EULER EQUATIONS ON GENERAL PLANAR DOMAINS

ZONGLIN HAN AND ANDREJ ZLATOS

ABSTRACT. We obtain a general sufficient condition on the geometry of possibly singu-
lar planar domains that guarantees global uniqueness for any weak solution to the Euler
equations on them whose vorticity is bounded and initially constant near the boundary.
While similar existing results require domains that are C1'! except at finitely many convex
corners, our condition involves much less domain smoothness, being only slightly more re-
strictive than the exclusion of corners with angles greater than 7. In particular, it is satisfied
by all convex domains. The main ingredient in our approach is showing that constancy of
the vorticity near the boundary is preserved for all time because Euler particle trajectories
on these domains, even for general bounded solutions, cannot reach the boundary in finite
time. We then use this to show that no vorticity can be created by the boundary of such
possibly singular domains for general bounded solutions. We also show that our condition
is essentially sharp in this sense by constructing domains that come arbitrarily close to
satisfying it, and on which particle trajectories can reach the boundary in finite time. In
addition, when the condition is satisfied, we find sharp bounds on the asymptotic rate of
the fastest possible approach of particle trajectories to the boundary.

1. INTRODUCTION

The study of motions of incompressible inviscid fluids, in mathematics, physics, as well
as engineering, is both a centuries old endeavor and a vibrant area of current research.
Mathematically, these motions are modeled by the Euler equations

(1.1) Owu+ (u-V)u = —Vp,
(1.2) V-u=0,

with u the fluid velocity and p its pressure. These PDE are usually considered for times
t > 0 and on spatial domains 2 C R? with impermeable boundaries and hence with the
no-flow (or slip) boundary condition

(1.3) u-n=0

on RT x 00, with n the unit outer normal to 2. Despite the immense variety of advances in
the area since Euler’s formulation of this simple looking but incredibly rich system of PDE
in 1755, some of the most important questions about its solutions remain open to this day.

While the most famous of these is the question of finite time singularity of solutions in three
1
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and more dimensions, even in two spatial dimensions there are several important unsolved
problems. One of these is uniqueness of solutions on irregular domains — even just general
convex ones — due to singular effects of rough boundaries on the dynamics of fluids.

In two dimensions, the case considered here, the Euler equations can be equivalently

reformulated as the active scalar equation
(1.4) Ow~+u-Vw=0
on Rt x Q C Rt x R?, with
w:=V Xu=0,uy — Op,uy

the vorticity of the flow. This conveniently removes the pressure from the system, and one
can now also find the (divergence-free) velocity from the vorticity via the Biot-Savart law

(1.5) u=V+A~lw,
with A the Dirichlet Laplacian on © and V¢ := (=0,,1, 0,,1).

Prior Existence and Uniqueness Results

On smooth bounded domains Q C R2, global well-posedness for strong solutions goes
back to the breakthrough 1933 papers by Wolibner [29] and Hoélder [10] (for unbounded
domains, see [12,22]). A natural class of solutions to consider are those with bounded
vorticities, due to (1.4) preserving ||w(¢,)||z~, and global well-posedness for weak solutions
with initial conditions wy € L*(£2) was proved in the celebrated work of Yudovich [30]
(see also [1,19,21,25]). While existence of global weak solutions can also be proved for
wo € LP(Q) [7] and even for wy € H () N M, (Q) [5], uniqueness appears likely to not
always hold in this case. Indeed, this is suggested by recent results of Vishik [26,27], who
showed non-uniqueness of solutions on R? with wy € LP(R?) for some p > 2, in the presence

of a forcing from the same space.

The above results apply on sufficiently smooth domains, with 9Q being C'! or better.
However, global existence of (even unbounded) solutions has been proved to hold on much
less regular domains. Indeed, this was done via L? estimates on the velocity u for wy € LP(Q)
or wg € H1(Q) N M (Q) by Taylor on convex domains [24], and later by Gérard-Varet and
Lacave for very general irregular domains [8,9].

Low regularity of the boundary is, however, currently a crucial barrier to a resolution
of the uniqueness of solutions question on general bounded domains, even for bounded solu-
tions. In a nutshell, all presently available uniqueness results require the velocity to be close
to Lipschitz in an appropriate sense, and sufficient smoothness of 02 is typically needed
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to obtain apriori estimates on the Riesz transform VV+A~!'w = Vu. This includes the
approach of Yudovich, via the family of Calderén-Zygmund inequalities

IVu(t, )|l» < Cpllw(, )| e
for all p € [2,00) and with a uniform C, as well as the use of the log-Lipschitz estimate

syea |7 —ylmax{l, —In|z —y|}

< Cllw(t, )l
(see, e.g., [21]). However, such estimates do not hold in general on less regular domains. For
instance, Vu may only be L? near irregular portions of the boundaries of general convex
domains (even for smooth w), while Jerison and Kenig showed that Vu may not even be
integrable on some C! domains [11].

It is therefore not surprising that uniqueness of all weak solutions has so far only been
established for a fairly small class of (simply connected) non-C*! domains. In fact, all these
must be C™! except at finitely many corners with acute (including right) angles. Specifically,
this was achieved first for rectangles by Bardos, Di Plinio, and Temam [2], then for domains
that are C%7 (for some v > 0) except at finitely many acute corners by Lacave, Miot, and
Wang [16], and then on domains that are C'! except at finitely many acute corners by Di
Plinio and Temam [6]. In all these results, intersections of the domains with small discs
centered at all corners were even assumed to be exact sectors. Corners with angles greater
than 7 (and all other irregular geometries of 0f2) are excluded in these results due to the
velocity not being close to Lipschitz there even for smooth w (at corners with angles greater
than 7, the velocity is in general even unbounded). Uniqueness of general solutions outside

of the class of domains from [6] therefore appears to be a very challenging open problem.

Nevertheless, one may still hope to establish uniqueness on irregular domains for solu-
tions that remain constant in the regions where the velocity fails to be close to Lipschitz
(similarly to results for the vortex-wave system [15,20], when the diffuse part of the vorticity
remains constant near all point vortices). This may mean neighborhoods of corners with an-
gles greater than 7 for piecewise C' L1 domains, or all of 92 for general irregular domains. In
fact, since Euler particle trajectories for bounded solutions starting inside smooth domains {2
cannot approach 0f) faster than double-exponentially in time, all solutions that are initially
constant near all of 92 will remain such for all later times. One may hope that this property
extends to many less regular domains, possibly with other asymptotic rates of approach to
the boundary, which would yield a large class of initial data on such domains with unique

global weak solutions.

This approach was recently taken up by Lacave and the second author. Lacave first
proved in [14] that if 99 is C'"! except at finitely many corners that are all exact sectors with
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angles greater than 7, and wg has a constant sign and is constant near d€2, then w will indeed
remain constant near 02 forever and weak solutions are unique. Then, together with Zlatos,
they showed the same result when 99 is C'! except at finitely many corners of arbitrary
angles from (0, 7) that do not need to be exact sectors, and without the sign restriction on
wo [17]. In both works, Euler particle trajectories for bounded solutions (general ones in [17]
and with a constant sign in [14]) were shown to remain in 2 for all time (again approaching
02 no faster than double-exponentially), and in [17] this was even proved to hold when
09 is only C'7 (for some v > 0) except at finitely many corners with angles from (0, ).
Moreover, [17] also constructed examples of domains smooth everywhere except at a single
corner with an arbitrary angle from (m,27) where Euler particle trajectories can reach 0
in finite time, using an idea of Kiselev and Zlatos [13].

Definitions and Main Results

The uniqueness results in [14,17], just as those in [2,6,16], still require piecewise C1!
domains. In the present paper we greatly expand this class by considering general regulated
bounded Lipschitz domains, that is, those having a (counter-clockwise) forward tangent
vector at each point of 02 (see (1.10) below), whose argument is a function with left and
right limits everywhere. In particular, this includes all convex domains.

We then obtain a general condition guaranteeing that Euler particle trajectories for
bounded weak solutions in these domains never reach 02, and also prove existence and
uniqueness of global weak solutions for all vorticities initially constant near 0€). Our con-
dition is only slightly more restrictive than exclusion of corners with angles greater than ,
which was shown to be necessary in [17], and it places no restrictions on those segments of
02 where the argument of the forward tangent vector is non-decreasing (so, in particular,
it is satisfied by all convex (2). Specifically, our condition is satisfied precisely when the
argument of the forward tangent vector to 9€), composed with the Riemann mapping for €2,
can be written as a sum of an arbitrary increasing function and a second function that has
a modulus of continuity m from a precisely defined class of moduli (which includes, e.g., m
with m(r) = 3iogy] for all small enough r > 0). Moreover, for any concave modulus m from
this class, we find the exact (up to a constant factor in time) asymptotic rate of the fastest
possible approach of Euler particle trajectories to €2 among all domains as above. We also
show that no vorticity can be created by the boundary of these possibly singular domains, a

result that even extends in a weaker form to general bounded domains (see Corollary 1.4).

Finally, we show that our condition is essentially sharp. Specifically, for each concave

modulus not in the above class of moduli (e.g., m with m(r) = for all small enough

_a
2| log 7|

r > 0, with any fixed a > 7), we construct a domain as above in which particle trajectories
can reach the boundary in finite time. It therefore appears that our work pushes right up
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to the limits of the philosophy from [14,15,17,20], within the class of regulated domains at
least, and further significant advances will likely require a breakthrough in the question of
uniqueness for solutions that are not constant near all those singular segments of 92 where
the Euler velocities corresponding to bounded vorticities may be far from Lipschitz. Our
Theorem 1.1(ii) and Corollary 1.4 below represent a first step in this effort.

Let us now state the precise definitions and our main results. Let @ C R? be an open
bounded Lipschitz domain with 02 a Jordan curve, and let 7 : Q — D be a Riemann
mapping (with D the unit disc in C = R?). By the Kellogg-Warschawski Theorem (see,

g., [23, Theorem 3.6]), we can then extend 7 continuously to Q. We also let S := T 1.
We will consider here solutions to the Euler equations on €2 from the Yudovich class

{(w,u) € L= ((0,00); L=() x L*()) | w =V x u, and (1.2)—(1.3) hold weakly}

where the weak form of (1.2)—(1.3) is

(Q) with Vh € L3(Q)

loc

/u(t,-)~Vhdx:O Vh € H]
Q

for almost all ¢ > 0 (see [8,9]). Such w and u are then equivalently related by the Biot-
Savart law (1.5). This can be expressed in terms of 7 and the Dirichlet Green’s function
Gp(§,2) = = In ‘5 Zl  for D (with 2* := 2|2|72 and (a,b)* := (b, a)) as

Lo [(T@ =T T@ =T\
7 ulbe) =5 DT /Q(W@:)—T(yn? |T<x>—’r<y>*|2) (o) dy

Since v is uniquely determined by w, we will simply say that w is from the Yudovich class.

We say that w from the Yudovich class is a weak solution to the Euler equations on €2,
on time interval (0,7") and with initial condition wy € L>(Q2), if

(1.8) / / (Orp +u- Vo) dedt = /wocp(O, Jdr Ve e O ([0,T) x Q).

This is obviously the definition of weak solutions to the transport equation (1.4), but it
is also equivalent to the relevant weak velocity formulation of the Euler equations on 2
(see [9, Remark 1.2]). When T = oo we call such solutions global. Their existence is
guaranteed by [8] for very general 2, but the question of uniqueness is still open in general.

It is well known (see, e.g., [21, Chapter 2]) that uniform boundedness of w shows that the
velocity is locally log-Lipshitz, uniformly in time. Specifically, (1.6) holds for all ¢ € (0, c0)
with  replaced by any compact K C 2 and with C' = Cq k. Then u is also uniformly-in-time
locally bounded on €2, and for each x € () there is a unique solution to the ODE

d
(1.9) %th = u(t, X}) and X§=x
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on an interval (0,%,) such that
ty :==sup{t > 0| X7 € Qfor all s € (0,%)}

(so if X7 reaches OS2, then t, is the first such time). That is, { X} }ic(04,) is the Euler particle
trajectory for the particle starting at x € 2. We note that a priori the ODE only holds for
almost all ¢t € (0,t,) (with X} continuous in time), but we will show that w is continuous
and therefore (1.9) holds for all ¢ € [0,¢,) (see Corollary 1.4 below).

For any 0 € R, the unit forward tangent vector to Q at S(e?) € 9Q is the unit vector

. S(e?) — S(e?)
1.10 vr(0) = 1 ; :
(1.10) pr(0) = fim S(ei%) — S(ei?)|’
provided this limit exists. If it does for each # € R, and the limits lims 91 U7 (¢) both

exists at each # € R, then the domain () is said to be regulated. In this case obviously

limy o4 U7(¢) = vy (6), while the argument of the complex number () [limg_,o— o (o))
equals 7 minus the interior angle of 2 at S(e?). We then let

(1.11) Br(0) := argvr(0),

where arg is the argument of a complex number plus some integer multiple of 27. This
multiple is chosen so that $7(0) € [0,27) and B7(0) — limg o B7(¢) € [—m, 7] for each
0 € R, and if €2 has cusps, we do it so that this difference is 7 at exterior cusps (with interior
angle 0) and —7 at interior cusps (with interior angle 27). Of course, then this difference is
again 7 minus the interior angle of Q at S(e?). Since we only consider Lipschitz domains
here (i.e., without cusps), we will always have 87 (0) — limg_,o_ Br(¢) € (-7, 7).

The above defines the right-continuous function 57 : R — R uniquely, and it satisfies
Br(0+2m) = Br(0)+2r for all § € R. As we wrote above, whether Euler particle trajectories
for bounded solutions can reach the boundary in finite time depends on how quickly is B
allowed to decrease locally (which happens when 77 turns clockwise), with no restrictions
on its increase. This will be quantified in terms of a modulus of continuity for one of two
components of 37, with the other component being an arbitrary increasing function.

We call a function m : [0,27] — [0,00) with m(0) = 0 a modulus if it is continuous,
non-decreasing, and satisfies m(a 4+ b) < m(a) +m(b) for any a,b € [0, 27| with a +b < 27.
If some f: R — R satisfies |f(0) — f(¢)] < m(r) for all r € [0,27] and all 6,¢ € R with
|0 — ¢| < r, we say that f has modulus of continuity m. We also let

inl) = ses (2 [ 0ar)
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5 = 00, we let p, : R — (0,1) be the inverse function to y — In f; %, SO

(o )

Then p,, is decreasing with lim;_, o p,,(t) = 1 and limy_, pn(t) = 0, and we shall see that

and if fol qu

it is the maximal asymptotic approach rate of Euler particle trajectories to 92 (up to a
constant factor in time) among all domains for which 37 above has modulus of continuity
m. In fact, our main results show that this statement extends to domains with 37 being
a sum of a function with modulus m and any non-decreasing function (see hypothesis (H)
below). Note also that fol qj—‘(ss) = 00 holds whenever fol @dr < 00, and functions with
such moduli m are called Dini continuous.

In our main results, we will assume the following hypothesis.

(H) Let Q C R? be a regulated open bounded Lipschitz domain with 9Q a Jordan curve.
Let 7 : Q — D be a Riemann mapping and let 57, B7 be functions on R with
2m-periodic (distributional) derivatives such that (7 is non-decreasing, BT has some
modulus of continuity m with ¢, and p,, defined above, and the argument of the
(counter-clockwise) forward tangent vector to 92 is B = B1 + Br.

Note that if G, B7 are as above and their sum is the argument of the forward tangent
vector to a Jordan curve 02, then the bounded domain {2 must automatically be regulated.

As mentioned above, neither (H) nor our results place any continuity restrictions on 7.
In particular, the following main result of the present paper holds for any convex domain €2,
since then one can let A7 := 37 and B7 = 0 (and therefore m = 0).

Theorem 1.1. Assume (H) and that fol q:—fs) = 00. Let wy € L>(2) and let w from the
Yudovich class be any global weak solution to the Euler equations on 2 with initial condition
wo (such solutions are known to exist by [8]).

(i) We have t, = oo for all x € Q, and for any R < 1 and all large enough t > 0,

(1.12) sup |T(X7)] < 1= pn(300||w]|p=t)
[T (z)I<R

(except when w = 0, but then X} = x). And if Br is Dini continuous, then the right-hand
side of (1.12) can be replaced by the m-independent bound 1 — exp(—e300lwlze=t),

(1) We have { X[ |z € Q} = Q forallt > 0, and w(t, X7) = wo(x) for a.e. (t,x) € RT x Q.
Moreover, u is continuous on [0,00) x Q and (1.9) holds for all (t,z) € [0,00) x 2.

(#11) If supp (wo — a) N O = & for some a € R, then the solution w is unique.

Remarks. 1. This naturally extends to solutions on time intervals (0,7") for T € (0, c0).
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2. Part (i) also shows that infj7)<r d(X7,00Q) > pn(300]|w||z=t) for any R < 1, due
to 7 being Holder continuous for Lipschitz 2 (see, e.g., [18, Theorem 2]). This is because
our proof shows that (i) also holds with 299 in place of 300, and one can easily show that
Pm(300ct) < %pm(299¢t)N for any fixed ¢, N > 0 and all large enough ¢ > 0.

3. A “borderline” case for the condition fol #fs) =00 is m(r) = @ for all small » > 0
(with @ > 0). Here fol qjﬁ = o0 holds precisely when a < Z, while fol ™0 g = o0 for all
a > 0. In this case p,, is still a double exponential when a < 7, as for Dini continuous

BT; but a triple exponential when a = 7. The double-exponential rate is known to be the
maximal possible boundary approach rate for smooth domains, due to (1.6) holding there,
but (1.6) fails even for general convex domains. See also the remark after Theorem 1.2 below.

Our second main result, which applies to concave moduli m, shows that Theorem 1.1(i)
is essentially sharp, even for stationary solutions. This involves analysis of Euler particle
trajectories on some special domains, which are more sophisticated versions of domains with
concave corners considered in [13,17].

Theorem 1.2. For any concave modulus m, there is a domain Q satisfying (H) and a
stationary weak solution w from the Yudovich class to the Euler equations on ) such that

the following hold.
(1) If fol q:ffs) < 00, then X € O for some x € Q and t > 0.

(i) If fol qus) = 00, then |T(X¥)| > 1 — pm(ct) for some x € Q, ¢ >0, and all t > 0.

Remark. Note that if m(r) = a(Ly(2)... L1 (2) ™ + 2300 (La(2) . Ly(2)) ™! for all
small enough r > 0, with & > 2, a € [0, 7), and L;(r) being Inr composed j times, then py,
is essentially a k-tuple exponential. Therefore all such boundary approach rates do occur on
some domains €2 to which Theorem 1.1(i) applies.

We also note that Theorem 1.1 has a natural analog when the forward tangent vector
is defined via arc-length parametrization of 92, rather than via S. If o : [0,27] — 09 is
the (counter-clockwise) constant speed parametrization of 002 (extended to be 2m-periodic
on R, and obviously unique up to translation), then Lemma 1 in [28] shows that T o ¢ and
its inverse (modulo 27) are Holder continuous. If we therefore use

_ . o(¢) —a(f)
1.13 vo(f) = lim —————,
) "= B o) —ot0)
instead of (1.10), and the corresponding o, (with Ba, Ba, Ba chosen analogously to 7, 87, A7)
has some modulus of continuity m, then 37 has modulus of continuity m(r) := m(Cr?) for

some C,~v > 0. But since a simple change of variables shows that fol @dr < 00 is equivalent
1 m(Cr™)

to0

dr < oo, we obtain the following result.
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Corollary 1.3. Theorem 1.1 continues to hold when (1.10) and Br, B, Br in (H) are re-
placed by (1.13) and Bq, Ba, Ba, respectively, and if Bq is also Dini continuous.

Remarks. 1. Of course, while 37, A7, B7 depend on T, they can also be made to only
depend on 2 because we are free to choose 7.

2. Note that if an open bounded simply connected Lipschitz domain 2 can be touched
from the outside by a disc of uniform radius at each point of 9 (i.e., {2 satisfies the uniform
exterior sphere condition), and we replace (1.10) by (1.13), then these hypotheses are satisfied
with m(r) = Cr for some constant C. Hence Corollary 1.3 holds for all such domains.

Finally, we provide here a version of Theorem 1.1(ii) for general open bounded domains,
which follows from its proof and is also of independent interest. To the best of our knowledge,
such results previously required 99 to be at least piecewise C1! (see, e.g., [14,16,17]).

Corollary 1.4. Let w from the Yudovich class be a weak solution to the Euler equations
on an open bounded domain Q C R?, on time interval (0,T) for some T € (0,00] and with
initial condition wy € L>®(Q2). Then w(t, X[) = wo(z) for a.e. t € (0,T) and a.e. x € Q with
ty > t, the velocity u is continuous on [0,T) x Q (as well as on [0,T] x Q if T' < 00), and
(1.9) holds for all x € Q and t € [0,t,).

Remark. So even when 0f) is very irregular, vorticity might be created (at 0Q2) only if
enough particle trajectories “depart” from the boundary into Q, so that Q \ {X7 |z € Q}
has positive measure for some ¢ € (0, 7).
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2. PROOF OF THEOREM 1.1(I)

Take any z € €2 and let
d(t) =1 —[T(X})]
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be the distance of 7(X}) from 0D. Then we have

as long as |T(X[)| € (0,1). Since DT is of the form ( ) because 7 is analytic, we

have DTDT" = (det DT)I,. The Biot-Savart law (1.7) for £ X now shows that

et DT(XG) [ (T Tw) | T T
T = = S| /<|T< XP) T <>\2+rr<xz> <>r2) w(ty) dy
det DT(X2)(1 — |[T(X2)P 0 T T T,
- 27 T (X7))] / T — TP TP =T

where 2* := 2|z|72 and (a,b)* := (=b,a). After the change of variables z = T (y), we obtain

! 2H('“ HL ac / - ’Z')‘ ; (AX x) . ’ 1

This estimate already appeared in [17], but we will use the following crucial result to

tightly bound its right-hand side for much more general domains.

Lemma 2.1. Assume (H) and that fol dss) = 00. There is C < 1477 and a (T -dependent)

am(
constant Cr > 0 such that if |¢| € [5,1), then

(2.1)
(1— |2Dlé - =" . L
det DT(T / € R I12PE 2P det DT '(2)dz < C Q(1—[€]) </1_|€ sQum(S)

+OT>7

with Qu(s) == s qn(s) = exp( f m(r )
Remark. Note that ), is non-increasing, and lim; g s*Q,,(s) = 0 for all & > 0 because
s* = exp(—a 31 .

Lemma 2.1 with £ := T (X}’) now yields

J@)Z—{Wﬂhw%xﬂw)<é;qjé)+C%)

and so

1 d 1 d
m/ Sgcwmd+m< -JL+@)
d(t) Gm (5) in{d(0),1/2} qm (8)

8
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for all ¢ > 0. Therefore

1 d
(2.2) d(t) > pm (CHwHLoot +1In (/ 4 C’T)) .
min{d(0),1/2} Gm(8)

This is no less than py, (300||w||L~t) for all large ¢ > 0, uniformly in all x with |7 (z)| < R (for
any R < 1, except when w = 0). And if M := fol @dr < 00, then p,,(z) > exp(—e*+2M/m)
(because pm(z) equals y such that e* = [ —ds_ > =2M/x fyl %) so this is no less than

Y am(s) —
exp(—e30lwlizeot) for all large ¢ > 0, uniformly in all x with |7 (z)| < R.

Hence, to conclude Theorem 1.1(i), it only remains to prove Lemma 2.1. Its proof, which
relies on the crucial representation formula (4.1) for DT, is somewhat involved. We postpone

3. PROOFS OF THEOREM 1.1(11,111) AND COROLLARY 1.4

Theorem 1.1(iii) follows immediately from Theorem 1.1(ii) and Proposition 3.2 in [17],
which shows that solutions from Theorem 1.1(ii) are unique as long as they remain constant
near 9§ (constancy near the non-C?7 portion of 9 for some v > 0, where u may be far
from Lipschitz, is in fact sufficient). It therefore suffices to prove Theorem 1.1(ii).

The first claim follows from the fact that the estimate (2.2) equally applies to the
solutions of the time-reversed ODE LY (s) = —u(t — s,Y(s)) with Y(0) € Q (which of
course satisfy V(s) = X,” (st)). The proof of the second claim was obtained in [14,16, 17] for
some sufficiently regular domains by looking at (1.4) as a (passive) transport equation with
given u and wy, and proving uniqueness of its solutions (using also that t, = oo for all x € Q).
This is because w(t, X}') := wy(z) can be shown to be its weak solution in the sense of (1.8).
The uniqueness proofs used the DiPerna-Lions theory, which required relevant extensions of
u and w to R?\ Q (the latter by 0). This necessitated 99 to be piecewise C™!, in addition
to having ¢, = oo for all x € (), so that the extension of u is sufficiently regular for the

DiPerna-Lions theory to be applicable.

We avoid this extension argument, and hence also extra regularity hypotheses on (2,
thanks to the following result concerning weak solutions to the transport equation (1.4).

Lemma 3.1. Let Q C R be open and T > 0. Let u € LS.([0,T] x Q) satisfy

loc
t —u(t
(3.1) sup sup utt, @) = ult,y)| < 00
tel0,T) z,ye K ’l‘ - y’ max{l, —In |l‘ - y|}

for any compact K C Q, as well as (1.2) on (0,T) x Q. Ifw € L.([0,T] x Q) is a weak

loc

solution to the linear PDE (1.4) with initial condition wy € L°.(Q2) and X[ is from (1.9),

loc

then we have w(t, X7) = wo(x) for a.e. t € (0,T) and a.e. x € Q with t, > t.
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Proof. Let €, C Qy C ... be smooth open bounded sets in R? with Q, C Q = U1 Q-
Since w is also a weak solution to (1.4) on 2,, and exit times ¢, , of X from ,, then s_atisfy
lim, o0 tzn = t, for each z € Q, it obviously suffices to prove that w(t, XJ) = wo(z) for
a.e. t € (0,7) and a.e. x € ), such that ¢, , > t. We can therefore assume that 2 is smooth
and bounded, (3.1) holds with K replaced by 2, and u,w,w, are all bounded. We can also
assume without loss that w > 0 and wy > 0, by adding a large constant to them.

Extend the particle trajectories from (1.9) by X} := limyy, X? € 0Q for all t > ¢,, and
let Q :={X]|zeQ&t,>t}forallte[0,T) (these sets are open due to (3.1)). Then the
lemma essentially follows from Theorem 2 in [3] but in order to apply it, we need to show
that w weakly satisfies some boundary conditions on (0,7") x 02 (even though these do not
affect the result). To this end we employ Theorem 3.1 and Remark 3.1 in [4], which show
that there is indeed some k € L>((0,7) x 092) such that

T T
/ / w(Op+u- V) dedt = — / wop(0, ) dr + / / (u-n)pk dodt
0 Jo Q 0 Joo

holds for all ¢ € C§° ([0,T) x Q).

Theorem 2 in [3] now shows that there is a positive measure 7 on € such that
32 Vet o) dy = [ D0 dn(o)
Q Q

for almost all t € (0,7") and all ¥ € C§°(2;). (In fact, the measure in [3] is supported on
the set of all maximal solutions to the ODE 4V (¢) = u(t,Y (¢)) on (0,T), and the relevant
formula holds for all ¢ € Cg°(R?). But this becomes (3.2) when restricted to the 1 above,
with 7 the restriction of the measure from [3] to the set of solutions {{ X} }icor) |2 € Q}.
This is because uniqueness of solutions for the ODE shows that the other solutions have
Y(t) ¢ Q for any t € (0,7).) By taking t — 0 in (3.2), we obtain

/w wo(y dy—/w ) dn(a

for any ¢ € C§°(R2), so dn(x) = wo(x)dx. Letting v in (3.2) be approximate delta functions
near all y € ; then shows that for almost all ¢ € (0,7") we have w(t, X7) = wo(x) whenever
x and X7 are Lebesgue points of wy and w(t, ), respectively. This finishes the proof. B

Since t, = oo for all x € ), Lemma 3.1 with T" — oo now proves the second claim in
Theorem 1.1(ii). As in [17], uniform boundedness of u on any compact subset of Q then
yields w € C([0,00); L!(Q)), and continuity of u on [0,00) x Q follows from this and the
Biot-Savart law. Then also (1.9) holds pointwise, finishing the proof of Theorem 1.1(ii).

This argument actually applies on general open bounded © C R2, without needing
t, = oo for all z € . This is because boundedness of w implies u € L*>((0,7) x K) for any
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compact K C € as well as (3.1) (for solutions on a time interval (0,7) with T' < 00), and
these three facts then again yield w € C([0,T]; L'(Q)) (with w(0,-) := wy and w(T, -) defined
by continuity). This yields Corollary 1.4.

4. PROOF OF LEMMA 2.1

We can assume that 57(0) = 0, which is achieved by subtracting 37(0) from 37 and
adding it to B7. Since T is analytic, we have det DT (z) = |T"(2)|?, where T" is the complex
derivative when 7 is considered as a function on C. The same is true for its inverse S, and
we also have 8'(z) = T'(S8(z))!. Since € is regulated, Theorem 3.15 in [23] shows that

(@1) s@=1s0len (£ [ 5 Tl (BT< )—0-1) de)

et

for all z € D, and from fo z6+z df =27 € R and Im & 19 = 2Im —7— we get
9 2w > _

(4.2) det DS(z) = det DS(0) exp [ —— / Im . (B7(0) — 6) db
T Jo —

(with B7(0) — 0 being 27-periodic).
We note that if 37 is itself Dini continuous (so we can have Br = By and fol @ dr < o0),
then the integral in (4.2) is uniformly bounded by some m-dependent constant. Indeed,

IO s | < g for
all ¢’ (which show that ngﬂ Im —7— (Br(.) —0)do is uniformly bounded), and from the latter
bound also implying

letting 0, := arg z, this follows from Im —7—=57— = —Im and

z _ _ T m(|0 —0,])

(BT(G) - 67'<9z)) < 5 W

One can also easily show that [} NMCZZ < Clln(1 — [€|)| for some C' > 0 when

z[?||z[26—=]?
€] € [3,1), using (4.14) below and the argument following it, with the exponential terms
removed. So (2.1) with the right-hand side C,,|In(1 — [¢])| follows immediately in this case.

The rest of this section (and Section 6) proves (2.1) in the general case.

We will now split the exponential in (4.2) into the parts corresponding to S and Br. Let

K= %(57(2@ — B7(0)), SE) t)hat B7(0) — k6 and 1 (0) — (1 — k)8 are both 2m-periodic (note
m(2m
pre

that we also have k € [— ,min{1, = QW)}] because 7 is non-decreasing). Integration by

parts then shows that

| o)== =i [ in =z ) d(5r6) — (1= w08).
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so from [ In(1 — ze=*)dd = In1 = 0 we obtain

(4.3) /027T Im e (57( )— (1 —k)8)do = /027r In|e? — z| dBs(6).

In order to simplify notation, let 5 be the positive measure with distribution function
Br, and define the function 5(0) := B7(0) — k. Then S has modulus of continuity m(r) :=
m(r) + |k|r, and we have m(r) < m(r) + %r < 3m(r) for r € [0,2x]. This is because
any modulus satisfies m(27"a) > 27"m(a) for any a € [0, 27| and n € N (by induction), and
thus m(b) > Lm(a) whenever 0 < b < a < 27 since m is non-decreasing. We also let

18] = B((0,27)) = Br(2m) — Br(0) = 2m(1 — 1) € 0,27 + m(2)],
Next, for any z € D, bounded measurable A C R, and 6* € R, let

Z(z,A):= %/Aln e — 2| dB(6),

2
AG):=— [ 1
T(2A.0) /A m

— (B(0) - B(6")) b,

™

as well as
Z(z) :=1I(z,(0,27]),
J(2) :=T(z,(0,2x],6%)
(with the latter independent of 6* due to fo% Im —7—df = 0). Then (4.2) and (4.3) yield

det DS(z) = det DS(0) e 1)~
and
(4.4) det DT(S(2)) = det DS(0)~! F@+I ()

(recall that $(0) = 0). In view of this, (2.1) becomes

(1 —|2])I€ - 2] L(§)~I(2) , T (€)= T (= ( ! ds )
49 [ e phre—a i< Cont— ([ g+ o)

To prove this, we need the following lemma, whose proof we postpone to Section 6.

Lemma 4.1. Let 8 be a (positive) measure on R and let I := [0* — 25,0 + 26| for some
0" € Rand 0 € (0,%]. Let H C D be an open region such that if re!@+9) ¢ H for some
r € (0,1) and |¢| < w, then re'®+9) ¢ H whenever |¢'| < || (i.e., H is symmetric and

angularly convex with respect to the line connecting 0 and ). If a > 1, then

4s) [ 1)o@+ 505 [0~ haso)] az < [ 76 late) + 000 — D) a:
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holds for any non-increasing h : (0,00) — [0,00) and non-negative f,g € L'(H) such that
fre @+ > f(re!@+9)) and g(re@+90) > g(re!@+9) whenever r € (0,1) and |¢'| < |4|.

Remark. The right-hand side of (4.6) is just the left-hand side for the Dirac measure at
0* with mass (I). That is, concentrating all the mass of § on I into §* cannot decrease the
value of the integral in (4.6).

Next, we claim that there is § > 0 such that 3([0 — 26,60 + 26]) < 3 for all § € R (any
number from (7, 37) would work in place of 37 here). Let ¢ > 0 be such that any interval
of length 40" contains at most one 6 with 5({6}) > § (there are only finitely many such 6 in
(0,27]). Then for each 6 € [0, 27], find &y € (0, §"] such that 5([0 —2dg, 0+200]) < B({0})+75-
Since {(0 —20p,0+20p) |6 € [—m, 37|} is an open cover of [—m, 37|, there is a finite sub-cover
{(0x —20g,, 0k +20g,) | k=1,...,N}. If welet § :=min{dp, |k =1,..., N} > 0, then indeed
B0 — 26,0 +20]) < (m+F)+ (5 +5) = 3 for all § € [0,2n] (and so for all # € R). This
is because [0 — 26,0 + 20] C [0 — 20y, , 0k + 200, U [0; — 20y,,0; + 20p,] for some k, j such
that |0, — 0;] < 44', and hence at most one of 5({0,}) and B({0;}) is greater than § (unless
k = j), while obviously each is at most 7.

Moreover, let us decrease this constant so that § € (0, m] and m(26) < B2,

With this (7-dependent) d, we can now prove the following estimates (recall (4.5)).

Lemma 4.2. Let B,B,m and 0 be as above. There are Cigs and Cy, (depending only on
|8, 6 and on m, respectively, so only on T ) such that for any & € D we have

(@7) /D UL = )P OEOTO G < O,

and for all z,& € D also

_ @ (min{1 — |¢], [€ — 2|}) Qm(min{l —|z],|§ — 2[})
4.8 JO-I6) < ¢, :
e s Qul[E ~ ) Q€ )
Moreover, if |§ — z| < 40, then for 6 == arg& and I := [0 — 20, 6 + 20] we have

4.9 T (&,1,0¢)—T(2,1,0¢) 2 Qm(min{l - |§|7 |§ - 2|}) Qm(min{l - |Z|7 |€ - Z|})
S () (T

Proof. Let us start with (4.8). Let 0 := arg& and 6, := arg z, as well as

1
A= {9 € (0, 27] ’ min{d(6, 6;),d(0,0,)} > 5\5 — z\} ;
where d is the distance in [0, 27] with 0 and 27 identified. Then from

N U
(7 =) (e —2)| =7 d(6,00) d(6,0-)
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we obtain

76 Am) = T AR < anle - sline) ([* o [

2|2 r(r+ 2a

where a := 1d(6¢,0.) and b := min{3|¢ — z|, a} < a, and we separately integrated over the 2
or 4 regions obtained by cutting A at the two midpoints between 6, and 6,. That is,

| T(& A, ) — T(z,A,m)| < drm(n) (2 + gln %) < 10mm(m) < C,.

On the complement A¢:= (0,27]\ A we can estimate the two J terms individually. To
conclude (4.8), it now suffices to show

Qm(min{l — |z, [€ — 2|})

Qm(l€ — =)
because an analogous estimate then follows for J (&, A, 7) as well. First note that if we let
A ={0 € A°|d(0,0.) > 3|¢ — 2|}, then

(4.10) T (2, A%, 7)| < Oy + In

3d(A'0:) .

T2, A, 7)] < 2771(%)/ T oe,

daney T

With A” := {0 € A°|d(6,0.) < :min{l — |z|, | — z|}} we also have

Tz, A", )| < Zinlm) < C

due to |¢? — 2| > 1—|z|. This proves (4.10) when |€ — 2| < 1—]z|. If instead |£ —z] > 1— 2|,
then we also use Im —5-%5— = —Im —E%5— (note that the region A\ (A'UA") is symmetric
Im —7=%5—df = 0) and |e? — 2| > sin |§ — 0.] to estimate

aCross ez, SO fAC\(A’UA”) ei(0z+7r) _ 4
2 /5—2/2 m(2r) Qm(1 —|z])
(

J(z, A\ (A UA"), 7)< - ——>dr <C,, +1n ,
7 M »m T J(1—|z)/2 SIAT Qm(I€ — 2])

with the last inequality due to

/ab/zwd’f’ﬁ/ab@dsﬁ/abmdsjt/ab(lom(s)+|,§|)d3§/abm(s)ds+cm

/2 sinr sin s S s

for 0 < a < b <2 (because sup,ep (505 — 1) < 10). Hence (4.10) follows, proving (4.8).

sin s

To obtain (4.9), we repeat this argument with some minor adjustments. For

A= {9 € I‘ min{d(0,0¢),d(0,0,)} > %|§ — Z|} ;

we obtain the bound

1T (6, A,6:) — T (2, A, 0¢)| < 4mm(20) <2 + Sln %) < 107 (26) < 30mm(26) < 1%2
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(recall that m(s) < 3m(s)). Hence it suffices to show (4.10) with A° := I\ A, and with 6
and 1“?2 in place of 7 and C,,. As above, we now obtain

3d(A’,6.) 2
A0 < 2m(z) [ < A ms) < 52
aane) T 9
and
2 4 In2
A" 0] < Zm(20) < —m(20) < —=.
IJ@,,eﬂ_Wm()_Wm()_g

Finally, if [ — 2| > 1 — |z|, then we also get

T(z, A\ (AU A", 0:) < = . r < +1n
I M ):0¢) T Ja—|z)y2 ST 9 Qm(|§ — 2])

2 /'HW m(2r) In2 Qum(1—|2])
d

because f; (10m(s) + |&|) ds < 46(21m(2m)) < 22 when 0 < a < b < 44.
Now we prove (4.7). We obviously have

2In2

™

(4.11) max{Z(¢),|Z(z)[} < 5]

for all £ € D and all z € B(0, %), so it suffices to prove
(4.12) /D(l — [2])*°e P dz < Oy

The integrand is clearly bounded above by (2)~2///™ on B(0,1 — £). Since D\ B(0,1 — 2)
can be covered by O(3) disks with centers on D and radii 6, it suffices to prove (4.12) with
H := B(?",5) N D in place of D, for any §* € R.

Let [ := [0* — 26,60* + 20] and o := 22U ¢ [0, 8]. Since Z(z, (0,27] \ Uyez (I + 2km)) is

™

bounded below by @ lng for all z € H, it in fact suffices to prove
(4.13) / (1 —|z])*%e TE=Ddz < C.
H

If a € [0,1], then from 1 — |z] < | — 2] for all (2,0) € D x R we indeed have

2 1—
/(1—\z|)5/6ez(z’1)dz— / (1—|z|) /S exp (—/ln .Q—Mdﬂ(@) dz < /(1—|z])1/6dz,
H H mJr |e? = z| D
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as needed. If a € [1 ,%] then we instead use Jensen’s inequality and Lemma 4.1 with
f(2) = (1—|2]), g(z) =0, and h(s) = 1 to obtain

/H(l—\z|)5/ﬁez(z’1)dz < /H(1_\z|>5/6exp {aln( /W_Z' )}
= L= (5 [ ) o

< [ - o s
H

/ |€i9* . Z|—a+5/6dz
H

< 127.

IN

This proves (4.13) and hence also (4.7). B
Now we are ready to prove Lemma 2.1

Proof of Lemma 2.1. For the sake of simplicity, we first prove the result with C' < 10°, and
at the end indicate the changes required to obtain C' < 1477. Consider the (7-dependent)

§ from above. Recall that we only need to prove (4.5), and note that £ - 2+ = (£ — 2) - 2t
implies

zt 1 1
(4.14) €= < _

€ — 2P [l2%6 — 217 7 1§ = 2l 216 = FHI* 1§ —2l1=P 16 =
Together with (4.11) and (4.8) this yields C,, such that for any £ € D\ B(0, 5) we have

(1 — 2] - =] 1), TO-TC) g < -
/B(o EE ||z|2£—z|2 2 < C@m(1 = [€])

because |z| | — %| = ||z]€ — ﬁ] > 1—|z| and the last fraction in (4.8) is bounded above by

exp ( f5/4 m(r) dr) when z € B(0, ) (note that the dependence of the constant on || need

T

not be indicated here because 0 < |B| < 27w + m(27)).

Ifnow |¢] € [1,1) and z € B(¢, L |§|) then Z(§)—Z(z) < QW‘ due to | —¢|[e? — 2|71 < 2
for all # € R. Hence using | — |Z|2| >1— ¢ > 1_22 (4 14) (because e ¢ D) and
|€ — z] <min{l —|{],1 — |z|} in (4.8) yields

_ L
/ (1 i2|)|§ z| _HOIETO-TC) g < (0, / 1 <O
B¢, 154 € — 2[?|[2]2€ — 2| - —z|(1—€])

For all other z € D\ B(0, 1), we can bound the right-hand side of (4.14) above by —\§§i|37
using that ||z%| —1>1—|z| implies [ — @] > |€ — z|. This, (4.8), (4.7), and @, being
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non-increasing and satisfying the bounds @,,(1 —[£|) > 1 and Q,,(1 — |z|) < Cpo(1 — |2|) /6
(see the remark after Lemma 2.1) now yield

1—|z 2t
/ ( | DE | g V—Z(2) J(E) J(z dZ<Cm5Qm(1—|f|)
D\(B(e.s4uB0,L) 1§ — 27|26 — 22

(note that the constant now also depends on d). To obtain (4.5), it therefore suffices to prove

1— 1 ds
(4.15) /;|£_f¢éﬁ)1@kj®J@dzg(ijﬂ—ﬁﬁD(ﬁjmst(>+1)

when |¢] € [1-26%, 1), with He := [B(€,6%)\B(&, 55 m)]ﬂ]D) and a universal C' < 10°(1—34%)3.

Since (1 —30%)* > (1 — 135)% > 1 — s, it suffices to obtain C' < 10° — 1 here

Let 0, := arg&, and again let [ := [0 — 26,0 + 20] as well as o := %(I) € [0,3].

Then |ei9 §| > 6 for all 0 ¢ U, (I + 2km), hence for all such 6 and all z € B(§,0°) we
have 1£=¢l < <1+

‘29 Z‘ 1— 62

the last inequality follows from §? < which is due to

- 7T+7;|5|’
fn2 > §). This yields for all z € B(£, %),

K
m+2|8] = 5Tr+2m(27r) = 103 (1+m(27))

(4.16) I(g)—I(z):%/(w]] e §| (9)<1+2/1 :ZW 5: dp(0).

e —

2I,BI (

3 €~z )

_ 1
ef_¢ eie,z‘ T |etf—¢[|et? —z] < 1-62 < dm(2m)’
(4.17)  TJ(€) = T (2) = T (&, (0,27, 0¢) — T (2, (0,27],0¢) <1+ T (1, 0c) — T (2,1, 0¢).
Using (4.9), combined with Q,(3(1 — [¢]))Qum(1 — |€])~F < 2m@)/m < /1007 (recall that

1€ — 2| > 1—|£|) and Qy,(a)Qum (b)) < exp(5 fab Ldr) =b"%a71/0 for 0 < a < b < 6 (because
m(6*) < m(20) < 75), we thus obtain

Similarly, for the same z and 6 we have SO

(4.18) eI (&= (2) <92. 31/6,1+1/1007 Qm(1—[&]) 1€~ Z|1/6

Qm(I€ —2]) (1 =2’

where we also used that 1 — |z| < 3| — z| for all z € D\ B(¢, I_T‘El) Estimates (4.16) and
(4.18), together with 2 - 31/6el+1/100m < 3¢ and

1-[¢ ds In2 206D gg ! ds
wo [ w0 e
11t SQm(s) — Qm(1 —[€]) 1—g SQm(s) 1-1¢] $Qm ()
now show that (4.15) will follow from
(4.20)

(1—1|z])%/6 <z le? —¢| ) dz ! ds
/HE €2 P w/ [ %00) ) grge=an < /;u_@ ()

whenever |€| € [1 —26%, 1), with some universal C' < 1051
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Consider now the case o € [0,1]. We have 1 — |z| < |¢? — 2| for all (2,0) € D x R, and
1 —|z] <3|¢ — 2| for all z € He. This and the triangle inequality yield

€0 —¢l _Je=al L o le=]

4.21 . .
2 [ e I T

for all (z,0) € He x I. Therefore the left-hand side of (4.20) is bounded above by

o [ Az lh7 de agioa [ A=)V de
4 4%3
/Hé €= 27 Qi — 2D - /H € =25 Qul¢ — 2])

! s1/6 ds
4[(1@) (/ €+ se])iF d¢) “0m(s)

2

1 . ds
S | id1\—1/6
Uy 67 e e ae) s

2

IN

with
Ac={p e (021 [l +se| <1} ={o € (0,21][[s7"¢ + e[ <s7'}.

It is not difficult to see that the inside integral is maximized when s = 1— (] (i.e., (0, 27\ A,
is a single point) for any |¢| € [1 — 26, 1), in which case the integrand is bounded above by
[3(1 = cos(¢ — 0¢))] 710 = [sin (¢ — )] 7'/? because J < 7&;. But then the inside integral is

bounded above by 2 [ (%)_1/3 d¢ = 3m. Hence (4.20) holds with C' = 12.

Next consider the case a € [1, 3], and define the functions g(z) := min{@, 1—L|§|} and

(1 o ’ZD5/6 2—a+17/6(1 o ’ZD5/6 }

1= i g e~y = (T
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as well as H; := B(£,0°) N D He. We can now use Jensen’s inequality, (4.21), and
Lemma 4.1 to bound the left-hand side of (4.20) above by

<1—rz\>5/6( Lol gl 9)‘“ 0z
/Hg €= 21776 6<f>/f|ew—zr 8O Gale=2D
<1—|z|>5/6< L[+ ) -
S/m ez \M T ) e P0) Goie—ap
B (1—\z|)5/6< 1 1 1 )O‘ dz
‘/Hg € 2]-orTTs |£—z\+5<1>/f|ew—z|d5<9> e )

< [, 16 (50 + 575 [ g0 o
T

3

S/Héf(Z) (9(2)+m) dz

- 3%/6207 +/ (1—|z])*/ ( 1 N 1 >°‘ dz

T QGG —1ED)  Su 1§ = 2T E = 2| e — 2] ) Qu(l€ — 2])
(1—[z])>° ( 1 1 ) dz

= (= er O o =r )

Notice that Lemma 4.1 applies because 2m(d*) < 2m(26) < ¢ < & — o shows that

T 6

s7aH17/60),.(s) is increasing on (0,8%]. Using again 1 — |z| < 3|¢ — z| for z € H, yields

(1 —|z[)>/6 dz < 25/6 1 dz ! ds
3 <6 —
/Hg €= 2776 Qe —2]) = /H €= 2P Qn(lE—2]) ”Ku_m 5Qum(s)

2

and then we also have with H* := B(e'%, I—Tlﬁ\) ND,
1— |z])>/® d 1—|z))°%  d
am) [ Ll LA T
He\m |§ — 2|7t/ — 2| Qu(|€ — 2]) e 1§ =270 Qm(l€ — 2])

1
<1627 / ds__
1(a—fg) S@m(s)

Finally, from 1 — |z| < [¢" — 2|, o < §, and @,, > 1 on [0, 1] we obtain

(1 — |2])>/° dz LN [ avsss
/* £ — 2|~ t17/6|ee — 2| Q. (1€ — 2]) < 9 ) e — 2] dz < 127.

This proves (4.20) with C' = 6727 < 1271,

Finally, to obtain C' < 1477, we perform the following adjustments to the above argu-
ment. We choose § > 0 so that S([6 — 20,0 + 20]) < 1.01x for all § € R, so we always have
a € [0,2.02]. The 1 in (4.16) and (4.17) can be replaced by an arbitrary positive constant by
lowering ¢ further. Similarly the 2 in (4.9) can be replaced by an arbitrary constant greater
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than 1, and the power % in (4.18) by an arbitrarily small positive power (which allows us
to turn the 3'/¢ in (4.18) into an arbitrary constant greater than 1; this power then also
propagates through the rest of the proof). This means that the constant in (4.18) with the
new power can be made arbitrarily close to 1. The right-hand side of (4.19) can be multi-
plied by an arbitrarily small positive constant if we replace the upper bound in the second
integral by a large multiple of 1 — || instead of 2(1 —|£]) (which is again possible when § > 0
is small enough), so it follows that it suffices to prove (4.20) with some C' < 1477. Since
in (4.22) we can actually replace 3% by (v/5)® < 501 < 5.1, we indeed obtain (4.20) with

C' = 4(6m 4 30.6m) < 1477. While further lowering of C' is possible, we do not do so here. B

5. PROOF OF THEOREM 1.2

Let Q C R? be a regulated open bounded Lipschitz domain with 9Q a Jordan curve. Also
assume that (2 is symmetric with respect to the real axis, 0 € 9, and (1 —¢,1) x {0} C Q
for some € > 0. Let QF := QN (R x R*) and Q° := QN (R x {0}) (these are obviously all
simply connected). Then there is a Riemann mapping 7 : Q@ — D with 7(Q°) = (—1,1) and
T(0) = 1, and therefore also 7(QF) = D* := DN (R x R*). Assume also that there are
Br, Br as in (H), and (7 has bounded variation. Then Z(z), J(z) from the last section are
the integrals

76y = 2 [ e 2148y 0)
6.1) T@ =7 [ mie" a3 0)

where we replaced integration over (0, 27| by (—, 7] for convenience, and the second formula
follows similarly to (4.3).

Given any concave modulus m and rq € (0,3] with m(2ro) < Z, assume that there

are Q and 7 as above with 87 = 0 on (—1,1) and 7(0) = 7 - %m(? min{|6], o }) for
0 € (—m,m]. Concavity of m then guarantees that 57 indeed has modulus of continuity m.
Notice also that dA7(0) = —X(_rereym'(2/0])d0 on (—, 7], as well as | 37| = 27 +m(2r) < 7.
We show at the end of this section that such 2 and T do exist for any m and ry € (0, %]

with m(2ry) < .

We will first show that if fol q%(ss) < oo and z € Q°, then the trajectory X7 for the
stationary weak solution w := xq+ — xq- to the Euler equations on 2 will reach 0 € 9f) in

finite time. This will prove Theorem 1.2(i).

Due to symmetry, the particle trajectories X for this solution coincide with those for
the stationary solution w = 1 on Q. We will therefore now employ the Biot-Savart law on
QF. Let R : D™ — D be a Riemann mapping with R(1) = 1, so that T+ :=RT : Q" — D
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is a Riemann mapping with 77 (0) = 1. The (time-independent) Biot-Savart law for w = 1
on Q7 can therefore be written as

52 a) = DT @) | 9LGo(T (@) T )

with Gp (€, 2) = 5= In |§|_€;Z|‘|Z| the Dirichlet Green’s function for D. If x € Q° C 9QF, we have

T (x) € 9D, where Gp(-, z) vanishes for any fixed z € D (and Gp(+,z) < 0 on D), so
VeGo(T (@), T () = IVeGp(TH(2), T ()| T ()"
This suggests one to evaluate
DTH(x)'TH(z)r = DTH(2)" (det DT ()" Y2DT*(2)(1,0),

where (1,0) is the counterclockwise unit tangent to QO at x € Q° and we used that the
action of the matrix D7 ™ (x) is just multiplication by a complex number with magnitude

\/det DT+(x). Since DT is of the form ( ab b), we have
a

DTH(x)" DT (z) = (det DT (2)) 1y,

so (5.2) for x € Q° becomes

w(z) = \/det DT (2) /Q VG @), Ty and  ws(e) =0,

Since Q° is a smooth segment of 90", standard estimates show that D7 *(x) is continuous
and non-vanishing on Q°. Since £ X7 = u(X7), it follows that for each z € Q°, the trajectory
X[ either reaches 0 in finite time or converges to 0 as ¢ — oo. It therefore suffices to analyze
up () for z € Q° close to 0.

If 2 € QF UQ°is not close to the left end of Q°, then 7(x) € D+ is not close to
—1, so standard estimates yield \/det DR(T (z)) € [c|T(z) — 1],¢ T (x) — 1|] for some
c=cy € (0,1] (because DR(z) ~ z — 1 for z near 1, and DR only vanishes at +1). So for
all z € QT U QY not close to the left end of Q° we have

(5.3) Vet DTH() (1T () — 1] /det DT(:I:)>_1 € lee 1],
From (4.4) we have
(5.4) det DT () = det DT (T 1(0))e2T@N+I(T @),

Since B is supported away from 6 = 0, the term eZ(7(®) is bounded above and below by
positive numbers, uniformly in all z that are either close to 0 or not close to 0. Moreover,
(5.1) and the specific form of 7 give us for z € D,

4 [T 2 2 [T 2
J(2) > ——/ In(|z — 1| + 0)m/(20)d0 = —=m(2ro) In(|z — 1| + 7o) + —/ _m@0) 4
0 T )y |z—1]+86

™
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We can now estimate (with a constant C,,,, changing from one inequality to another)

ro 1 1/2 1/2
/ m(26) d9—/ m(r)dr < / m(26) d@—/ m(20)d9
0 ‘Z - 1‘ +0 lz—1] T | |

coa2 |2 =1+ 0 a1y2 0

/1/2 |z — 1|m(20) &0
iz—1y2 0]z — 1] +0)

1/2 1
[ oty
-2 0

+ Cm,ro

IN

+ Cm,’/’()

< ||m||L°° + Crnro

S Cm,ro .

For z € D' := DN (R x {0}), we now obtain

(5.5) ).7(2) —3/1 mir) g,

s lz—1] T

S Cm,ro

from this and from an opposite estimate via 7 (z) < =2 [*In(3(|z—1|+6))m’(26)df. Hence,
for a new ¢ = ¢7 4y, > 0 and all z € Q° not close to the left end of Q27 we obtain

det DT (2) Q(|T(z) — 1)) € [c,c7 Y.

This and (5.3) show that there is ¢ = ¢7 4, m > 0 such that for all z € Q° close to 0 we have

ur(@) 2 o T(2) = 1/ Qu(|T (2) — 1]) /m IVeGo(T(2), T (y)ldy  and  uz(x) =0.
If now X7 € QY is close to 0 and we let d(t) := 1 — |T(X?)| = |T(XF) — 1|, then

4 Xz| = = /Aot DT(XE)un (X7)

#0 = - |pTOxn 7
dt
because DT is a multiple of I, on Q°. Therefore we have (with a new ¢ > 0)

(5:6) 2(0) < ~edOQnld(v) | VeGo(T(X7). T (0)l

Since |V¢Gp(€, 2)| is uniformly bounded away from 0 in (£, z) € dD x kD for any fixed
k € (0,1), the integral is bounded below by a positive constant. But then d'(t) < —cqg,,(d(t)),

which implies
/ L ds > b4 / b ds
>c
d(t) Gm (5) d(0) Gm (8)

for some ¢ = ¢7 .y, € (0,1]. Since the left-hand side is bounded in ¢ if fol q:f‘(*s) < 00, we

must have d(t) = 0 for some ¢ < co. This proves that X7 reaches 0 € 0f in finite time, and
hence Theorem 1.2(i).
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This construction also allows us to prove Theorem 1.2(ii). When fol 7 d?s) = 00, We can

estimate the integral in (5.6) better after first rewriting it via a change of variables as
(5.7 [ 19eGo(TH (7). 2) [dee DTH(T) 7 2)]

Now with £ := T (X]) (and still assuming X7 € QY we have
E—2* 10c c
VeG( - > >
966, ) = |5 = ~ | - 2 e
for some ¢ > 0 (which will below change from one inequality to another and may also depend

on T,m,r9) and all z€ DN (B(1,1)\ B(1, |{ — 1])) that also lie in the sector with vertex 1,
angle 7, and axis being the real axis (call this set C¢ and note that C¢ C Cy).

If 2 € Cy, then for y := (T)7!(2) (so T(y) = R™(z)) we have as above
det DT (y) < [T (y) = 1FQu(IT(y) = 1) = ¢ T(y) = Lgm(| T (y) — 1]).

Indeed, this follows from (5.3), (5.4), and also (5.5) for T (y) in place of z. The latter extends
here even though 7 (y) € R™!(C;) C D and so T (y) ¢ D° because for some y-independent
C > 0 we have J(T(y)) < —2 [*In(Z(|T (y) — 1| + 6))m’(26)d0 (recall (5.1)). This in turn
is due to the distance of any v E R~Y(C;) to OD being comparable to |v — 1|, since C; has

the same property.
So for z € C¢, the integrand in (5.7) can be bounded below by a multiple of
1 c3
|2 = 1|[R"1(2) — Ugm(R™'(2) — 1|) |2 = 1132gm(clz — 1[1/2)’
with the inequality due to |R(v) — 1| € [c|v — 1]%,¢ v — 1|?] for all v € DT as well as
qm(a™1b) = a7 10Q, (a10) < a™10Q,, () = a g, (b) for a € (0,1]. The integral is therefore
bounded below by a multiple of

Finally, since |£ — 1| = |R( (X7) — 1] < c_1|T(X”) — 1]? = ¢7'd(t)?, from (5.6) and
cqm(ctd) < gp(d) for ¢ € (0,1] and d € (0, ¢] we obtain

1) < et (| _lld(t) o) < —anean) (| :d(t) o)

whenever X7 € Q0 is close enough to 0, with some ¢ = ¢z, € (0,1] and C = Cr ., > 0.
But dividing this by the right-hand side and integrating yields (with a new (')

1 1 1
ln/ ds Zln(/ ds —C>2ct+ln(/ ﬂ—c)zct
d(t) Gm (S) c=1d(t) qm (8) c=1d(0) Gm (S)
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for all t > 0, as long as = € Q° is close enough to 0 (so the last parenthesis is > 1). This
now yields Theorem 1.2(ii).

Construction of a Domain Corresponding to a Given Modulus

We will now show that a domain as above does exist. We will do this by taking the
desired B7 = 87 + 7 and obtaining the domain O := S (D) via the corresponding mapping
S from (4.1). Since 37 has bounded variation, we can now use the equivalent formula

(5.8) S'(z) = 8'(0) exp (—l /(_mr] In(1 — ze™ %) dBT(G))

™

(see [23, Corollary 3.16]). Our Q will in fact be a perturbed isosceles triangle, with one
vertex and the center of the opposite “side” on the real axis, and the modulus m will be
“attained” at the center of that side (where Q2 will therefore be concave).

Given any concave modulus m and ry € (0, 5] with m(2rg) < Z, let us define 5(6) =
7 - w m(2min{|f|,ro}) on (—7, x| (and let its derivative be 2m-periodic). Then let 5 be

such that 5(0) = 0 and

2m 2m 2m
d5|(*ﬂ',ﬂ] = (? + 71-T',LO) Or + ?57r/3 + ?577#3’

where mq := %m(Qro) and dy, is the Dirac measure at § = . Clearly 3 := 3 + 3 satisfies
B(m) = B(—m)+ 2w, and 3 — Z is odd on R (which is needed for symmetry of  with respect
to the real axis).

We now use (5.8) with the choice §’(0) := 1 to define

V(2) := exp (—1 /(m] In(1 — ze™ %) dB(@)) = (14 2°)"2u(2),

™

where we consider the branch of the logarithm with In : R* x R — R x (=%, %) (since
Re(1 — ze™*) > 0), use that I17_ (1 — 2e~@=D7/3) = 1 4 23 and also define

o(2) == (14 2)™™ exp (3 /0 "1 = ze= )’ (26) d9> |

T

Since ImIn(1 — ze ™) € (=%, %) for all (z,0) € D x R, the imaginary part of the above

exponent belongs to (—Fmy, 3mg). This and Re(1 4 2) > 0 now yield

|largv(z)| < mmo = m(2ry) < %
for all z € D. Since also |arg(1+ z*)| < %, it follows that ReV(z) > 0 for all z € D. But
then the mapping S : D — C given by

S(z) = /1 V(e de
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is injective, and 7 := S~! is a Riemann mapping for 2 := S(D) with 99 is a Jordan curve.
Note that © is bounded because V(2) = O(3 ;_, |e!@F=D7/3 —2|=5/6) Since V((—1,1)) C R*,
we have S((—1,1)) C R, and then S((—1,1)) = Q°, with S(1) = 0 € 99 its right endpoint.

Observe that arg(V(e')) is uniformly continuous on (¢?Gk=D7/3 ¢iZk+D)m/3) for | = 0, 1, 2.

This is because the same is true for the argument of (1 4 €%¢)=2/3(1 + %)~ while

arg (V(e'?)(1 + *9)?3(1 + e?)m0) = % / i arg(1 — e"@=)m’(26) db,
0
which is continuous in ¢ because m is continuous. We therefore have that for each € > 0 there
are points 0 = ¢y < --- < ¢y = 27 (with !®*=D7/3 being among them) and a;,...,ay € R
such that |arg(S(e') — S(e*?)) — a,| < € whenever ¢, < ¢ < ¢ < ¢,. Then Q is a
regulated domain by Theorem 3.14 in [23]. So it has a unit forward tangent vector from
(1.10) for each # € R, and (4.1) shows that with its argument 37 from (1.11) we have

(5.9) V(z) = 8'(2) = exp (i / Tt (Brey-6-7) d9>

ST

because §’(0) = V(0) = 1.
In the definition of V, we can replace 5(#) by the 27-periodic function 3(6) — 6 — 5
because fo% In(1 — ze=®)df = In1 = 0. Integration by parts then yields

V(z) = exp (% /: ew":_ - (6(9) . g) de)

:exp(%/w (Zijq) COREEY d@).

™

From this and (5.9) we find that

=[S o= [ (300 3) o+ 2km = 2t

:% o

2 J_ e — 2

for some k € Z and all z € D (because 3(6) — % and 6 are odd). Hence By — B = 2km, so

and 7 are indeed the domain and Riemann mapping we wanted to construct.

6. PROOF OF LEMMA 4.1

Monotone Convergence Theorem shows that it suffices to consider bounded f, g, h. We
will prove this via a series of “foldings” of |; onto smaller and smaller intervals that shrink
toward 0*. We will show that at each step the relevant integral cannot decrease.



28 ZONGLIN HAN AND ANDREJ ZLATOS
Define 3° := f8|; and let ' be the measure for which

BO(A) if A C (—o00,0" —26)U (0% 00),
81 A) = o it A C [0 — 26,67 —5),
BY(AU (206" —8) — A)) it A C (6" —6,0%]
for any measurable A C R. That is, we obtain 8" from ° by reflecting 3°|g«_a5¢-_s) across

6* — § onto (0* — §,6*]. In particular, 3! is supported on [6* — §, 0* + 2] and both measures
have total mass 5(I). We now let

G2 = 9l)+ 55 [ Wl = <1) 4 0),
and want to show that
(6.1) /H f(2)G%(2)dz < /H f(2)G*(2)d=.

Let H = {re" € H|¢ € [0* — 6 — m,0* — 8]} and let H' := {re!®0=9-9) | reid ¢ [}
be its reflection across the line connecting 0 and €*®* =% The properties of H ensure that
H' C H. Ifnow z € H\ H, then |e — z| > |!2@"=9)=0) _ 2| for any 6 € [0* —25,6* —§). This
and h being non-increasing show that G°(z) < G'(z) for all z € H\ H, and in particular for

all z€ H\ (HUH'). To conclude (6.1), it hence suffices to show that
(6.2) F(R)G(2)* + f()G(2)* < f(2)G(2)* + f()GH ()

holds for any z = re'® € H, with 2/ := re!@=9-¢) ¢ H’ its reflection across the line

connecting 0 and "9,

Note that the properties of f and g show that f(2') > f(z) and g(z’) > g(z). Let

b= 0() + 377 /[ M D) (20,
i /[ ey M =D AFE) (20)

b= o)+ /[ g MU= AFE) (20
V= 5 [ ey B DA (20)

Then G%(z) = by +b_, G°(2') =V + b, G'(2) = by + b, and G'(2) =V, +b_, so

GO2) + G(2) = G'(2) + GU(2).
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We also have b, > b, and 0" < b_ due to g(2') > g(z), h being non-increasing, and the
definition of z’. This implies

0 < G'(z) <min{G%(2), G°(2)} < max{G°(2),G"(¢")} < G*(¢).
The last two relations, together with convexity of the function z® on [0, 00), now yield
GO2)* + GU(2)™ < GY(2)™ + G ()™
From this and (f(2") — f(2))(G'(2")* — G°(2)*) > 0 we obtain (6.2), and therefore (6.1).

An identical (modulo reflection) argument shows that if 5% is obtained from S by
reflecting 31| (g«15,0+426) across 6* + ¢ onto [0, 0* + §), then we have

/H f(2)GH(2)%dz < /H f(2)G*(2)*dz.

We can then repeat this with % in place of & because 3? is supported on [0* — §,6* + §] and
has total mass 3(I). Continuing in this way, we obtain a sequence of measures 3°, 32, 34, ...,
each 3% having total mass 3(I) and supported on [0* — 2'774, 6* + 217§, such that

/H F(2)G% (2)dz < /H F(2)G2+D (2)0ds

for j = 0,1,.... Since the integrands are uniformly bounded and converge pointwise to
f(2)(9(2) + h(]e"?” — z|))* as j — oo, Dominated Convergence Theorem finishes the proof.
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