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Fig. 1. Our energetically consistent inelasticity model can not only be applied to the Material Point Method (top row), but also easily extend to the Finite
Element Method (bottom row with decreasing hardening coefficients from left to right). The stability under large time steps is guaranteed by the optimization

time integration.

In this paper, we propose Energetically Consistent Inelasticity (ECI), a
new formulation for modeling and discretizing finite strain elastoplastic-
ity/viscoelasticity in a way that is compatible with optimization-based time
integrators. We provide an in-depth analysis for allowing plasticity to be im-
plicitly integrated through an augmented strain energy density function. We
develop ECI on the associative von-Mises J2 plasticity, the non-associative
Drucker-Prager plasticity, and the finite strain viscoelasticity. We demon-
strate the resulting scheme on both the Finite Element Method (FEM) and
the Material Point Method (MPM). Combined with a custom Newton-type
optimization integration scheme, our method enables simulating stiff and
large-deformation inelastic dynamics of metal, sand, snow, and foam with
larger time steps, improved stability, higher efficiency, and better accuracy
than existing approaches.
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1 INTRODUCTION

Since the pioneering work of Terzopoulos and Fleischer [1988], the
computer graphics community has observed increasing interests
in modeling inelastic deformations governed by elastoplasticity,
viscoelasticity, and viscoplasticity. These inelastic mechanical prop-
erties govern the behaviors of a wide range of everyday objects.
Drawing inspirations from continuum mechanics, computer graph-
ics researchers have successfully modeled and simulated many in-
elastic materials, ranging from metal, sand, snow and mud to foam,
paint and organic tissues.

Inelasticity (mainly elastoplasticity and viscoplasticity) has been
widely explored using mesh-based Finite Elements. During inelastic
deformation, extreme element distortion and fracture commonly
co-exist. Thus, remeshing [O’Brien et al. 2002] and virtual node
[Hegemann et al. 2013; Molino et al. 2004] techniques are often ap-
plied. More recently, the Material Point Method (MPM) has emerged
as a popular alternative for inelastic materials [Jiang et al. 2016]
due to its natural support of topologically changing continuum
materials.

Despite a large amount of work in modeling inelasticity, a loss
of accuracy occurs in almost all existing work. In particular, when
implicit time integration schemes are performed, the plastic strain
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is often treated as a constant, and the real plastic deformation is
imagined to happen instantaneously at the beginning or the end
of a time step. Such a semi-implicit lagged treatment of inelasticity
results in unnoticeable visual artifacts for certain material models
such as the heuristic snow plasticity in Stomakhin et al. [2013] but
significant errors such as excessive artificial cohesion for others

[Gao et al. 2018; Tampubolon et al. 2017].

The choice of semi-implicity is largely due to the prominent chal-
lenge in modeling implicit inelasticity. Klar et al. [2016] was the first
to explore differentiating the plastic flow for Drucker-Prager soil
plasticity and incorporating it into the implicit momentum balance.
The authors proposed an implicit force formulation that resembles a
similar format to semi-implicit formulations [Stomakhin et al. 2013].
Unfortunately, their formulation cannot be expressed as the nega-
tive gradient of analytical energy. Resultingly, the stiffness matrix
is asymmetric, and GMRES became necessary for the associated
nonlinear root-finding problem — a problem that by itself has no
stability or convergence guarantees when solved with Newton’s
method. Fang et al. [2019] used alternating direction method of
multipliers (ADMM) to shift the asymmetry to local small linear
systems, however without an energy, they could not perform global
convergence techniques such as line search.

This paper tackles the challenge by revisiting the derivation of
implicit plasticity. Our objective is to construct an analytical, aug-
mented potential energy function whose derivative exactly repro-
duces the implicit force. Related work in classic engineering litera-
ture [Ortiz and Stainier 1999; Radovitzky and Ortiz 1999] formulated
variational constitutive model updates based on the principle of max-
imum plastic dissipation and minimizing over the so-called dual
inelastic potential. Taking a different path, we derive our method
based on constructing a smooth energy that is consistent with exist-
ing return mapping-based plasticity treatments [Simo and Hughes
1998] in explicitly integrated inelasticity simulation systems. As a
result, our implicit inelasticity formulation can be directly incorpo-
rated into recently advanced optimization time integrators [Gast
et al. 2015; Li et al. 2020; Wang et al. 2020] to enable large time step
integration with guaranteed stability, theoretical consistency with
return mapping, and a symmetric energy Hessian. Our contributions
include:

e An implicit internal force formulation for fully implicit finite
strain elastoplasticity;

e A strain energy augmentation method that yields analytically
integrable elastoplastic forces and symmetric force derivatives
for von Mises J2 plasticity;

e An extension of our model to support strain hardening, pressure-
dependent soil plasticity, and rate-dependent viscoelasticity;

o Algorithms for incorporating our model in optimization-based
time integrators with the Material Point Method and the Finite
Element Method.

We demonstrate our results by simulating a wide range of inelas-
tic materials, including metal, sand, snow, and foam. Our method
allows the simulations of inelasticity to enjoy the advantages of
guaranteed stability, global convergence, and large time step sizes
brought by optimization-based time integrators without suffering
from inaccuracy and numerical artifacts from prior work.
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2 RELATED WORK

Inelasticity with FEM. Elastoplastic simulation with FEM has been
extensively explored by the computer graphics community. O’Brien
et al. [2002] used the additive decomposition of strain to separate
elastic deformations and plastic deformations and used the von-
Mises yield criterion. However, as Irving et al. [2004] pointed out,
this decomposition does not support incompressibility for finite
strain. Instead, Irving et al. [2004] used the multiplicative decompo-
sition of deformation gradient with the volume-preserving return
mapping algorithm. Our model is based on this decomposition as
well. Under this framework, large plastic deformations may make
the dynamic system ill-conditioned. To solve this problem, Molino
et al. [2004] proposed the virtual node algorithm to allow topology
changes when the simulated mesh is severely distorted, and Bargteil
et al. [2007] used remeshing technique to maintain a high-quality
mesh throughout the simulation. For high-performance simulation,
Wojtan and Turk [2008] used frequently remeshed high-resolution
surfaces combined with low-resolution interior tetrahedral mesh
to resolve thin features near the boundaries. Wojtan et al. [2009]
further improved the framework to allow topology changes in inelas-
ticity simulations. These methods introduced extra computational
costs or complexities. Instead, we use optimization time integrators
to maintain long-time stability and global convergence. Further-
more, Bargteil et al. [2007] proposed a volume-preserving plasticity
model incorporating creep and work hardening/softening, which is
also followed by Wojtan and Turk [2008]. These are important re-
quirements for obtaining physical accuracy, which are all supported
by our model as well. Jones et al. [2016b] proposed an examples-
based approach for the mesh-based discretization, which search rest
shapes on a predefined example manifold. This method is efficient
for animation purposes but are less physically accurate.

Inelasticity with MPM. Extending the work of Harlow [1964] and
Brackbill and Ruppel [1986] on PIC/FLIP, MPM was proposed as
a hybrid Lagrangian/Eulerian method for solid mechanics by Sul-
sky et al. [1994]. Since its appearance in the graphics community
[Hegemann et al. 2013; Stomakhin et al. 2013], it has attracted a lot
of attentions. The most prominent advantage of MPM on modeling
inelastic materials is its flexibility in handling extreme deforma-
tion and topological changes, which pose significant challenges
to Lagrangian mesh-based approaches. Snow plasticity was first
simulated by Stomakhin et al. [2013] in a semi-implicit fashion, en-
forcing thresholds on principal stretches with post-projections. Yue
et al. [2015] used the Herschel-Bulkley model of non-Newtonian
viscoplastic flow to approximate foam behaviors. Fei et al. [2019] de-
rived an analytic plastic flow approach for Herschel-Bulkley fluid to
simulate compressible, shear-dependent liquids. Daviet and Bertails-
Descoubes [2016] modeled the granular materials as compressible
viscoplastic fluids combined with the Drucker-Prager yield criterion.
Their method suits the granular material simulations well, but fol-
lows a different perspective from ours. From the perspective of large
strain solid mechanics, Klar et al. [2016] simulated granular contin-
uum using the return mapping algorithm for the Drucker-Prager
plasticity. Following Klar et al. [2016], Yue et al. [2018] proposed a
hybrid method combining both discrete and continuum treatments
to achieve a high level of details with less computational costs. Fang
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Fig. 2. Snow Ball. A free-falling snow ball hits on a static dragon and smashes into pieces.

et al. [2019] applied the return mapping approach to handle elasto-
plasticity and viscoelasticity in an ADMM framework. Except for
Klar et al. [2016], these methods all temporally discretize inelasticity
in an explicit or semi-implicit way, where the plastic correction
was performed as an extra step at the end of each time step, fully
decoupled from elasticity. Decoupled treatment in an explicit in-
tegration can be justified via operator splitting; however, it will
cause artifacts for a (semi-)implicit integration. We use the return
mapping framework as well for our fully implicit elastoplasticity
and viscoelasticity, and we will show that ours is more temporally
consistent compared to Klar et al. [2016].

Inelasticity with Other Discretizations. Inelasticity simulations
are also explored with other types of spatial discretizations, e.g.,
Smoothed Particle Hydrodynamics (SPH), Position Based Dynamics
(PBD), peridynamics, etc.

SPH is a mesh-free Lagrangian method originally invented for
fluid simulations. Inspired by SPH, Jones et al. [2014]; Miller et al.
[2004] applied the plasticity model in O’Brien et al. [2002] to moving
least square particles for elastoplastic objects. Clavet et al. [2005]
used springs between particles to mimic elasticity and achieved
plasticity by modifying rest lengths during the simulation. These
two plasticity models are not derived from the finite strain frame-
work. Alduan and Otaduy [2011] simulated granular materials using
an incompressible SPH framework combined with the Drucker-
Prager yield criterion. Their plastic correction was performed in a
Jacobi-like manner until convergence, while ours is performed with
fixed-point iterations. Yang et al. [2017] proposed an elastoplastic
model based on the Drucker-Prager yield criterion as well within an
SPH framework. Gerszewski et al. [2009] introduced deformation
gradients to the SPH framework so that plasticity models based
on the multiplicative decomposition of deformation gradient can
be applied. They used explicit time integrators combined with the
plasticity model in [Irving et al. 2004]. Gissler et al. [2020] used an
implicit compressible SPH solver to simulate the compression of
snow. The plasticity is handled by an extra correction step on the
deformation gradient following Stomakhin et al. [2013], which is
still a semi-implicit method.

PBD was proposed by [Miiller et al. 2007] for real-time simula-
tions. This method replaced internal forces in force-based methods
with constraints on positions. Plastic deformations can be intro-
duced by the shape matching framework [Bender et al. 2017; Falken-
stein et al. 2017; Jones et al. 2016a; Miiller et al. 2005]. However,

this simulation framework sacrifices physical accuracy for better
efficiency.

The peridynamic theory is an emerging field in simulations, which
was proposed by Silling [2000] to handle discontinuities caused by
deformations, such as cracks. It defines pairwise force functions
between particles and uses the integration over the interactions
from neighboring particles to describe dynamics. He et al. [2017]
used the peridynamics framework to simulate elastoplastic materi-
als in a projective dynamics way. They adopted the Drucker-Prager
criterion for plasticity. Their solver can also be extended to simulate
viscoelasiticity. Chen et al. [2018] derived a form of force functions
based on the isotropic linear elasticity model to simulate elastoplas-
tic materials. They used explicit time integrators and an additive
plasticity model.

Optimization Time Integration. Large-scale implicit simulation
methods usually require solving large systems of nonlinear equa-
tions. To solve these systems, the Newton method for root-finding
problems is usually adopted, which needs careful tuning of the time
step size to ensure convergence. In fact, many of these implicit
equations can be integrated to get variational forms, where the
equivalent minimization problem can be solved by applying robust
optimization techniques. The optimization time integrators have
advantages in terms of long-time stability even when simulating
severe deformation with large time step sizes.

Bouaziz et al. [2014] proposed Projective Dynamics (PD), which
reformulated the backward Euler time integration for a specific type
of material into a local-global alternating solver. Both the local and
global steps have simple variational forms that can be solved in
a robust and efficient way. This framework was later extended to
simulate hyperelastic materials [Liu et al. 2017], support Laplacian
damping [Li et al. 2018], and utilize other time integration schemes
[Dinev et al. 2018]. Narain et al. [2016] then extended PD to a more
general form within the ADMM framework. Brown and Narain
[2021] improved the ADMM framework to resolve large rotations.
Gast et al. [2015] recast the backward Euler time integration with
hyperelastic materials, Rayleigh dampings, and collision penalties
as a minimization problem. Li et al. [2019] and Wang et al. [2020] ex-
plored domain decomposed and hierarchical preconditioning strate-
gies respectively within a quasi-Newton optimization framework
for robust and efficient time integration. Wang and Yang [2016] pro-
posed a gradient descent solver for GPUs to accelerate optimization
time integrations. Li et al. [2020] proposed Incremental Potential
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Contact (IPC), a variational form for frictional contacts. Their fric-
tion bases are iterated in a similar manner to our iterative yield
stresses. IPC is later proven effective for simulating codimensional
objects [Li et al. 2021b], rigid bodies [Ferguson et al. 2021], reduced
elastic solids [Lan et al. 2021], and FEM-MPM coupled domains [Li
et al. 2021a], all within the optimization time integration framework.
In this paper, we follow Gast et al. [2015] and Li et al. [2020] for the
optimization time integration of MPM and FEM respectively. The
hessian matrices are enforced to be positive definite following the
per-stencil projection technique in Teran et al. [2005].

In addition to hyperelastic solids, Batty et al. [2007] reformulated
the classical pressure projection step in solid-fluid coupling as a ki-
netic energy minimization. Narain et al. [2010] used a hybrid method
for sand simulation, where the pressure and friction are solved on
the Eulerian grid with a staggered projection method, alternating
between two coupled quadratic programs. Narain et al. [2012] posed
the strain limiting in cloth simulation as a nonlinear optimization
problem. Karamouzas et al. [2017] proposed an energy-based crowd
model for crowd simulation. Inglis et al. [2017] formulated fluid
simulation under a primal-dual optimization framework. Brown
et al. [2018] proposed an energy for dissipative forces.

3 FOUNDATIONS

In this section we start with reviewing finite strain elastoplasticity
(Section 3.1), MPM spatial discretization (Section 3.2), optimization-
based time integration (Section 3.3), and discretized plastic flow rule
(Section 3.4). Our review is by no means complete, and they are
provided as necessary background knowledge for our new model.

In Section 3.5, we present a new implicit force formulation that
is consistent with the variational weak form. It has a remarkable
advantage — integrability, and thus lays important theoretical foun-
dations for our method.

3.1 Finite Strain Elastoplasticity

Our variational inelasticity model is derived under the finite strain
elastoplasticity framework. Here we review some basic concepts
and refer to [Simo 1992; Simo and Hughes 1998] for more details.

Let Q° c R3 be the reference configuration of the continuum
body and denote x := ®(X, t) the deformation map from Q° (with
coordinate X) to the world space Q! (with coordinate x). The de-
formation gradient F = %‘; (X, t) measures the local deformation
of the infinitesimal region around X. With finite strain elastoplas-
ticity, F is multiplicatively decomposed into F = FEFP, where FP
denotes the permanent plastic deformation, and FE denotes the elas-
tic deformation which results in elastic forces (Figure 3). Plasticity
requires that the Kirchhoff stress 7 associated with FF is inside the
admissible area defined by a yield condition y(z) < 0. The surface
characterized by y(7) = 0 is often referred to as the yield surface.
When F changes, FE will follow some plastic flow to evolve so that
it lies within the yield surface. In this paper, we follow the volume
preserving plastic flow from [Klar et al. 2016].

From the Lagrangian view point, the state of dynamics of an
elastoplastic continuum can be described by a Lagrangian den-
sity field R(X, t) on Q° and a Lagrangian velocity field V(X, t) ==

% on Q°. The two fields are governed by the conservation of
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Elastoplastic
Intermediate

Fig. 3. The elastoplastic decomposition of the deformation gradient.

R(X,1)J(X.1t) = R(X,0), 1)

where J = det F, and the conservation of momentum,
v
R(X,00—-(X.1) = VX . P+R(X,0)g, )
where P is the first Piola-Kirchhoff stress and g is the gravity.

3.2 MPM Discretization

The Material Point Method (MPM) discretizes a continuum by a
set of disconnected Lagrangian material particles. The continuous
time variable ¢ is discretized by consecutive time steps AT AR L
Without loss of generality, we assume a fixed time step size At. The
advection is carried on material particles, so the conservation of

mass across time steps is trivially satisfied. Assuming backward
vV

difference on Srs the weak form of the momentum equation is
[Jiang et al. 2016]
1
— [ R(X,0) (V"' —V")QudX = — / PVXQudX  (3)
At oLl Qo

for an arbitrary test function Qg (X, t").

Here for simplicity, we drop the gravity term and admit the free
surface assumption.

MPM uses the previous time step ¢ as the reference configuration,
so the integration on Q° is pushed forward onto Q":

o o p(x, ") (V! - v qedx = — /Qn ]inPF"Tquadx, (4)
where p, v", v+ and q« are Eulerian counterpart of R, V", v+l
and Q,, obtained by pushing forward from Q° onto Q.

In MPM, B-Spline-based interpolations are often applied to de-
fine fields on Q", and material particles serve as quadratures to
approximate the volume integration. Let x7J, X, be the coordinate
of particle p in Q™ and QO respectively, and wZD and le.’; be the
weight and weight gradient between particle p and grid i. With
the mass lumping technique, the force equilibrium of grid i can be
discretized as

R = ; Py VY, 5)
where Vf? is the initial volume of particle p, m} = %, mpwl.';) is the
lumped mass on grid i and m,, is approximated by R(X),0) V;,), The
right hand side of Equation 5 is the internal elastic force on grid i.

At each time step, the velocity field v is transferred from material
particles to grid nodes, and the new velocity field ¥"**! is solved and
transferred back to material particles for advection. In this paper, we
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Fig. 4. Car collision. The red car hits the yellow car against the wall by 56 mph, creating a big dent on the right side of the yellow car.

use the quadratic MLS kernel [Hu et al. 2018] as the weight function,
and APIC [Jiang et al. 2015] as the particle-grid transfer scheme.

3.3 Optimization Time Integration

Assuming implicit integration with BDF1 (backward Euler), the first
Piola-Kirchhoff stress P in Equation 5 is associated with the defor-
mation gradient F™*! at time step t"*!. The deformation gradients
F™ and F™1 are related by

F™1 = (L+ AtV F?, (6)

where V\?Z“ =Y; ‘7;“'1le.';-r.

Existing optimization-based time integrators in computer graph-
ics often assume hyperelastic materials. Without plasticity, the first
Piola-Kirchhoff stress is simply the derivative of the corresponding
elastic strain energy density function: P(F) = g—‘}’_ Equation 5 is
then equivalent to the following optimization problem:

AV = argmin,, E(Av) = Z m; || Av; 1% + Z ¥(FI (v + AV) V],
i r ™)
V=V 1AV,
where F}t)r (v) = I+ AtVvp)F Z is the elastic predictor. The opti-
mization problem can be robustly solved by projected Newton’s
method with backtracking line search [Wang et al. 2020].

Gravity. For the effect of gravity, we add the term m;g on the
right-hand side in Equation 5, which corresponds to the extra term
— ¥ ;m;ig"vin Equation 7.

3.4 Discretization of Plastic Flow

In the discrete setting, plasticity is most commonly achieved by the
return mapping algorithm [Klar et al. 2016; Simo and Hughes 1998],
which is equivalent to solving for a strain that satisfies the plastic
flow rule. Geometrically, the return mapping defines how elastic
predictors outside the yield surface should be corrected so that the
effective stresses lie inside the yield surface. We follow the notations
in Klar et al. [2016] to describe discrete plastic flows in this paper.
For elasticity, we adopt the St. Venant-Kirchhoff (StVK) model
with Hencky strains. The elastoplasticity of isotropic materials can
be characterized in the principal stretch space using the singu-
lar value decomposition (SVD) [Stomakhin et al. 2012]. Let F!" =

e Stress Predictor

o Effective Stress

- Projection Direction
Elastic Area

Fig. 5. Return mapping for a discrete plastic flow.

UZ!VT be the SVD of an elastic predictor F". The Hencky strain
is defined as € = log =’ and the Kirchhoff stress for the StVK
model is 7 = 2ue + Atr(e)I, where y, A are Lamé parameters. For a
discrete plastic flow, if the stress associated with an elastic predictor
is outside the yield surface, then the stress is projected back onto the
yield surface. The projection procedure in the principal stress space
is illustrated in Figure 5. Note that along the perpendicular direction
to the diagonal, we would have det F¥' = 1, which corresponds to
a volume-preserving plastic deformation. We denote the endpoint
of the return mapping (also known as the corrector or the effective
stress) as FE = Z(F'") where Z(-) is the return mapping.

3.5 Force Balance with Implicit Plasticity

For elastoplastic materials, the first Piola-Kirchhoff stress P in Equa-
tion 5 should be rewritten as [Bonet and Wood 1997]

a‘I’E FP—T

P =
OFE

®)
Here VE is the elastic strain energy density function. We add a
superscript to emphasize the elastic energy is only associated with
the elastic deformation gradient FE.

Through a weak form derivation of the updated Lagrangian dy-
namics (see the supplemental document for details), we show that
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the implicit internal force on grid node i is:

ovE T
n+1 0 E n+l\ pPn+1=" pnT n
fi __Z popE Fo EpT Fp Vwi, o (9)

In practice one does not need to track the plastic deformation
gradients F¥ on the particles. The nodal force can be expressed in
terms of FEI7 (defined as FE27 (v) = (1+ Athp)Fg’"):

f;1+1 Z VO

Note that when doing explicit time integration, we can directly
E, n+1

(Z(FEtr))Z(FEtr> FEtr FE,nTle{;A (10)

replace F FE both with F ’};,n, which gives the common force
expresswn for explicit MPM:

Z V° (FE")FE”TVW (11)

For implicit plasticity, Klar et al. [2016] directly replace FE (F ™) in
Equation 11 with £ a\y FF (z (F E. ")) and define the resulting expression
as the implicit force We can clearly observe that

frls - Z VO—(Z(FE ) FERTYwE (12)

i.e., the implicit force in [Klar et al. 2016] is not equivalent to our
formulation (Equation 10). As we discuss in the supplemental doc-
ument, the choice of Klar et al. [2016] is only semi-implicit. Fur-
thermore, their formulation is not integrable because their force
derivative is not symmetric. Therefore in [Klar et al. 2016] it is nec-
essary to adopt Newton-Ralphson root finding with GMRES for the
asymmetric linear system solve. In the next section, we elaborate on
our new model which enables the existence of an analytical energy.

4 ENERGETICALLY CONSISTENT INELASTICITY (ECI)
4.1 One-Dimensional Investigation

To motivate ECI, let’s start with applying a discrete plasticity model
to a one-dimensional spring with a constant yield stress.

Consider a one-dimensional elastoplastic spring with rest length
Vo = 1. We fix its one end at x = 0, and place the other end at 1
initially. With the initial state being the reference configuration,
we model the spring with finite strain elastoplasticity, where the
deformation gradient can be conveniently calculated as F(x) = x
with x being the coordinate of its free end.

Discretizing time into steps t°, ¢ " with equal time step size
At, for time step n, the elastic predictor FE-™ by assuming a purely
elastic deformation is given by

E,tr _
F>7(x) = Fp’nx (13)
We assign the following strain energy density function:
k
¥ (FF) = - (log FF)?, (14)

where k is the stiffness. Viewing the spring as a single-element FEM
discretization, since Vy = 1, ¥¥ equals the total elastic potential.
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Strain-Energy Relation for 1D Spring (Fy = 2m) Strain-Stress Relation for 1D Spring (Fy = 2m)
10 »

e Elastoplastic e Elastoplastic
12

0s Pure-elastic Pure-elastic

7 [J/m]

\

cm el

Fig. 6. The strain-energy (left) and the strain-stress (right) plot of an elasto-
plastic spring. Here € = log(F) and 7 = %F.

Assume k = 1 for brevity, the Kirchhoff stress is then given by

ovE

t(FF) .= —FF = log(FF). (15)

Let the constant yield stress be ry = log(Fy), where Fy € [1, c0)

is a critical strain, and define the yield function to be 7 — 7y < 0,

we can then follow standard plasticity treatment [Simo and Hughes
1998] to define a simple return mapping procedure with the form

FE,tr FE,N‘ < F
FE,n+l — Z(FE,tr) — { Y ) (16)

Fy otherwise

In terms of the Hencky strain f = log(FE), the yield condition

is equivalent to
eBtr — Bl — 5y 5 0. (17)

Geometrically, the quantity dy measures how far away the elastic
strain predictor is from the yield surface in the principal strain space.
This quantity plays an important role in our variational modeling
of plasticity. Specifically, we have the following theorem for the
elastoplastic springs:

THEOREM 4.1 (AUGMENTED ENERGY DENSITY FOR SPRINGS). In the
problem setting described above (V° = 1, k = 1), using the following
energy density function

FE,ir > FY

otherwise

YE(Z(FP (x))) + 7y 8y (FB7 (x))
\PE (FE,tr (X))

¥(x) = { (18)

reveals a force that is equivalent to what one would get if one performed
the force-based implicit plasticity.

We include in the supplemental document the proof for this the-
orem as well as details showing that ¥(x) is piecewise C* and
everywhere C!. A comparison between the augmented energy and
the pure-elastic energy is shown in Figure 6.

Taking the inertia into consideration, we test the model on a small
dynamic mass-spring system. At the end of each time step, Fp is
updated from the following relation:

Fn+1 — xn+1 — Z(FE,tr)FP,n+1

= pEIrpPn, (19)

The ECI simulation results quantitatively match the results using
explicit integration (see Figure 8).
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Fig. 7. Squeeze armadillo. Rolling a plastic armadillo through a gear left the gear teeth permanently distorts the armadillo body.

Variational Method (dt = 0.01s) v.s. Explicit Method (dt = 0.0001s)

Fy = 1.5 (Implicit)
Fy = 2.0 (Implicit)
Fy = 2.5 (Implicit)
Fy = 3.0 (Implicit)
Fy = 1.5 (Explicit)
« Fy=2.0 (Explicit)
+ Fy=2.5 (Explicit)
+ Fy=3.0 (Explicit)

3.0

Length [m]

10 12 14

8
Time [s]

FP[m]

0 2 4 6 10 12 14

8
Time [s]

Fig. 8. Spring simulation with ECI. We simulate under the same initial
velocity but different critical strains. The results from our large-time-step
ECl all match with the results from explicit small-time-step time integration.

4.2 Extending to Von-Mises Plasticity

A natural analogy of elastoplastic spring with constant yield stress
for the plasticity of isotropic hyperelastic materials is the von-Mises
plasticity model, which also associates all stress predictors with a
constant yield stress 7y (the norm of the deviatoric Kirchhoff stress

on the yield surface). We study von-Mises plasticity under the St.

Venant-Kirchhoff constitutive model with Hencky strains. Following
the notations from Section 3.4, the yield surface is defined as

y(o) =llzllr —ry =0, (20)

where 7 =7 — % tr(7)I is the deviatoric part of the Kirchhoff stress.

The equivalent yield condition is

A Ty
oy = -—=>0, 21
r=lél - 5 (21)

) T2
e Stress Predictor

e Effective Stress
Projection Direction
Elastic Area

1

Fig. 9. Yield surface of the von-Mises plasticity model.

where € = log(X!") is the trial Hencky strain and & = e — é tr(e)I is
the deviatoric part of the Hencky strain. The corresponding return
mapping (Figure 9) is

Z(FE,tr) — {

FEtT Sy <0

¢ (22)
Uexp (e — (5yﬁ)VT

otherwise
We have the following key lemma for the von-Mises plasticity:

LEMMA 4.2. Define the augmented elastoplastic energy density
function as:

W(F) = YE(F), Sy(F) <0
- vE(Z(F)) +1y8y(F), otherwise

(23)

This energy density function satisfies the following identity for any F:

o¥Y(F) o¥E -
— = —=(Z(F))Z(F) F . 24
oF = oFE (Z(F))Z(F) (24)
The proof of this lemma is provided in the supplementary docu-
ment. With this lemma, it is easy to prove the following theorem:

THEOREM 4.3 (AUGMENTED ENERGY THEOREM FOR VON-MISES
PLASTICITY). The augmented elastoplastic energy density function
(Equation 23) viewed as a hyperelastic strain energy density function
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Fig. 10. Yield surface of the Drucker-Prager plasticity model.

reveals a force that is equivalent to what one would get if one performed
the force-based implicit plasticity, i.e.

24
fi==>vp [%(Fﬁ”)
P

-3
P

When performing optimization time integration, we can simply
view the elastoplastic free energy density as a new strain energy
density function. At the end of each time step, we update F¥ with
Z(FE17). The detailed pipeline is elaborated in Section 5.

EnT n
Fp Vwip

(25)
a\I’E E. E. T _E =T EnT
”—E(Z(FP’"))Z(FP’”) Fp'" | Fy" V.
p

4.3 Extending to Pressure Dependent Soil Plasticity

Drucker-Prager plasticity is widely applicable to the simulations

of granular materials such as sand. The yield surface under the St.

Venant-Kirchhoff constitutive model with Hencky strains is defined
as

y(7) = |2l + atr(z) =0, (26)
where o = \/g 3278;21% and ¢y is the friction angle.

The equivalent yield condition is then

dA+2p)t
tr(e) >0, or 8y =||élg +(x(+2ﬂ >0, (27)
The corresponding return mapping (Figure 10) is
uv’ tr(e) > 0
Z(FBiry = J FEtr Sy <0,tr(e) <0. (28)

Uexp (€ — SYH%H)VT otherwise

The augmented elastoplastic energy introduced above for our 1D
spring and von-Mises model essentially comes from the integrability
of the following vector field over RA*d;

E
%(Z(F))Z(F)TF_T. (29)

Unfortunately, this integrability does not hold anymore for the
Drucker-Prager return mapping. It can be checked that the Jacobian
field of the above vector field is not symmetric. Even worse, dy is
undefined in the region with tr(e€) > 0, because the projection there
is not volume-preserving.
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Fig. 11. Yield surface of the Drucker-Prager plasticity model in the prin-
cipal strain stress under our extrapolated St. Venant-Kirchhoff model.

4.3.1 Extrapolating St. Venant-Kirchhoff. To solve the issue of dy
for the area defined by tr(e) > 0, we extrapolate the St. Venant-
Kirchhoff constitutive model in this area as:

~ 112
GE (s - HIEl
> {u||é||2+<%+§)(tr(e>>2

When tr(e) < 0, ¥E is just equivalent to the St. Venant-Kirchhoff
strain energy density, which separates the deviatoric term and the
pressure term. When tr(e) > 0, we extrapolate the energy only
with the deviatoric term and define the yield stress to be zero. This
extrapolation does not change the yield surface in the principal
stress space. Instead, the yield surface in the principal strain space
is extended to include the diagonal line of the first quadrant, and
all the points on this ray correspond to the tip of the yield surface
in the principal stress space (see Figure 11). With this extrapolated
model, the volume-preserving projection can be done as well in the
area of tr(e) > 0, and Jy is well-defined.

In summary, with our extrapolation, the return mapping is sim-

plified as

tr(e) >0

tr(e) <0 (30

FEIT, Sy <0
Z(FET) = cor @
Uexp (€ — 5YW)V , otherwise
where
[1€ll, tr(e) >0
= . 32
{||é|| +ad)L2J;12” tr(e), otherwise (32)

4.3.2  Recover Integrability. To resolve the non-integrability, we
update the yield stress iteratively during integration (Figure 13).
At each time step, we solve a series of optimization problems with
constant yield stresses. The yield stress f{,’ » for each particle p is

computed from its elastic predictor Fg’" at the beginning of the
optimization:
0, t >0
T;f/r — r(€) e (33)
—a(dA+2p)tr(e), otherwise
and the corresponding Jy is defined with a fixed yield stress:
ll€ll, tr(e) > 0
Y= N T{,r L (34)
€Il - % otherwise
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Fig. 12. Memory Foam. A hand presses down a memory foam pillow for a while to leave a hand print, and then disappears suddenly. From left to right, the
hand print slowly disappears as the deformed memory foam gradually restores its initial rest shape.
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Fig. 13. lllustration of our iterative stress method for the Drucker-Prager
plasticity. i stands for the fixed-point iteration index. The strains here are
strain predictors at the beginning of each stress iteration. The trial yield
surfaces remain constant within each iteration.

In this way, each particle experiences a local cylinder-like yield
surface with a different yield stress. The stress iteration can be
viewed as a fixed-point iteration on the yield stresses; see Section
5.1 for more details. Under convergence, the trial yield stress is
consistent with the yield stress defined by the Drucker-Prager yield
surface.

4.3.3  Drucker-Prager Plasticity with Cohesion. To simulate mate-
rials with both granular and chunky behaviours such as wet sand
and snow, we shift the yield surface of Druger-Prager model along
the diagonal in the principal stress space to model cohesion. This
effectively updates Equation 33 and Equation 30 as

tr {0’ tr(e) > cd
Ty = Lo (35)
—a(dA +2p)(tr(e) —cd), otherwise
oE 5y _ JHIEIP + (G + ()’ tr(e) > cd
o= {,u||é||2 + (’% + g)(tr(e))2 otherwise ~ (30)

where ¢ > 0 is the cohesion parameter.

4.4 Hardening

The hardening mechanism plays an important role in simulations
of materials like metal [Chakrabarty and Drugan 1988] and snow
[Gaume et al. 2018; Stomakhin et al. 2013]. In general, the hardening
mechanism is associated with some hardening state set g, and some

hardening parameter set £. Theoretically, hardening controls how
the yield surface evolves according to the hardening state.

A linear hardening rule for the von-Mises plasticity can be defined
as

qn+1 — qn + z‘ugéy(FE,tr)’
Tlr;H — qn+1’ (37)

0
q = TY init-

n+1
Y

at time step " depend on FE", which is not a constant anymore for
different FE!7_ Similarly to the iterative stress update for Drucker-
Prager, we can also iterate on the hardening state. At the beginning
of each optimization, the trial hardening state and the trial yield
stress are updated as

ol =q'" = q" + &5y (FET). (38)

This effectively makes the yield stress 72" in the equilibrium state

At the end of the time step, the hardening state g™*! is updated to
be the last trial hardening state q*".

4.5 Viscoelasticity

In addition to rate-independent elastoplasticity, ECI can also be
applied to rate-dependent viscoelasticity. Here we model viscoelas-
ticity based on a decomposition of the deformation gradient, which
is independent of the elastoplastic decompostion. At each time step,
the deformation gradient F can be decomposed into two different
ways (Figure 14)

F=FEFP = FNFV, (39)
where FV is the non-equilibrated elastic deformation gradient, and
FV is the viscous deformation gradient. FV and FE provide elastic
responses additively. The evolution of FV follows a similar principle
as FF, which is characterized by a return mapping-like projection in
the discrete setting. We follow the formulation of Fang et al. [2019]:

Z(FN') =U(A(e - Btr(e) )V, (40)
_ 1 _ Atp _ 2uN 5 _ 2(2un+And)  2uN
where A = 37, B = T+Ai(ardp) ¢ = S0 P= ", — ~oqd’

and FN'T is the elastic predictor assuming no viscosity:
N, t ~n+1\ N,
Fy'l = I+ A"V F," (41)

Here v, and v, are viscosity parameters , and pn and Ay are inde-
pendent Lamé parameters for viscoelasticity to the ones for elasto-
plasticity. For simplicity, we use v, = 97 = 2unv for some v.
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Fig. 14. The viscoelastic decomposition of the deformation gradient and its
relationship to the elastoplastic decomposition.

Although the return mapping for viscoelasticity is totally different
from the one for elastoplasticity, the vector field

owN _
N ZENZ(R)TFTT

turns out to be integrable if ¥V is from the St. Venant-Kirchhoff
constitutive model, and the augmented ECI energy for this vector

field is
PViseo 3y = ftr((log%)?) + %(tr(logz))z, (42)

where /i = Apy and 4 = AAy — AB(2un + dAN).
Without plasticity, FF = I, and then the strain energy density for
a viscoelastic material is simply

¥(F) = YE(F) + ¢Visco(F). (43)

With MPM discretization, each particle p independently tracks the
evolutions of F J’y and F g and independently updates them accord-
ingly at the end of each time step.

5 SPATIAL-TEMPORAL INTEGRATION

In this section, we present the detailed pipeline of ECI applied to

MPM. The algorithm stages from " to t"*! are listed as follows:

(1) Particles-to-grid transfer. Grid mass m[' and velocity v}’ are
transferred from particle mass mp, velocity v3, and angular
velocity information C;’, with APIC [Jiang et al. 2015].

(2) Optimize new grid velocity. A series of optimization problems
in the form of Equation 7 using ECI augmented energies are
solved until the fixed-point iteration converges or the maximal
number of iterations is reached. See Section 5.1.

(3) Grid-to-particles transfer. The grid velocity ‘7?“ from the
time integration are transferred back to particles to update par-

ticle velocity VZ+1 and angular velocity information CZ“.

(4) Particle strain update. The elastic strain FE or FN are updated
according to return mappings.
(5) Particle advection. Particles are advected via particle velocity:
Prian G R g
We only elaborate on the second stage in the following section.
The other stages are the same as the standard explicit MPM simula-
tion pipeline [Jiang et al. 2016].
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Algorithm 1: Iterative Stress Optimization Time Integration

1: procedure MPMTIMEINTEGRATION(AV™MY, M™ v, At, €) > M™, v are
stacked grid mass and velocity, Avi™! is the initial guess

2 Av = Avinit
3: do > Iterative Stress Iteration
4: for each particle p
5: Evaluate trial hardening state qf,r > Equation 38
6: Evaluate trial yield stress (flt,r )p > Equation 35 38
7: end
8: do > Solve Equation 7
9: r «— —VE(Av) > E as in Equation 7
10: SAV « InexctMINRES (ProjectPD(V2E(Av)),r) » Section
5.1.2
11: a « InversionFreeFilter (6Av) > Section 5.1.3
12: Einit < E(Av)
13: while E(Av + adAv) > Einir > Line search
14: a— g
15: end
16: AV — AV + adAv
17: 7 = Residual(r) > Section 5.1.4
18: while ||#||c > €
19: while yield stress not converged
20: for each particle p > Advance hardening state
21: qn+l — q}tf
22: end

23: end procedure

5.1 lterative Stress Optimization Time Integration

To make the internal force of implicit plasticity integrable, the yield
stress is viewed as constant in the force formulation, i.e., each par-
ticle sees a local cylinder-like yield surface with a different yield
stress. Multiple optimizations with updated yield stresses are needed
to make the final computed stresses consistent with the true yield
surface. Each optimization problem is solved robustly using the pro-
jected Newton method with backtracking line search [Wang et al.
2020], where the Hessian matrix is projected to a nearby positive
definite form [Teran et al. 2005]. See Algorithm 1 for the pseudo-
code.
The update procedure of 'r;r can be viewed as a fixed point itera-
tion: ) )
Ty =T (FE (Av(2)7))). (44)

Here j is the index of stress iteration, Av(’r;r’j ) is the equilibrated
grid velocity field returned by a single optimization based on the
yield stress vector r;r’] , and the bold symbol represents the stacked
stress vector from all particles or all grid nodes. Since the Jacobian
of this iteration has a scalar At? (see the supplemental document for
details), the convergence of this fixed-point iteration is guaranteed
if At and the residual for the equilibrium are both small enough.
In practice, we find that even with large time steps, only several
fixed-point iterations are required to produce visually high-quality
results.

5.1.1 Boundary Conditions. The boundary conditions in our simu-
lations are all from rigid collision objects. At the beginning of each
time step, we detect the set of grid nodes colliding with the collision
objects and directly enforce the velocity continuity condition across
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Table 1. Simulation Statistics.

Scene Figure = Model At (s) Ax (m) Geometry Elasticity Plasticity/Viscosity s/Step
Sand castle 19 Drucker-Prager  0.0004*  0.007 2.26M particles E =5 x 10° ¢ =30° ¢ =0.0025 18
Snow ball 218 Drucker-Prager  0.001 0.01 1.00M particles E = 10° ¢ =30° ¢ =0.0025 10
Noddle 1 Von-Mises 0.001 0.01 2.07M particles E = 10° Ty =77%x104,£=0 31
Hydraulic test (Can) 12122 Von-Mises 0.01 / 156K elements E=7x10° 7y =3x107,£=0.5 5.6
Hydraulic test (Cylinder) 23 Von-Mises 0.01 / 299K elements E=7x10° 7y =3x107,&=0.1 15
Hydraulic test (Square) 24 Von-Mises 0.01 / 230K elements E=7x10° 7y =3x107,&=0.1 8.1
Armadillo 7 Von-Mises 0.01 / 121K elements  E = 10° 7y =10°,E=0.5 99
Car crash Von-Mises 0.005% / 152K elements E=2x10° 7y =25x10%&=0.1 51
Memory foam 12 Viscoelasticity ~ 0.01 / 212K elements  E = 103 EN =2%10%,0=0.01 17

“Using a smaller time step to satisfy the CFL limit for particle advection (At < CFL - Ax/vmax).
bUsing a smaller time step to decrease numerical damping for a more vivid animation.

the collision interface. In each Newton iteration, the linear solver is
projected so that the solved search direction remains tangent to the
constraint manifold.

5.1.2  Inexact Newton-Krylov Methods. Following Wang et al. [2020],
we use an inexact Newton-Krylov method. The tolerance for the
linear systems is set relatively large in an adaptive way. Although
more Newton iterations are needed, the reduced linear solve cost
can still improve the world-clock timing of Newton convergence.
Specifically, we use matrix-free Minimal Residual Method (MINRES)
to solve the linear systems and the relative tolerance of each MINRES
solve is set to min(0.5, max(0.1, VrT Pr)), where r is the right-hand
side vector and P is the preconditioning matrix.

5.1.3 Inversion-free Line Search. The Hencky strain requires that
the deformation gradient is not inverted, i.e., det(FE’" ) > 0. Fol-
lowing [Li et al. 2020, 2021c; Smith and Schaefer 2015], before the
line search, we first compute a large admissible step size « for the
search direction such that the energy is well-defined for any step
size t € [0, a], and then the backtracking procedure starts with the
filtered step size a.

5.1.4 Stopping Criteria. To terminate the Newton iterations early
while ensuring visually high-quality simulation results, we normal-
ize the grid residual vector r, the gradient of the system energy, by
the grid mass vector. This gives a residual in the unit of velocity
(m/s), which is associated with a physical meaning. However, due to
numerical rounding errors, small-mass nodes sometimes can have
large residuals but contribute little to the particle advection. There-
fore, we use grid-to-particle transfer to transfer the grid residual
vector onto the particles to get the final residual vector. All our
examples are running with tolerance 1072m/s based on the infinity
norm of the velocity-unit residual vector on particles.

5.1.5 Timestep Size Restriction. The time step size of MPM is bounded
by the advection CFL condition [Gast et al. 2015]. For those without
stress-iterations, no further restrictions are required for our opti-
mization integrator. For those with stress-iterations, theoretically,
there is indeed a timestep size restriction for the stress iteration to
fully converge, but we have not observed non-converging cases.

6 DISCRETIZATION WITH FEM

ECI is independent of spatial discretization choices. Hence it can
also be conveniently applied in Finite Element Methods (FEM).

In FEM, the conservation-of-momentum equation (Equation 3) is
directly discretized and solved in the material space. For FEM with
linear tetrahedral elements, the discretized nodal internal force is

fi== VPN, (45)
e

where e indices all tetrahedral elements, Veo is the rest volume of
element e, and VNje is the gradient of the shape function on node i
evaluated at the barycenter of element e [Irving et al. 2006].

Considering implicit plasticity, the internal force can be written
as (see the supplemental document for details)

ovE -T -T
frr=-3ve —F (Z(FE')Z(FE)TFE ™ FE"™ YNie.  (46)

e

The integrability of the vector field 2Lz (Z(FE7)) Z(FB4T) T FEA T

leads us to the integrable internal force from the augmented elasto-
plastic energy density ¥:

St ==L (3 wETVY), (@)

where x; is the world space coordinate of node i.
At the end of each time step, we need to track and update FF on
each element with

Z(FE,tr)FP,nH — FE,trFP,n. (48)

ECI combined with Incremental Potential Contact (IPC) [Li et al.
2020] allows us to simulate various scenarios where both accurate
frictional contacts and inelastic responses are essential.

Timestep Size Restriction. Similar to MPM, there is also a timestep
size restriction for the stress iterations to fully converge in FEM.
Other than that, no further restrictions are needed. However, there
is certainly a tradeoff between the number of timesteps and the
accuracy and overall efficiency of the simulation [Li et al. 2020],
which holds for all time discretized numerical schemes.

ACM Trans. Graph., Vol. 41, No. 4, Article 52. Publication date: July 2022.



52:12 « Lietal

Explicit Vanilla Newton

Semi-implicit

dt=1e4s

@

dt=1e-5s

1.0
w
Ul
6 09
[}
- 08
o
0.7 \ N — ours (dt=1e-5)
} \ —— Ours (dt=1e-4)
© > \ 8 —— Ours (dt=1e-3)
0.6 \
T e Voo —— Semi-implicit (dt=1e-5)
- 05 i N —— Semi-implicit (dt=1e-4)
X \ M e memmmmm ==
° R
0.4 -
\
AY
g o3 ——T——
S o2 SO _——-==Es
It
5 0.0 0.1 0.2 03 0.4 05
Simulation Time [s]

Fig. 15. Sand Column Collapse. (a) The explicit method explodes with At = 107*s. The implicit method [Klér et al. 2016] with vanilla Newton fails at a time
step where the scene almost becomes static A = 10™%s (the frame right before the failure is rendered here). Our method works with all three time step sizes
At = 107%s,107%s, 10735, and produces consistent results. The semi-implicit method produces artificial elastic behaviors even with a small time step size.
(b) With the explicit method as the ground truth, our method has a smaller error (larger loU score) than the semi-implicit method.

Table 2. Iteration statistics of 2D sand colume collapse.

# Stress Iter.  # Newton Iter.  # Line search

At (Avg./ Max) (Avg./ Max) (Avg. / Max)
0.01 8.8/13 112.3/ 186 202.0/ 476
0.005 6.8/9 45.2 /75 48.8 / 201

0.0025 51/7 18.4/ 34 9.6 / 60
0.00125 3.7/6 9.2/14 13/9
0.000625 26/4 4.7/8 00/0

7 EVALUATION

We demonstrate the versatility of ECI with both MPM and FEM
simulations. Among these examples, the ones that do not contain
topological changes are simulated with FEM, and the frictional con-
tact is modeled with IPC [Li et al. 2020]. For our MPM simulations,
we use a CFL number of 0.6 [Gast et al. 2015]. The world-clock tim-
ing and the simulation setup are reported in Table 1. The statistics
are based on Intel Core i9-10920X 3.5-GHz CPU with 12 cores.

7.1 Unit Tests

Convergence of Stress Iteration.
We test the convergence of the
stress iteration on a 2D sand col-
umn collapse experiment. We use
a direct solver to solve linear sys-
tems in the optimization time inte-
grator, to avoid complicating the dt=0.00123
experiments with possibly inexact | _ i
Krylov solves. The convergence S )
criteria of the stress iteration is ||(r{;rl - r{,)”z < 10_9(2y\/ﬁ) R
where N is the number of particles, and the Newton tolerance is
107°. Note that these tolerances are much tighter than needed so
that we can verify that our method can converge with high accuracy.
We consecutively halve the time step size from At = 0.01s. All these
tests successfully converge with the given convergence criteria and
have consistent results (see the inset figure). The iteration statistics

de=001 i
t = 0.1 B 0,
d = 0005 i e

dt = 0.0025 8P,
- e o
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Fig. 16. With lower and upper bounds, the stored elastic energy in the
soda can changes periodically over time during the compressing-stretching
cycles, which demonstrates the long-time stability of our simulation.

are listed in Table 2, which shows that as the time step size decreases,
the required number of stress iterations, Newton iterations, and line
searches all decrease as expected.

Long-Time Stability. To test the long-time stability of our method,
we simulate a soda can being periodically compressed and stretched
10 cycles with At = 10725 (Figure 16). The Young’s modulus of the
soda can is 7 GPa. The stored elastic energy over time is always
bounded and it oscillates along with the compressing—stretching
cycles, demonstrating the strong long-time stability property of our
method.

7.2 Comparisons to Explicit and (Semi-)Implicit Plasticity

We compare our variational method with both explicit and implicit
methods proposed in Klar et al. [2016] on a 3D sand column collapse
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Fig. 17. ECl achieves 2x speedup compared to the explicit method in a sand
column collapse experiment and is with comparable speed to the implicit
method in Klar et al. [2016].

experiment. The time step size At for these two methods both need
fine-tuning to avoid numerical explosion. For explicit integration,
the time step is bounded by the sound-speed CFL [Sun et al. 2020],
which is small in general, especially for stiff materials and at high
resolution. With Klar et al. [2016]’s implicit method based on the
non-integrable implicit force (Equation 12, with asymmetric force
Jacobian), the convergence of time integration can only be reached
if the initial guess is sufficiently close to the local optimum. Fur-
thermore, the search performed by the Newton-Raphson iterations
(we refer it as the vanilla Newton method) can result in deforma-
tion gradients with non-positive determinants that cause simulation
failure.

We experiment under three different time step sizes At = 10~3s,
10~%s and 107 %s. Explicit MPM can run with At = 1075, but it
explodes with At = 107*s (Figure 15a top left). The vanilla Newton
method can run with At = 107>s, but fails at a step when the
simulation almost becomes static with At = 107%s and at the first
step with At = 103 (Figure 15a top middle). Our method, on the
other hand, works well with all these three time step sizes and
produces consistent results (Figure 15a right).

A common heuristic treatment is to directly replace the grid
update step in the explicit MPM simulation with implicit time inte-
gration without plasticity and only conduct return mappings at the
end of the time steps. We refer to this elasticity-plasticity-decoupled
scheme as the semi-implicit method in this paper. Although its sta-
bility and convergence can be guaranteed by the optimization time
integration, the semi-implicit method can lead to severe artifacts
as shown in Figure 15a bottom left, where the forces provided by
the stresses outside the yield surface make the continuum behave
more like a purely elastic body. This is due to the ignorance of the
plasticity by the implicit solve, which in turn overestimates the
material’s resistance to tensile deformation. Our method, on the
other hand, fully resolves plasticity in the implicit solve and does
not suffer from any such artifacts. We use the explicit method as
the ground truth to quantitatively measure errors. Figure 15b shows
that our method has a smaller error than the semi-implicit method,
where we compute the Intersection over Union (IoU) metrics be-
tween MPM grid mass distributions (computed as the ratio of the
number of common grid nodes to the number of union grid nodes).

Energetically Consistent Inelasticity for Optimization Time Integration « 52:13

Increasing cohesion

—_——
: - s i~ “w A
N '7-: - &= o e ’"""ia o
R " . -
7 i, S “ R —- @&l
. ~ Ny Wy

Fig. 18. Larger cohesion strength increases the chunkiness of the snow.
From left to right, ¢ = 0.00125, 0.0025, 0.005.

In practice, we can limit the number of Newton iterations and
Krylov iterations. On a sand column collapse experiment with the
same physical parameters and initial setup as above, our method
with At = 2 x 10~%s achieves 2x speedup compared to the explicit
method with At = 1075, as shown in Figure 17. With 2 stress
iterations per time step, 1 Newton iteration per stress iteration, and
5 MINRES iterations per Newton iteration, our method can still
generate physically plausible results. To make it a fair comparison,
the maximal numbers of Newton iterations and GMRES iterations
are set to 2 and 10 respectively for Klar’s implicit method with the
same At = 2 X 1075 as ours. The simulation using Klar’s method
does not go unstable in this setting, and its computational cost is
similar to ours, as expected.

7.3 Druker-Prager Plasticity with Cohesion

Snow Castle. To further demonstrate the artifacts caused by fully
decoupling elasticity and plasticity, we simulate a snow castle hit
by a high-speed elastic fish. The snow is modeled with wet soil by
Druker-Prager plasticity with cohesion. With our variational model,
the fish smashes the snow castle into pieces completely. However,
with the semi-implicit method, the castle behaves like an elastic
body and ends up holding the fish in an unrealistic way.

Our extrapolated StVK constitutive model combined with the
volume-preserving return mapping plays a vital role in generating
fractures in this example. Intuitively, our scheme mimics the cohe-
sion behavior better because it allows particles to be compressed a
little before exerting resisting force. Under the same time step size
(At = 5% 107%), we use the result from the explicit method with the
extrapolated StVK model as the ground truth to compare the accu-
racy between our method and semi-implicit methods (with/without
the extrapolated StVK model). The visual and quantitative compar-
isons in Figure 20 both show that our method is more accurate.

Snow Ball. We use the Druker-Prager plasticity model with cohe-
sion to simulate a snow ball hitting a static dragon (Figure 2). We
also simulate with different cohesion strengths to show the control-
lability of our method on simulating different levels of chunkiness
(Figure 18).

7.4 Von-Mises Plasticity (with Hardening)

Play-Doh Noodle. MPM can automatically handle topology changes.
By leveraging this feature, we simulate a Play-Doh modeled by the
von-Mises plasticity pressed through a cylindrical noodle mold (Fig-
ure 1 (top row)).

Hydraulic Tests on Metals. Hardening is widely observed in metals.
We simulate hydraulic tests on soda cans with different hardening
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Fig. 19. Snow Castle. With our variational inelasticity model, the castle can be smashed into pieces after hitting by the fish, while with the semi-implicit
method the castle behaves like an elastic body, holding the fish in an unrealistic way.
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Fig. 20. Our method is more accurate visually and quantitatively than the semi-implicit methods with/without the extrapolated StVK constitutive model.
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Fig. 21. Different hardening coefficients lead to varying restorations towards
the rest shape and generate different crushing patterns. From left to right,
the hardening coefficient £ = 0.5,0.3, 0.

coefficients and compare with the simulation without hardening
(Figure 1 bottom row). The hardening mechanism makes plastic de-
formations harder to happen as the yield surface expands. This lets
the object restore its original rest shape partially when all boundary
conditions are released. As shown in the last frame when the upper
press withdraws (Figure 21), the red can with the largest hardening
coefficient restores the most, and the orange can with no hardening
almost does not restore at all. Furthermore, different hardening coef-
ficients generate different crushing patterns. As shown in Figure 22,
the deformation patterns in one of our compressed can match that
from a real experiment. Modeling hardening also allows us to suc-
cessfully capture the snap-through instability of metal, which can be
observed in real experiments (see our video demonstration). When
we swap in long steel pipes for the hydraulic tests (one cylindrical,
one square), the crushing patterns also match real experiments well
(Figure 23, 24).
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Fig. 22. One of our hydraulic test simulations on metal cans generate a
crushing pattern well matching that in a real video footage [Youtube 2021].

-~

Fig. 23. Hydraulic Test on a Cylinder Pipe. The crushing pattern matches
the result of a real-world experiment [Youtube 2021].

Car Crash and Crushed Armadillo. To further demonstrate the
hardening behaviors of metals, we simulate a high-speed car crash-
ing into another stationary car (Figure 4) and an armadillo rolling



Fig. 24. Hydraulic Test on a Square Pipe. The crushing pattern matches
the result of a real-world experiment [Youtube 2018].
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Fig. 25. The semi-implicit von-Mises plasticity (right) overestimates the
resistance response and results in a large error compared to the ground
truth (left). Ours (middle) is much more accurate.

through a metal crusher driven by frictions (Figure 7). Both examples
show realistic denting effects with sufficient restoration towards
the rest shape enabled by hardening.

Comparison to Semi-Implicit Plasticity. We simulate a stiff elastic
ball hitting a wall modeled by the von-Mises plasticity to compare
our method with the semi-implicit method. As shown in Figure
25, the permanent deformations of the wall clearly show that the
semi-implicit plasticity overestimates the material’s resistance. We
use the explicit method as the ground truth to compare the position
error of the wall (computed as the average squared norm of vertex
position differences), which shows that our method is more accurate
than the semi-implicit method.

7.5 Viscoelasticity

Memory foam is a typical material demonstrating the viscoelastic
behaviors in the real world. We simulate a pillow made by memory
foam pressed down by a hand for a while, and then we lift the
hand suddenly. We successfully capture the intricate process where
the pillow slowly recovers its rest shape, completely removing the
imprint of the hand (Figure 12).

8 DISCUSSION

In summary, we developed ECI, a new formulation that augments
hyperelastic energy density functions to enable variational forms
for a wide range of elastoplastic and viscoelastic materials. Our
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algorithm enables the fully implicit simulation of inelasticity in
recently advanced optimization-based time integrators, embracing
advantages of long-time stability, global convergence, large time
step sizes, and high accuracy.

Our method is most naturally “plug and play” when applied to J2
von Mises materials and finite strain viscoelastic materials. However,
when extended to pressure-dependent plasticity or strain hardening
mechanisms, additional iterations on the stress are necessary to
achieve final convergence. In our examples, usually 1-2 stress itera-
tions are sufficient to generate convergent or visually high-quality
results. It is promising future work to devise theoretical and algo-
rithmic improvements to guarantee and accelerate the convergence,
particularly for accuracy-demanding applications.

The integrability of the implicit elastoplastic force depends on
both the elastic model and the plastic model. For instance, although
the combination of St. Venant-Kirchhoff elasticity with von-Mises
plasticity adopted by ECI leads to a symmetric force Jacobian, neo-
Hookean elasticity with von-Mises plasticity does not. It is an inter-
esting future work to explore integrable approximations to other
combinations.

ECI assumes the full-dimensional volumetric deformation gradi-
ent. Accordingly, our metal cans and pipes are all simulated with
thin single-layer linear tetrahedral elements, which could poten-
tially suffer from shear locking. It would be interesting to extend
ECI to codimensional geometries like shells and rods [Narain et al.
2013].

Finally, our augmentation to the strain energy density function
changes the conditioning of the global stiffness matrix. It is interest-
ing future work to study its effect on the linear solve, and strategies
to precondition the ECI-augmented system.
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