with the volume-preserving return

mapping algorithm. Our model is based on this decomposition as

well. Under this framework, large plastic deformations may make

the dynamic system ill-conditioned. To solve this problem, Molino

et al. [2004] proposed the virtual node algorithm to allow topology

changes when the simulated mesh is severely distorted, and Bargteil

et al. [2007] used remeshing technique to maintain a high-quality

mesh throughout the simulation. For high-performance simulation,

Wojtan and Turk [2008] used frequently remeshed high-resolution

surfaces combined with low-resolution interior tetrahedral mesh

to resolve thin features near the boundaries. Wojtan et al. [2009]

further improved the framework to allow topology changes in inelas-

ticity simulations. These methods introduced extra computational

costs or complexities. Instead, we use optimization time integrators

to maintain long-time stability and global convergence. Further-

more, Bargteil et al. [2007] proposed a volume-preserving plasticity

model incorporating creep and work hardening/softening, which is

also followed by Wojtan and Turk [2008]. These are important re-

quirements for obtaining physical accuracy, which are all supported

by our model as well. Jones et al. [2016b] proposed an examples-

based approach for the mesh-based discretization, which search rest

shapes on a predefined example manifold. This method is efficient

for animation purposes but are less physically accurate.

Inelasticity with MPM. Extending the work of Harlow [1964] and

Brackbill and Ruppel [1986] on PIC/FLIP, MPM was proposed as

a hybrid Lagrangian/Eulerian method for solid mechanics by Sul-

sky et al. [1994]. Since its appearance in the graphics community

[Hegemann et al. 2013; Stomakhin et al. 2013], it has attracted a lot

of attentions. The most prominent advantage of MPM on modeling

inelastic materials is its flexibility in handling extreme deforma-

tion and topological changes, which pose significant challenges

to Lagrangian mesh-based approaches. Snow plasticity was first

simulated by Stomakhin et al. [2013] in a semi-implicit fashion, en-

forcing thresholds on principal stretches with post-projections. Yue

et al. [2015] used the Herschel-Bulkley model of non-Newtonian

viscoplastic flow to approximate foam behaviors. Fei et al. [2019] de-

rived an analytic plastic flow approach for Herschel-Bulkley fluid to

simulate compressible, shear-dependent liquids. Daviet and Bertails-

Descoubes [2016] modeled the granular materials as compressible

viscoplastic fluids combined with the Drucker-Prager yield criterion.

Their method suits the granular material simulations well, but fol-

lows a different perspective from ours. From the perspective of large

strain solid mechanics, Klár et al. [2016] simulated granular contin-

uum using the return mapping algorithm for the Drucker-Prager

plasticity. Following Klár et al. [2016], Yue et al. [2018] proposed a

hybrid method combining both discrete and continuum treatments

to achieve a high level of details with less computational costs. Fang
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Fig. 2. Snow Ball. A free-falling snow ball hits on a static dragon and smashes into pieces.

et al. [2019] applied the return mapping approach to handle elasto-

plasticity and viscoelasticity in an ADMM framework. Except for

Klár et al. [2016], these methods all temporally discretize inelasticity

in an explicit or semi-implicit way, where the plastic correction

was performed as an extra step at the end of each time step, fully

decoupled from elasticity. Decoupled treatment in an explicit in-

tegration can be justified via operator splitting; however, it will

cause artifacts for a (semi-)implicit integration. We use the return

mapping framework as well for our fully implicit elastoplasticity

and viscoelasticity, and we will show that ours is more temporally

consistent compared to Klár et al. [2016].

Inelasticity with Other Discretizations. Inelasticity simulations

are also explored with other types of spatial discretizations, e.g.,

Smoothed Particle Hydrodynamics (SPH), Position Based Dynamics

(PBD), peridynamics, etc.

SPH is a mesh-free Lagrangian method originally invented for

fluid simulations. Inspired by SPH, Jones et al. [2014]; Müller et al.

[2004] applied the plasticity model in O’Brien et al. [2002] to moving

least square particles for elastoplastic objects. Clavet et al. [2005]

used springs between particles to mimic elasticity and achieved

plasticity by modifying rest lengths during the simulation. These

two plasticity models are not derived from the finite strain frame-

work. Alduán and Otaduy [2011] simulated granular materials using

an incompressible SPH framework combined with the Drucker-

Prager yield criterion. Their plastic correction was performed in a

Jacobi-like manner until convergence, while ours is performed with

fixed-point iterations. Yang et al. [2017] proposed an elastoplastic

model based on the Drucker-Prager yield criterion as well within an

SPH framework. Gerszewski et al. [2009] introduced deformation

gradients to the SPH framework so that plasticity models based

on the multiplicative decomposition of deformation gradient can

be applied. They used explicit time integrators combined with the

plasticity model in [Irving et al. 2004]. Gissler et al. [2020] used an

implicit compressible SPH solver to simulate the compression of

snow. The plasticity is handled by an extra correction step on the

deformation gradient following Stomakhin et al. [2013], which is

still a semi-implicit method.

PBD was proposed by [Müller et al. 2007] for real-time simula-

tions. This method replaced internal forces in force-based methods

with constraints on positions. Plastic deformations can be intro-

duced by the shape matching framework [Bender et al. 2017; Falken-

stein et al. 2017; Jones et al. 2016a; Müller et al. 2005]. However,

this simulation framework sacrifices physical accuracy for better

efficiency.

The peridynamic theory is an emerging field in simulations, which

was proposed by Silling [2000] to handle discontinuities caused by

deformations, such as cracks. It defines pairwise force functions

between particles and uses the integration over the interactions

from neighboring particles to describe dynamics. He et al. [2017]

used the peridynamics framework to simulate elastoplastic materi-

als in a projective dynamics way. They adopted the Drucker-Prager

criterion for plasticity. Their solver can also be extended to simulate

viscoelasiticity. Chen et al. [2018] derived a form of force functions

based on the isotropic linear elasticity model to simulate elastoplas-

tic materials. They used explicit time integrators and an additive

plasticity model.

Optimization Time Integration. Large-scale implicit simulation

methods usually require solving large systems of nonlinear equa-

tions. To solve these systems, the Newton method for root-finding

problems is usually adopted, which needs careful tuning of the time

step size to ensure convergence. In fact, many of these implicit

equations can be integrated to get variational forms, where the

equivalent minimization problem can be solved by applying robust

optimization techniques. The optimization time integrators have

advantages in terms of long-time stability even when simulating

severe deformation with large time step sizes.

Bouaziz et al. [2014] proposed Projective Dynamics (PD), which

reformulated the backward Euler time integration for a specific type

of material into a local-global alternating solver. Both the local and

global steps have simple variational forms that can be solved in

a robust and efficient way. This framework was later extended to

simulate hyperelastic materials [Liu et al. 2017], support Laplacian

damping [Li et al. 2018], and utilize other time integration schemes

[Dinev et al. 2018]. Narain et al. [2016] then extended PD to a more

general form within the ADMM framework. Brown and Narain

[2021] improved the ADMM framework to resolve large rotations.

Gast et al. [2015] recast the backward Euler time integration with

hyperelastic materials, Rayleigh dampings, and collision penalties

as a minimization problem. Li et al. [2019] and Wang et al. [2020] ex-

plored domain decomposed and hierarchical preconditioning strate-

gies respectively within a quasi-Newton optimization framework

for robust and efficient time integration. Wang and Yang [2016] pro-

posed a gradient descent solver for GPUs to accelerate optimization

time integrations. Li et al. [2020] proposed Incremental Potential
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Contact (IPC), a variational form for frictional contacts. Their fric-

tion bases are iterated in a similar manner to our iterative yield

stresses. IPC is later proven effective for simulating codimensional

objects [Li et al. 2021b], rigid bodies [Ferguson et al. 2021], reduced

elastic solids [Lan et al. 2021], and FEM-MPM coupled domains [Li

et al. 2021a], all within the optimization time integration framework.

In this paper, we follow Gast et al. [2015] and Li et al. [2020] for the

optimization time integration of MPM and FEM respectively. The

hessian matrices are enforced to be positive definite following the

per-stencil projection technique in Teran et al. [2005].

In addition to hyperelastic solids, Batty et al. [2007] reformulated

the classical pressure projection step in solid-fluid coupling as a ki-

netic energyminimization. Narain et al. [2010] used a hybrid method

for sand simulation, where the pressure and friction are solved on

the Eulerian grid with a staggered projection method, alternating

between two coupled quadratic programs. Narain et al. [2012] posed

the strain limiting in cloth simulation as a nonlinear optimization

problem. Karamouzas et al. [2017] proposed an energy-based crowd

model for crowd simulation. Inglis et al. [2017] formulated fluid

simulation under a primal-dual optimization framework. Brown

et al. [2018] proposed an energy for dissipative forces.

3 FOUNDATIONS

In this section we start with reviewing finite strain elastoplasticity

(Section 3.1), MPM spatial discretization (Section 3.2), optimization-

based time integration (Section 3.3), and discretized plastic flow rule

(Section 3.4). Our review is by no means complete, and they are

provided as necessary background knowledge for our new model.

In Section 3.5, we present a new implicit force formulation that

is consistent with the variational weak form. It has a remarkable

advantage ś integrability, and thus lays important theoretical foun-

dations for our method.

3.1 Finite Strain Elastoplasticity

Our variational inelasticity model is derived under the finite strain

elastoplasticity framework. Here we review some basic concepts

and refer to [Simo 1992; Simo and Hughes 1998] for more details.

Let Ω0 ⊂ R3 be the reference configuration of the continuum

body and denote 𝒙 := Φ(𝑿 , 𝑡) the deformation map from Ω
0 (with

coordinate 𝑿 ) to the world space Ω
𝑡 (with coordinate 𝒙). The de-

formation gradient 𝑭 =
𝜕Φ
𝜕𝑿 (𝑿 , 𝑡) measures the local deformation

of the infinitesimal region around 𝑿 . With finite strain elastoplas-

ticity, 𝑭 is multiplicatively decomposed into 𝑭 = 𝑭𝐸𝑭𝑃 , where 𝑭𝑃

denotes the permanent plastic deformation, and 𝑭𝐸 denotes the elas-

tic deformation which results in elastic forces (Figure 3). Plasticity

requires that the Kirchhoff stress 𝝉 associated with 𝑭𝐸 is inside the

admissible area defined by a yield condition 𝑦 (𝝉 ) ≤ 0. The surface

characterized by 𝑦 (𝝉 ) = 0 is often referred to as the yield surface.

When 𝑭 changes, 𝑭𝐸 will follow some plastic flow to evolve so that

it lies within the yield surface. In this paper, we follow the volume

preserving plastic flow from [Klár et al. 2016].

From the Lagrangian view point, the state of dynamics of an

elastoplastic continuum can be described by a Lagrangian den-

sity field 𝑅(𝑿 , 𝑡) on Ω
0 and a Lagrangian velocity field 𝑽 (𝑿 , 𝑡) :=

𝜕Φ(𝑿 ,𝑡 )
𝜕𝑡 on Ω

0. The two fields are governed by the conservation of

Elastoplastic 

Intermediate

Fig. 3. The elastoplastic decomposition of the deformation gradient.

mass

𝑅(𝑿 , 𝑡) 𝐽 (𝑿 , 𝑡) = 𝑅(𝑿 , 0), (1)

where 𝐽 = det 𝑭 , and the conservation of momentum,

𝑅(𝑿 , 0) 𝜕𝑽
𝜕𝑡
(𝑿 , 𝑡) = ∇𝑿 · 𝑷 + 𝑅(𝑿 , 0)𝒈, (2)

where 𝑷 is the first Piola-Kirchhoff stress and 𝒈 is the gravity.

3.2 MPM Discretization

The Material Point Method (MPM) discretizes a continuum by a

set of disconnected Lagrangian material particles. The continuous

time variable 𝑡 is discretized by consecutive time steps 𝑡0, 𝑡1, ..., 𝑡𝑛 .

Without loss of generality, we assume a fixed time step size Δ𝑡 . The

advection is carried on material particles, so the conservation of

mass across time steps is trivially satisfied. Assuming backward

difference on 𝜕𝑽
𝜕𝑡 , the weak form of the momentum equation is

[Jiang et al. 2016]

1

Δ𝑡

∫

Ω0
𝑅(𝑿 , 0) (𝑽𝑛+1 − 𝑽𝑛)𝑄𝛼𝑑𝑿 = −

∫

Ω0
𝑷∇𝑿𝑄𝛼𝑑𝑿 (3)

for an arbitrary test function 𝑄𝛼 (𝑿 , 𝑡𝑛).
Here for simplicity, we drop the gravity term and admit the free

surface assumption.

MPMuses the previous time step 𝑡𝑛 as the reference configuration,

so the integration on Ω
0 is pushed forward onto Ω

𝑛 :

1

Δ𝑡

∫

Ω𝑛
𝜌 (𝒙, 𝑡𝑛) (v̂𝑛+1 − v𝑛)𝑞𝛼𝑑𝒙 = −

∫

Ω𝑛

1

𝐽𝑛
𝑷𝐹𝑛𝑇∇𝒙𝑞𝛼𝑑𝒙, (4)

where 𝜌, v𝑛, v̂𝑛+1, and 𝑞𝛼 are Eulerian counterpart of 𝑹,V𝑛,V𝑛+1,
and 𝑄𝛼 , obtained by pushing forward from Ω

0 onto Ω
𝑛 .

In MPM, B-Spline-based interpolations are often applied to de-

fine fields on Ω
𝑛 , and material particles serve as quadratures to

approximate the volume integration. Let 𝑥𝑛𝑝 ,𝑿𝑝 be the coordinate

of particle 𝑝 in Ω
𝑛 and Ω

0 respectively, and 𝑤𝑛
𝑖𝑝 and ∇𝑤𝑛

𝑖𝑝 be the

weight and weight gradient between particle 𝑝 and grid 𝑖 . With

the mass lumping technique, the force equilibrium of grid 𝑖 can be

discretized as
1

Δ𝑡
𝑚𝑛
𝑖 (v̂

𝑛+1
𝑖 − v𝑛𝑖 ) = −

∑

𝑝

𝑷𝑝𝑭
𝑛𝑇
𝑝 ∇𝑤𝑛

𝑖𝑝𝑉
0
𝑝 , (5)

where 𝑉 0
𝑝 is the initial volume of particle 𝑝 ,𝑚𝑛

𝑖 =
∑
𝑝𝑚𝑝𝑤

𝑛
𝑖𝑝 is the

lumped mass on grid 𝑖 and𝑚𝑝 is approximated by 𝑅(𝑿𝑝 , 0)𝑉 0
𝑝 . The

right hand side of Equation 5 is the internal elastic force on grid 𝑖 .

At each time step, the velocity field v𝑛 is transferred frommaterial

particles to grid nodes, and the new velocity field v̂𝑛+1 is solved and
transferred back to material particles for advection. In this paper, we
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Fig. 4. Car collision. The red car hits the yellow car against the wall by 56 mph, creating a big dent on the right side of the yellow car.

use the quadratic MLS kernel [Hu et al. 2018] as the weight function,

and APIC [Jiang et al. 2015] as the particle-grid transfer scheme.

3.3 Optimization Time Integration

Assuming implicit integration with BDF1 (backward Euler), the first

Piola-Kirchhoff stress 𝑷 in Equation 5 is associated with the defor-

mation gradient 𝑭𝑛+1 at time step 𝑡𝑛+1. The deformation gradients

𝑭𝑛 and 𝑭𝑛+1 are related by

𝑭𝑛+1 = (I + Δ𝑡∇v̂𝑛+1𝑝 )𝑭𝑛, (6)

where ∇v̂𝑛+1𝑝 =
∑
𝑖 v̂

𝑛+1
𝑖 ∇𝑤𝑛

𝑖𝑝
⊤.

Existing optimization-based time integrators in computer graph-

ics often assume hyperelastic materials. Without plasticity, the first

Piola-Kirchhoff stress is simply the derivative of the corresponding

elastic strain energy density function: 𝑷 (𝑭 ) = 𝜕Ψ
𝜕𝑭 . Equation 5 is

then equivalent to the following optimization problem:

Δv̂ = argmin
Δv 𝐸 (Δv) =

∑

𝑖

𝑚𝑖 ∥Δv𝑖 ∥2 +
∑

𝑝

Ψ(𝑭 𝑡𝑟
𝑝 (v𝑛 + Δv))𝑉 0

𝑝 ,

v̂𝑛+1 = v𝑛 + Δv̂,
(7)

where 𝑭 𝑡𝑟𝑝 (v) = (I + Δ𝑡∇v𝑝 )𝑭𝑛𝑝 is the elastic predictor. The opti-

mization problem can be robustly solved by projected Newton’s

method with backtracking line search [Wang et al. 2020].

Gravity. For the effect of gravity, we add the term 𝑚𝑖𝒈 on the

right-hand side in Equation 5, which corresponds to the extra term

−∑𝑖𝑚𝑖𝒈
⊤v in Equation 7.

3.4 Discretization of Plastic Flow

In the discrete setting, plasticity is most commonly achieved by the

return mapping algorithm [Klár et al. 2016; Simo and Hughes 1998],

which is equivalent to solving for a strain that satisfies the plastic

flow rule. Geometrically, the return mapping defines how elastic

predictors outside the yield surface should be corrected so that the

effective stresses lie inside the yield surface. We follow the notations

in Klár et al. [2016] to describe discrete plastic flows in this paper.

For elasticity, we adopt the St. Venant-Kirchhoff (StVK) model

with Hencky strains. The elastoplasticity of isotropic materials can

be characterized in the principal stretch space using the singu-

lar value decomposition (SVD) [Stomakhin et al. 2012]. Let 𝑭 𝑡𝑟 =

Stress Predictor

Effective Stress

Projection Direction

Elastic Area

Fig. 5. Return mapping for a discrete plastic flow.

𝑼𝚺𝑡𝑟𝑽⊤ be the SVD of an elastic predictor 𝑭 𝑡𝑟 . The Hencky strain

is defined as 𝝐 = log 𝚺𝑡𝑟 , and the Kirchhoff stress for the StVK

model is 𝝉 = 2𝜇𝝐 + 𝜆 tr(𝝐)𝑰 , where 𝜇, 𝜆 are Lamé parameters. For a

discrete plastic flow, if the stress associated with an elastic predictor

is outside the yield surface, then the stress is projected back onto the

yield surface. The projection procedure in the principal stress space

is illustrated in Figure 5. Note that along the perpendicular direction

to the diagonal, we would have det 𝑭𝑃 = 1, which corresponds to

a volume-preserving plastic deformation. We denote the endpoint

of the return mapping (also known as the corrector or the effective

stress) as 𝑭𝐸 = 𝒁 (𝑭 𝑡𝑟 ) where 𝒁 (·) is the return mapping.

3.5 Force Balance with Implicit Plasticity

For elastoplastic materials, the first Piola-Kirchhoff stress 𝑷 in Equa-

tion 5 should be rewritten as [Bonet and Wood 1997]

𝑷 =
𝜕Ψ𝐸

𝜕𝑭𝐸
𝑭𝑃
−⊤

. (8)

Here Ψ
𝐸 is the elastic strain energy density function. We add a

superscript to emphasize the elastic energy is only associated with

the elastic deformation gradient 𝑭𝐸 .

Through a weak form derivation of the updated Lagrangian dy-

namics (see the supplemental document for details), we show that
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the implicit internal force on grid node 𝑖 is:

𝒇𝑛+1𝑖 = −
∑

𝑝

𝑉 0
𝑝
𝜕Ψ𝐸

𝜕𝑭𝐸
(𝑭𝐸,𝑛+1𝑝 )𝑭𝑃,𝑛+1𝑝

−⊤
𝑭𝑛𝑝
⊤∇𝑤𝑛

𝑖𝑝 , (9)

In practice one does not need to track the plastic deformation

gradients 𝑭𝑃 on the particles. The nodal force can be expressed in

terms of 𝑭𝐸,𝑡𝑟 (defined as 𝑭𝐸,𝑡𝑟 (v) = (I + Δ𝑡∇v𝑝 )𝑭𝐸,𝑛𝑝 ):

𝒇𝑛+1𝑖 = −
∑

𝑝

𝑉 0
𝑝

𝜕Ψ𝐸

𝜕𝑭𝐸
(𝒁 (𝑭𝐸,𝑡𝑟 ))𝒁 (𝑭𝐸,𝑡𝑟 )⊤𝑭𝐸,𝑡𝑟 −⊤𝑭𝐸,𝑛⊤∇𝑤𝑛

𝑖𝑝 . (10)

Note that when doing explicit time integration, we can directly

replace 𝑭𝐸,𝑛+1𝑝 , 𝑭𝐸,𝑡𝑟𝑝 both with 𝑭𝐸,𝑛𝑝 , which gives the common force

expression for explicit MPM:

𝒇𝑛𝑖 = −
∑

𝑝

𝑉 0
𝑝
𝜕Ψ𝐸

𝜕𝑭𝐸
(𝑭𝐸,𝑛𝑝 )𝑭𝐸,𝑛

⊤∇𝑤𝑛
𝑖𝑝 . (11)

For implicit plasticity, Klár et al. [2016] directly replace 𝜕Ψ𝐸

𝜕𝑭𝐸 (𝑭𝐸,𝑛𝑝 ) in
Equation 11 with 𝜕Ψ𝐸

𝜕𝑭𝐸 (𝒁 (𝑭𝐸,𝑡𝑟𝑝 )) and define the resulting expression
as the implicit force. We can clearly observe that

𝒇𝑛+1𝑖 ≠ −
∑

𝑝

𝑉 0
𝑝
𝜕Ψ𝐸

𝜕𝑭𝐸
(𝒁 (𝑭𝐸,𝑡𝑟𝑝 ))𝑭𝐸,𝑛⊤∇𝑤𝑛

𝑖𝑝 , (12)

i.e., the implicit force in [Klár et al. 2016] is not equivalent to our

formulation (Equation 10). As we discuss in the supplemental doc-

ument, the choice of Klár et al. [2016] is only semi-implicit. Fur-

thermore, their formulation is not integrable because their force

derivative is not symmetric. Therefore in [Klár et al. 2016] it is nec-

essary to adopt Newton-Ralphson root finding with GMRES for the

asymmetric linear system solve. In the next section, we elaborate on

our new model which enables the existence of an analytical energy.

4 ENERGETICALLY CONSISTENT INELASTICITY (ECI)

4.1 One-Dimensional Investigation

To motivate ECI, let’s start with applying a discrete plasticity model

to a one-dimensional spring with a constant yield stress.

Consider a one-dimensional elastoplastic spring with rest length

𝑉0 = 1. We fix its one end at 𝑥 = 0, and place the other end at 1

initially. With the initial state being the reference configuration,

we model the spring with finite strain elastoplasticity, where the

deformation gradient can be conveniently calculated as 𝐹 (𝑥) = 𝑥

with 𝑥 being the coordinate of its free end.

Discretizing time into steps 𝑡0, 𝑡1, ..., 𝑡𝑛 with equal time step size

Δ𝑡 , for time step 𝑛, the elastic predictor 𝐹𝐸,𝑡𝑟 by assuming a purely

elastic deformation is given by

𝐹𝐸,𝑡𝑟 (𝑥) = 1

𝐹𝑃,𝑛
𝑥 . (13)

We assign the following strain energy density function:

Ψ
𝐸 (𝐹𝐸 ) = 𝑘

2
(log 𝐹𝐸 )2, (14)

where 𝑘 is the stiffness. Viewing the spring as a single-element FEM

discretization, since 𝑉0 = 1, Ψ𝐸 equals the total elastic potential.

Fig. 6. The strain-energy (left) and the strain-stress (right) plot of an elasto-

plastic spring. Here 𝜖 = log(𝐹 ) and 𝜏 =
𝜕Ψ
𝜕𝐹 𝐹 .

Assume 𝑘 = 1 for brevity, the Kirchhoff stress is then given by

𝜏 (𝐹𝐸 ) := 𝜕Ψ𝐸

𝜕𝐹𝐸
𝐹𝐸 = log(𝐹𝐸 ). (15)

Let the constant yield stress be 𝜏𝑌 = log(𝐹𝑌 ), where 𝐹𝑌 ∈ [1,∞)
is a critical strain, and define the yield function to be 𝜏 − 𝜏𝑌 ≤ 0,

we can then follow standard plasticity treatment [Simo and Hughes

1998] to define a simple return mapping procedure with the form

𝐹𝐸,𝑛+1 = Z(𝐹𝐸,𝑡𝑟 ) =
{
𝐹𝐸,𝑡𝑟 𝐹𝐸,𝑡𝑟 ≤ 𝐹𝑌

𝐹𝑌 otherwise
. (16)

In terms of the Hencky strain 𝜖𝐸 = log(𝐹𝐸 ), the yield condition

is equivalent to

𝜖𝐸,𝑡𝑟 − 𝜖𝐸,𝑛+1 = 𝛿𝛾 > 0. (17)

Geometrically, the quantity 𝛿𝛾 measures how far away the elastic

strain predictor is from the yield surface in the principal strain space.

This quantity plays an important role in our variational modeling

of plasticity. Specifically, we have the following theorem for the

elastoplastic springs:

Theorem 4.1 (Augmented energy density for springs). In the

problem setting described above (𝑉 0
= 1, 𝑘 = 1), using the following

energy density function

Ψ(𝑥) =
{
Ψ
𝐸 (Z(𝐹𝐸,𝑡𝑟 (𝑥))) + 𝜏𝑌𝛿𝛾 (𝐹𝐸,𝑡𝑟 (𝑥)) 𝐹𝐸,𝑡𝑟

> 𝐹𝑌

Ψ
𝐸 (𝐹𝐸,𝑡𝑟 (𝑥)) otherwise

(18)

reveals a force that is equivalent to what one would get if one performed

the force-based implicit plasticity.

We include in the supplemental document the proof for this the-

orem as well as details showing that Ψ(𝑥) is piecewise 𝐶∞ and

everywhere 𝐶1. A comparison between the augmented energy and

the pure-elastic energy is shown in Figure 6.

Taking the inertia into consideration, we test the model on a small

dynamic mass-spring system. At the end of each time step, 𝐹𝑝 is

updated from the following relation:

𝐹𝑛+1 = 𝑥𝑛+1 = Z(𝐹𝐸,𝑡𝑟 )𝐹𝑃,𝑛+1 = 𝐹𝐸,𝑡𝑟 𝐹𝑃,𝑛 . (19)

The ECI simulation results quantitatively match the results using

explicit integration (see Figure 8).
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Fig. 7. Squeeze armadillo. Rolling a plastic armadillo through a gear left the gear teeth permanently distorts the armadillo body.
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Fig. 8. Spring simulation with ECI.We simulate under the same initial

velocity but different critical strains. The results from our large-time-step

ECI all match with the results from explicit small-time-step time integration.

4.2 Extending to Von-Mises Plasticity

A natural analogy of elastoplastic spring with constant yield stress

for the plasticity of isotropic hyperelastic materials is the von-Mises

plasticity model, which also associates all stress predictors with a

constant yield stress 𝜏𝑌 (the norm of the deviatoric Kirchhoff stress

on the yield surface). We study von-Mises plasticity under the St.

Venant-Kirchhoff constitutive model with Hencky strains. Following

the notations from Section 3.4, the yield surface is defined as

𝑦 (𝝉 ) = ∥𝝉 ∥𝐹 − 𝜏𝑌 = 0, (20)

where 𝝉 = 𝝉 − 1
𝑑
tr(𝝉 )𝑰 is the deviatoric part of the Kirchhoff stress.

The equivalent yield condition is

𝛿𝛾 = ∥𝝐̂ ∥ − 𝜏𝑌

2𝜇
> 0, (21)

Stress Predictor

Effective Stress

Projection Direction

Elastic Area

Fig. 9. Yield surface of the von-Mises plasticity model.

where 𝝐 = log(𝚺𝑡𝑟 ) is the trial Hencky strain and 𝝐̂ = 𝝐− 1
𝑑
tr(𝝐)𝑰 is

the deviatoric part of the Hencky strain. The corresponding return

mapping (Figure 9) is

𝒁 (𝑭𝐸,𝑡𝑟 ) =
{
𝑭𝐸,𝑡𝑟 𝛿𝛾 ≤ 0

𝑼 exp (𝝐 − 𝛿𝛾 𝝐
∥𝝐 ∥ )𝑽

⊤ otherwise
. (22)

We have the following key lemma for the von-Mises plasticity:

Lemma 4.2. Define the augmented elastoplastic energy density

function as:

Ψ(𝑭 ) =
{
Ψ
𝐸 (𝑭 ), 𝛿𝛾 (𝑭 ) ≤ 0

Ψ
𝐸 (𝒁 (𝑭 )) + 𝜏𝑌𝛿𝛾 (𝑭 ), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (23)

This energy density function satisfies the following identity for any 𝑭 :

𝜕Ψ(𝑭 )
𝜕𝑭

≡ 𝜕Ψ𝐸

𝜕𝑭𝐸
(𝒁 (𝑭 ))𝒁 (𝑭 )⊤𝑭−⊤ . (24)

The proof of this lemma is provided in the supplementary docu-

ment. With this lemma, it is easy to prove the following theorem:

Theorem 4.3 (Augmented energy theorem for von-Mises

plasticity). The augmented elastoplastic energy density function

(Equation 23) viewed as a hyperelastic strain energy density function
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Stress Predictor

Effective Stress

Projection Direction

Elastic Area

Fig. 10. Yield surface of the Drucker-Prager plasticity model.

reveals a force that is equivalent to what one would get if one performed

the force-based implicit plasticity, i.e.

𝒇 𝑖 = −
∑

𝑝

𝑉 0
𝑝

[
𝜕Ψ

𝜕𝑭
(𝑭𝐸,𝑡𝑟

𝑝 )
]
𝑭𝐸,𝑛
𝑝

⊤∇𝑤𝑛
𝑖𝑝

= −
∑

𝑝

𝑉 0
𝑝

[
𝜕Ψ𝐸

𝜕𝑭𝐸
𝑝

(𝒁 (𝑭𝐸,𝑡𝑟
𝑝 ))𝒁 (𝑭𝐸,𝑡𝑟

𝑝 )⊤𝑭𝐸,𝑡𝑟
𝑝

−⊤
]

𝑭𝐸,𝑛
𝑝

⊤∇𝑤𝑛
𝑖𝑝 .

(25)

When performing optimization time integration, we can simply

view the elastoplastic free energy density as a new strain energy

density function. At the end of each time step, we update 𝑭𝐸 with

𝒁 (𝑭𝐸,𝑡𝑟 ). The detailed pipeline is elaborated in Section 5.

4.3 Extending to Pressure Dependent Soil Plasticity

Drucker-Prager plasticity is widely applicable to the simulations

of granular materials such as sand. The yield surface under the St.

Venant-Kirchhoff constitutive model with Hencky strains is defined

as

𝑦 (𝝉 ) = ∥𝝉 ∥𝐹 + 𝛼 tr(𝝉 ) = 0, (26)

where 𝛼 =

√
2
3

2 sin𝜙𝑓

3−sin𝜙𝑓
and 𝜙 𝑓 is the friction angle.

The equivalent yield condition is then

tr(𝝐) > 0, or 𝛿𝛾 = ∥𝝐̂ ∥𝐹 + 𝛼
(𝑑𝜆 + 2𝜇) tr(𝝐)

2𝜇
> 0. (27)

The corresponding return mapping (Figure 10) is

𝒁 (𝑭𝐸,𝑡𝑟 ) =



𝑼𝑽⊤ tr(𝝐) > 0

𝑭𝐸,𝑡𝑟 𝛿𝛾 ≤ 0, tr(𝝐) ≤ 0

𝑼 exp (𝝐 − 𝛿𝛾 𝝐
∥𝝐 ∥ )𝑽

⊤ otherwise

. (28)

The augmented elastoplastic energy introduced above for our 1D

spring and von-Mises model essentially comes from the integrability

of the following vector field over R𝑑×𝑑 :

𝜕Ψ𝐸

𝜕𝑭𝐸
(𝒁 (𝑭 ))𝒁 (𝑭 )⊤𝑭−⊤ . (29)

Unfortunately, this integrability does not hold anymore for the

Drucker-Prager return mapping. It can be checked that the Jacobian

field of the above vector field is not symmetric. Even worse, 𝛿𝛾 is

undefined in the region with tr(𝝐) > 0, because the projection there

is not volume-preserving.

Strain Predictor

Effective Strain

Projection Direction

Elastic Area

Fig. 11. Yield surface of the Drucker-Prager plasticity model in the prin-

cipal strain stress under our extrapolated St. Venant-Kirchhoff model.

4.3.1 Extrapolating St. Venant-Kirchhoff. To solve the issue of 𝛿𝛾

for the area defined by tr(𝝐) > 0, we extrapolate the St. Venant-

Kirchhoff constitutive model in this area as:

Ψ̂
𝐸 (𝚺) =

{
𝜇∥𝝐̂ ∥2 tr(𝝐) ≥ 0

𝜇∥𝝐̂ ∥2 + ( 𝜆2 +
𝜇
𝑑
) (tr(𝝐))2 tr(𝝐) < 0

. (30)

When tr(𝝐) < 0, Ψ̂𝐸 is just equivalent to the St. Venant-Kirchhoff

strain energy density, which separates the deviatoric term and the

pressure term. When tr(𝝐) ≥ 0, we extrapolate the energy only

with the deviatoric term and define the yield stress to be zero. This

extrapolation does not change the yield surface in the principal

stress space. Instead, the yield surface in the principal strain space

is extended to include the diagonal line of the first quadrant, and

all the points on this ray correspond to the tip of the yield surface

in the principal stress space (see Figure 11). With this extrapolated

model, the volume-preserving projection can be done as well in the

area of tr(𝝐) ≥ 0, and 𝛿𝛾 is well-defined.

In summary, with our extrapolation, the return mapping is sim-

plified as

𝒁 (𝑭𝐸,𝑡𝑟 ) =
{
𝑭𝐸,𝑡𝑟 , 𝛿𝛾 ≤ 0

𝑼 exp (𝝐 − 𝛿𝛾 𝝐
∥𝝐 ∥ )𝑽

⊤, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (31)

where

𝛿𝛾 =

{
∥𝝐̂ ∥, tr(𝝐) > 0

∥𝝐̂ ∥ + 𝛼 𝑑𝜆+2𝜇
2𝜇 tr(𝝐), otherwise

. (32)

4.3.2 Recover Integrability. To resolve the non-integrability, we

update the yield stress iteratively during integration (Figure 13).

At each time step, we solve a series of optimization problems with

constant yield stresses. The yield stress 𝜏𝑡𝑟
𝑌,𝑝

for each particle 𝑝 is

computed from its elastic predictor 𝑭𝐸,𝑡𝑟𝑝 at the beginning of the

optimization:

𝜏𝑡𝑟𝑌 =

{
0, tr(𝝐) > 0

−𝛼 (𝑑𝜆 + 2𝜇) tr(𝝐), otherwise
, (33)

and the corresponding 𝛿𝛾 is defined with a fixed yield stress:

𝛿𝛾 =

{
∥𝝐̂ ∥, tr(𝝐) > 0

∥𝝐̂ ∥ − 𝜏𝑡𝑟
𝑌
2𝜇 , otherwise

. (34)
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Fig. 12. Memory Foam. A hand presses down a memory foam pillow for a while to leave a hand print, and then disappears suddenly. From left to right, the

hand print slowly disappears as the deformed memory foam gradually restores its initial rest shape.

Strain Predictor

Effective Strain

Projection Direction

Trial Yield Surface

Elastic Area

Fixed-point iteration

Fig. 13. Illustration of our iterative stress method for the Drucker-Prager

plasticity. 𝑖 stands for the fixed-point iteration index. The strains here are

strain predictors at the beginning of each stress iteration. The trial yield

surfaces remain constant within each iteration.

In this way, each particle experiences a local cylinder-like yield

surface with a different yield stress. The stress iteration can be

viewed as a fixed-point iteration on the yield stresses; see Section

5.1 for more details. Under convergence, the trial yield stress is

consistent with the yield stress defined by the Drucker-Prager yield

surface.

4.3.3 Drucker-Prager Plasticity with Cohesion. To simulate mate-

rials with both granular and chunky behaviours such as wet sand

and snow, we shift the yield surface of Druger-Prager model along

the diagonal in the principal stress space to model cohesion. This

effectively updates Equation 33 and Equation 30 as

𝜏𝑡𝑟𝑌 =

{
0, tr(𝝐) > 𝑐𝑑

−𝛼 (𝑑𝜆 + 2𝜇) (tr(𝝐) − 𝑐𝑑), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (35)

Ψ̂
𝐸 (𝚺) =

{
𝜇∥𝝐̂ ∥2 + ( 𝜆2 +

𝜇
𝑑
) (𝑐𝑑)2 tr(𝝐) ≥ 𝑐𝑑

𝜇∥𝝐̂ ∥2 + ( 𝜆2 +
𝜇
𝑑
) (tr(𝝐))2 otherwise

, (36)

where 𝑐 > 0 is the cohesion parameter.

4.4 Hardening

The hardening mechanism plays an important role in simulations

of materials like metal [Chakrabarty and Drugan 1988] and snow

[Gaume et al. 2018; Stomakhin et al. 2013]. In general, the hardening

mechanism is associated with some hardening state set 𝑞𝑛 and some

hardening parameter set 𝜉 . Theoretically, hardening controls how

the yield surface evolves according to the hardening state.

A linear hardening rule for the von-Mises plasticity can be defined

as

𝑞𝑛+1 = 𝑞𝑛 + 2𝜇𝜉𝛿𝛾 (𝑭𝐸,𝑡𝑟 ),
𝜏𝑛+1𝑌 = 𝑞𝑛+1,

𝑞0 = 𝜏𝑌,init .

(37)

This effectively makes the yield stress 𝜏𝑛+1
𝑌

in the equilibrium state

at time step 𝑡𝑛 depend on 𝑭𝐸,𝑡𝑟 , which is not a constant anymore for

different 𝑭𝐸,𝑡𝑟 . Similarly to the iterative stress update for Drucker-

Prager, we can also iterate on the hardening state. At the beginning

of each optimization, the trial hardening state and the trial yield

stress are updated as

𝜏𝑡𝑟𝑌 = 𝑞𝑡𝑟 = 𝑞𝑛 + 𝜉𝛿𝛾 (𝑭𝐸,𝑡𝑟 ) . (38)

At the end of the time step, the hardening state 𝑞𝑛+1 is updated to

be the last trial hardening state 𝑞𝑡𝑟 .

4.5 Viscoelasticity

In addition to rate-independent elastoplasticity, ECI can also be

applied to rate-dependent viscoelasticity. Here we model viscoelas-

ticity based on a decomposition of the deformation gradient, which

is independent of the elastoplastic decompostion. At each time step,

the deformation gradient 𝑭 can be decomposed into two different

ways (Figure 14)

𝑭 = 𝑭𝐸𝑭𝑃 = 𝑭𝑁 𝑭𝑉 , (39)

where 𝑭𝑁 is the non-equilibrated elastic deformation gradient, and

𝑭𝑉 is the viscous deformation gradient. 𝑭𝑁 and 𝑭𝐸 provide elastic

responses additively. The evolution of 𝑭𝑁 follows a similar principle

as 𝑭𝐸 , which is characterized by a return mapping-like projection in

the discrete setting. We follow the formulation of Fang et al. [2019]:

𝒁 (𝑭𝑁,𝑡𝑟 ) = 𝑼 (𝐴(𝝐 − 𝐵 tr(𝝐)𝑰 ))𝑽⊤, (40)

where𝐴 =
1

1+Δ𝑡𝛼 , 𝐵 =
Δ𝑡𝛽

1+Δ𝑡 (𝛼+𝑑𝛽) , 𝛼 =
2𝜇𝑁
𝑣𝑑

, 𝛽 =
2(2𝜇𝑁 +𝜆𝑁𝑑)

9𝑣𝑣
− 2𝜇𝑁

𝑣𝑑𝑑
,

and 𝑭𝑁,𝑡𝑟 is the elastic predictor assuming no viscosity:

𝑭𝑁,𝑡𝑟
𝑝 = (I + Δ𝑡𝑛∇v̂𝑛+1𝑝 )𝑭𝑁,𝑛

𝑝 . (41)

Here 𝑣𝑣 and 𝑣𝑑 are viscosity parameters , and 𝜇𝑁 and 𝜆𝑁 are inde-

pendent Lamé parameters for viscoelasticity to the ones for elasto-

plasticity. For simplicity, we use 𝑣𝑣 = 𝑣𝑑 = 2𝜇𝑁 𝑣 for some 𝑣 .
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Intermediate
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Fig. 14. The viscoelastic decomposition of the deformation gradient and its

relationship to the elastoplastic decomposition.

Although the returnmapping for viscoelasticity is totally different

from the one for elastoplasticity, the vector field

𝜕Ψ𝑁

𝜕𝑭𝑁
(𝒁 (𝑭 ))𝒁 (𝑭 )⊤𝑭−⊤

turns out to be integrable if Ψ𝑁 is from the St. Venant-Kirchhoff

constitutive model, and the augmented ECI energy for this vector

field is

Ψ
Visco (𝚺) = 𝜇 tr((logΣ)2) + 𝜆

2
(tr(logΣ))2, (42)

where 𝜇 = 𝐴𝜇𝑁 and 𝜆 = 𝐴𝜆𝑁 −𝐴𝐵(2𝜇𝑁 + 𝑑𝜆𝑁 ).
Without plasticity, 𝑭𝑃 ≡ 𝑰 , and then the strain energy density for

a viscoelastic material is simply

Ψ(𝑭 ) = Ψ
𝐸 (𝑭 ) + ΨVisco (𝑭 ) . (43)

With MPM discretization, each particle 𝑝 independently tracks the

evolutions of 𝑭𝑁𝑝 and 𝑭𝐸𝑝 and independently updates them accord-

ingly at the end of each time step.

5 SPATIAL-TEMPORAL INTEGRATION

In this section, we present the detailed pipeline of ECI applied to

MPM. The algorithm stages from 𝑡𝑛 to 𝑡𝑛+1 are listed as follows:

(1) Particles-to-grid transfer. Grid mass𝑚𝑛
𝑖 and velocity v𝑛𝑖 are

transferred from particle mass 𝑚𝑝 , velocity v𝑛𝑝 , and angular

velocity information C𝑛
𝑝 with APIC [Jiang et al. 2015].

(2) Optimize newgrid velocity.A series of optimization problems

in the form of Equation 7 using ECI augmented energies are

solved until the fixed-point iteration converges or the maximal

number of iterations is reached. See Section 5.1.

(3) Grid-to-particles transfer. The grid velocity v̂𝑛+1𝑖 from the

time integration are transferred back to particles to update par-

ticle velocity v𝑛+1𝑝 and angular velocity information C
𝑛+1
𝑝 .

(4) Particle strain update.The elastic strain 𝑭𝐸 or 𝑭𝑁 are updated

according to return mappings.

(5) Particle advection. Particles are advected via particle velocity:

𝒙𝑛+1𝑝 = 𝒙𝑛𝑝 + v𝑛+1𝑝 Δ𝑡 .

We only elaborate on the second stage in the following section.

The other stages are the same as the standard explicit MPM simula-

tion pipeline [Jiang et al. 2016].

Algorithm 1: Iterative Stress Optimization Time Integration

1: procedure MPMTimeIntegration(Δvinit,𝑴𝑛, v𝑛,Δ𝑡, 𝜖) ⊲ 𝑴𝑛 , v𝑛 are

stacked grid mass and velocity, Δvinit is the initial guess

2: Δv = Δvinit

3: do ⊲ Iterative Stress Iteration

4: for each particle 𝑝

5: Evaluate trial hardening state 𝑞𝑡𝑟𝑝 ⊲ Equation 38

6: Evaluate trial yield stress (𝜏𝑡𝑟
𝑌
)𝑝 ⊲ Equation 35 38

7: end

8: do ⊲ Solve Equation 7

9: r← −∇𝐸 (Δv) ⊲ 𝐸 as in Equation 7

10: 𝛿Δv← InexctMINRES(ProjectPD(∇2𝐸 (Δv)), r) ⊲ Section

5.1.2

11: 𝛼 ← InversionFreeFilter(𝛿Δv) ⊲ Section 5.1.3

12: 𝐸𝑖𝑛𝑖𝑡 ← 𝐸 (Δv)
13: while 𝐸 (Δv + 𝛼𝛿Δv) > 𝐸𝑖𝑛𝑖𝑡 ⊲ Line search

14: 𝛼 ← 𝛼
2

15: end

16: Δv← Δv + 𝛼𝛿Δv
17: 𝒓̂ = Residual(r) ⊲ Section 5.1.4

18: while ∥𝒓̂ ∥∞ > 𝜖

19: while yield stress not converged

20: for each particle 𝑝 ⊲ Advance hardening state

21: 𝑞𝑛+1 = 𝑞𝑡𝑟𝑝
22: end

23: end procedure

5.1 Iterative Stress Optimization Time Integration

To make the internal force of implicit plasticity integrable, the yield

stress is viewed as constant in the force formulation, i.e., each par-

ticle sees a local cylinder-like yield surface with a different yield

stress. Multiple optimizations with updated yield stresses are needed

to make the final computed stresses consistent with the true yield

surface. Each optimization problem is solved robustly using the pro-

jected Newton method with backtracking line search [Wang et al.

2020], where the Hessian matrix is projected to a nearby positive

definite form [Teran et al. 2005]. See Algorithm 1 for the pseudo-

code.

The update procedure of 𝝉𝑡𝑟
𝑌

can be viewed as a fixed point itera-

tion:

𝝉
𝑡𝑟, 𝑗+1
𝑌

= 𝚪
𝑡𝑟
𝑌 (𝑭

𝐸,𝑡𝑟 (Δv(𝝉𝑡𝑟, 𝑗
𝑌
))) . (44)

Here 𝑗 is the index of stress iteration, Δv(𝝉𝑡𝑟, 𝑗
𝑌
) is the equilibrated

grid velocity field returned by a single optimization based on the

yield stress vector 𝝉
𝑡𝑟, 𝑗
𝑌

, and the bold symbol represents the stacked

stress vector from all particles or all grid nodes. Since the Jacobian

of this iteration has a scalar Δ𝑡2 (see the supplemental document for

details), the convergence of this fixed-point iteration is guaranteed

if Δ𝑡 and the residual for the equilibrium are both small enough.

In practice, we find that even with large time steps, only several

fixed-point iterations are required to produce visually high-quality

results.

5.1.1 Boundary Conditions. The boundary conditions in our simu-

lations are all from rigid collision objects. At the beginning of each

time step, we detect the set of grid nodes colliding with the collision

objects and directly enforce the velocity continuity condition across
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Table 1. Simulation Statistics.

Scene Figure Model Δ𝑡 (s) Δ𝑥 (m) Geometry Elasticity Plasticity/Viscosity s/Step

Sand castle 19 Drucker-Prager 0.0004a 0.007 2.26M particles 𝐸 = 5 × 106 𝜙𝑓 = 30◦, 𝑐 = 0.0025 18

Snow ball 2 18 Drucker-Prager 0.001 0.01 1.00M particles 𝐸 = 106 𝜙𝑓 = 30◦, 𝑐 = 0.0025 10

Noddle 1 Von-Mises 0.001 0.01 2.07M particles 𝐸 = 106 𝜏𝑌 = 7.7 × 102, 𝜉 = 0 31

Hydraulic test (Can) 1 21 22 Von-Mises 0.01 / 156K elements 𝐸 = 7 × 109 𝜏𝑌 = 3 × 107, 𝜉 = 0.5 5.6

Hydraulic test (Cylinder) 23 Von-Mises 0.01 / 299K elements 𝐸 = 7 × 109 𝜏𝑌 = 3 × 107, 𝜉 = 0.1 15

Hydraulic test (Square) 24 Von-Mises 0.01 / 230K elements 𝐸 = 7 × 109 𝜏𝑌 = 3 × 107, 𝜉 = 0.1 8.1

Armadillo 7 Von-Mises 0.01 / 121K elements 𝐸 = 106 𝜏𝑌 = 105, 𝜉 = 0.5 99

Car crash 4 Von-Mises 0.005b / 152K elements 𝐸 = 2 × 109 𝜏𝑌 = 2.5 × 106, 𝜉 = 0.1 51

Memory foam 12 Viscoelasticity 0.01 / 212K elements 𝐸 = 103 𝐸𝑁 = 2 × 105, 𝑣 = 0.01 17

aUsing a smaller time step to satisfy the CFL limit for particle advection (Δ𝑡 ≤ 𝐶𝐹𝐿 · Δ𝑥/𝑣max).
bUsing a smaller time step to decrease numerical damping for a more vivid animation.

the collision interface. In each Newton iteration, the linear solver is

projected so that the solved search direction remains tangent to the

constraint manifold.

5.1.2 Inexact Newton-KrylovMethods. FollowingWang et al. [2020],

we use an inexact Newton-Krylov method. The tolerance for the

linear systems is set relatively large in an adaptive way. Although

more Newton iterations are needed, the reduced linear solve cost

can still improve the world-clock timing of Newton convergence.

Specifically, we use matrix-free Minimal Residual Method (MINRES)

to solve the linear systems and the relative tolerance of eachMINRES

solve is set to min(0.5,max(0.1,
√
r⊤𝑷r)), where r is the right-hand

side vector and 𝑷 is the preconditioning matrix.

5.1.3 Inversion-free Line Search. The Hencky strain requires that

the deformation gradient is not inverted, i.e., det(𝑭𝐸,𝑡𝑟 ) > 0. Fol-

lowing [Li et al. 2020, 2021c; Smith and Schaefer 2015], before the

line search, we first compute a large admissible step size 𝛼 for the

search direction such that the energy is well-defined for any step

size 𝑡 ∈ [0, 𝛼], and then the backtracking procedure starts with the

filtered step size 𝛼 .

5.1.4 Stopping Criteria. To terminate the Newton iterations early

while ensuring visually high-quality simulation results, we normal-

ize the grid residual vector r, the gradient of the system energy, by

the grid mass vector. This gives a residual in the unit of velocity

(𝑚/𝑠), which is associated with a physical meaning. However, due to

numerical rounding errors, small-mass nodes sometimes can have

large residuals but contribute little to the particle advection. There-

fore, we use grid-to-particle transfer to transfer the grid residual

vector onto the particles to get the final residual vector. All our

examples are running with tolerance 10−2𝑚/𝑠 based on the infinity

norm of the velocity-unit residual vector on particles.

5.1.5 Timestep Size Restriction. The time step size ofMPM is bounded

by the advection CFL condition [Gast et al. 2015]. For those without

stress-iterations, no further restrictions are required for our opti-

mization integrator. For those with stress-iterations, theoretically,

there is indeed a timestep size restriction for the stress iteration to

fully converge, but we have not observed non-converging cases.

6 DISCRETIZATION WITH FEM

ECI is independent of spatial discretization choices. Hence it can

also be conveniently applied in Finite Element Methods (FEM).

In FEM, the conservation-of-momentum equation (Equation 3) is

directly discretized and solved in the material space. For FEM with

linear tetrahedral elements, the discretized nodal internal force is

𝒇 𝑖 = −
∑

𝑒

𝑉 0
𝑒 𝑷𝑒∇𝑁𝑖𝑒 , (45)

where 𝑒 indices all tetrahedral elements, 𝑉 0
𝑒 is the rest volume of

element 𝑒 , and ∇𝑁𝑖𝑒 is the gradient of the shape function on node 𝑖

evaluated at the barycenter of element 𝑒 [Irving et al. 2006].

Considering implicit plasticity, the internal force can be written

as (see the supplemental document for details)

𝒇𝑛+1𝑖 = −
∑

𝑒

𝑉 0
𝑒

𝜕Ψ𝐸

𝜕𝑭𝐸
(𝒁 (𝑭𝐸,𝑡𝑟

𝑒 ))𝒁 (𝑭𝐸,𝑡𝑟
𝑒 )⊤𝑭𝐸,𝑡𝑟

𝑒
−⊤

𝑭𝑃,𝑛
𝑒
−⊤∇𝑁𝑖𝑒 . (46)

The integrability of the vector field 𝜕Ψ𝐸

𝜕𝑭𝐸 (𝒁 (𝑭𝐸,𝑡𝑟 ))𝒁 (𝑭𝐸,𝑡𝑟 )⊤𝑭𝐸,𝑡𝑟
−⊤

leads us to the integrable internal force from the augmented elasto-

plastic energy density Ψ:

𝒇𝑛+1𝑖 = − 𝜕

𝜕𝒙𝑖
(
∑

𝑒

Ψ(𝑭𝐸,𝑡𝑟𝑒 )𝑉 0
𝑒 ), (47)

where 𝑥𝑖 is the world space coordinate of node 𝑖 .

At the end of each time step, we need to track and update 𝑭𝑃 on

each element with

𝒁 (𝑭𝐸,𝑡𝑟 )𝑭𝑃,𝑛+1 = 𝑭𝐸,𝑡𝑟 𝑭𝑃,𝑛 . (48)

ECI combined with Incremental Potential Contact (IPC) [Li et al.

2020] allows us to simulate various scenarios where both accurate

frictional contacts and inelastic responses are essential.

Timestep Size Restriction. Similar to MPM, there is also a timestep

size restriction for the stress iterations to fully converge in FEM.

Other than that, no further restrictions are needed. However, there

is certainly a tradeoff between the number of timesteps and the

accuracy and overall efficiency of the simulation [Li et al. 2020],

which holds for all time discretized numerical schemes.
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Fig. 15. Sand Column Collapse. (a) The explicit method explodes with Δ𝑡 = 10−4𝑠 . The implicit method [Klár et al. 2016] with vanilla Newton fails at a time

step where the scene almost becomes static Δ𝑡 = 10−4𝑠 (the frame right before the failure is rendered here). Our method works with all three time step sizes

Δ𝑡 = 10−5𝑠, 10−4𝑠, 10−3𝑠 , and produces consistent results. The semi-implicit method produces artificial elastic behaviors even with a small time step size.

(b)With the explicit method as the ground truth, our method has a smaller error (larger IoU score) than the semi-implicit method.

Table 2. Iteration statistics of 2D sand colume collapse.

Δ𝑡
# Stress Iter.

(Avg. / Max)

# Newton Iter.

(Avg. / Max)

# Line search

(Avg. / Max)

0.01 8.8 / 13 112.3 / 186 202.0 / 476

0.005 6.8 / 9 45.2 / 75 48.8 / 201

0.0025 5.1 / 7 18.4 / 34 9.6 / 60

0.00125 3.7 / 6 9.2 / 14 1.3 / 9

0.000625 2.6 / 4 4.7 / 8 0.0 / 0

7 EVALUATION

We demonstrate the versatility of ECI with both MPM and FEM

simulations. Among these examples, the ones that do not contain

topological changes are simulated with FEM, and the frictional con-

tact is modeled with IPC [Li et al. 2020]. For our MPM simulations,

we use a CFL number of 0.6 [Gast et al. 2015]. The world-clock tim-

ing and the simulation setup are reported in Table 1. The statistics

are based on Intel Core i9-10920X 3.5-GHz CPU with 12 cores.

7.1 Unit Tests

Convergence of Stress Iteration.

We test the convergence of the

stress iteration on a 2D sand col-

umn collapse experiment. We use

a direct solver to solve linear sys-

tems in the optimization time inte-

grator, to avoid complicating the

experiments with possibly inexact

Krylov solves. The convergence

criteria of the stress iteration is ∥(𝜏 𝑗+1
𝑌
− 𝜏 𝑗

𝑌
)∥2 < 10−9 (2𝜇

√
𝑁 ) ,

where 𝑁 is the number of particles, and the Newton tolerance is

10−5. Note that these tolerances are much tighter than needed so

that we can verify that our method can converge with high accuracy.

We consecutively halve the time step size from Δ𝑡 = 0.01𝑠 . All these

tests successfully converge with the given convergence criteria and

have consistent results (see the inset figure). The iteration statistics

➀
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Fig. 16. With lower and upper bounds, the stored elastic energy in the

soda can changes periodically over time during the compressingśstretching

cycles, which demonstrates the long-time stability of our simulation.

are listed in Table 2, which shows that as the time step size decreases,

the required number of stress iterations, Newton iterations, and line

searches all decrease as expected.

Long-Time Stability. To test the long-time stability of our method,

we simulate a soda can being periodically compressed and stretched

10 cycles with Δ𝑡 = 10−2𝑠 (Figure 16). The Young’s modulus of the

soda can is 7 GPa. The stored elastic energy over time is always

bounded and it oscillates along with the compressingśstretching

cycles, demonstrating the strong long-time stability property of our

method.

7.2 Comparisons to Explicit and (Semi-)Implicit Plasticity

We compare our variational method with both explicit and implicit

methods proposed in Klár et al. [2016] on a 3D sand column collapse
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Fig. 17. ECI achieves 2× speedup compared to the explicit method in a sand

column collapse experiment and is with comparable speed to the implicit

method in Klár et al. [2016].

experiment. The time step size Δ𝑡 for these two methods both need

fine-tuning to avoid numerical explosion. For explicit integration,

the time step is bounded by the sound-speed CFL [Sun et al. 2020],

which is small in general, especially for stiff materials and at high

resolution. With Klár et al. [2016]’s implicit method based on the

non-integrable implicit force (Equation 12, with asymmetric force

Jacobian), the convergence of time integration can only be reached

if the initial guess is sufficiently close to the local optimum. Fur-

thermore, the search performed by the Newton-Raphson iterations

(we refer it as the vanilla Newton method) can result in deforma-

tion gradients with non-positive determinants that cause simulation

failure.

We experiment under three different time step sizes Δ𝑡 = 10−3𝑠 ,
10−4𝑠 and 10−5𝑠 . Explicit MPM can run with Δ𝑡 = 10−5𝑠 , but it
explodes with Δ𝑡 = 10−4𝑠 (Figure 15a top left). The vanilla Newton

method can run with Δ𝑡 = 10−5𝑠 , but fails at a step when the

simulation almost becomes static with Δ𝑡 = 10−4𝑠 and at the first

step with Δ𝑡 = 10−3 (Figure 15a top middle). Our method, on the

other hand, works well with all these three time step sizes and

produces consistent results (Figure 15a right).

A common heuristic treatment is to directly replace the grid

update step in the explicit MPM simulation with implicit time inte-

gration without plasticity and only conduct return mappings at the

end of the time steps. We refer to this elasticity-plasticity-decoupled

scheme as the semi-implicit method in this paper. Although its sta-

bility and convergence can be guaranteed by the optimization time

integration, the semi-implicit method can lead to severe artifacts

as shown in Figure 15a bottom left, where the forces provided by

the stresses outside the yield surface make the continuum behave

more like a purely elastic body. This is due to the ignorance of the

plasticity by the implicit solve, which in turn overestimates the

material’s resistance to tensile deformation. Our method, on the

other hand, fully resolves plasticity in the implicit solve and does

not suffer from any such artifacts. We use the explicit method as

the ground truth to quantitatively measure errors. Figure 15b shows

that our method has a smaller error than the semi-implicit method,

where we compute the Intersection over Union (IoU) metrics be-

tween MPM grid mass distributions (computed as the ratio of the

number of common grid nodes to the number of union grid nodes).

Increasing cohesion

Fig. 18. Larger cohesion strength increases the chunkiness of the snow.

From left to right, 𝑐 = 0.00125, 0.0025, 0.005.

In practice, we can limit the number of Newton iterations and

Krylov iterations. On a sand column collapse experiment with the

same physical parameters and initial setup as above, our method

with Δ𝑡 = 2 × 10−5𝑠 achieves 2× speedup compared to the explicit

method with Δ𝑡 = 10−5𝑠 , as shown in Figure 17. With 2 stress

iterations per time step, 1 Newton iteration per stress iteration, and

5 MINRES iterations per Newton iteration, our method can still

generate physically plausible results. To make it a fair comparison,

the maximal numbers of Newton iterations and GMRES iterations

are set to 2 and 10 respectively for Klár’s implicit method with the

same Δ𝑡 = 2 × 10−5𝑠 as ours. The simulation using Klár’s method

does not go unstable in this setting, and its computational cost is

similar to ours, as expected.

7.3 Druker-Prager Plasticity with Cohesion

Snow Castle. To further demonstrate the artifacts caused by fully

decoupling elasticity and plasticity, we simulate a snow castle hit

by a high-speed elastic fish. The snow is modeled with wet soil by

Druker-Prager plasticity with cohesion. With our variational model,

the fish smashes the snow castle into pieces completely. However,

with the semi-implicit method, the castle behaves like an elastic

body and ends up holding the fish in an unrealistic way.

Our extrapolated StVK constitutive model combined with the

volume-preserving return mapping plays a vital role in generating

fractures in this example. Intuitively, our scheme mimics the cohe-

sion behavior better because it allows particles to be compressed a

little before exerting resisting force. Under the same time step size

(Δ𝑡 = 5 × 10−5), we use the result from the explicit method with the

extrapolated StVK model as the ground truth to compare the accu-

racy between our method and semi-implicit methods (with/without

the extrapolated StVK model). The visual and quantitative compar-

isons in Figure 20 both show that our method is more accurate.

Snow Ball. We use the Druker-Prager plasticity model with cohe-

sion to simulate a snow ball hitting a static dragon (Figure 2). We

also simulate with different cohesion strengths to show the control-

lability of our method on simulating different levels of chunkiness

(Figure 18).

7.4 Von-Mises Plasticity (with Hardening)

Play-DohNoodle. MPMcan automatically handle topology changes.

By leveraging this feature, we simulate a Play-Doh modeled by the

von-Mises plasticity pressed through a cylindrical noodle mold (Fig-

ure 1 (top row)).

Hydraulic Tests on Metals. Hardening is widely observed in metals.

We simulate hydraulic tests on soda cans with different hardening
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Fig. 19. Snow Castle.With our variational inelasticity model, the castle can be smashed into pieces after hitting by the fish, while with the semi-implicit

method the castle behaves like an elastic body, holding the fish in an unrealistic way.

Explicit Ours Semi-implicit
(Extrapolated StVK)

Semi-implicit
(StVK)(Groundtruth)

Fig. 20. Our method is more accurate visually and quantitatively than the semi-implicit methods with/without the extrapolated StVK constitutive model.

Decreasing Hardening

Fig. 21. Different hardening coefficients lead to varying restorations towards

the rest shape and generate different crushing patterns. From left to right,

the hardening coefficient 𝜉 = 0.5, 0.3, 0.

coefficients and compare with the simulation without hardening

(Figure 1 bottom row). The hardening mechanism makes plastic de-

formations harder to happen as the yield surface expands. This lets

the object restore its original rest shape partially when all boundary

conditions are released. As shown in the last frame when the upper

press withdraws (Figure 21), the red can with the largest hardening

coefficient restores the most, and the orange can with no hardening

almost does not restore at all. Furthermore, different hardening coef-

ficients generate different crushing patterns. As shown in Figure 22,

the deformation patterns in one of our compressed can match that

from a real experiment. Modeling hardening also allows us to suc-

cessfully capture the snap-through instability of metal, which can be

observed in real experiments (see our video demonstration). When

we swap in long steel pipes for the hydraulic tests (one cylindrical,

one square), the crushing patterns also match real experiments well

(Figure 23, 24).

Fig. 22. One of our hydraulic test simulations on metal cans generate a

crushing pattern well matching that in a real video footage [Youtube 2021].

Fig. 23. Hydraulic Test on aCylinder Pipe. The crushing patternmatches

the result of a real-world experiment [Youtube 2021].

Car Crash and Crushed Armadillo. To further demonstrate the

hardening behaviors of metals, we simulate a high-speed car crash-

ing into another stationary car (Figure 4) and an armadillo rolling
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Fig. 24. Hydraulic Test on a Square Pipe. The crushing pattern matches

the result of a real-world experiment [Youtube 2018].

v

Explicit
(Groundtruth)

Ours Semi-
implicit

Fig. 25. The semi-implicit von-Mises plasticity (right) overestimates the

resistance response and results in a large error compared to the ground

truth (left). Ours (middle) is much more accurate.

through ametal crusher driven by frictions (Figure 7). Both examples

show realistic denting effects with sufficient restoration towards

the rest shape enabled by hardening.

Comparison to Semi-Implicit Plasticity. We simulate a stiff elastic

ball hitting a wall modeled by the von-Mises plasticity to compare

our method with the semi-implicit method. As shown in Figure

25, the permanent deformations of the wall clearly show that the

semi-implicit plasticity overestimates the material’s resistance. We

use the explicit method as the ground truth to compare the position

error of the wall (computed as the average squared norm of vertex

position differences), which shows that our method is more accurate

than the semi-implicit method.

7.5 Viscoelasticity

Memory foam is a typical material demonstrating the viscoelastic

behaviors in the real world. We simulate a pillow made by memory

foam pressed down by a hand for a while, and then we lift the

hand suddenly. We successfully capture the intricate process where

the pillow slowly recovers its rest shape, completely removing the

imprint of the hand (Figure 12).

8 DISCUSSION

In summary, we developed ECI, a new formulation that augments

hyperelastic energy density functions to enable variational forms

for a wide range of elastoplastic and viscoelastic materials. Our

algorithm enables the fully implicit simulation of inelasticity in

recently advanced optimization-based time integrators, embracing

advantages of long-time stability, global convergence, large time

step sizes, and high accuracy.

Our method is most naturally łplug and playž when applied to J2

vonMises materials and finite strain viscoelastic materials. However,

when extended to pressure-dependent plasticity or strain hardening

mechanisms, additional iterations on the stress are necessary to

achieve final convergence. In our examples, usually 1-2 stress itera-

tions are sufficient to generate convergent or visually high-quality

results. It is promising future work to devise theoretical and algo-

rithmic improvements to guarantee and accelerate the convergence,

particularly for accuracy-demanding applications.

The integrability of the implicit elastoplastic force depends on

both the elastic model and the plastic model. For instance, although

the combination of St. Venant-Kirchhoff elasticity with von-Mises

plasticity adopted by ECI leads to a symmetric force Jacobian, neo-

Hookean elasticity with von-Mises plasticity does not. It is an inter-

esting future work to explore integrable approximations to other

combinations.

ECI assumes the full-dimensional volumetric deformation gradi-

ent. Accordingly, our metal cans and pipes are all simulated with

thin single-layer linear tetrahedral elements, which could poten-

tially suffer from shear locking. It would be interesting to extend

ECI to codimensional geometries like shells and rods [Narain et al.

2013].

Finally, our augmentation to the strain energy density function

changes the conditioning of the global stiffness matrix. It is interest-

ing future work to study its effect on the linear solve, and strategies

to precondition the ECI-augmented system.
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