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Abstract—A new converse bound is presented for the two-
user multiple-access channel under the average probability of
error constraint. This bound shows that for most channels of
interest, the second-order coding rate—that is, the difference
between the best achievable rates and the asymptotic capacity
region as a function of blocklength n with fixed probability
of error—is O(1/

√
n) bits per channel use. The principal tool

behind this converse proof is a new measure of dependence
between two random variables called wringing dependence, as
it is inspired by Ahlswede’s wringing technique. The O(1/

√
n)

gap is shown to hold for any channel satisfying certain regularity
conditions, which includes all discrete-memoryless channels and
the Gaussian multiple-access channel. Exact upper bounds as a
function of the probability of error are proved for the coefficient
in the O(1/

√
n) term, although for most channels they do not

match existing achievable bounds.

Index Terms—Multiple-access channel, second-order, disper-
sion, wringing, dependence measures.

I. INTRODUCTION

THE multiple-access channel (MAC) is the fundamental
information theory problem that addresses coordination

among independent parties. In this problem, multiple transmit-
ters1 independently send signals into a noisy channel, and a
receiver attempts to recover a message from each transmitter.
The MAC was alluded to by Shannon in [1]; the discrete-
memoryless version was formally stated and its capacity region
determined in [2]–[4]. The capacity region for the Gaussian
case was found in [5], [6].

These results were first-order asymptotic, meaning they
considered the channel coding rates in the regime where the
probability of error goes to zero and the blocklength goes to
infinity. One may consider refinements to these results. For
example, a strong converse states that, if the probability of
error is fixed above zero and the blocklength goes to infinity,
then the set of achievable rates is identical to the standard ca-
pacity region. The strong converse for the discrete-memoryless
MAC was first proved by Dueck in [7]; this argument made use
of the blowing-up lemma and a so-called wringing step. An
alternative strong converse proof was presented by Ahlswede
in [8]; this proof used Augustin’s converse argument [9] in
place of the blowing-up lemma, followed by a more refined
wringing step. A strong converse for the Gaussian MAC was
proved in [10], using an argument based on that of [8].
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1Throughout this paper, we will focus on the case with two transmitters.

One may refine the strong converse even further by fixing
the probability of error, and asking how quickly the coding
rates at blocklength n approach the capacity region. This work
dates back to Strassen [11], who showed that for the point-
to-point channel coding problem, the backoff from capacity
at blocklength n is O(1/

√
n), and also characterized the

coefficient on this term. Recently, there has been renewed
interest in this second-order (also known as dispersion) regime
following [12], which refined Strassen’s asymptotic analysis
via the information spectrum, and [13], which also focused
on non-asymptotic information theoretic bounds.

However, in the fixed-error second-order regime, the MAC
has turned out to be significantly more difficult than the point-
to-point channel. Achievable bounds are proved in [14]–[19],
each of which gives lower bounds of order O(1/

√
n) on the

back-off term in the coding rate. Second-order results for
the related problem of the MAC with degraded message sets
were presented in [20], [21], including matching second-order
converse bounds. For the standard MAC under the maximal
probability of error criterion, a second-order converse bound
is presented in [22]. Recently, a bound for the maximal
probability of error version, based on the technique of the
present paper, was presented in [23], which was published after
the preprint of this paper. (See Sec. V-C for a brief discussion
of the maximal-error case.) Herein we focus on the average
probability of error case. Second-order results for a random-
access model, wherein an unknown number of transmitters
send messages to a receiver, were derived in [24].

Despite this progress, the best converse bound for the
second-order rate of the standard MAC with average probabil-
ity of error has remained [8]. While [8] is primarily interested
in proving a strong converse, rather than characterizing the
asymptotic behavior of the coding rate, the converse bound
presented there shows that

R(n, ε) ⊆ C +O

(
log n√
n

)
(1)

where R(n, ε) is the set of achievable rate pairs at blocklength
n and average probability of error ε, and C is the capacity
region. In this paper, we improve upon the converse bound
from [8] to show that for most MACs of interest—including
discrete-memoryless MACs and the Gaussian MAC—the
achievable rate region is bounded by

R(n, ε) ⊆ C +O

(
1√
n

)
. (2)

This result asserts that achievable second-order bounds of
[14]–[19] are order-optimal; that is, the gap between the
capacity region and the blocklength-n achievable region, in
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either direction, is at most O(1/
√
n). We provide a specific

upper bound on the coefficient in the O(1/
√
n) term, although

for most channels it does not match the achievability bounds.
The main difficulty in proving a second-order converse for

the MAC is to properly deal with the independence between
the transmitters. The problem variant with degraded message
sets, as studied in [20], [21], seems to be easier precisely
because the transmitted signals are not independent. The
independence that is inherent to the standard MAC prohibits
many of the methods to prove second-order converses for
the point-to-point channel; for example, one cannot restrict
the inputs to a fixed type (empirical distribution), which
is one of the steps in the point-to-point converse in [13],
since imposing a fixed joint type on the two input signals
creates dependence. An alternative approach adopted in [25]
to prove second-order converses uses the notion of reverse
hypercontractivity. This technique provides a strengthening of
Fano’s inequality, wherein the coding rate is upper bounded by
the mutual information plus an O(1/

√
n) error term. However,

this technique relies on the geometric average error criterion,
which is stronger than the usual average error criterion (but
weaker than the maximal error criterion). The method of
[25] can be applied to the average error criterion by first
expurgating the code—i.e., removing some of the codewords
with the largest probability of error. However, with the MAC,
we cannot just expurgate codewords, we must expurgate
codeword pairs, which again introduces some dependence
between inputs. For this reason, reverse hypercontractivity
can be viewed as a replacement for the blowing-up lemma
or Augustin’s converse, but does not remove the need for
wringing. Interestingly, the technique that we use here seems
to be related to hypercontractivity; see Sec. III-D for more
details.

To handle the independence between transmitters, the strong
converse of [8] adopted the following approach: given any
MAC code, first expurgate it by restricting to those channel
inputs with limited maximal probability of error. Of course,
this expurgation introduces some dependence between the
transmissions. Second, this dependence is “wrung out” by
further restricting the channel inputs so as to restore some
measure of independence between them. Our bound follows
the same basic outline, but we use a different technique for
wringing. Namely, we introduce a new dependence measure
called wringing dependence. In the wringing step, we restrict
the channel inputs so that the wringing dependence between
them is small. This method of wringing proves to be more
efficient than that of [8]. In addition to being critical to our
converse proof, the wringing dependence measure is interest-
ing in its own right: it satisfies many natural properties of any
dependence measure, including the data processing inequality,
and all 7 of the axioms for dependence measures that Rényi
proposed in [26]. Using this tool, we show that a bound of
the form (2) holds for any MAC that satisfies two regularity
conditions. All discrete-memoryless MACs, and the Gaussian
MAC, are shown to satisfy these conditions.

The remainder of the paper is organized as follows. Sec. II
gives notational conventions and describes the setup for the
MAC problem. Sec. III is devoted to the wringing dependence:

it is defined, some simple examples are presented, and its main
properties are proved. Sec. IV gives a finite blocklength con-
verse bound for the MAC; this bound includes the core steps of
our converse argument based on the wringing dependence. In
Sec. V, second-order asymptotic bounds are proved, applying
the finite blocklength bound from Sec. IV to prove (2) under
certain regularity conditions. Specifically, two second-order
bounds are proved: one that applies to any channel that satisfies
two regularity conditions, and a tighter bound that holds for
discrete-memoryless channels. Sec. VI illustrates the results
with some specific example channels, including the Gaussian
MAC. We conclude in Sec. VII. Several of the more technical
proofs are contained in appendices.

II. PRELIMINARIES

A. Notation

Throughout, all logs and exponential have base e unless
otherwise specified; log base 2 is denoted log2. For a random
variable, we use the corresponding calligraphic letter to indi-
cate its alphabet; e.g. X has alphabet X . While most results
in the paper hold for arbitrary probability spaces, to simplify
notation we do not typically specify the event space. For an
alphabet X , the set of all distributions on that alphabet is
denoted P(X ). Given two alphabets X ,Y , the channel W
from X to Y is a collection (Wx)x∈X where Wx ∈ P(Y)
for each x ∈ X . The set of all channels from X to Y is
denoted P(X → Y). We will also sometimes use the notation
PY |X for a channel from X to Y where PY |X=x ∈ P(Y) is
the conditional distribution given X = x. We use E[X] for
expectation of a real-valued random variable X; usually the
underlying distribution will be clear from context, but if not
we write EP [X] to mean

∫
XdP . For variance, Var(X) or

VarP (X) are used in the same way. The probability of an
event is denoted with P in a similar manner. For a set A ⊂ X ,
we write the indicator function for A as 1(x ∈ A). For an
integer n, we denote [n] = {1, . . . , n}. A sequence xn ∈ Xn
means xn = (x1, . . . , xn). We adopt the standard O(·) and
o(·) notations. Specifically, for functions f(n), g(n), we write
g(n) = O(f(n)) to indicate

lim sup
n→∞

∣∣∣∣ g(n)

f(n)

∣∣∣∣ <∞. (3)

Similarly, g(n) = o(f(n)) means limn→∞ g(n)/f(n) =
0. We also use this notation when the limit goes to 0
instead of infinity; for example g(δ) = O(f(δ)) means
lim supδ→0 |g(δ)/f(δ)| < ∞. We write |x|+ = max{0, x}
for positive part.

We also adopt the following standard definitions. Given two
distributions P,Q ∈ P(X ), the Kullback-Leibler divergence is
denoted

D(P‖Q) = EP
[
log

dP

dQ

]
(4)

where dP
dQ is the Radon-Nikodym derivative. We will also need

the Rényi divergence of order ∞, given by

D∞(P‖Q) = sup
A⊂X

log
P (A)

Q(A)
(5)
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where the supremum is over all events A in the probability
space. The total variational distance is

dTV (P,Q) = sup
A⊂X

|P (A)−Q(A)|. (6)

The hypothesis testing fundamental limit is given by

βα(P,Q) = inf
T :X→[0,1],
EP [T (X)]≥α

EQ[T (X)]. (7)

Here, T (x) represents the probability that a hypothesis test
outputs hypothesis 1 when X = x. The divergence variance
is denoted

V (P‖Q) = VarP

(
log

dP

dQ

)
. (8)

The third absolute moment of the log-likelihood ratio is given
by

T (P‖Q) = EP

[∣∣∣∣log
dP

dQ
−D(P‖Q)

∣∣∣∣3
]
. (9)

For distributions PX ∈ P(X ), QY ∈ P(Y) and a channel
W ∈ P(X → Y), the conditional divergence and conditional
divergence variance are denoted

D(W‖QY |PX) =

∫
dPX(x)D(Wx‖QY ), (10)

V (W‖QY |PX) =

∫
dPX(x)V (Wx‖QY ). (11)

Given joint distribution PXY ∈ P(X × Y), the mutual
information is given by

I(X;Y ) = D(PY |X‖PY |PX) (12)

where PX , PY , PY |X are the induced marginal and conditional
distributions. The conditional mutual information is given by

I(X;Y |Z) = D(PY |XZ‖PY |Z |PXZ). (13)

For a discrete distribution PX , the entropy is

H(X) =
∑
x∈X
−PX(x) logPX(x). (14)

We also use Hb(p) to denote the binary entropy; i.e. Hb(p) =
H(X) where X ∼ Ber(p).

B. Multiple-Access Channel Problem Setup

A one-shot multiple-access channel (MAC) with two users
is given by a channel W ∈ P(X × Y → Z) where X and
Y are the input alphabets, and Z is the output alphabet. A
(stochastic) code is given by

1) a user 1 encoder PX|I1 ∈ P([M1]→ X ),
2) a user 2 encoder PY |I2 ∈ P([M2]→ Y),
3) a decoder PÎ1,Î2|Z ∈ P(Z → [M1]× [M2]).

The average probability of error is given by P((Î1, Î2) 6=
(I1, I2)) where (I1, I2) represent the messages, which are
uniformly distribution over [M1]× [M2], and

(X,Y, Z, Î1, Î2)|(I1, I2) = (i1, i2)

∼ PX|I1=i1(x)PY |I2=i2(y)Wxy(z)PÎ1,Î2|Z=z (̂i1, î2). (15)

Here, recall that W is the channel distribution from (X,Y )
to Z. A code with message counts M1,M2 and average
probability of error at most ε is called an (M1,M2, ε) code.

Given a one-shot channel W , the n-length product channel
is given by

Wxnyn =
n∏
t=1

Wxtyt . (16)

For n-length channels, we also impose cost-constraints on the
channel inputs. Specifically, there are functions b1 : X → R,
b2 : Y → R, and constants B1, B2 ∈ R; we assume that
the encoders PXn|I1 , PY n|I2 are such that the channel inputs
Xn, Y n satisfy the following almost surely:

1

n

n∑
t=1

b1(Xt) ≤ B1,
1

n

n∑
t=1

b2(Yt) ≤ B2. (17)

Of course, a lack of cost constraint is included in this model
simply by taking b1(x) = b2(y) = 0 for all x, y. We consider
(W, b1, b2, B1, B2) to constitute the channel specification. We
say an (n,M1,M2, ε) code is a code for n-length channel
with average probability of error ε. For any blocklength n and
probability of error ε ∈ (0, 1), the set of achievable rates are

R(n, ε) =

{(
logM1

n
,

logM2

n

)
:

∃ an (n,M1,M2, ε) code
}
. (18)

The operational definition for the capacity region is given by2

C =
⋂
ε>0

lim inf
n→∞

R(n, ε). (19)

The first-order asymptotic result, proved in [2]–[6], is that the
capacity region is

C =
⋃

PUXY :X⊥Y |U,
E[b1(X)]≤B1,
E[b2(Y )]≤B2

{
(R1, R2) : R1 +R2 ≤ I(X,Y ;Z|U),

R1 ≤ I(X;Z|Y,U), R2 ≤ I(Y ;Z|X,U)
}

(20)

where X ⊥ Y |U indicates that X and Y are independent
given U . Here, U is the time-sharing random variable.3 Using
Carathéodory’s theorem, we can restrict the alphabet cardinal-
ity of U in the union to |U| ≤ 6.

Because of the multi-dimensional nature of achievable
rate regions for network information theory problems such
as the MAC, articulating second-order results can be a bit
complicated. There are at least three equivalent methods for
describing these results: (i) characterize the region of second-
order coding rate pairs around a specific point on the boundary
of the capacity region, (ii) fix an angle of approach to a
point on the capacity region boundary, or (iii) bound the
maximum achievable weighted sum-rate. See [27, Chapter 6]
for a discussion of these issues for network information theory
problems. We have chosen to focus on the weighted sum-rate

2Recall that the lim-inf of a sequence of sets An is
⋃
n≥1

⋂
k≥nAk .

3We have chosen to use U rather than the more standard Q, since the letter
Q is primarily used for other concepts in this paper.
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approach, which has the advantage that we can work with
scalar quantities, and we do not need to specify a point on
the capacity region boundary. Specifically, for non-negative
constants α1, α2, we define the largest achievable weighted-
sum rate as

R?α1,α2
(n, ε) = sup

{
α1 logM1 + α2 logM2

n
:

∃ an (n,M1,M2, ε) code
}
. (21)

In particular, R?1,1(n, ε) is the largest achievable standard sum
rate. Note that for any constant c,

R?c α1,c α2
(n, ε) = cR?α1,α2

(n, ε). (22)

Thus, it is enough to consider only pairs (α1, α2) where
max{α1, α2} = 1. We also define the weighted-sum capacity
as

Cα1,α2
= sup{α1R1 + α2R2 : (R1, R2) ∈ C}. (23)

Since the capacity region C is convex, it is equivalently
characterized by Cα1,α2

. From the result in (20), it is easy
to see that

Cα1,α2 = sup
PUXY :X⊥Y |U,
E[b1(X)]≤B1,
E[b2(Y )]≤B2

[
min{α1, α2}I(X,Y ;Z|U)

+ |α1 − α2|+I(X;Z|Y,U) + |α2 − α1|+I(Y ;Z|X,U)
]
.

(24)

Our goal is to prove bounds of the form

R?α1,α2
(n, ε) ≤ Cα1,α2 +O

(
1√
n

)
. (25)

Note that if such a bound can be proved in which the implied
constant in the O(1/

√
n) term is uniformly bounded over all

α1, α2 where max{α1, α2} = 1, then

R(n, ε) ⊆ C +O

(
1√
n

)
. (26)

III. WRINGING DEPENDENCE

This section is devoted to defining and characterizing the
wringing dependence, a new dependence measure that will be
critical in our converse proof for the MAC. In Sec. III-A, we
first outline Ahlswede’s proof of the MAC strong converse
from [8] as motivation for the wringing dependence, and then
we define it. The basic properties of wringing dependence are
described in Sec. III-B. The wringing lemma, which is the
primary use of wringing dependence in our MAC converse
proof, is given in Sec. III-C. We present some relationships be-
tween wringing dependence and other dependence measures—
specifically hypercontractivity and maximal correlation—in
Sec. III-D.

A. Motivation and Definition

Consider a one-shot MAC given by W ∈ P(X ×Y → Z).
Ahlswede’s converse proof from [8], and ours, involves these
basic steps:

1) given any MAC code, expurgate it by restricting to the
subset Γ ⊂ X × Y of input pairs with limited maximal
probability of error,

2) choose sets X̄ ⊂ X , Ȳ ⊂ Y so that when the code is
restricted to input pairs (X,Y ) ∈ Γ∩(X̄ ×Ȳ), the inputs
are close to independent,

3) prove a converse bound on the code restricted to Γ ∩
(X̄ × Ȳ),

4) relate this converse bound back to the original code.
Step 2 is called “wringing,” as the dependence between X and
Y introduced by restricting the code to Γ is “wrung out” in the
choice of X̄ , Ȳ . This step is also where our proof deviates most
significantly from Ahlswede’s. In the wringing step, choosing
the sets X̄ , Ȳ requires trading-off between two objectives: (i)
maximizing the probability of the sets X̄ ×Ȳ , so that in Step 4,
there is limited difference between the subset and the original
code; and (ii) minimizing the dependence between the inputs
when restricted to X̄ ×Ȳ , so that the converse bound proved in
Step 3 captures the independence between transmissions that
is inherent to the MAC. The key result addressing this trade-
off in Ahlswede’s proof is [8, Lemma 4]; the following is a
slight modification of this lemma.4

Lemma 1: Let PXnY n ∈ P(Xn×Yn), QXn ∈ P(Xn), and
QY n ∈ P(Yn) be distributions such that

D∞(PXnY n‖QXnQY n) ≤ log(1 + c). (27)

For any 0 < γ < c, 0 < ε < 1, there exist sets X̄ ⊂ Xn, Ȳ ⊂
Yn such that

PXnY n(X̄ , Ȳ) ≥ εc/γ (28)

and for all t ∈ [n], x ∈ X , y ∈ Y

PXtYt|Xn∈X̄ ,Y n∈Ȳ(x, y)

≤ max{ε, (1 + γ)QXt|Xn∈X̄ (x)QYt|Y n∈Ȳ(y)}. (29)

In this lemma, one can see the two objectives at play: (28)
is a bound on the probability of X̄ ×Ȳ , and (29) is a guarantee
on dependence of the channel inputs. The two parameters γ
and ε allow one to trade-off between these two objectives; as
γ, ε → 0, the guarantee on the probability becomes weaker,
while the guarantee on the dependence becomes stronger. In
the extreme case that γ = ε = 0, (29) states that Xt and Yt
are independent, whereas (28) becomes trivial.

Ahlswede’s lemma is proved iteratively. The process is
initialized with X̄ = Xn, Ȳ = Yn. At each step, if (29) is
violated for some t ∈ [n], x̄t ∈ X , ȳt ∈ Y , then the sets X̄ , Ȳ
are revised to

X̄ ′ = X̄ ∩ {xn : xt = x̄t}, Ȳ ′ = Ȳ ∩ {yn : yt = ȳt}. (30)

4The main difference is that Ahlswede’s lemma has only one sequence Xn,
even though when the lemma is applied in the converse proof, it is done with
two sequences Xn, Y n. Here, we have stated the lemma with two sequences
to make the connection to our technique clearer.
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Because each step involves a violation of (29), at that point

PXtYt|Xn∈X̄ ,Y n∈Ȳ(x̄t, ȳt) > ε, (31)
PXtYt|Xn∈X̄ ,Y n∈Ȳ(x̄t, ȳt)

QXt|Xn∈X̄ (x̄t)QYt|Y n∈Ȳ(ȳt)
> 1 + γ. (32)

Here, (31) ensures that the probability of the pair (x̄t, ȳt) is
not too small, while (32) ensures that each step “eats into”
the Rényi divergence between P and Q from (27) by at least
log(1 + γ). The latter implies that the number of steps cannot
exceed log(1+c)

log(1+γ) ≤ c/γ, which leads to the guarantee on the
probability in (28).

To improve on Ahlswede’s lemma, we make three principal
observations:

1) Wringing can be done in the one-shot setting.
2) The set reduction steps in (30) need not be limited to

individual pairs (x̄t, ȳt); we may instead use arbitrary
sets A ⊂ X ,B ⊂ Y , and revise the sets as X̄ ′ = X̄ ∩A,
Ȳ ′ = Ȳ ∩ B.

3) The trade-off between the probability as in (31) and
the likelihood ratio as in (32) is most efficient by
maximizing

log PXY (A,B)
QX(A)QY (B)

− logPXY (A,B)
=

logQX(A)QY (B)

logPXY (A,B)
− 1. (33)

Note that if the quantity in (33) is maximized, then
neither the likelihood ratio nor the probability of (A,B)
will be too small. Moreover, maximizing this quantity
ensures that if a pair (A,B) has low probability, then
the likelihood ratio is larger, ensuring that this step “eats
into” the Rényi divergence by a greater amount.

We are now ready to give the definition for wringing depen-
dence, in which the quantity in (33) plays a key role.

Definition 1: Given random variables X,Y with joint dis-
tribution PXY , the wringing dependence between X and Y is
given by5

∆(X;Y ) = inf
QX ,QY

sup
A⊂X ,B⊂Y

inf{δ ≥ 0 :

PXY (A,B)1+δ ≤ QX(A)QY (B)}. (34)

Note that for any p, q ∈ (0, 1), inf{δ ≥ 0 : p1+δ ≤ q} =∣∣∣ log q
log p − 1

∣∣∣+. Therefore an alternative definition is

∆(X;Y ) = inf
QX ,QY

sup
A⊂X ,B⊂Y

∣∣∣∣ logQX(A)QY (B)

logPXY (A,B)
− 1

∣∣∣∣+
(35)

5While technically, the wringing dependence is a function of the joint
distribution PXY rather than a function of the random variables X,Y
themselves, we have chosen to use the notation ∆(X;Y ) wherein the
dependence measure is an operator on the random variables. This notational
choice is made consistently for all dependence measures in the paper: for
example mutual information is I(X;Y ), maximal correlation is ρm(X;Y ),
etc. In all cases, the underlying distribution will be clear from context, or
specified in a subscript such as ∆P (X;Y ).

where log q
log p really means inf{θ : pθ ≤ q}, so by convention

log q

log p
= 0 if p = 0 or q = 1, p < 1,

log q

log p
=∞ if p = 1, q < 1,

log 1

log 1
= −∞.

(36)

To compute the wringing dependence given a joint distribu-
tion PXY requires optimizing over QX and QY . In fact, this
optimization is convex, as shown as follows. We may write
the quantity inside the positive part in (35) as

logQX(A)QY (B)

logPXY (A,B)
− 1

=
logQX(A)

logPXY (A,B)
+

logQY (B)

logPXY (A,B)
− 1. (37)

For fixed sets A,B, logPXY (A,B) ≤ 0, which means each of
terms in the right-hand side (RHS) of (37) is jointly convex in
(QX , QY ). Using the fact that the supremum (or maximum)
of convex functions is also convex, this implies that

sup
A⊂X ,B⊂Y

∣∣∣∣ logQX(A)QY (B)

logPXY (A,B)
− 1

∣∣∣∣+ (38)

is jointly convex in (QX , QY ). Thus, the wringing dependence
can in principle be computed via convex optimization if X and
Y are finite sets. However, this computation quickly becomes
impractical as the alphabet sizes grow, since the number of sets
A,B is exponential in the alphabet cardinality. The following
is one example of a simple distribution for which it can be
computed in closed form.

Example 1: Consider a doubly symmetric binary source
(DSBS) (X,Y ), wherein X,Y are each uniform on {0, 1},
and PXY (1, 1) = PXY (0, 0) = p

2 . Since this distribution is
symmetric between X and 1−X , and between Y and 1−Y ,
the convexity of (38) in (QX , QY ) means that the optimal
QX , QY are each uniform on {0, 1}. Thus, if p ≤ 1/2, then
∆(X;Y ) is given by

∆(X;Y ) = max

{
0,

log 1/4

log p/2
− 1,

log 1/4

log(1− p)/2
− 1

}
(39)

=
log 4

log 2− log(1− p)
− 1 (40)

=
1 + log2(1− p)
1− log2(1− p)

. (41)

Therefore, for any p,

∆(X;Y ) =
1 + log2 max{p, 1− p}
1− log2 max{p, 1− p}

. (42)

The wringing dependence for a DSBS as a function of p is
shown in Fig. 1.

B. Properties

The most important property of the wringing dependence
is a counterpart of Ahlswede’s lemma, which is presented
in Sec. III-C. But before stating this result, we prove some
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Fig. 1. The wringing dependence for a doubly symmetric binary source, as
a function of the crossover probability p.

basic properties of the dependence measure. In particular, the
following result states that wringing dependence satisfies many
properties that one would expect of any dependence measure:
it is non-negative, is zero iff X and Y are independent, and
satisfies the data processing inequality. Indeed, this result
shows that wringing dependence satisfies 6 out of the 7
axioms for dependence measures proposed in [26]. (It also
satisfies the 7th, which is that for bivariate Gaussians, the
wringing dependence equals the correlation coefficient; this
fact is established in Sec. III-D.) The theorem also includes
some other properties that will be useful throughout the paper.

Theorem 2: The wringing dependence ∆(X;Y ) satisfies the
following:

1) ∆(X;Y ) = ∆(Y ;X).
2) 0 ≤ ∆(X;Y ) ≤ 1.
3) If ∆(X;Y ) ≤ δ, then for all A ⊂ X ,B ⊂ Y ,

PXY (A,B) ≤ (1 + 2δ) (PX(A)PY (B))
1/(1+δ)

, (43)
|PXY (A,B)− PX(A)PY (B)| ≤ 2δ. (44)

4) ∆(X;Y ) = 0 if and only if X and Y are independent.
5) ∆(X;Y ) = 1 if X and Y are decomposable, meaning

there exist sets A ⊂ X ,B ⊂ Y where 0 < PX(A) < 1
and 1(X ∈ A) = 1(Y ∈ B) almost surely6. Moreover,
if X ,Y are finite sets and ∆(X;Y ) = 1, then X and Y
are decomposable.

6) For any Markov chain W − X − Y − Z, ∆(W ;Z) ≤
∆(X;Y ).

Proof: (1) Symmetry between X and Y follows trivially
from the definition.

(2) The fact that ∆(X;Y ) ≥ 0 follows immediately from
the definition. To upper bound ∆(X;Y ), we may take QX =
PX , QY = PY , so

∆(X;Y ) ≤ inf{δ ≥ 0 : PXY (A,B)1+δ ≤ PX(A)PY (B)

6Decomposability is equivalent to the Gács-Körner common information
being positive [28].

for all A ⊂ X ,B ⊂ Y}. (45)

Since PXY (A,B) ≤ PX(A) and PXY (A,B) ≤ PY (B),
PXY (A,B)2 ≤ PX(A)PY (B) for all A,B. That is, δ = 1
is feasible in (45), so ∆(X;Y ) ≤ 1.

(3) Suppose ∆(X;Y ) ≤ δ. Thus, for any δ′ > δ, there exist
QX , QY such that

PXY (A,B)1+δ′ ≤ QX(A)QY (B) for all A ⊂ X ,B ⊂ Y .
(46)

Consider the function f(p) = p1+δ′ for p ≥ 0. Since δ′ > 0,
f is convex, so it can be lower bounded by any tangent line.
In particular, forming the tangent line around p = 1 gives

p1+δ′ = f(p) ≥ f(1) + f ′(1)(p− 1)

= 1 + (1 + δ′)(p− 1) = (1 + δ′)p− δ′. (47)

Using this bound to lower bound the left-hand side (LHS) of
(46) gives

QX(A)QY (B) ≥ (1 + δ′)PXY (A,B)− δ′. (48)

Taking B = Y gives

QX(A) ≥ (1 + δ′)PX(A)− δ′. (49)

Since this may hold for Ac in place of A, we may write

QX(A) = 1−QX(Ac) (50)
≤ 1− (1 + δ′)PX(Ac) + δ′ (51)
= (1 + δ′)PX(A). (52)

By the same argument, for any B ⊂ Y , QY (B) ≤ (1 +
δ′)PY (B). Thus

PXY (A,B)1+δ′ ≤ QX(A)QY (B) (53)

≤ (1 + δ′)2PX(A)PY (B). (54)

As this holds for all δ′ > δ, we have

PXY (A,B)1+δ ≤ (1 + δ)2PX(A)PY (B). (55)

Thus

PXY (A,B) ≤
[
(1 + δ)2PX(A)PY (B)

]1/(1+δ)
. (56)

Noting that (1 + δ)2/(1+δ) ≤ 1 + 2δ proves (43). Using again
the tangent line bound from (47) to lower bound the LHS of
(55) gives

(1 + δ)PXY (A,B)− δ ≤ (1 + δ)2PX(A)PY (B). (57)

Thus

PXY (A,B) ≤ (1 + δ)PX(A)PY (B) +
δ

1 + δ
(58)

≤ PX(A)PY (B) + δ +
δ

1 + δ
(59)

≤ PX(A)PY (B) + 2δ. (60)

We prove the corresponding lower bound as follows:

PXY (A,B) = PX(A)− PXY (A,Bc) (61)
≥ PX(A)− PX(A)PY (Bc)− 2δ (62)
= PX(A)PY (B)− 2δ (63)
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where (62) is simply an application of (60) with Bc swapped
with B. Combining (60) and (63) proves (44).

(4) If ∆(X;Y ) = 0, then (44) immediately gives
PXY (A,B) = PX(A)PY (B) for all A ⊂ X , B ⊂ Y ; i.e.,
X and Y are independent. Conversely, suppose X and Y are
independent. Thus, if we take QX = PX , QY = PY , then

PXY (A,B) ≤ QX(A)QY (B). (64)

This proves that ∆(X;Y ) = 0 by the definition in (34).
(5) Assume there exist sets A,B as stated. Since 1(X ∈

A) = 1(Y ∈ B) almost surely, PXY (A,B) = PX(A) =
PY (B), and PXY (Ac,Bc) = PX(Ac) = PY (Bc), and also by
assumption each of these probabilities is strictly between 0 and
1. For convenience let p = PXY (A,B). Using the definition
in (35), we may lower bound the wringing dependence by

∆(X;Y ) ≥ inf
QX ,QY

max

{
logQX(A)QY (B)

log p
,

logQX(Ac)QY (Bc)
log(1− p)

}
− 1 (65)

= inf
q∈[0,1]

max

{
log q2

log p
,

log(1− q)2

log(1− p)

}
− 1 (66)

= max

{
log p2

log p
,

log(1− p)2

log(1− p)

}
− 1 (67)

= 1 (68)

where (66) holds since the RHS of (65) is concave in
(QX , QY ) and symmetric between QX(A) and QY (B), so the
optimal choice is QX(A) = QY (B) = q for some q ∈ [0, 1];
(67) holds since the first term in the max in (66) is decreasing
in q while the second term is increasing, so the infimum is
achieved when the two terms in the max are equal, which
occurs at q = p; and (68) holds by the fact that 0 < p < 1.
Since we know that in general ∆(X;Y ) ≤ 1, this proves
∆(X;Y ) = 1. For the partial converse, assume X ,Y are finite
sets, and that ∆(X;Y ) = 1. This implies that

sup
A⊂X ,B⊂Y

logPX(A)PY (B)

log PXY (A,B)
= 2. (69)

Since X ,Y are finite, the supremum is attained, so there exist
sets A,B where 0 < PXY (A,B) < 1 and

PX(A)PY (B) = PXY (A,B)2. (70)

This only holds if PXY (A,B) = PX(A) = PY (B), which
implies that 1(X ∈ A) = 1(Y ∈ B) almost surely.

(6) The symmetry of the wringing dependence means that
it is enough to show ∆(X;Z) ≤ ∆(X;Y ). We have

∆(X;Z) = inf
QX ,QZ

sup
A⊂X ,B′⊂Z

∣∣∣∣ logQX(A)QZ(B′)
logPXZ(A,B′)

− 1

∣∣∣∣+
(71)

≤ inf
QX ,QY

sup
A⊂X ,
B′⊂Z

∣∣∣∣ logQX(A)
∫
dQY (y)PZ|Y=y(B′)

logPXZ(A,B′)
− 1

∣∣∣∣+
(72)

= inf
QX ,QY

sup
A⊂X ,B′⊂Z

∣∣∣∣ logQX(A)
∫
dQY (y)PZ|Y=y(B′)

log
∫
dPXY (x, y)1(x ∈ A)PZ|Y=y(B′)

− 1

∣∣∣∣+ (73)

≤ inf
QX ,QY

sup
A⊂X

sup
g:Y→[0,1]

∣∣∣∣ logQX(A)EQ[g(Y )]

logEP [1(X ∈ A)g(Y )]
− 1

∣∣∣∣+
(74)

where (72) holds because for any QY , a valid distribution
on Z can be formed via QZ =

∫
dQY (y)PZ|Y=y; in the

denominator of (73) we have used the fact that X −Y −Z is
a Markov chain; and (74) holds because in (73) we may take
g(y) = PZ|Y=y(B′) which is feasible for the supremum over
g in (74). For fixed QX , QY , and A, define

G = sup
g:Y→[0,1]

∣∣∣∣ logQX(A)EQ[g(Y )]

logEP [1(X ∈ A)g(Y )]
− 1

∣∣∣∣+ . (75)

We may also define

G′ = sup
B⊂Y

∣∣∣∣ logQX(A)QY (B)

logPXY (A,B)
− 1

∣∣∣∣+ . (76)

To complete the proof, it is enough to show that G ≤ G′.
Rearranging (76), for any B ⊂ Y ,

PX,Y (A,B)1+G′ ≤ QX(A)QY (B). (77)

For any function g : Y → [0, 1], define the sets Bt = {y :
g(y) < t}. Thus

g(y) =

∫ 1

0

1(y ∈ Bt)dt. (78)

Since G′ ≥ 0, f(z) = z1+G′ is a convex function, which
allows us to write

(EP [1(X ∈ A)g(Y )])1+G′

=

(
EP
[
1(X ∈ A)

∫ 1

0

1(Y ∈ Bt)dt
])1+G′

(79)

≤
∫ 1

0

dt(EP [1(X ∈ A)1(Y ∈ Bt)])1+G′ (80)

=

∫ 1

0

PXY (A,Bt)1+G′dt (81)

≤
∫ 1

0

QX(A)QY (Bt)dt (82)

= QX(A)

∫ 1

0

EQ[Y ∈ Bt]dt (83)

= QX(A)EQ[g(Y )] (84)

where (80) follows from Jensen’s inequality and the fact that∫ 1

0
dt = 1, and (82) follows from (77). Since (84) holds for all

functions g, this implies G ≤ G′, which completes the proof.

C. The Wringing Lemma

The following result is our counterpart of Ahlswede’s
Lemma 4 from [8].

Lemma 3: Let PXY ∈ P(X ×Y), QX ∈ P(X ), and QY ∈
P(Y) be distributions such that

D∞(PXY ‖QXQY ) ≤ σ (85)
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where σ is finite. For any δ > 0, there exist sets X̄ ⊂ X , Ȳ ⊂
Y such that

PXY (X̄ , Ȳ) ≥ exp
{
−σ
δ

}
(86)

and
∆(X̄; Ȳ ) ≤ δ (87)

where (X̄, Ȳ ) are distributed according to PXY |X∈X̄ ,Y ∈Ȳ .
As we outlined in Sec. III-A, Ahlswede’s proof of [8,

Lemma 4] involved iteratively restricting the wringing sets
until the desired property is achieved. While a proof of
Lemma 3 along these lines would work for discrete variables,
it does not directly generalize to arbitrary variables. Instead,
we present a slightly different proof that does work in general.

Proof of Lemma 3: Let A be the collection of pairs of
sets (A,B) where A ⊂ X ,B ⊂ Y such that PXY (A,B) > 0
and

PXY (A,B)1+δ ≥ QX(A)QY (B). (88)

This set A is always non-empty, since it includes (A,B) =
(X ,Y). For any (A,B) ∈ A , using the assumption that
PXY (A,B) > 0, we may rearrange (88) to write

PXY (A,B) ≥
(
QX(A)QY (B)

PXY (A,B)

)1/δ

(89)

≥ exp
{
−σ
δ

}
(90)

where the second inequality follows from the assumption that
D∞(PXY ‖QXQY ) ≤ σ.

We proceed to construct a pair of sets (X̄ , Ȳ) ∈ A that
satisfy the following property:

for all A ⊂ X̄ ,B ⊂ Ȳ,
if PXY (A,B) < PXY (X̄ , Ȳ) then (A,B) /∈ A .

(91)

These sets can be easily found if the infimum is attained in

inf
(A,B)∈A

PXY (A,B). (92)

That is, if there exist (X̄ , Ȳ) ∈ A such that PXY (X̄ , Ȳ) ≤
PXY (A,B) for all (A,B) ∈ A , then (91) follows easily.
Note that the infimum in (92) is always attained if X ,Y are
finite sets. However, if this infimum is not attained we need a
different argument.

We create a sequence of pairs of sets (Ak,Bk) ∈ A for
each non-negative integer k, as follows. First let (A0,B0) =
(X ,Y). For any k ≥ 1, given (Ak−1,Bk−1), define (Ak,Bk)
as follows. Let

pk = inf
A⊂Ak−1,B⊂Bk−1:(A,B)∈A

PXY (A,B). (93)

Let Ak ⊂ Ak−1,Bk ⊂ Bk−1 be such that (Ak,Bk) ∈ A and

PXY (Ak,Bk) ≤ pk +
1

k
. (94)

This iteratively defines the setsAk,Bk for all k. We now define

X̄ =
⋂
k≥0

Ak, Ȳ =
⋂
k≥0

Bk. (95)

We need to prove that (X̄ , Ȳ) ∈ A and that (91) is satisfied.
By the dominated convergence theorem,

PXY (X̄ , Ȳ) = lim
k→∞

PXY (Ak,Bk),

QX(X̄ ) = lim
k→∞

QX(Ak),

QY (Ȳ) = lim
k→∞

QY (Bk).

(96)

These limits imply that X̄ , Ȳ satisfy (88). Moreover, since
(Ak,Bk) ∈ A for each k, the lower bound in (90) implies
that PXY (Ak,Bk) ≥ exp{−σδ }, so PXY (X̄ , Ȳ) is bounded
away from 0. Thus (X̄ , Ȳ) ∈ A . To prove (91), consider any
A ⊂ X̄ ,B ⊂ Ȳ where PXY (A,B) < PXY (X̄ , Ȳ). Note that

lim
k→∞

[
PXY (Ak,Bk)− 1

k

]
= PXY (X̄ , Ȳ). (97)

Thus, there exists a finite k such that PXY (A,B) <
PXY (Ak,Bk)− 1

k . By (94), this implies that PXY (A,B) < pk,
which means A,B cannot be feasible for the infimum defining
pk in (93). In particular, since A ⊂ X̄ ⊂ Ak−1 and
B ⊂ Ȳ ⊂ Bk−1, it must be that (A,B) /∈ A . This proves
the desired property of (X̄ , Ȳ) in (91).

Given (91), we now complete the proof. Since (X̄ , Ȳ) ∈ A ,
we immediately have the probability bound in (86). We now
need to prove the bound on the wringing dependence in (87).
To show that ∆(X̄; Ȳ ) ≤ δ, it is enough to show that for all
A ⊂ X ,B ⊂ Y ,

PXY |X∈X̄ ,Y ∈Ȳ(A,B)1+δ ≤ QX|X∈X̄ (A)QY |Y ∈Ȳ(B). (98)

Letting A′ = A ∩ X̄ ,B′ = B ∩ Ȳ , we have

PXY |X∈X̄ ,Y ∈Ȳ(A,B) =
PXY (A′,B′)
PXY (X̄ , Ȳ)

,

QX|X∈X̄ (A) =
QX(A′)
QX(X̄ )

,

QY |Y ∈Ȳ(B) =
QY (B′)
QY (X̄ )

.

(99)

Consider the case that PXY (A′,B′) = PXY (X̄ , Ȳ). Since
A′ ⊂ X̄ ,B′ ⊂ Ȳ , we must have PXY ((X̄×Ȳ)\(A′×B′)) = 0.
By the assumption that σ is finite, PXY � QXQY , so
in particular QXQY ((X̄ × Ȳ) \ (A′ × B′)) = 0, and thus
QX(A′)QY (B′) = QX(X̄ )QY (Ȳ). Thus, each side of (98)
equals 1, so the inequality holds. Now consider the case that
PXY (A′,B′) = 0. This implies that the LHS of (98) is 0, so
it holds trivially.

The remaining case is when 0 < PXY (A′,B′) <
PXY (X̄ , Ȳ). By the key property of (X̄ , Ȳ) in (91), we must
have (A′,B′) /∈ A . Thus

PXY |X∈X̄ ,Y ∈Ȳ(A,B)1+δ =
PXY (A′,B′)1+δ

PXY (X̄ , Ȳ)1+δ
(100)

<
QX(A′)QY (B′)
PXY (X̄ , Ȳ)1+δ

(101)

≤ QX(A′)QY (B′)
QX(X̄ )QY (Ȳ)

(102)

= QX|X∈X̄ (A)QY |Y ∈Ȳ(B)
(103)
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where (101) follows since (A′,B′) /∈ A and PXY (A′,B′) >
0, which imply that (88) must be violated; and (102) follows
because (X̄ , Ȳ) ∈ A . This proves (98) for all A ⊂ X ,B ⊂ Y .

D. Relationship to Other Dependence Measures

1) Hypercontractivity: One of the first uses of hypercon-
tractivity in information theory was [29], wherein Ahlswede
and Gács were interested in establishing conditions under
which random variables X,Y satisfy

PXY (A,B) ≤ PX(A)σPY (B)τ for all A ⊂ X ,B ⊂ Y .
(104)

To establish this inequality, they actually proved something
stronger, namely

E[f(X)g(Y )] ≤ ‖f(X)‖1/σ‖g(Y )‖1/τ
for all f : X → R, g : Y → R (105)

where for a real-valued random variable Z, ‖Z‖r =
(E[|Z|r])1/r. By optimizing over f , one finds that (105) is
equivalent to

‖E[g(Y )|X]‖1/(1−σ) ≤ ‖g(Y )‖1/τ for all g : Y → R.
(106)

Such an inequality is known as hypercontractivity. If the
inequality is reversed, it is known reverse hypercontractivity
[30]. The advantage of working with hypercontractivity rather
than the more operationally meaningful inequality (104) is that
hypercontractivity tensorizes: that is, if (106) holds for X,Y ,
then it also holds for Xn, Y n where (Xt, Yt) are i.i.d. with
the same distribution as X,Y .

The relationship between hypercontractivity and wringing
dependence is apparent from (104); namely this inequality is
identical to the inequality defining the wringing dependence in
(34) but with QX = PX , QY = PY , and σ = τ = 1/(1 + δ).
We make this relationship precise as follows.

For a pair of random variables X,Y , [31] defined the
hypercontractivity ribbonRX;Y as the set of pairs (r, s) where
one of the following hold:
• 1 ≤ s ≤ r, and for all g : Y → R,

‖E[g(Y )|X]‖r ≤ ‖g(Y )‖s, (107)

• 1 ≥ s ≥ r, and for all g : Y → R+,

‖E[g(Y )|X]‖r ≥ ‖g(Y )‖s. (108)

The second condition concerns reverse hypercontractivity,
which does not appear to be related to the wringing depen-
dence, but we have included it for completeness. The following
proposition, which is proved in Appendix A connects the
wringing dependence to the hypercontractivity ribbon.

Proposition 4: Given random variables X,Y , let

∆hyp(X;Y ) = inf{δ ∈ [0, 1] : (1 + 1/δ, 1 + δ) ∈ RX;Y }.
(109)

Then
∆(X;Y ) ≤ ∆hyp(X;Y ). (110)

Moreover, if we let Xn, Y n be jointly i.i.d. where PXtYt =
PXY for each t ∈ [n], then ∆(Xn;Y n) is a non-decreasing
sequence such that

lim
n→∞

∆(Xn;Y n) = ∆hyp(X;Y ). (111)

Note that the quantity ∆hyp(X;Y ) defined in (109) involves
checking whether (r, s) ∈ RX;Y where r = 1 + 1/δ and
s = 1 + δ for some δ ∈ [0, 1]; this is the regime where
1 ≤ s ≤ r, which corresponds to hypercontractivity rather
than reverse hypercontractivity. The proof of the upper bound
on wringing dependence in (110) follows from essentially the
same argument as the one [29] used to establish inequalities of
the form (104) via hypercontractivity. The limiting behavior of
the wringing dependence in (111) is proved by an argument
very similar to that of [32], which gives several equivalent
characterizations of the hypercontractivity ribbon.

We illustrate Prop. 4 with two examples: the doubly-
symmetric binary source, and bivariate Gaussians. For the
DSBS, ∆hyp(X;Y ) is shown to be strictly larger than the
wringing dependence, and so (110) is a loose bound. For
bivariate Gaussians, (109) gives a tight bound. In fact, the
wringing dependence for bivariate Gaussians is quite difficult
to compute directly from the definition, but Prop. 4 allows
us to find it exactly: for bivariate Gaussians with correlation
coefficient ρ, ∆(X;Y ) = |ρ|. This establishes that the last of
Rényi’s axioms from [26] holds for wringing dependence.

Example 2 (DSBS): Let (X,Y ) be a DSBS with parameter
p as in Example 1. In [31], it was established that the hyper-
contractivity ribbon consists of the pairs (r, s) where either
(1−2p)2(r−1)+1 ≤ s ≤ r or r ≤ s ≤ (1−2p)2(r−1)+1.
In particular, (1 + 1/δ, 1 + δ) ∈ RX;Y iff

(1− 2p)2 1

δ
+ 1 ≤ 1 + δ (112)

which holds if δ ≥ |1−2p|. Therefore, ∆hyp(X;Y ) = |1−2p|.
Note that this quantity is strictly smaller than the wringing
dependence as calculated in Example 1, except for the trivial
cases where p ∈ {0, 1/2, 1}.

Example 3 (Bivariate Gaussians): Let (X,Y ) have a bi-
variate Gaussian distribution with correlation coefficient ρ. We
claim that ∆(X;Y ) = |ρ|. Without loss of generality, we may
assume that X,Y each have zero mean, and covariance matrix[

1 ρ
ρ 1

]
. (113)

We may assume that ρ ≥ 0, since if not we may simply
replace Y with −Y . We upper bound ∆(X;Y ) via Prop. 4. A
result originally by Nelson [33], which is also a consequence
of the Gaussian log-Sobolev inequality [34], is that for any
function g : R → R, (107) holds for r ≥ s ≥ 1 if
ρ ≤

√
(s− 1)/(r − 1). (See [35, Sec. 3.2] for an information-

theoretic treatment of this inequality.) Thus, with r = 1 + 1/δ
and s = 1 + δ, (r, s) ∈ RX;Y if ρ ≤ δ. Therefore
∆hyp(X;Y ) ≤ ρ, and so ∆(X;Y ) ≤ ρ by Prop. 4.

We now show that ∆(X;Y ) ≥ ρ. If ρ = 1, then X = Y ,
so ∆(X;Y ) = 1. Now suppose that ρ < 1. Let δ = ∆(X;Y ).
Applying (43) from Thm. 2, for any A,B ⊂ R

PXY (A,B) ≤ (1 + 2δ)(PX(A)PY (B))1/(1+δ). (114)
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In particular, for a parameter a ≥ 0 (we will eventually take
the limit a → ∞), we may choose A = B = [a, a + 1]. Let
φ(x) be the standard Gaussian PDF. Since φ(x) is decreasing
for x ∈ [a, a+ 1], we have

PX(A) = PY (B) =

∫ a+1

a

φ(x)dx ≤ φ(a). (115)

The joint PDF of (X,Y ) is

fXY (x, y) =
1

2π
√

1− ρ2
exp

{
−x

2 + y2 − 2ρxy

2(1− ρ2)

}
. (116)

In particular, fXY (x, y) is decreasing in x and y if x ≥ ρy
and y ≥ ρx. From the assumption that ρ < 1, these conditions
hold for all x, y ∈ [a, a+ 1] for sufficiently large a. Thus

PXY (A,B) =

∫ a+1

a

dx

∫ a+1

a

dy fXY (x, y)

≥ fXY (a+ 1, a+ 1). (117)

Plugging into (114) gives

1

2π
√

1− ρ2
exp

{
− (a+ 1)2(1− ρ)

1− ρ2

}
≤ (1 + 2δ)

(
1

2π
exp{−a2}

)1/(1+δ)

. (118)

Thus

− (a+ 1)2

1 + ρ
− log(2π

√
1− ρ2)

≤ − a2

1 + δ
− log(2π)

1 + δ
+ log(1 + 2δ). (119)

Dividing by a2 and taking a limit as a → ∞ gives ρ ≤ δ.
That is, ∆(X;Y ) ≥ ρ.

2) Maximal Correlation: The maximal correlation, which
was introduced in [36], [37] and further studied in [26], is
given by

ρm(X;Y ) = sup
f,g

ρ(f(X); g(Y )) (120)

where the supremum is over all real-valued functions f :
X → R and g : Y → R such that f(X) and g(Y )
have finite, non-zero variances, and ρ(·; ·) is the correlation
coefficient. The maximal correlation shares much in common
with the wringing dependence: in particular, both satisfy all 7
axioms from [26]. Moreover, the maximal correlation provides
a simple bound on the hypercontractivity ribbon (see [31]); this
implies that ∆hyp(X;Y ) ≥ ρm(X;Y ), where ∆hyp is defined
in (109). The following result, proved in Appendix B, shows
that if the wringing dependence is small, then the maximal
correlation is also small.

Lemma 5: If ∆(X;Y ) ≤ δ, then the maximal correlation is
bounded by

ρm(X;Y ) ≤ O(δ log δ−1). (121)

This result will be particularly useful when addressing the
Gaussian MAC; see Sec. VI-B. Unfortunately, the bound in
Lemma 5 is not linear; in fact, no universal bound of the form

ρm(X;Y ) ≤ K ∆(X;Y ) is possible.7 This is illustrated in the
following example. This example also shows that Lemma 5 is
order-optimal; in fact, for any 0 < c < 1 and any δ > 0, there
exists a distribution PXY where ∆(X;Y ) ≤ δ and

ρm(X;Y ) ≥ c δ log δ−1. (122)

Example 4: For any a ∈ [0, 1/2], let X,Y be binary
variables with joint PMF given by

Y
X

0 1

0 1− 2a a
1 a 0

Note that PX = PY = Ber(a). We first calculate the maximal
correlation. Since X,Y are both binary, the only nontrivial
functions of them are the identity function and its complement,
so

ρm(X;Y ) = |ρ(X;Y )| = |E[XY ]− E[X]E[Y ]|√
Var(X) Var(Y )

=
a2

a(1− a)
=

a

1− a
. (123)

To compute the wringing dependence, recall that the function
of (QX , QY ) in the definition in (35) is concave. Since X and
Y have the same distribution, the optimal choice has QX =
QY . If we let QX = QY = Ber(q), then we see that wringing
dependence between X and Y is

∆(X;Y ) = inf
q∈[0,1]

max

{
log q(1− q)

log a
,

log(1− q)2

log(1− 2a)

}
− 1.

(124)
While there is no simpler closed-form expression, this quantity
can be easily computed. Fig. 2 shows the relationship between
maximal correlation and wringing dependence across the range
of a. To analytically establish that this example satisfies the
claim (122), we may upper bound the wringing dependence
by plugging in q = a, to find

∆(X;Y ) ≤ max

{
log a(1− a)

log a
,

log(1− a)2

log(1− 2a)

}
− 1 (125)

=
log a(1− a)

log a
− 1 (126)

=
log(1− a)

log a
. (127)

Thus

lim
a→0

∆(X;Y ) log ∆(X;Y )−1

ρm(X;Y )

≤ lim
a→0

1− a
a

log(1− a)

log a
log

(
log a

log(1− a)

)
(128)

= lim
a→0

(1− a) · − log(1− a)

a

· log(− log a)− log(− log(1− a))

− log a
. (129)

We proceed to show that the limit as a → 0 of each of the
three multiplied terms in (129) is 1. The limit of the first term

7If there were such a bound, analyzing the Gaussian MAC would dramat-
ically simplify.
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Fig. 2. The relationship between wringing dependence and maximal corre-
lation for Example 4, plotted across the range of a ∈ [0, 1/2]. Of particular
note about this example is that, in the vicinity of the point (0, 0), the slope
of the curve is infinite.

is certainly 1; the limit of the second term can be seen to be
1 by an application of L’Hôpital’s rule. For the third term, we
have

lim
a→0

log(− log a)− log(− log(1− a))

− log a

= lim
a→0

1
a log a + 1

(1−a) log(1−a)

−1/a
(130)

= lim
a→0

[
−1

log a
− a

(1− a) log(1− a)

]
(131)

= lim
a→0

−a
(1− a) log(1− a)

(132)

= lim
a→0

−1

− log(1− a)− 1
(133)

= 1 (134)

where (130) and (133) follow from L’Hôpital’s rule, and (132)
holds since log a→ −∞. Therefore, for any 0 < c < 1, there
exists a sufficiently small a such that (122) holds.

Another interesting fact is that while Lemma 5 upper
bounds the maximal correlation by a function of the wringing
dependence, no lower bound is possible. The follow example
illustrates that the maximal correlation can be arbitrarily close
to 0 while the wringing dependence is arbitrarily close to 1.

Example 5: Given parameter a, let X,Y be binary variables
with joint PMF given by

Y
X

0 1

0 a a log a−1

1 a log a−1 1− a− 2a log a−1

We claim that as a→ 0, ρm(X;Y )→ 0 while ∆(X;Y )→ 1.
The maximal correlation can be computed as

ρm(X;Y ) =
a− (a+ a log a−1)2

(a+ a log a−1)(1− a− a log a−1)

=
a− o(a)

a log a−1 + o(a log a−1))
=

1− o(1)

log a−1
(135)

which vanishes as a→ 0. We may lower bound the wringing
dependence by

∆(X;Y ) ≥ inf
q

max

{
log q2

log a
,

log(1− q)2

log(1− a− 2a log a−1)

}
− 1

(136)

= sup
q

min

{
log q2

log a
,

log(1− q)2

log(1− a− 2a log a−1)

}
− 1

(137)

where (137) holds since the first function inside the maximum
in (136) is decreasing in q while the second function is
increasing. We may now lower bound (137) by choosing
q = 2a log a−1, which gives

log q2

log a
=

2 log(2a log a−1)

log a
=

2 log a+ 2 log(2 log a−1)

log a

= 2−O
(

log log a−1

log a−1

)
(138)

and

log(1− q)2

log(1− a− 2a log a−1)
=

2 log(1− 2a log a−1)

log(1− a− 2a log a−1)

=
4a log a−1 +O(a2 log2 a−1)

2a log a−1 +O(a)
= 2−O

(
1

log a−1

)
.

(139)

Therefore, in the limit as a→ 0, (137) approaches 1.

IV. FINITE BLOCKLENGTH CONVERSE BOUND

Before stating our main finite blocklength bound, we need
the following definition. Given distributions P,Q1, . . . , Qk on
alphabet X , we define the achievable region for a hypothesis
test between a simple hypothesis P and the composite hypoth-
esis {Q1, . . . , Qk} by the set

βα(P,Q1, . . . , Qk) =
⋃

T :X→[0,1],
EP [T (X)]≥α

{(β1, . . . , βk) ∈ [0, 1]k :

EQi [T (X)] ≤ βi for i = 1, . . . , k}. (140)

The following is our finite blocklength converse bound for
the MAC. It follows the same core steps as Ahlswede’s proof
from [8], while using wringing dependence in the wringing
step, and is also written in a one-shot manner.

Theorem 6: Suppose there exists an (M1,M2, ε) code for
the one-shot MAC W ∈ P(X × Y → Z). For any λ > ε,
δ > 0, there exists a distribution PXY ∈ P(X × Y)
where ∆(X;Y ) ≤ δ, and for any QZ ∈ P(Z), QZ|Y ∈
P(Z|Y), QZ|X ∈ P(Z|X ),

1

M1M2
≥
(

1− ε

λ

)1+1/δ

E[β12(X,Y )], (141)
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1

M1
≥
(

1− ε

λ

)1+1/δ

E[β1(X,Y )], (142)

1

M2
≥
(

1− ε

λ

)1+1/δ

E[β2(X,Y )] (143)

where the expectations are with respect to PXY , and for each
x, y,

(β12(x, y), β1(x, y), β2(x, y))

∈ β1−λ(Wxy, QZ , QZ|Y=y, QZ|X=x). (144)

Proof: Consider a (stochastic) code given by encoders
PX|I1 ∈ P([M1] → X ) and PY |I2 ∈ P([M2] → Y), and
decoder PÎ1,Î2|Z ∈ P(Z → [M1] × [M2]) with average
probability of error at most ε. Let QX be the distribution
induced on X assuming I1 is uniform on [M1]; i.e.,

QX(A) =
1

M1

M1∑
i1=1

PX|I1=i1(A). (145)

Let QY be the corresponding distribution induced on Y
assuming I2 is uniform on [M2]. Also let QXY = QXQY
be the product distribution. Let E be the error event, that is

E = {(Î1, Î2) 6= (I1, I2)}. (146)

Given any λ > ε, we may define the expurgation set by

Γ = {(x, y) ∈ X × Y : P(E|X = x, Y = y) ≤ λ}. (147)

That is, Γ is the set of transmitted pairs (x, y) that give
probability of error at most λ. From the assumption that the
probability of error is at most ε,

ε ≥ P(E) (148)
≥ P(E , (X,Y ) /∈ Γ) (149)
≥ (1−QXY (Γ))λ (150)

so
QXY (Γ) ≥ 1− ε

λ
. (151)

Let PX′Y ′ = QXY |(X,Y )∈Γ. We may bound the Rényi
divergence between these two distributions by

D∞(PX′Y ′‖QXY ) = sup
F⊂X×Y

log
PX′Y ′(F )

QXY (F )
(152)

= sup
F⊂X×Y

log
QXY (F ∩ Γ)

QXY (Γ)QXY (F )
(153)

≤ − logQXY (Γ) (154)

≤ − log
(

1− ε

λ

)
. (155)

We may now apply Lemma 3 with σ = − log(1 − ε/λ) and
any fixed δ > 0, to find sets X̄ ⊂ X , Ȳ ⊂ Y . Let PXY =
PX′Y ′|X′∈X̄ ,Y ′∈Ȳ . From the lemma,

∆(X;Y ) ≤ δ, (156)
PX′Y ′(X̄ , Ȳ) ≥ exp{−σ/δ}. (157)

Using an identical calculation to the earlier bound on Rényi
divergence,

D∞(PXY ‖QXY ) ≤ − logQXY (Γ ∩ X̄ × Ȳ) (158)
= − logQXY (Γ)PX′Y ′(X̄ , Ȳ) (159)

≤ σ +
σ

δ
(160)

= −
(

1 +
1

δ

)
log
(

1− ε

λ

)
. (161)

Thus

dPXY
dQXY

(x, y) ≤ exp{D∞(PXY ‖QXY )} ≤
(

1− ε

λ

)−1−1/δ

.

(162)
We now define a hypothesis testing function T : X ×Y×Z →
[0, 1] given by

T (x, y, z) = P(Ec|(X,Y, Z) = (x, y, z)). (163)

From the definition of Γ, for any (x, y) ∈ Γ,∫
dWxy(z)T (x, y, z) = P(Ec|(X,Y ) = (x, y)) ≥ 1− λ.

(164)
Thus, by the definition of the hypothesis testing quantity in
(140), for any QZ , QZ|Y , QZ|X , (144) holds with

β12(x, y) =

∫
dQZ(z)T (x, y, z), (165)

β1(x, y) =

∫
dQZ|Y=y(z)T (x, y, z), (166)

β2(x, y) =

∫
dQZ|X=x(z)T (x, y, z). (167)

Thus

E[β12(X,Y )] =

∫
dPXY (x, y)dQZ(z)T (x, y, z) (168)

≤
∫
dPXY (x, y)dQZ(z)P(Ec|(X,Y, Z) = (x, y, z)) (169)

≤
(

1− ε

λ

)−1−1/δ
∫
dQX(x)dQY (y)dQZ(z)

· P(Ec|(X,Y, Z) = (x, y, z)) (170)

≤
(

1− ε

λ

)−1−1/δ 1

M1M2
(171)

where (170) holds by the bound on the Rényi divergence from
(162), and (171) holds because if (X,Y, Z) ∼ QXQYQZ ,
then (I1, I2) are uniformly random on [M1]×[M2] and (Î1, Î2)
are independent from them, so the probability of correct
decoding is at most 1

M1M2
. Rearranging (171) yields (141).

By a nearly identical argument,

E[β1(X,Y )] =

∫
dPXY (x, y)dQZ|Y=y(z)T (x, y, z) (172)

≤
(

1− ε

λ

)−1−1/δ
∫
dQX(x)dQY (y)dQZ|Y=y(z)

· P(Ec|(X,Y, Z) = (x, y, z)) (173)

≤
(

1− ε

λ

)−1−1/δ 1

M1
(174)

where (174) holds because if (X,Y, Z) ∼ QXQYQZ|Y , then
I1 and Î1 are independent. Rearranging yields (142). The same
calculation for E[β2(X,Y )] yields (143).
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V. ASYMPTOTIC RESULTS

We present two asymptotic results, each characterizing the
second-order rate as O(1/

√
n) under certain assumptions on

the channel. The first result (Thm. 7) aims to bound the
second-order rate with minimal assumptions on the channel,
while giving the simplest possible proof of the result. In
particular, Thm. 7 avoids an assumption on the third-moment
of the information density. The second result (Thm. 9) applies
only to MACs with finite alphabets, but it gives a substantially
tighter bound on the second-order rate for these channels.
Thm. 9 is intended to give the tightest possible bound on the
second-order rate, at the cost of a more complicated proof.
We state both results first, and then prove them in Secs. V-A
and V-B. Sec. V-C provides some discussion of the maximal
probability of error case.

For α1 ≥ α2 ≥ 0, and any δ ≥ 0, define

Cα1,α2(δ) = sup
PUXY :∆(X;Y |U=u)≤δ for all u,

E[b1(X)]≤B1,
E[b2(Y )]≤B2[

α2I(X,Y ;Z|U) + (α1 − α2)I(X;Z|Y,U)
]
. (175)

For α2 ≥ α1 ≥ 0, we define Cα1,α2
(δ) similarly, except there

is a term with I(Y ;Z|X,U) in place of the I(X;Z|Y, U)
term. Note that Cα1,α2(0) = Cα1,α2 . Also let C ′α1,α2

(δ) be
the derivative of Cα1,α2

(δ) with respect to δ. Since Cα1,α2
(δ)

is non-decreasing in δ, C ′α1,α2
(δ) is well-defined, although it

may be infinite. Let

Vmax = sup
PUXY :

E[b1(X)]≤B1,
E[b2(Y )]≤B2

max
{
V (W‖PZ|U |PUXY ),

V (W‖PZ|Y U |PUXY ), V (W‖PZ|XU |PUXY )
}

(176)

where PZ|U , PZ|Y U , PZ|XU are the induced distributions from
PUXY . Note that in this definition, there is no independence
constraint on PUXY .

Theorem 7: For any α1, α2 where max{α1, α2} = 1, and
any ε ∈ (0, 1),

R?α1,α2
(n, ε) ≤ Cα1,α2

+ min
λ∈(ε,1)

[
2

√
C ′α1,α2

(0) log
λ

λ− ε
+

√
Vmax

1− λ

]
1√
n

+ o

(
1√
n

)
. (177)

The proof of this result, found in Sec. V-A, applies an
Augustin-type argument (cf. [9]), wherein Chebyshev’s in-
equality is used to bound the hypothesis testing fundamental
limit. Thus, the bound is only meaningful if the second
moment statistic Vmax is finite, but there is no requirement on
the third moment, which allows Thm. 7 to hold in a great deal
of generality, although it can typically be improved with more
careful analysis. The following corollary comes by plugging
in, for example, λ = ε+1

2 into (177).

Corollary 8: If (i) Vmax < ∞, and (ii) C ′α1,α2
(0) is

uniformly bounded for all α1, α2 where max{α1, α2} = 1,
then for any ε ∈ (0, 1),

R(n, ε) ⊆ C +O

(
1√
n

)
. (178)

As seen from Corollary 8, the second-order coding rate
is O(1/

√
n) as long as two regularity conditions hold. The

condition on Vmax is not surprising, as any result of this
form requires that the information density has a finite second
moment. One slight complication arises from the fact that,
in the definition of Vmax in (176), one cannot choose the
output distribution PZ|U separately from the input distribution.
That is, even though in Thm. 6 the distribution QZ (and
QZ|Y , QZ|X ) is a free choice, we select only the induced
output distribution. This complicates the analysis for some
channels; for example, for the Gaussian point-to-point channel,
in the second-order converse bound one typically chooses an
i.i.d. Gaussian for the output distribution, as in [13, Sec. III-J].
By contrast, here that choice is not available. This difficulty
is addressed for the Gaussian MAC in Appendix E.

The second regularity condition, on the boundedness of
C ′α1,α2

(0), wherein the wringing dependence appears, is more
particular to our method. Verifying this condition requires
analyzing the effect of the wringing dependence between the
two inputs on the maximum achievable weighted-sum-rate. In
the sequel, we establish that this condition holds in two cases:
for any discrete-memoryless channel, as shown in Thm. 9,
and for the Gaussian MAC, as discussed in Sec. VI-B with
the proof in Appendix E.

We now state a more precise result for discrete-memoryless
channels, which will require a few new definitions. Let P in

α1,α2

be the set of distributions PUXY satisfying the supremum in
the characterization of Cα1,α2

in (24). For any α ∈ [0, 1], let

V +
1,α = sup

P
UXY∈P in

1,α

[
α
√
V (W‖PZ|U |PUXY )

+ (1− α)
√
V (W‖PZ|Y U |PUXY )

]2
(179)

where PZ|U and PZ|Y U are the induced distributions from
PUXY . Also let

V −1,α = inf
PUXY ,PX′Y ′|U

[
α
√
V (W‖PZ|U |PUX′Y ′)

+ (1− α)
√
V (W‖PZ|Y U |PUX′Y ′)

]2
(180)

where the infimum is over all PUXY ∈ P in
1,α and PX′Y ′|U

satisfying

αD(W‖PZ|U |PUX′Y ′) + (1− α)D(W‖PZ|Y U |PUX′Y ′)
= C1,α. (181)

Define V −α,1 and V +
α,1 analogously. For any α1, α2 where

max{α1, α2} = 1 and any λ ∈ (0, 1), let

V λα1,α2
=

{
V −α1,α2

, λ < 1/2

V +
α1,α2

, λ ≥ 1/2.
(182)
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Theorem 9: If X ,Y,Z are finite sets, then both regularity
conditions in Corollary 8 are satisfied. In addition, for any
α1, α2 where max{α1, α2} = 1, and any ε ∈ (0, 1),

R?α1,α2
(n, ε) ≤

(
Cα1,α2

+

min
λ∈(ε,1)

[
2

√
C ′α1,α2

(0) log
λ

λ− ε
−
√
V λα1,α2

Q−1(λ)

]
1√
n

)∗∗
+ o

(
1√
n

)
(183)

where Q is the Gaussian complementary CDF and Q−1 is
its inverse function, and (·)∗∗ represents the lower convex
envelope as a function of (α1, α2).

Note that V +
α1,α2

and V −α1,α2
are not quite complementary.

In particular, V −α1,α2
is in general smaller than the quantity

obtained by simply replacing the supremum with an infimum
in (179). However, for at least some channels of interest, such
as the binary additive erasure channel (see Sec. VI-A), all of
these divergence variance quantities are equal.

Thm. 9 settles the question, at least for some discrete
channels, of whether the maximum achievable rates approach
the capacity region from below or above for sufficiently small
probability of error. We state this precisely in the following
corollary.

Corollary 10: Let X ,Y,Z be finite sets. If V −α1,α2
> 0, then

for sufficiently small ε and sufficiently large n,

R?α1,α2
(n, ε) < Cα1,α2

. (184)

This corollary is proved by choosing, for example, λ = 2ε in
(183) and taking ε to be sufficiently small.

A. Proof of Thm. 7

Consider any (n,M1,M2, ε) code for the n-length product
channel. We consider (α1, α2) = (1, α) where α ∈ [0, 1].
The alternative case is proved identically. We apply Thm. 6
wherein the one-shot input alphabets X ,Y are replaced by the
cost-constrained input sets{

xn ∈ Xn :
n∑
t=1

b1(xt) ≤ nB1

}
,{

yn ∈ Yn :
n∑
t=1

b2(yt) ≤ nB2

}
.

(185)

Thus, for any λ > ε, δ > 0, there exists a distribution PXnY n
such that Xn and Y n fall into the sets in (185) almost surely,
∆(Xn;Y n) ≤ δ, and

log(M1M2) ≤ − logE
[
β1−λ(WXnY n ,

∏n
t=1 PZt)

]
+

(
1

δ
+ 1

)
log

λ

λ− ε
, (186)

logM1 ≤ − logE
[
β1−λ(WXnY n ,

∏n
t=1 PZt|Yt=Yt)

]
+

(
1

δ
+ 1

)
log

λ

λ− ε
, (187)

logM2 ≤ − logE
[
β1−λ(WXnY n ,

∏n
t=1 PZt|Xt=Xt)

]

+

(
1

δ
+ 1

)
log

λ

λ− ε
. (188)

Here, we have relaxed Thm. 6 by noting that if (β1, . . . , βk) ∈
β1−λ(P,Q1, . . . , Qk), then βi ≥ β1−λ(P,Qi) for each i ∈
[k]. We have also chosen the induced product distributions
for QZ , QZ|Y , QZ|X . Since by Thm. 2, wringing dependence
satisfies the data processing inequality, ∆(Xt;Yt) ≤ δ for
any t ∈ [n]. We will make use of the ε-information spectrum
divergence (cf. [27], [38]), which is given by

Dε
s(P‖Q) = sup

{
R ∈ R : P

(
log

dP

dQ
(Z) ≤ R

)
≤ ε
}
.

(189)
The hypothesis testing quantity can be related to the informa-
tion spectrum divergence as

−log β1−λ(P,Q) ≤ inf
0<η<1−λ

[
Dλ+η
s (P‖Q)− log η

]
. (190)

Using Chebyshev’s inequality, the information spectrum diver-
gence may in turn be bounded by (see e.g., [27, Prop. 2.2])

Dε
s(P‖Q) ≤ D(P‖Q) +

√
V (P‖Q)

1− ε
(191)

and so

− log β1−λ(P,Q)

≤ D(P‖Q) + inf
0<η<1−λ

(√
V (P‖Q)

1− λ− η
− log η

)
. (192)

Applying (192) to the bound in (186) gives, for any 0 < η <
1− λ,

log(M1M2)−
(

1

δ
+ 1

)
log

λ

λ− ε
(193)

≤ − log

∫
dPXnY n(xn, yn) exp

{
−

n∑
t=1

D(Wxtyt‖PZt)

−

√√√√ 1

1− λ− η

n∑
t=1

V (Wxtyt‖PZt) + log η

}
(194)

≤
n∑
t=1

D(W‖PZt |PXtYt)

+

√√√√ 1

1− λ− η

n∑
t=1

V (W‖PZt |PXtYt)− log η (195)

= nD(W‖PZ|U |PXY U )

+

√
n

1− λ− η
V (W‖PZ|U |PXY U )− log η (196)

≤ nI(XY ;Z|U) +

√
nVmax

1− λ− η
− log η (197)

where (195) holds by convexity of the exponential and con-
cavity of the square root; in (196) we have let U ∼ Unif[n],
X = XU , Y = YU , Z = ZU ; and (197) follows from the
definition of Vmax in (176). Applying the same derivation to
(187) gives

logM1 −
(

1

δ
+ 1

)
log

λ

λ− ε
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≤ nI(X;Z|Y U) +

√
nVmax

1− λ− η
− log η. (198)

Recall that for each t ∈ [n], ∆(Xt;Yt) ≤ δ, which means that
for each u, ∆(X;Y |U = u) ≤ δ. Moreover, by the fact that
Xn, Y n fall into the cost-constrained sets in (185),

E[b1(X)] =
1

n

n∑
t=1

E[b1(Xt)] ≤ B1, (199)

E[b2(Y )] =
1

n

n∑
t=1

E[b2(Yt)] ≤ B2. (200)

Thus, from the definition of C1,α(δ) in (175),

αI(XY ;Z|U) + (1− α)I(X;Z|Y,U)

≤ C1,α(δ) = C1,α + C ′1,α(0) δ + o(δ) (201)

where the equality follows from the definition of the derivative.
We may combine (197) and (198), then plug in (201) to find

logM1 + α logM2 ≤ nC1,α + nC ′1,α(0)δ + o(nδ)

+

√
nVmax

1− λ− η
− log η +

(
1

δ
+ 1

)
log

λ

λ− ε
. (202)

Recall that δ is a free parameter. The optimal choice (ignoring

the o(nδ) term) is δ =

√
log λ

λ−ε
nC′1,α(0) which gives

logM1 + α logM2 ≤ nC1,α + 2

√
nC ′1,α(0) log

λ

λ− ε

+

√
nVmax

1− λ− η
− log η + log

λ

λ− ε
+ o(
√
n) (203)

We now distinguish two cases. If Vmax > 0, then the optimal
value of λ in the minimization in (177) is bounded away from
1. Let λ take on this optimal value, and we choose η = 1/

√
n

to give

logM1 + α logM2 ≤ nC1,α + 2

√
nC ′1,α(0) log

λ

λ− ε

+

√
nVmax

1− λ
+ o(
√
n). (204)

If alternatively Vmax = 0, then the optimal value of λ in the
minimization in (177) is λ = 1, but plugging λ = 1 into (203)
does not quite work, because of the requirement that η < 1−λ.
Instead we may choose λ = 1− 2/n and η = 1/n to give

logM1 + α logM2

≤ nC1,α + 2
√
nC ′1,α(0) log(1− ε)−1 + o(

√
n). (205)

B. Proof of Thm. 9

We will need the following lemma, which is proved in
Appendix C.

Lemma 11: Consider a MAC where X ,Y,Z are finite
sets. Let Wmin be the smallest non-zero value of Wxy(z).

Consider any random variables X,Y with distribution PXY
where ∆(X;Y ) ≤ δ. Let (X̃, Ỹ , Z̃) ∼ PXPYW . Then

I(X,Y ;Z) ≤ I(X̃, Ỹ ; Z̃) + c1δ +O(δ2), (206)

I(X;Z|Y ) ≤ I(X̃; Z̃|Ỹ ) + c2δ +O(δ2), (207)

I(Y ;Z|X) ≤ I(X̃; Z̃|Ỹ ) + c3δ +O(δ2). (208)

where c1, c2, c3 are constants depending only on |X |, |Y|, |Z|,
and Wmin.

Lemma 11 immediately gives that C ′α1,α2
(0) is uniformly

bounded for any α1, α2 with max{α1, α2} = 1. To prove that
Vmax < ∞, we note that for any distribution PXY and its
induced distribution PZ

V (W‖PZ |PXY ) ≤ E
[
log2 WXY (Z)

PZ(Z)

]
(209)

≤
(√

E
[
log2WXY (Z)

]
+

√
E[log2 PZ(Z)]

)2

(210)

≤
(

2
√

4e−2|Z|
)2

(211)

= 16e−2|Z| (212)

where we have used the fact that p log2 p ≤ 4e−2. By the
same argument, V (W‖PZ|Y ‖PXY ), V (W‖PZ|X‖PXY ) are
also bounded by 16e−2|Z|.

Recall that R?α1,α2
(n, ε), as defined in (18), is the supremum

of linear functions in (α1, α2), so it is convex in (α1, α2).
Thus, to prove the theorem it is enough to show (183) but
without the lower convex envelope. We assume that (α1, α2) =
(1, α) for α ∈ [0, 1]. We proceed with with the first step as in
the proof of Thm. 7; namely from Thm. 6 we derive (186)–
(188). Combining (186) and (187), and using the fact that
pαq1−α is concave in (p, q), gives

logM1 + α logM2

≤ − logE
[

(β1−λ(WXnY n ,
∏n
t=1 PZt))

α

·
(
β1−λ(WXnY n ,

∏n
t=1 PZt|Yt=Yt)

)1−α ]
+

(
1

δ
+ 1

)
log

λ

λ− ε
(213)

Since we will apply a Berry-Esseen bound to the hypothesis
testing quantities, rather than a Chebyshev bound as in Thm. 7,
we need to avoid some potentially badly-behaving (xn, yn)
sequences. In particular, define the set

Ω0 =

{
(xn, yn) : PXtYt(xt, yt) ≤

1

n2
for some t ∈ [n]

}
.

(214)
Let p0 = PXnY n(Ω0). By the union bound,

p0 ≤
n∑
t=1

P
(
PXtYt(Xt, Yt) ≤

1

n2

)
(215)

=
n∑
t=1

∑
x,y

PXtYt(x, y) 1

(
PXtYt(x, y) ≤ 1

n2

)
(216)

≤ |X | |Y|
n

. (217)
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From the fact that the β quantities are non-negative, we may
further bound (213) by

logM1 + α logM2

≤ − logE
[
1((Xn, Y n) ∈ Ωc0)

(
β1−λ(WXnY n ,

∏n
t=1 PZt)

)α
·
(
β1−λ(WXnY n ,

∏n
t=1 PZt|Yt=Yt)

)1−α]
+

(
1

δ
+ 1

)
log

λ

λ− ε
. (218)

We now use the Berry-Esseen theorem via [27, Prop. 2.1]
to bound each of the hypothesis testing quantities in (218).
Specifically, for any xn, yn

− log β1−λ(Wxnyn ,
∏n
t=1 PZt)

≤ inf
0<η≤1−λ

nDn−
√
nVnQ

−1

(
λ+ η +

6Tn√
nV 3

n

)
− log η

(219)

where

Dn =
1

n

n∑
t=1

D(Wxtyt‖PZt), (220)

Vn =
1

n

n∑
t=1

V (Wxtyt‖PZt), (221)

Tn =
1

n

n∑
t=1

T (Wxtyt‖PZt). (222)

For any (xn, yn) ∈ Ωc0, any t ∈ [n], and any z ∈ Z ,

log
Wxtyt(z)

PZt(z)
= log

Wxtyt(z)∑
x,y PXtYt(x, y)Wxy(z)

(223)

≤ log
1

PXtYt(xt, yt)
(224)

≤ 2 log n (225)

where the last inequality follows from the definition of Ω0 in
(214). (In fact, this is the purpose of the set the set Ω0 in the
first place.) We may prove a simple lower bound by, for any
z where Wxtyt(z) > 0,

log
Wxtyt(z)

PZt(z)
≥ logWxtyt(z) ≥ logWmin. (226)

where Wmin = minx,y,z:Wxy(z)>0Wxy(z). For any fixed
channel with finite alphabets, Wmin > 0. Thus, for sufficiently
large n, ∣∣∣∣log

Wxtyt(z)

PZt(z)

∣∣∣∣ ≤ 2 log n. (227)

This implies that 0 ≤ D(Wxtyt‖PZt) ≤ 2 log n, so we have∣∣∣∣log
Wxtyt(z)

PZt(z)
−D(Wxtyt‖PZt)

∣∣∣∣
≤ 2 log n− logWmin ≤ 3 log n (228)

where the last inequality holds for sufficiently large n. Thus,
for any (xn, yn) ∈ Ωc0,

Tn ≤ max
t∈[n]

T (Wxtyt‖PZt) ≤ (3 log n)3. (229)

By the same argument, Vn ≤ (3 log n)3. Applying the upper
bound on Tn in (229) to the bound on the hypothesis testing
quantity from (219) and selecting η = min{1/

√
n, 1−λ}, for

any (xn, yn) ∈ Ωc0 we have

− log β1−λ(Wxnyn ,
∏n
t=1 PZt)

≤ nDn−
√
nVnQ

−1

(
λ+

1√
n

+
6(3 log n)3√

nV 3
n

)
+

1

2
log n

(230)

where we adopt the convention that Q−1(p) = −∞ if p ≥
1. We now consider two cases. Consider first the case that
Vn ≥ n−1/4. This implies

√
nV 3

n ≥ n1/8, so in particular√
nV 3

n →∞. Thus, applying a Taylor expansion to the Q−1

function, there exists a constant c0 depending only on λ such
that, for sufficiently large n,

√
nVnQ

−1

(
λ+

1√
n

+
6(3 log n)3√

nV 3
n

)

≥
√
nVn

[
Q−1(λ)− c0

(
1√
n

+
6(3 log n)3√

nV 3
n

)]
(231)

=
√
nVnQ

−1(λ)− c0
(√

Vn +
6(3 log n)3

Vn

)
(232)

≥
√
nVnQ

−1(λ)− c0
(

(3 log n)3/2 + 162n1/4 log3 n
)
.

(233)

Now consider the case that Vn ≤ n−1/4. Then we apply the
simpler Chebyshev bound of [27, Prop. 2.2] on the hypothesis
testing quantity to write

− log β1−λ(Wxnyn ,
∏n
t=1 PZt)

≤ inf
0<η≤1−λ

nDn +

√
nVn

1− λ− η
− log η (234)

≤ nDn +
2
√
nVn

1− λ
− log

1− λ
2

(235)

= nDn −
√
nVnQ

−1(λ) +
√
nVn

(
Q−1(λ) +

2

1− λ

)
− log

1− λ
2

(236)

≤ nDn −
√
nVnQ

−1(λ) + n3/8

(∣∣Q−1(λ)
∣∣+ +

2

1− λ

)
− log

1− λ
2

(237)

where in (235) we have selected η = 1−λ
2 . Thus, in all cases,

if (xn, yn) ∈ Ωc0, then for sufficiently large n,

− log β1−λ(Wxnyn ,
∏n
t=1 PZt) ≤ nDn−

√
nVnQ

−1(λ)+an
(238)

where

an = max

{
{c0
(

(3 log n)3/2 + 162n1/4 log3 n
)
,

n3/8

(∣∣Q−1(λ)
∣∣+ +

2

1− λ

)
− log

1− λ
2

}
. (239)
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Note that the constants in the definition of an depend only
on λ, and that for any λ > 0, an = o(

√
n). By a similar

argument, if (xn, yn) ∈ Ωc0, then for sufficiently large n

− log β1−λ(Wxnyn ,
∏n
t=1 PZt|Yt=yt)

≤
n∑
t=1

D(Wxtyt‖PZt|Yt=yt)

−

√√√√ n∑
t=1

V (Wxtyt‖PZt|Yt=yt)Q
−1(λ) + an (240)

Applying both bounds to (218) gives

logM1 + α logM2 ≤ − logE
[
1((Xn, Y n) ∈ Ωc0)

· exp
{
−nD(Xn, Y n) +

√
nV (Xn, Y n)Q−1(λ)− an

}]
+

(
1

δ
+ 1

)
log

λ

λ− ε
(241)

where we have defined the statistics

D(xn, yn) =
1

n

n∑
t=1

[
αD(Wxtyt‖PZt)

+ (1− α)D(Wxtyt‖PZt|Yt=yt)
]
, (242)

V (xn, yn) =

α
√√√√ 1

n

n∑
t=1

V (Wxtyt‖PZt)

+(1− α)

√√√√ 1

n

n∑
t=1

V (Wxtyt‖PZt|Yt=yt)

2

. (243)

Consider any λ ≥ 1/2. From (241), by the convexity of the
exponential, we have

logM1 + α logM2

≤ 1

1− p0
E
[
1((Xn, Y n) ∈ Ωc0)

(
nD(Xn, Y n)

−
√
nV (Xn, Y n)Q−1(λ)

)]
+ an − log(1− p0)

+

(
1

δ
+ 1

)
log

λ

λ− ε
(244)

≤ 1

1− p0
E
[
nD(Xn, Y n)−

√
nV (Xn, Y n)Q−1(λ)

]
+ an − log(1− p0) +

(
1

δ
+ 1

)
log

λ

λ− ε
(245)

where we have used the facts that D(xn, yn) and V (xn, yn)
are non-negative, and since λ ≥ 0, Q−1(λ) ≤ 0. Note that

E[D(Xn, Y n)]

=
1

n

n∑
t=1

[αD(W‖PZt |PXtYt)

+ (1− α)D(W‖PZt|Yt |PXtYt)] (246)

=
1

n

n∑
t=1

[αI(Xt, Yt;Zt) + (1− α)I(Xt;Zt|Yt)] (247)

= αI(X,Y ;Z|U) + (1− α)I(X;Z|Y,U) (248)

where in the last equality we have defined U ∼ Unif[n] and
X = XU , Y = YU , Z = ZU . Moreover, by concavity of the
square root,

E
[√

V (Xn, Y n)
]

≤ α

√√√√ 1

n

n∑
t=1

V (W‖PZt |PXtYt)

+ (1− α)

√√√√ 1

n

n∑
t=1

V (W‖YZt|Yt |PXtYt) (249)

= α
√
V (W‖PZ|U |PUXY )

+ (1− α)
√
V (W‖PZ|Y U |PUXY ). (250)

Thus, since Q−1(λ) ≤ 0,

logM1 + α logM2

≤ 1

1− p0

[
n(αI(X,Y ;Z|U) + (1− α)I(X;Z|Y, U))

−
√
n
(
α
√
V (W‖PZ|U |PUXY )

+ (1− α)
√
V (W‖PZ|Y U |PUXY )

)
Q−1(λ)

]
+ an − log(1− p0) +

(
1

δ
+ 1

)
log

λ

λ− ε
(251)

≤ n(αI(X,Y ;Z|U) + (1− α)I(X;Z|Y,U))

−
√
n
(
α
√
V (W‖PZ|U |PUXY )

+ (1− α)
√
V (W‖PZ|Y U |PUXY )

)
Q−1(λ)

+

(
1

δ
+ 1

)
log

λ

λ− ε
+ o(
√
n) (252)

where we have used the facts that an = o(
√
n), pn = O(1/n),

and that the quantity inside the square brackets in (251) is at
most n log |Z| −

√
nVmax Q

−1(λ). From the cost-constraint
assumptions on the code, we also have E[b1(X)] ≤ B1 and
E[b2(Y )] ≤ B2. By Carathédory’s theorem, we may reduce
the cardinality of U to |U| ≤ 6 while preserving the following
values:

αI(X,Y ;Z|U) + (1− α)I(X;Z|Y,U),
V (W‖PZ|U |PUXY ), V (W‖PZ|Y U |PUXY ),

E[b1(X)], E[b2(Y )].
(253)

Choosing δ = O(n−1/2) allows us to derive the crude bound

logM1 + α logM2 ≤ n(αI(X,Y ;Z|U)

+ (1− α)I(X;Z|Y,U)) +O(
√
n). (254)

Define X̃, Ỹ , Z̃ where

PX̃Ỹ Z̃|U=u(x, y, z) = PX|U=u(x)PY |U=u(y)Wxy(z). (255)

By Lemma 11,

logM1 + α logM2 ≤ n
(
αI(X̃, Ỹ ; Z̃, U)

+ (1− α)I(X̃; Z̃|Ỹ , U)
)

+O(
√
n). (256)



IEEE TRANSACTIONS ON INFORMATION THEORY 18

Our goal is to prove that

logM1 + α logM2 ≤ nC1,α + 2

√
nC ′1,α(0) log

λ

λ− ε
−
√
nV +

1,αQ
−1(λ) + o(

√
n). (257)

Since Q−1(λ) ≤ 0, we may assume that

logM1 + α logM2 ≥ nC1,α (258)

or else there is nothing to prove. Thus

αI(X̃, Ỹ ; Z̃, U) + (1−α)I(X̃; Z̃|Ỹ , U) ≥ C1,α−O
(

1√
n

)
.

(259)
Noting that the mutual information is continuous over distri-
butions with finite alphabets, by the definition of C1,α, (259)
implies that there exists a distribution P ?UXY ∈ P in

1,α where
dTV (PUX̃Ỹ , P

?
UXY ) ≤ o(1). Since ∆(X;Y |U = u) ≤ δ,

from Thm. 2 we have

|PXY |U=u(x, y)− PX̃Ỹ |U=u(x, y)| ≤ 2δ. (260)

As we have taken δ = O(1/
√
n), then dTV (PUXY , PUX̃Ỹ ) ≤

o(1). Thus by the triangle inequality, dTV (PUXY , P
?
UXY ) ≤

o(1). Since the dispersion variance is also is a continuous
function of PUXY (again for finite alphabets), we must have

α
√
V (W‖PZ|U |PUXY ) + (1− α)

√
V (W‖PZ|Y U |PUXY )

(261)

≤ α
√
V (W‖P ?Z|U |P

?
UXY )

+ (1− α)
√
V (W‖P ?Z|Y U |P

?
UXY ) + o(1) (262)

≤ V +
1,α + o(1) (263)

where the second inequality holds since P ?UXY ∈ P in
1,α and by

the definition of V +
1,α in (179). Now returning to the bound in

(252),

logM1 + α logM2

≤ n(αI(X,Y ;Z|U) + (1− α)I(X;Z|Y, U))

−
√
nV +

1,αQ
−1(λ) +

(
1

δ
+ 1

)
log

λ

λ− ε
+ o(
√
n)

(264)

≤ nC1,α(δ)−
√
nV +

1,αQ
−1(λ)

+

(
1

δ
+ 1

)
log

λ

λ− ε
+ o(
√
n) (265)

= nC1,α + C ′1,α(0)δ + o(nδ)−
√
nV +

1,αQ
−1(λ)

+

(
1

δ
+ 1

)
log

λ

λ− ε
+ o(
√
n) (266)

(265) holds by the definition of C1,α(δ); and (266) follows by

the definition of the derivative. Selecting δ =

√
log λ

λ−ε
C′1,α(0) , we

derive the desired bound in (257).
Now consider any λ < 1/2. Our goal is to show that

logM1 + α logM2 ≤ nC1,α(δ)−
√
nV −1,αQ

−1(λ)

+

(
1

δ
+ 1

)
log

λ

λ− ε
+ o(
√
n) (267)

where eventually we will choose δ = O(n−1/2). Thus, we
may assume

logM1 + α logM2 ≥ nC1,α −
√
nV −1,αQ

−1(λ)

+

(
1

δ
+ 1

)
log

λ

λ− ε
(268)

or else we are done. Now let

Ω1 =

{
(xn, yn) : nD(xn, yn)

≤ nC1,α −
√
nV −1,αQ

−1(λ)− an − log n

}
, (269)

Ω2 = {(xn, yn) : nD(xn, yn) ≥ nC1,α(δ) + log n} (270)

and let pi = PXnY n(Ωi ∩ Ωc0) for i = 1, 2. To upper bound
p1, beginning from the bound in (241) we may write

logM1 + α logM2 + log(1− p0)−
(

1

δ
+ 1

)
log

λ

λ− ε

(271)

≤ − log
∑

(xn,yn)∈Ω1∩Ωc0

PXnY n(xn, yn) exp
{
− nD(xn, yn)

+
√
nV (xn, yn)Q−1(λ)− an

}
(272)

≤ − log
∑

(xn,yn)∈Ω1∩Ωc0

PXnY n(xn, yn) exp

{
− nC1,α

+
√
nV −1,αQ

−1(λ) + log n

}
(273)

= − log p1 + nC1,α −
√
nV −1,αQ

−1(λ)− log n (274)

where in (273) we have used the definition of Ω1, and the
fact that Q−1(λ) ≥ 0 since λ < 1/2; and (274) holds by the
definition of p1. Thus by the assumption in (268)

p1 ≤
1

(1− p0)n
= O

(
1

n

)
(275)

since p0 = O(1/n).
Let

V ′ = min{V (xn, yn) : (xn, yn) ∈ (Ω1 ∪ Ω2)c}. (276)

We will prove that V ′ ≥ V −1,α − o(1). Fix (xn, yn) ∈ (Ω1 ∪
Ω2)c. By the definitions of Ω1,Ω2, since an = o(

√
n) we have

C1,α −O(n−1/2) ≤ D(xn, yn) ≤ C1,α(δ) + log n. (277)

Since δ = O(n−1/2), by Taylor’s theorem and the fact from
Lemma 11 that C ′1,α(0) is bounded, C1,α(δ) = C1,α +

O(n−1/2). Thus |D(xn, yn)−C1,α| ≤ O(n−1/2). If we again
let U ∼ Unif[n], and

PX′Y ′|U=t(x, y) = 1(x = xt, y = yt) (278)

then we may write

D(xn, yn) = αD(W‖PZ|U |PUX̄Ȳ )

+ (1− α)D(W‖PZ|Y U |PUX′Y ′), (279)
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√
V (xn, yn) = α

√
V (W‖PZ|U |PUX′Y ′)

+ (1− α)
√
V (W‖PZ|Y U |PUX′Y ′). (280)

Also note that E[b1(X ′)] = 1
n

∑n
t=1 b1(xt) ≤ B1, and

similarly E[b2(Y ′)] ≤ B2. We may perform a dimensionality
reduction on U where |U| ≤ 9 to preserve the following values:

αI(X,Y ;Z|U) + (1− α)I(X;Z|Y,U), (281)
αD(W‖PZ|U |PUX′Y ′) + (1− α)D(W‖PZ|Y U |PUX′Y ′),

(282)
V (W‖PZ|U |PUX′Y ′), V (W‖PZ|Y U |PUX′Y ′), (283)
E[b1(X)], E[b2(Y )], E[b1(X ′)], E[b2(Y ′)]. (284)

Note that this is not the same dimensionality reduction
as above; in particular, this one depends on xn, yn. Since
δ = O(n−1/2), by the same argument as above, there exists
P ?UXY ∈ P in

1,α where dTV (PUXY , P
?
UXY ) ≤ o(1). Since

|D(xn, yn) − C1,α| ≤ o(1), by continuity of the relative en-
tropy (for finite alphabets) there exists a distribution P ?X′Y ′|U
such that dTV (PUX′Y ′ , P

?
UX′Y ′) ≤ o(1) and

αD(W‖P ?Z|U |P
?
UX′Y ′) + (1− α)D(W‖P ?Z|Y U |P

?
UX′Y ′)

= C1,α. (285)

That is, (P ?UXY , P
?
X′Y ′|U ) satisfy the feasibility condition for

the definition of V −1,α in (181). By continuity of the divergence
variance, this implies that V (xn, yn) ≥ V −1,α − o(1). This
proves that V ′ ≥ V −1,α − o(1). Now we may lower bound
the expectation in (241) by

E
[
1((Xn, Y n) ∈ Ωc0) exp

{
− nD(Xn, Y n)

+
√
nV (Xn, Y n)Q−1(λ)− an

}]
(286)

≥
∑

(xn,yn)∈(Ω0∪Ω1∪Ω2)c

PXnY n(xn, yn) exp
{
− nD(xn, yn)

+
√
nV ′Q−1(λ)− an

}
(287)

≥
∑

(xn,yn)∈(Ω0∪Ω1)c

PXnY n(xn, yn) exp
{
− nD(xn, yn)

+
√
nV ′Q−1(λ)− an

}
−

∑
(xn,yn)∈Ωc0∩Ω2

PXnY n(xn, yn) exp
{
− nD(xn, yn)

+
√
nV ′Q−1(λ)− an

}
(288)

≥ (1− p0 − p1) exp

{
− 1

1− p0 − p1∑
(xn,yn)∈(Ω0∪Ω1)c

PXnY n(xn, yn)nD(xn, yn)

+
√
nV ′Q−1(λ)− an

}
− p2 exp

{
−nC1,α(δ) +

√
nV ′Q−1(λ)− log n− an

}
(289)

≥ (1− p0 − p1) exp

{
− 1

1− p0 − p1
nE[D(Xn, Y n)]

+
√
nV ′Q−1(λ)− an

}
− exp

{
−nC1,α(δ) +

√
nV ′Q−1(λ)− log n− an)

}
(290)

≥ (1− p0 − p1) exp

{
− 1

1− p0 − p1
nC1,α(δ)

+
√
nV ′Q−1(λ)− an

}
− exp

{
−nC1,α(δ) +

√
nV ′Q−1(λ)− log n− an

}
(291)

= exp
{
−nC1,α(δ) +

√
nV ′Q−1(λ)− an

}
·
(

exp

{
log(1− p0 − p1)− p0 + p1

1− p0 − p1
nC1,α(δ)

−O(1)

}
− 1

n

)
(292)

= exp
{
−nC1,α(δ) +

√
nV ′Q−1(λ)− an

}
O(1) (293)

≥ exp

{
−nC1,α(δ) +

√
nV −1,αQ

−1(λ)− o(
√
n)

}
(294)

where (287) holds by the definition of V ′, (289) holds by the
definition of Ω2 and by convexity of the exponential, (290)
holds by extending the sum over all (xn, yn), (291) holds since
E[D(Xn, Y n)] = αI(X,Y ;Z|U) + (1 − α)I(X;Z|Y,U) ≤
C1,α(δ); (293) holds since p0 + p1 = O(1/n), which implies
that log(1− p0 − p1) = −O(1/n) and (p0+p1)n

1−p0−p1 = O(1), and
we also use the fact that C1,α(δ) ≤ log |Z|;and (294) holds
since V ′ ≥ V −1,α − o(1) and an = o(

√
n). This proves (267).

Again using the definition of the derivative, and choosing δ
optimally (this involves δ = O(n−1/2) as promised) completes
the proof.

C. Discussion of the Maximal Error Case

While the results in this paper focus on the average error
probability criterion, an important variant of the problem
is the one using maximal error probability. In a sense, the
maximal error variant is an easier problem, because it imposes
a stronger condition on each message pair. Unfortunately, as
originally shown in [39], the capacity regions for the two
problem variants can differ, and in general the capacity region
of the maximal error case (with deterministic encoders) is not
even known.

A second-order converse bound for the maximal-error case
was presented in [22]; however, the proof of the main result of
[22] appears to have a gap (namely, the derivation of equation
(28)). The recent work [23] used a wringing-based proof
(following a similar approach as this paper) to derive a similar
bound to that claimed in [22]. The result derived in [23] is as
follows. Let R?,max

α1,α2
(n, ε) be the largest achievable weighted-

sum rate for a length-n code with maximal probability of error
ε. Consider a discrete-memoryless MAC such that there is a
unique optimal input distribution for the standard sum-rate; i.e.
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P in
1,1 contains a single distribution P ?XP

?
Y . Then [23] shows

that

R?,max
1,1 (n, ε) ≤ C1,1 −

√
V ?

n
Q−1(ε) + o

(
1√
n

)
(295)

where V ? = V (W‖P ?Z |P ?XP ?Y ) where P ?Z is the induced
output distribution from P ?XP

?
Y . This constitutes a tighter

bound on the sum-rate than Thm. 9. However, note that in
(295), C1,1 is the average-case sum-capacity, which may not
be the same as the maximal-error sum-capacity, and indeed the
maximal-error sum-capacity may not even be known. Thus, for
many channels the gap between the best-known achievability
and converse bounds for the maximal-error case is O(1), as
opposed to O(1/

√
n) for the average-error case.

VI. EXAMPLE MULTIPLE-ACCESS CHANNELS

A. Binary Additive Erasure Channel

Let X ∈ {0, 1}, Y ∈ {0, 1}, Z = {0, 1, 2, e}. Given
(X,Y ) = (x, y), Z = e with probability γ, and Z = x+y with
probability γ̄ = 1− γ. The capacity region for this channel is
the pentagonal region

C =

{
(R1, R2) : R1 +R2 ≤

3

2
γ̄ log 2,

R1 ≤ γ̄ log 2, R2 ≤ γ̄ log 2

}
. (296)

Thus the weighted-sum-capacity is

Cα1,α2
=

(
max{α1, α2}+

1

2
min{α1, α2}

)
γ̄ log 2. (297)

In order to apply Thm. 9, we need to find C ′α1,α2
(0), V +

α1,α2
,

and V −α1,α2
. First we compute Cα1,α2

(δ). Since the channel is
symmetric between the two inputs, Cα1,α2

(δ) = Cα2,α1
(δ).

Let (α1, α2) = (1, α) for α ∈ [0, 1]. Since this channel has no
cost constraints, the time sharing variable U can be eliminated
in the definition of Cα1,α2

(δ) in (175). Thus

C1,α(δ)

= max
PXY :∆(X;Y )≤δ

[
αI(X,Y ;Z) + (1− α)I(X;Z|Y )

]
(298)

= max
PXY :∆(X;Y )≤δ

γ̄ [αH(X + Y ) + (1− α)H(X|Y )] .

(299)

To lower bound C1,α(δ), we may take PXY to be a DSBS with
parameter p ≤ 1/2. Recalling the calculation from Example 1,
∆(X;Y ) = 1+log2(1−p)

1−log2(1−p) , so

C1,α(δ) ≥ max
p≤1/2:

1+log2(1−p)
1−log2(1−p)≤δ

γ̄[α(Hb(p) + (1− p) log 2)

+ (1− α)Hb(p)] (300)

=


γ̄
[
Hb(2

1−2/(1+δ))

+ α21−2/(1+δ) log 2
]
,

δ < 1−log2(1+2−α)
1+log2(1+2−α) ,

γ̄[log(1 + 2−α) + α log 2], δ ≥ 1−log2(1+2−α)
1+log2(1+2−α)

(301)

where (301) follows from a straightforward entropy calcula-
tion. In fact, this lower bound is tight, although the proof is

a little more difficult. The following proposition is proved in
Appendix D.

Proposition 12: For any α ∈ [0, 1] and δ ∈ [0, 1], C1,α(δ)
is equal to the expression in (301).

Given the expression for C1,α(δ) in (301), the first-order
Taylor expansion is given by

C1,α(δ) = γ̄
(

1 +
α

2

)
log 2 + γ̄α(log2 2)δ +O(δ2). (302)

In particular, C ′1,α(0) = γ̄α log2 2.
We now calculate the dispersion variance quantities

V +
α1,α2

, V −α1,α2
. For any8 α ∈ (0, 1], P in

1,α is the set of
distributions PUXY where PXY |U=u is uniform on {0, 1}2.
That is, (X,Y ) are independent of U , so we may ignore
U . Taking PZ , PZ|Y to be the induced distributions from the
unique optimal input distribution, we may calculate

D(Wxy‖PZ) = (1 + 1(x = y))γ̄ log 2, (303)
D(Wxy‖PZ|Y=y) = γ̄ log 2. (304)

Note that αD(W‖PZ |PX′Y ′)+(1−α)D(W‖PZ|Y |PX′Y ′) =
C1,α iff PX′Y ′(0, 0) + PX′Y ′(1, 1) = 1/2. Moreover,

V (Wxy‖PZ) = γγ̄(1 + 4 · 1(x = y)) log2 2, (305)

V (Wxy‖PZ|Y=y) = γγ̄ log2 2. (306)

Thus

V −1,α = γγ̄

(
α

√
5

2
+ 1− α

)2

. (307)

Moreover, V +
1,α is the same quantity. Thm. 9 now gives

R?1,α(n, ε) ≤

(
γ̄
(

1 +
α

2

)
log 2 + min

λ∈(ε,1)
2

√
γ̄α log

λ

λ− ε

−
√
γγ̄

(
α

√
5

2
+ 1− α

)
Q−1(λ)

)∗∗
log 2√
n

+ o

(
1√
n

)
.

(308)

In fact, the quantity inside the (·)∗∗ is concave (see Fig. 3),
so it is equivalent to simply take the convex combination of
the points at α = 0 and α = 1. At α = 0 one can see that it
is optimal to choose λ = ε. Thus

R?1,α(n, ε) ≤ γ̄
(

1 +
α

2

)
log 2 +

[
(1− α)

√
γγ̄ Q−1(ε)

+ min
λ∈(ε,1)

α

(
2

√
γ̄ log

λ

λ− ε
−
√
γγ̄

5

2
Q−1(λ)

)]
log 2√
n

+ o

(
1√
n

)
. (309)

The corresponding achievability bound from any of [14]–
[18]9 is

R?1,α(n, ε) ≥ γ̄
(

1 +
α

2

)
log 2 + L(α, ε) log 2− o

(
1√
n

)
(310)

8The α = 0 case allows other optimal input distributions, although this case
is somewhat trivial, as is reduces to a point-to-point binary erasure channel.

9The achievable bound from [18] is in general the strongest, but for this
channel these all produce the same bound.
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where

L(α, ε) = sup{αs1 + (1− α)s2 :

P(S1 ≥ s1, S2 ≥ s2) ≥ 1− ε} (311)

and (S1, S2) are jointly Gaussian with zero mean and covari-
ance matrix

γγ̄

[
5/2 3/2
3/2 1

]
. (312)

Fig. 3 illustrates the upper and lower bounds on the coefficient
in the O(1/

√
n) term. The figure shows bounds on the second-

order coefficient for R1,α(n, ε) for γ = 0.25, ε = 10−3, and
also bounds on R1,1(n, ε)—i.e., the standard sum-rate—for
all γ ∈ [0, 1] and ε = 10−3. Unfortunately, the upper and
lower bounds only match for essentially trivial cases: when
α = 0, wherein the problem reduces to the point-to-point
binary erasure channel, and when γ = 1, wherein the output is
independent from the inputs so no communication is possible.

B. Gaussian MAC

In the Gaussian MAC, X,Y, Z are all real-valued, the
output is Z = X + Y + N , where N ∼ N (0, 1), and
the input sequences Xn, Y n are subject to power constraints∑n
t=1X

2
t ≤ nS1 and

∑n
t=1 Y

2
t ≤ nS2. The following result,

proved in Appendix E, states that the Gaussian MAC satisfies
the conditions of Corollary 8, and so its second-order rate is
O(1/

√
n).

Theorem 13: For the Gaussian MAC, C ′α1,α2
(0) is uni-

formly bounded for all α1, α2 where max{α1, α2} = 1, and
Vmax <∞.

In the statement of this theorem, we have omitted any
specific bound on C ′α1,α2

(0) or Vmax. While such bounds can
be extracted from the proof, we have sought clarity of the
proof over optimality of the bounds10, and so we have elected
to highlight the order of the bound on the second-order rate,
rather than the coefficient.

VII. CONCLUSION

The main result of this paper is that, for most multiple-
access channels of interest, under the average probability of
error constraint the second-order coding rate is O(1/

√
n)

bits per channel use. Along the way, we introduced and
characterized the wringing dependence, which was a critical
element in the proof of the main results.

Possible future work includes extensions to more than two
transmitters, or applying similar techniques to other network
information theory problems (the interference channel with
strong interference should be a straightforward extension).
Moreover, there are a number of ways that our results could
potentially be improved even for the two-user MAC. First, the
regularity conditions given in Corollary 8, under which we
are able to prove the second-order bound of O(1/

√
n), are

quite difficult to verify for non-discrete channels. The only
continuous channel for which we have successfully verified
the conditions is the Gaussian MAC; the proof of this in

10The length and complexity of the proof in Appendix E may make you
skeptical of this claim, but it’s true!
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Fig. 3. Upper and lower bounds on the second-order coefficient for the binary
additive erasure channel. Subfigure (a) shows the second-order bounds for
the maximum achievable weighted-sum-rate R?1,α(n, ε) as a function of α ∈
[0, 1] for erasure probability γ = 0.25 and probability of error ε = 10−3.
Subfigure (b) shows second-order bounds for the standard sum-rate R?1,1(n, ε)

as a function of γ ∈ [0, 1] for ε = 10−3. The lower bound is from prior
work [14]–[18], while the upper bound is our contribution. In subfigure (a),
along with the upper bound from (309), we also show the weaker upper bound
found by not taking the lower convex envelope in (308). Note that the stronger
bound is simply the lower convex envelope of the weaker bound.

Appendix E is quite technical, as well as being very specific
to the Gaussian channel. It would be advantageous to find
conditions that are easier to verify under which the second-
order bound holds.

A second potential improvement has to do with the quantity
V λα1,α2

in Thm. 9. Specifically, the form of V −α1,α2
in (180) is

not especially natural; it may be possible to improve the result
so that this quantity is complementary to V +

α1,α2
; that is, (179)

with an infimum instead of a supremum. In addition, Thm. 9
could be strengthened using dispersion quantities extracted
from multi-dimensional Gaussian CDFs, along the lines of the
achievable bounds in [14]–[19]. One may also wish to prove
something similar to Thm. 9 for non-discrete channels.
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Of course, the ultimate goal would be to determine the
second-order coefficient exactly. Even if the above improve-
ments could be made, there would remain a gap between
achievability and converse bounds for almost all channels,
including such simple examples as the deterministic binary
additive channel. It appears that new ideas are required in
order to close the gap completely. One possible direction of
improvement, which the method used here fails to address, is
the following. Consider the distribution of the error probability
conditioned on the message pair. That is, let ε(i1, i2) be the
error probability given message pair (i1, i2). Taking (I1, I2)
to be uniformly random over the message sets, it is critical to
characterize the distribution of the random variable ε(I1, I2)
in any MAC converse proof. In our proof, we do not use
anything about the distribution of ε(I1, I2) beyond that its
expected value is the overall error probability. In particular,
the proof would allow ε(I1, I2) to take values only {0, λ} for
some λ. Intuitively, no good code could give rise to such a
distribution on ε(I1, I2). Indeed, existing achievable bounds
produce distributions on ε(I1, I2) that are close to Gaussian—
very different from a distribution taking only two values. The
independence of the messages would seem to impose certain
restrictions on the distribution of this variable, but the precise
nature of these restrictions remains elusive.

Another intriguing area of inquiry relates to hypercontrac-
tivity. As discussed in Sec. III-D, the wringing dependence can
be upper bounded by a quantity related to hypercontractivity.
However, this upper bound did not actually help in the
converse proof. A lower bound on wringing dependence could
help establish that the regularity conditions of Corollary 8
are satisfied, as one must show that the information capacity
region does not grow too much by allowing a small wringing
dependence between the channel inputs. It is unclear whether
there is some alternative method of wringing that uses hyper-
contractivity more directly. Another question along these lines
is whether there is any connection between the technique used
here and that of [25], which proves second-order converses for
a variety of problems via reverse hypercontractivity.

APPENDIX A
PROOF OF PROPOSITION 4

To prove (110), we take δ ∈ [0, 1] to be such that (1 +
1/δ, 1 + δ) ∈ RX;Y , and we will show ∆(X;Y ) ≤ δ. Let
r = 1 + 1/δ and s = 1 + δ. It was found in [31] that an
equivalent condition for (r, s) ∈ RX;Y is that, for all f :
X → R, g : Y → R,

E[f(X)g(Y )] ≤ ‖f(X)‖r′‖g(Y )‖s, (313)

where r′ is the Hölder conjugate of r, defined by 1
r + 1

r′ = 1.
In this case, since r = 1 + 1/δ, r′ = 1 + δ. Thus, for all
real-valued functions f and g,

E[f(X)g(Y )] ≤ ‖f(X)‖1+δ‖g(Y )‖1+δ. (314)

Given any A ⊂ X ,B ⊂ Y , let f(x) = 1(x ∈ A) and g(y) =
1(y ∈ B). Thus

PXY (A,B) = E[f(X)g(Y )] (315)

≤ ‖f(X)‖1+δ‖g(Y )‖1+δ (316)

=
(
E
[
f(X)1+δ

]
E
[
g(Y )1+δ

])1/(1+δ)
(317)

= (PX(A)PY (B))
1/(1+δ)

. (318)

Therefore, δ satisfies the feasibility condition in (34) with
QX = PX , QY = PY , so ∆(X;Y ) ≤ δ.

It follows from the data processing inequality for wringing
dependence that ∆(Xn;Y n) is non-decreasing in n. We now
prove the limiting behavior in (111). Due to the tensorization
property of hypercontractivity (cf. [30]), RXn;Y n = RX;Y ,
and so ∆hyp(Xn;Y n) = ∆hyp(X;Y ). From the upper bound
we have already proved, ∆(Xn;Y n) ≤ ∆hyp(X;Y ) for any
n. Now it is enough to show

lim
n→∞

∆(Xn;Y n) ≥ ∆hyp(X;Y ). (319)

To prove this lower bound, suppose first that X ,Y are finite
sets; we will later relax this assumption. We will need some
results from the method of types. In particular, let Pn(X ) be
the set of n-length types on alphabet X ; that is, distributions
P ∈ P(X ) where P (x) is a multiple of 1/n for each x ∈ X .
For a sequence xn, let Pxn ∈ Pn(X ) be its type:

Pxn(x) =
|{t : xt = x}|

n
. (320)

Fix a finite alphabet U , and a conditional distribution PU |XY .
Let PUXY = PXY PU |XY . For each integer n, let P (n)

UXY be
the element of Pn(U × X × Y) closest in total variational
distance to PUXY . Note that dTV (P

(n)
UXY , PUXY ) → 0 as

n→∞. Define the type class

T (X) = {xn : Pxn = P
(n)
X }; (321)

T (U), T (XY ), etc. are defined similarly. Given a sequence
un ∈ T (U), define the conditional type class

T (X|un) = {xn : Punxn = P
(n)
UX}; (322)

again T (Y |un), T (XY |un) are defined similarly. A basic
result from the method of types (see e.g. [40, Chap. 11]) is
that

1

(n+ 1)|X |·|U|
exp{nH(X|U)} ≤ |T (X|un)|

≤ exp{nH(X|U)} (323)

where the conditional entropy is with respect to P
(n)
UXY .

Moreover, for any xn ∈ T (X|un),

PXn(xn) = exp{−n(H(X) +D(P
(n)
X ‖PX)}. (324)

Similar facts hold for T (Y |un), T (XY |un). We may now
lower bound ∆(Xn;Y n) by restricting A and B to the sets
T (X|un) and T (Y |un) respectively, for some un ∈ T (U).
Thus

∆(Xn;Y n) ≥ inf
QXn ,QY n

max
un∈T (U)

logQXn(T (X|un))QY n(T (Y |un))

logPXnY n(T (X|un), T (Y |un))
− 1. (325)

In this expression, QXn is only evaluated on sequences
xn ∈ T (X). Moreover, the objective function is symmetric
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among the sequences xn in this type class. Similar facts hold
for QY n . Thus, by the convexity of the expression in (325)
in (QXn , QY n), the optimal choices of QXn and QY n are
uniform over T (X) and T (Y ) respectively. Thus, for any
un ∈ T (U),

QXn(T (X|un)) =
|T (X|un)|
|T (X)|

≤ (n+ 1)|X | exp{−nI(U ;X)}. (326)

Similarly

QY n(T (Y |un)) ≤ (n+ 1)|Y| exp{−nI(U ;Y )}. (327)

We may also write

PXnY n(T (X|un), T (Y |un))

≥ PXnY n(T (XY |un)) (328)

= |T (XY |un)| exp{−n(H(XY ) +D(P
(n)
XY ‖PXY )} (329)

≥
exp{−n(I(U ;XY ) +D(P

(n)
XY ‖PXY ))}

(n+ 1)|X |·|Y|·|U|
. (330)

Thus

∆(Xn;Y n) ≥
−I(U ;X)I(U ;Y ) + (|X |+ |Y|) log(n+1)

n

−I(U ;XY )−D(P
(n)
XY ‖PXY )− (|X |·|Y|·|U|) log(n+1)

n

−1

(331)

By the continuity of Kullback-Leibler divergence for finite
alphabets, D(P

(n)
XY ‖PXY ) → 0 as n → ∞. Thus, if we take

a limit as n→∞, we find

lim
n→∞

∆(Xn;Y n) ≥ sup
U

I(U ;X) + I(U ;Y )

I(U ;XY )
− 1 (332)

where we have taken a supremum over all finite alphabets U
and all conditional distributions PU |XY , and now the mutual
informations are with respect to PUXY .

We now show that the RHS of (332) is lower bounded by
∆hyp(X;Y ). As shown in [32], for any r ≥ s ≥ 1, (r, s) ∈
RX;Y if and only if

s ≥ sup
U

rI(U ;Y )

rI(U ;XY )− (r − 1)I(U ;X)
(333)

where the supremum is over variables U with finite alphabets.
(In fact, an alphabet of size 2 is enough.) Consider any δ <
∆hyp(X;Y ). By the definition of ∆hyp in (109), it must be that
(1 + 1/δ, 1 + δ) /∈ RX;Y . By the equivalent characterization
of RX;Y in (333), this implies there exists a variable U such
that

1 + δ <
(1 + 1

δ )I(U ;Y )

(1 + 1
δ )I(U ;XY )− 1

δ I(U ;X)
. (334)

Rearranging gives

δ <
I(U ;Y ) + I(U ;X)

I(U ;XY )
− 1. (335)

As this holds for any δ < ∆hyp(X;Y ), the RHS of (332) is
indeed lower bounded by ∆hyp(X;Y ).

While the above argument only applies for finite alphabets,
for infinite alphabets we may apply a quantization argument as
follows. Let [X], [Y ] be finite quantizations of X,Y . We write
[X]n = ([X1], . . . , [Xn]) where each [Xt] is the quantization
of Xt using the same quantization. By the data processing
inequality and the fact that we have already proved the lower
bound in (319) for finite alphabets,

lim
n→∞

∆(Xn;Y n) ≥ lim
n→∞

∆([X]n; [Y ]n) ≥ ∆hyp([X]; [Y ]).

(336)
We may take a supremum on the RHS over all finite quan-
tizations, so it is enough to show that this supremum equals
∆hyp(X;Y ). Some equivalent forms for ∆hyp are as follows:

∆hyp(X;Y )

= inf{δ ≥ 0 : E[f(X)g(Y )] ≤ ‖f(X)‖1+δ‖g(Y )‖1+δ

for all f, g} (337)
= sup{δ ≥ 0 : E[f(X)g(Y )] > ‖f(X)‖1+δ‖g(Y )‖1+δ

for some f, g}. (338)

Recalling the definition of a simple function as one that takes
on only finitely many values, we may write

sup
finite quantizations [X],[Y ]

∆hyp([X]; [Y ])

= sup{δ ≥ 0 : E[f(X)g(Y )] > ‖f(X)‖1+δ‖g(Y )‖1+δ

for some simple f, g}. (339)

By the usual definition of the Lebesgue integral, if
there exist functions f, g such that E[f(X)g(Y )] >
‖f(X)‖1+δ‖g(Y )‖1+δ , then there also exist simple functions
satisfying the same inequality. This proves that the quantity in
(339) equals ∆hyp(X;Y ).

APPENDIX B
PROOF OF LEMMA 5

Assume ∆(X;Y ) ≤ δ. One way to express the maximal
correlation is

ρm(X;Y ) = sup
f,g:

E[f(X)]=E[g(Y )]=0,
Var(f(X))=Var(g(Y ))=1

E[f(X)g(Y )]. (340)

Take any f, g such that f(X), g(Y ) have zero mean and unit
variance. We wish to show that E[f(X)g(Y )] ≤ O(δ log δ−1).
We may define X ′ = f(X) and Y ′ = g(Y ). By the fact that
∆ satisfies the data processing inequality, ∆(X ′;Y ′) ≤ δ.
To simplify notation, we drop the primes, and assume that
X and Y are themselves real-valued random variables with
zero mean and unit variance. Now it is enough to show that
E[XY ] ≤ O(δ log δ−1).

We upper bound E[XY ] by breaking into pieces as follows:

E[XY ] = E[XY 1(X > 0, Y > 0)]

+ E[XY 1(X > 0, Y < 0)]

+ E[XY 1(X < 0, Y > 0)]

+ E[XY 1(X < 0, Y < 0)]. (341)

We will proceed to show that
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|E[XY 1(X > 0, Y > 0)]− E[X1(X > 0)]E[Y 1(Y > 0)]|
≤ O(δ log δ−1). (342)

This is enough to prove the lemma, since each term in (341)
can be bounded using (342) by swapping X with −X and/or
Y with −Y . The primary tool we use to prove (342) is
the consequence of ∆(X;Y ) ≤ δ in (43), which upper
bounds a joint probability over PXY in terms of the marginal
probabilities raised to the power 1/(1 + δ). To apply this fact
to bound the expectation requires writing the expectation in
terms of probabilities, which can be done as follows:

E[XY 1(X > 0, Y > 0)]

=

∫ ∞
0

dx

∫ ∞
0

dyP(X > x, Y > y). (343)

We may now apply (43) to the probability P(X > x, Y > y)
to derive the upper bound

E[XY 1(X > 0, Y > 0)] ≤ (1 + 2δ)

·
∫ ∞

0

P(X > x)1/(1+δ)dx

∫ ∞
0

P(Y > y)1/(1+δ)dy. (344)

We may now bound one of the integrals in (344) by writing∫ ∞
0

P(X > x)1/(1+δ)dx− E[X1(X > 0)]

=

∫ ∞
0

[
P(X > x)1/(1+δ) − P(X > x)

]
dx (345)

≤
∫ ∞

0

[
P(X > x)1/(1+δ) − 1

1 + δ
P(X > x)

]
dx (346)

≤
∫ 1

0

δ

1 + δ
dx+

∫ ∞
1

[(
1

x2

)1/(1+δ)

− 1

(1 + δ)x2

]
dx

(347)

=
4δ

1− δ2
(348)

= O(δ) (349)

where (347) holds because the function p 7→ p1/(1+δ) − p
1+δ

is an increasing function for any δ with a maximum value
of δ

1+δ , and since P(X > x) ≤ 1/x2 from the assumption
that E[X2] = 1 and Chebyshev’s inequality. Since the same
argument holds for the integral over y in (344), we have

E[XY 1(X > 0, Y > 0)]

≤ (1 + 2δ)(E[X1(X > 0)] +O(δ))(E[Y 1(Y > 0)] +O(δ))
(350)

≤ E[X1(X > 0)]E[Y 1(Y > 0)] +O(δ) (351)

where we have used the fact that

E[X1(X > 0)] ≤
√
E[X21(X > 0)] ≤

√
E[X2] ≤ 1 (352)

and the same holds for Y .
We now lower bound E[XY 1(X > 0, Y > 0)]. Again

using the integral expansion in (343), we may do so by lower
bounding P(X > x, Y > y). It will be convenient to define
the function

kδ(p) =

{
(1 + 2δ)p1/(1+δ) − p, p ≤ 1

2δ, p > 1
. (353)

For p ≥ 0, kδ(p) is non-decreasing, concave, and 0 ≤ kδ(p) ≤
2δ. For any x ≥ 0, y ≥ 0,

P(X > x, Y > y)

= P(X > x)− P(X > x, Y ≤ y) (354)

≥ P(X > x)− (1 + 2δ) [P(X > x)P(Y ≤ y)]
1/(1+δ)

(355)
= P(X > x)P(Y > y) + P(X > x)P(Y ≤ y)

− (1 + 2δ) [P(X > x)P(Y ≤ y)]
1/(1+δ) (356)

= P(X > x)P(Y > y)− kδ(P(X > x, Y ≤ y)) (357)
≥ P(X > x)P(Y > y)− kδ(P(X > x)) (358)

where in (355) we have again applied (43), in (357) we have
used the definition of kδ , and in (358) we have used the fact
that kδ is non-decreasing. We may now bound

E[X1(X > 0)]E[Y 1(Y > 0)]− E[XY 1(X > 0, Y > 0)]

(359)

=

∫ ∞
0

dx

∫ ∞
0

dy
[
P(X > x)P(Y > y)

− P(X > x, Y > y)
]

(360)

≤
∫ ∞

0

dx

∫ ∞
0

dymin{P(X > x)P(Y > y),

kδ(P(X > x)), kδ(P(Y > y)} (361)

where (361) holds by three upper bounds on P(X > x)P(Y >
y) − P(X > x, Y > y): the fact that P(X > x, Y > y) ≥
0, the bound in (358), and the bound in (358) with X and
Y swapped. To further upper bound (361), we separate the
integral over x and y into three regions: when x, y ≥ δ−1/2,
we upper bound the integrand by P(X > x)P(Y > y); when
y ≤ x and y ≤ δ−1/2, we upper bound the integrand by
kδ(P(X > x)); when x ≤ y and x ≤ δ−1/2, we upper bound
the integrand by kδ(P(Y > y)). Thus (361) is at most∫ ∞

δ−1/2

P(X > x)dx

∫ ∞
δ−1/2

P(Y > y)dy

+

∫ ∞
0

dx

∫ min{x,δ−1/2}

0

dy kδ(P(X > x))

+

∫ ∞
0

dy

∫ min{y,δ−1/2}

0

dx kδ(P(Y > y)). (362)

We now bound each term in (362) in turn. In the first term in
(362), Chebyshev’s inequality gives∫ ∞

δ−1/2

P(X > x)dx ≤
∫ ∞
δ−1/2

1

x2
dx =

√
δ. (363)

The same calculation holds for Y , so the first term in (362)
is at most δ. The second term in (362) may be bounded by∫ ∞

0

min{x, δ−1/2}kδ(P(X > x))dx (364)

=

∫ δ−1/2

0

x kδ(P(X > x))dx

+ δ−1/2

∫ ∞
δ−1/2

kδ(P(X > x))dx (365)
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≤ 1

2δ

∫ δ−1/2

0

2δx kδ(P(X > x))dx

+ δ−1/2

∫ ∞
δ−1/2

kδ(1/x
2)dx (366)

≤ 1

2δ
kδ

(∫ δ−1/2

0

2δxP(X > x)

)

+ δ−1/2

(
(1 + 2δ)(1 + δ)

1− δ
δ

1−δ
2(1+δ) − δ1/2

)
(367)

≤ 1

2δ
kδ(δ) +

(1 + 2δ)(1 + δ)

1− δ
δ−δ/(1+δ) − 1 (368)

=
1

2

(
(1 + 2δ)δ−δ/(1+δ) − 1

)
+

(1 + 2δ)(1 + δ)

1− δ
δ−δ/(1+δ)

− 1 (369)
= O(−δ log δ) (370)

where (366) holds by Chebyshev’s inequality and the fact
that kδ is increasing; (367) holds since kδ is concave and∫ δ−1/2

0
2δx = 1; (368) holds since∫ δ−1/2

0

2xP(X > x) ≤
∫ ∞

0

2xP(X > x) = E[X2] = 1

(371)
and (370) holds since δ−δ/(1+δ) = 1− δ log δ+O(δ2 log2 δ).
The third term in (362) may be bounded by an identical
calculation. This completes the proof of (342), which therefore
proves the lemma.

APPENDIX C
PROOF OF LEMMA 11

Given that ∆(X;Y ) ≤ δ,

dTV (PXY , PXPY )

=
∑
x,y

|PXY (x, y)− PX(x)PY (y)|+ (372)

=
∑
x

∑
y:PXY (x,y)>PX(x)PY (y)

(PXY (x, y)− PX(x)PY (y))

(373)

≤
∑
x

2δ (374)

= 2δ|X | (375)

where in (374) we have applied (44) from Thm. 2 with the
particularizations A = {x} and B = {y : PXY (x, y) >
PX(x)PY (y)}. Applying the same argument swapping X and
Y gives

dTV (PXY , PXPY ) ≤ 2δmin{|X |, |Y|}. (376)

Since Z is the output of the channel with X,Y as the inputs,
while Z̃ is the output of the channel with X̃, Ỹ as the inputs,
this also means that dTV (PXY Z , PX̃Ỹ Z̃) ≤ 2δmin{|X |, |Y|}.

We may relate the conditional entropies as follows:

H(Z|X,Y )

=
∑
x,y

PXY (x, y)H(Z|X = x, Y = y) (377)

≥
∑
x,y

PX(x)PY (y)H(Z|X = x, Y = y)

−
∑
x,y

|PXY (x, y)− PX(x)PY (y)|+H(Z|X = x, Y = y)

(378)

≥ H(Z̃|X̃, Ỹ )− 2δmin{|X |, |Y|} log |Z|. (379)

To complete the proof of the lemma, we must bound H(Z),
H(Z|X), and H(Z|Y ). The main difficulty is that the entropy
is not Lipschitz continuous, so the fact that the total variational
distance is O(δ) does not immediately imply that the entropies
differ by O(δ). We circumvent this problem using the stronger
consequence of ∆(X;Y ) ≤ δ in (43) from Thm. 2. We first
bound H(Z). Let z ∈ Z be such that PZ̃(z) ≥ 1/4. Then by
the total variational bound,

PZ(z) ≥ PZ̃(z)− 2δmin{|X |, |Y|} ≥ e−2 (380)

where the second inequality holds for sufficiently small δ, and
since e−2 < 1/4. Consider the function f(p) = −p log p.
Since f ′(p) = − log p− 1, if p ≥ e−2 then

|f ′(p)| ≤ 1. (381)

Since we have established that PZ(z), PZ̃(z) ≥ e−2, and
|PZ(z)− PZ̃(z)| ≤ 2δmin{|X |, |Y|}, we have

− PZ(z) logPZ(z) ≤ −PZ̃(z) logPZ̃(z) + 2 min{|X |, |Y|}δ.
(382)

Note there are at most 4 values of z where PZ̃(z) ≥ 1/4, so∑
z:PZ̃(z)≥1/4

[−PZ(z) logPZ(z) + PZ(z) logPZ̃(z)]

≤ 8 min{|X |, |Y|}δ. (383)

Now suppose z ∈ Z is such that PZ̃(z) < 1/4. Let rz =∑
x,yW (z|x, y). Assume without loss of generality that all

letters in Z are reachable (i.e. W (z|x, y) > 0 for some x, y).
Thus rz ≥Wmin. We may now bound

PZ(z) =
∑
x,y

PXY (x, y)W (z|x, y) (384)

≤
∑
x,y

(1 + 2δ)(PX(x)PY (y))1/(1+δ)W (z|x, y)

(385)

= (1 + 2δ)rz
∑
x,y

W (z|x, y)

rz
(PX(x)PY (y))1/(1+δ)

(386)

≤ (1 + 2δ)rz

(∑
x,y

W (z|x, y)

rz
PX(x)PY (y)

)1/(1+δ)

(387)

= (1 + 2δ)r−δ/(1+δ)
z PZ̃(z)1/(1+δ) (388)

≤ (1 + 2δ)W
−δ/(1+δ)
min PZ̃(z)1/(1+δ) (389)

≤ (1 + 2δ)(1− δ logWmin +O(δ2))PZ̃(z)1/(1+δ)

(390)

where (385) follows from (43), and (387) holds by the
definition of rz and by the concavity of the function p1/(1+δ).
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By the assumption that PZ̃(z) < 1/4, for sufficiently small δ,
(390) is less than e−1. Thus, we are in the increasing regime
of the function −p log p. In particular

− PZ(z) logPZ(z)

≤ −
[
(1 + 2δ)(1− δ logWmin +O(δ2))PZ̃(z)1/(1+δ)

]
· log

[
(1 + 2δ)(1− δ logWmin +O(δ2))PZ̃(z)1/(1+δ)

]
(391)

≤ −1 + 2δ

1 + δ
(1− δ logWmin+O(δ2))PZ̃(z)1/(1+δ) logPZ̃(z)

(392)

where in (392) we have simply dropped terms greater than
1 inside the log. Here we need a technical result. For any
p ∈ [0, 1], let gp(δ) = −p1/(1+δ) log p. We claim that for all
δ ≥ 0,

gp(δ) ≤ −p log p+ 4e−2δ. (393)

Since gp(0) = −p log p, it is enough to show that g′p(δ) ≤
4e−2 for all δ. The first and second derivatives of gp are

g′p(δ) =
p1/(1+δ) log2 p

(1 + δ)2
, (394)

g′′p (δ) = p1/(1+δ) log2 p

(
−2

(1 + δ)3
− log p

(1 + δ)4

)
. (395)

Note that g′′p (δ) ≤ 0 iff

− 2(1 + δ)− log p ≤ 0. (396)

That is, g′p(δ) is maximized at δ = − log p
2 − 1. Thus

g′p(δ) ≤
p

2
− log p log2 p(
− log p

2

)2 = 4p
2

− log p

= 4 exp

{
log p

2

− log p

}
= 4e−2. (397)

This proves the claim in (393). Applying this result to (392)
gives

− PZ(z) logPZ(z)

≤ 1 + 2δ

1 + δ
(1− δ logWmin +O(δ2))

·
[
−PZ̃(z) logPZ̃(z) + 4e−2δ

]
(398)

≤ −PZ̃(z) logPZ̃(z) +
[
(1− logWmin)e−1 + 4e−2

]
δ

+O(δ2) (399)

where in (399) we have used the fact that −p log p ≤ e−1.
Therefore

H(Z)−H(Z̃)

≤ 8 min{|X |, |Y|}δ

+
∑

z:PZ̃(z)<1/4

([
(1− logWmin)e−1 + 4e−2

]
δ +O(δ2)

)
(400)

≤
[
8 min{|X |, |Y|}+ |Z|

(
(1− logWmin)e−1 + 4e−2

)]
δ

+O(δ2) (401)

Combining (401) with the bound on conditional entropy in
(379) proves (206).

To prove the bound on I(X;Z|Y ) in (207), we need to
bound H(Z|Y ), or equivalently H(Y,Z), since H(Y ) =
H(Ỹ ). We may almost the same argument as above, but with
the joint distribution PY Z in place of PZ . In particular, if
PỸ Z̃(y, z) ≥ 1/4, then

− PY Z(y, z) logPY Z(y, z)

≤ −PỸ Z̃(y, z) logPỸ Z̃(y, z) + 2 min{|X |, |Y|}δ. (402)

To deal with PỸ Z̃(y, z) < 1/4, let rz|y =
∑
xW (z|x, y). If

rz|y = 0, then PY Z(y, z) = PỸ Z̃(y, z) = 0, so this letter pair
can be discarded. Otherwise, rz|y ≥Wmin, so

PY Z(y, z) =
∑
x

PXY (x, y)W (z|x, y) (403)

≤
∑
x

(1 + 2δ)(PX(x)PY (y))1/(1+δ)W (z|x, y)

(404)

≤ (1 + 2δ)r
−δ/(1+δ)
z|y PỸ Z̃(y, z)1/(1+δ) (405)

≤ (1 + 2δ)W
−δ/(1+δ)
min PỸ Z̃(y, z)1/(1+δ). (406)

The remainder of the proof is essentially identical, and so we
find

H(Z|Y ) ≤ H(Z̃|Ỹ ) +
[
8 min{|X |, |Y|}

+ |Y| · |Z|
(
(1− logWmin)e−1 + 4e−2

) ]
δ +O(δ2). (407)

Combining with the bound on the entropy conditioned on X,Y
in (379) proves (207). The bound on I(Y ;Z|X) in (208) is
proved by the same argument.

APPENDIX D
PROOF OF PROP. 12

If δ ≥ 1−log2(1+2−α)
1+log2(1+2−α) , then we may simply ignore the

constraint on the wringing dependence, so

C1,α(δ) ≤ max
PXY

γ̄ [αH(X + Y ) + (1− α)H(X|Y )]

= γ̄
[
log(1 + 2−α) + α log 2

]
. (408)

Now consider δ < 1−log2(1+2−α)
1+log2(1+2−α) . We define for convenience

rz = P(X + Y = z) for z = 0, 1, 2. Note that

αH(X + Y ) + (1− α)H(X|Y )

≤ αH(X + Y ) + (1− α)H(X ⊕ Y )

= αH(r0, r1, r2) + (1− α)Hb(r0 + r2) (409)

where ⊕ is modulo 2 addition, and we have used the fact that
X⊕Y = 0 iff X+Y ∈ {0, 2}. Since ∆(X;Y ) ≤ δ, using the
properties of the wringing dependence in Thm. 2, there exist
QX , QY ∈ P({0, 1}) such that

r0 = PXY (0, 0) ≤ (QX(0)QY (0))1/(1+δ). (410)

Similarly r2 ≤ (QX(1)QY (1))1/(1+δ). Thus
√
r0 +

√
r2

≤ (QX(0)QY (0))1/(2(1+δ)) + (QX(1)QY (1))1/(2(1+δ))

(411)
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≤ 21−1/(1+δ) (412)

where (412) holds because (pq)ρ is concave in (p, q) for
0 ≤ ρ ≤ 1, and so the quantity in (411) is maximized with
QX(0) = QY (0) = 1/2. We may rewrite the constraint in
(412) as

4r0r2 ≤ (21−1/(1+δ) − r0 − r2)2. (413)

Thus

αH(r0, r1, r2) + (1− α)Hb(r0 + r2) (414)

≤ max
r0,r2∈[0,1]:
r0+r2≤1,

4r0r2≤(21−1/(1+δ)−r0−r2)2

[
− (1− r0 − r2) log(1− r0 − r2)

+ α(−r0 log r0 − r2 log r2)

− (1− α)(r0 + r2) log(r0 + r2)
]

(415)

≤ min
λ≥0

max
r0,r2∈[0,1]:
r0+r2≤1

[
− (1− r0 − r2) log(1− r0 − r2)

+ α(−r0 log r0 − r2 log r2)

− (1− α)(r0 + r2) log(r0 + r2)

+ λ((21−1/(1+δ) − r0 − r2)2 − 4r0r2)
]
. (416)

Let f(r0, r2;λ) be the function in (416). We claim that for
any λ ≤ α, f(r0, r2;λ) is concave in (r0, r2). The Hessian
with respect to (r0, r2) is given by

∇2f(r0, r2;λ) =[
− r0+r2(1−r0−r2)α
r0(1−r0−r2)(r0+r2) + λ − 1−(1−r0−r2)α

(1−r0−r2)(r0+r2) − λ
− 1−(1−r0−r2)α

(1−r0−r2)(r0+r2) − λ − r2+r0(1−r0−r2)α
r2(1−r0−r2)(r0+r2) + λ

]
.

(417)

We need to show that ∇2f(r0, r2;λ) is negative semi-definite;
this requires that the upper left element is non-positive, and the
determinant is non-negative. The upper left element is given
by

− r0 + r2(1− r0 − r2)α

r0(1− r0 − r2)(r0 + r2)
+ λ

≤ − 1

(1− r0 − r2)(r0 + r2)
+ λ (418)

≤ −4 + λ (419)
≤ −3 (420)

where (418) holds because α ≥ 0, (419) holds because x(1−
x) ≤ 1/4, and (420) holds by the assumption that λ ≤ α ≤ 1.
The determinant of the Hessian is given by

|∇2f(r0, r2;λ)|

=
(r0 + r2)α− (4r0r2 + (1− r0 − r2)(r0 − r2)2α)λ

r0r2(1− r0 − r2)(r0 + r2)
(421)

≥
α
[
r0 + r2 − 4r0r2 − (1− r0 − r2)(r0 − r2)2α

]
r0r2(1− r0 − r2)(r0 + r2)

(422)

≥
α
[
r0 + r2 − 4r0r2 − (1− r0 − r2)(r0 − r2)2

]
r0r2(1− r0 − r2)(r0 + r2)

(423)

=
α [1− r0(1− r0)− r2(1− r2)− 2r0r2]

r0r2(1− r0 − r2)
(424)

≥ 0 (425)

where (422) holds by the assumption that λ ≤ α, (423) holds
since α ≤ 1, and (425) holds again since x(1− x) ≤ 1/4 and
since r0 + r2 ≤ 1. We may upper bound (416) by choosing
any λ ≥ 0. With some hindsight, we choose

λ = 2−2+1/(1+δ)
[
log
(

2−1+2/(1+δ) − 1
)

+ α log 2
]
. (426)

Note that λ ≥ 0 if

1 ≤ 2α
(

2−1+2/(1+δ) − 1
)
. (427)

This indeed holds by the assumption that δ < 1−log2(1+2−α)
1+log2(1+2−α) .

In addition, noting that λ is decreasing in δ,

λ ≤ 2−1
[
log(21 − 1) + α log 2

]
=
α log 2

2
< α. (428)

Thus, by the above claim, for this value of λ, f(r0, r2;λ)
is concave. Since the function is also symmetric between r0

and r2, it is maximized at r0 = r2 = r. Differentiating this
function, the maximizing value of r is found at

0 =
d

dr
f(r, r;λ) = 2 log(1− 2r)− 2 log r

− (1− α)2 log 2− 4 · 21−1/(1+δ)λ (429)

This is solved at r = 2−2/(1+δ). At this value, the constraint
in (413) holds with equality. Thus the upper bound from (416)
becomes

αH(r0, r1, r2) + (1− α)Hb(r0 + r2)

≤ Hb(2
1−2/(1+δ)) + α21−2/(1+δ) log 2. (430)

This gives an upper bound on C1,α(δ) that exactly matches
the lower bound in (301).

APPENDIX E
PROOF OF THM. 13

A. Bounding C ′α1,α2
(0)

Let (α1, α2) = (1, α) for α ∈ [0, 1]. Recall that

C1,α(δ) = sup
X,Y,U :∆(X;Y |U=u)≤δ ∀u,

E[X2]≤S1,

E[Y 2]≤S2[
αI(X,Y ;Z|U) + (1− α)I(X;Z|Y, U)

]
. (431)

Note that

C1,α(0) = α
1

2
log(1+S1+S2)+(1−α)

1

2
log(1+S1). (432)

Since C1,α(δ) is convex in α,

C1,α(δ) ≤ αC1,1(δ) + (1− α)C1,0(δ). (433)

We may easily bound the second term:

C1,0(δ) = sup
X,Y,U :∆(X;Y |U=u)≤δ ∀u,

E[X2]≤S1,

E[Y 2]≤S2

I(X;Z|Y,U) (434)

≤ sup
X,Y :E[X2]≤S1,E[Y 2]≤S2

h(X +N)− h(N) (435)
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≤ 1

2
log(1 + S1) (436)

= C1,0(0) (437)

where h(·) denotes the differential entropy. This implies that
C ′1,0(0) = 0. Thus, to uniformly bound C ′1,α(δ) for all α, it
is enough to prove that C ′1,1(0) <∞. Let X,Y, U be any set
of variables satisfying the constraints in the infimum in (431).
Note that

I(X,Y ;Z|U) ≤ h(Z|U)− h(N) (438)

= h(Z|U)− 1

2
log 2πe. (439)

Now it is enough to show h(Z|U) ≤ 1
2 log 2πe(1+S1 +S2)+

O(δ). For each u, let S1u = E[X2|U = u], S2u = E[Y 2|U =
u]. Thus

∑
u PU (u)S1u ≤ S1,

∑
u PU (u)S2u ≤ S2. Our goal

is to show that, for each u

h(Z|U = u) ≤ 1

2
log 2πe(1 + S1u + S2u) +O(δ) (440)

which implies

h(Z|U) =
∑
u

PU (u)h(Z|U = u)

≤ 1

2
log 2πe(1 + S1 + S2) +O(δ) (441)

where we have used the concavity of the log. For convenience,
for the remainder of the proof we drop the conditioning on u.
Throughout this proof, we are careful to use O(·) notation
only when the implied constant is universal, and in particular
does not depend on S1, S2.

We may assume without loss of generality that X and Y
have zero mean, since if they do not, shifting their means to
zero does not change h(Z), and only reduces E[X2],E[Y 2].
For convenience define S = 1 +S1 +S2. Since our goal to is
to prove (440), we may assume

h(Z) ≥ 1

2
log(2πeS) (442)

because otherwise we have nothing to prove. Let σ2
Z =

E[Z2]. Since ∆(X;Y ) ≤ δ, from Lemma 5, we have
ρm(X;Y ) ≤ O(δ log δ−1). This implies that E[XY ] ≤√
S1S2O(δ log δ−1). Thus,

σ2
Z = E[(X + Y +N)2] (443)

= S + 2E[XY ] (444)

≤ S + 2
√
S1S2O(δ log δ−1) (445)

≤ S + S O(δ log δ−1) (446)

where in (444) we have used the fact that N is independent
from (X,Y ), and (446) follows because 2

√
S1S2 ≤ S1+S2 ≤

S. Let Z̃ ∼ N (0, S), so

h(Z) =
1

2
log 2πS +

σ2
Z

2S
−D(PZ‖PZ̃) (447)

≤ 1

2
log 2πS +

1

2
+O(δ log δ−1)− 2dTV (PZ‖PZ̃)2

(448)

=
1

2
log 2πeS +O(δ log δ−1)− 2dTV (PZ‖PZ̃)2

(449)

where the (448) follows from the bound on σ2
Z in (446) and

from Pinsker’s inequality. Applying the lower bound on h(Z)
from (442) gives

dTV (PZ‖PZ̃) ≤ O(
√
δ log δ−1). (450)

For any function f : R→ [0, fmax],∣∣∣E[f(Z)]− E[f(Z̃)]
∣∣∣

=

∣∣∣∣∣
∫ fmax

0

[P(f(Z) > a)− P(f(Z̃) > a)]da

∣∣∣∣∣ (451)

≤
∫ fmax

0

∣∣∣P(f(Z) > a)− P(f(Z̃) > a)
∣∣∣ da (452)

≤ fmaxdTV (PZ‖PZ̃) (453)

≤ fmaxO(
√
δ log δ−1). (454)

where (453) follows from the fact that for any A ⊂ R,
|PZ(A)− PZ̃(A)| ≤ dTV (PZ , PZ̃).

The following definitions will be key to the remainder of
the proof:

τX =
S1√
S
−
√
S

8
log δ, (455)

τY =
S2√
S
−
√
S

8
log δ, (456)

τN =
1√
S
, (457)

τZ = τX + τY + τN =
√
S

(
1− 1

4
log δ

)
, (458)

mX = E
[
eX/
√
S1(X < τX)

]
, (459)

mY = E
[
eY/
√
S1(Y < τY )

]
. (460)

Similarly to the proof of Lemma 5, the core of the proof
involves upper and lower bounding

E[XY 1(X > 0, Y > 0)]− E[X1(X > 0)]E[Y 1(Y > 0)].
(461)

Since ∆(X;Y ) ≤ δ, the same argument as in (343)–(351)
shows that the quantity (461) is upper bounded by√

S1S2O(δ) ≤ S O(δ). (462)

To lower bound (461), we cannot use precisely the same argu-
ment as in Lemma 5, since we need a bound that eliminates
the log δ−1 term. We first divide (461) into four terms:

E[XY 1(X > 0, Y > 0)]− E[X1(X > 0)]E[Y 1(Y > 0)]

=
(
E[XY 1(0 < X < τX , 0 < Y < τY )]

− E[X1(0 < X < τX)]E[Y 1(0 < Y < τY )]
)

+
(
E[XY 1(X ≥ τX , 0 < Y < τY )]

− E[X1(X ≥ τX)]E[Y 1(0 < Y < τY )]
)

+
(
E[XY 1(0 < X < τX , Y ≥ τY )]

− E[X1(0 < X < τX)]E[Y 1(Y ≥ τY )]
)
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+
(
E[XY 1(X ≥ τX , Y ≥ τY )]

− E[X1(X ≥ τX)]E[Y 1(Y ≥ τY )]
)
. (463)

In order to bound the first term in the RHS of (463),
we tighten the proof technique of Lemma 5 by bounding
mX ,mY . Since mX ,mY are essentially values of the moment
generating functions for X and Y , bounding mX ,mY allows
us to apply Chernoff bounds to probabilities involving X and
Y . We exploit the fact that Chernoff bounds are stronger than
the Chebyshev’s bounds used in the proof of Lemma 5 to
prove a tighter bound in this context. We first relate mX ,mY

to a moment generating function for Z, by writing

E
[
eZ/
√
S1(Z < τZ)

]
(464)

= E
[
e(X+Y+N)/

√
S1(X + Y +N < τX + τY + τN )

]
(465)

≥ E
[
e(X+Y+N)/

√
S1(X < τX , Y < τY , N < τN )

]
(466)

= E
[
e(X+Y )/

√
S1(X < τX , Y < τY )

] 1

2
e1/(2S) (467)

≥ 1

2

(
E
[
eX/
√
S1(X < τX)

]
E
[
eY/
√
S1(Y < τY )

]
−O(δ log δ−1)

√
Var

(
eX/
√
S1(X < τX)

)
·
√

Var
(
eY/
√
S1(Y < τY )

))
(468)

≥ 1

2

(
E
[
eX/
√
S1(X < τX)

]
E
[
eY/
√
S1(Y < τY )

]
−O(δ log δ−1)

√
E
[
e2X/

√
S1(X < τX)

]
·
√

E
[
e2Y/

√
S1(Y < τY )

])
(469)

≥ 1

2

[
mXmY −O(δ log δ−1) exp

{
τX + τY√

S

}]
(470)

=
1

2

[
mXmY −O(δ log δ−1) exp

{
S1 + S2

S
− 1

4
log δ

}]
(471)

≥ 1

2

[
mXmY −O(δ3/4 log δ−1)

]
(472)

where (466) holds because the random quantity in (465)
is non-negative and since X < τX , Y < τY , N < τN
implies Z < τZ , (467) holds since N is a standard Gaussian
independent of (X,Y ), (468) holds by the bound on ρm(X;Y )
from Lemma 5, (470) holds from the simple upper bound on
E
[
e2X/

√
S1(X < τX)

]
found by plugging in X = τX , and

(472) holds since S1 + S2 ≤ S. We now apply the total
variational bound in (454) to upper bound the quantity in
(464). Specifically, since ez/

√
S1(z < τZ) ≤ eτZ/

√
S ,

E
[
eZ/
√
S1(Z < τZ)

]
≤ E

[
eZ̃/
√
S1(Z < τZ)

]
+ eτZ/

√
SO(

√
δ log δ−1) (473)

≤ e1/2 + e δ−1/4O(
√
δ log δ−1) (474)

= e1/2 +O(δ1/4
√

log δ−1) (475)

where in (474) we have used the fact that Z̃ ∼ N (0, S).
Combining the bounds in (472) and (475) yields

mXmY ≤ 2e1/2 +O(δ1/4
√

log δ−1). (476)

Since 2e1/2 < 4, and recalling that the implied constant in
the O(·) term in (476) is universal, we may assume that δ is
sufficiently small that mXmY ≤ 4.

We now lower bound the first term in (463), or equivalently
upper bound the negative of this term. As in the proof of
Lemma 5, we will use the function kδ , defined in (353). By
an identical argument as in (354)–(358),

P(x < X < τX)P(y < Y < τY )

− P(x < X < τX , y < Y < τY )

≤ kδ (min{P(x < X < τX), P(y < Y < τY )}) . (477)

Thus

E[X1(0 < X < τX)]E[Y 1(0 < Y < τY )]

− E[XY 1(0 < X < τX , 0 < Y < τY )] (478)

=

∫ τX

0

dx

∫ τY

0

dy
[
P(x < X < τX)P(y < Y < τY )

− P(x < X < τX , y < Y < τY )
]

(479)

≤
∫ τX

0

dx

∫ τY

0

dy kδ
(

min{P(x < X < τX),

P(y < Y < τY )}
)
. (480)

For any x ≤ τX , a Chernoff-type bound gives

P(x < X < τX) ≤ e−x/
√
SE
[
eX/
√
S1(X < τX)

]
= e−x/

√
SmX (481)

and similarly P(y < Y < τX) ≤ e−y/
√
SmY , so the difference

in (478) is at most∫ τX

0

dx

∫ τY

0

dy kδ

(
min{e−x/

√
SmX , e

−y/
√
SmY }

)
(482)

≤
∫ ∞

0

dx

∫ ∞
0

dy kδ

(
e−(x+y)/(2

√
S)√mXmY

)
(483)

≤
∫ ∞

0

dx

∫ ∞
0

dy kδ

(
2e−(x+y)/(2

√
S)
)

(484)

= 4S

∫ ∞
0

z kδ
(
2e−z

)
dz (485)

= 4S

[∫ log 2

0

2δzdz

+

∫ ∞
log 2

z
(

(1 + 2δ)(2e−z)1/(1+δ) − 2e−z
)
dz

]
(486)

= 4S[(log2 2)δ + (1 + 2δ)(1 + δ)(1 + δ + log 2)

− (1 + log 2)] (487)
= S O(δ) (488)

where (483) follows since the integrand is non-negative, so
the upper limits of the integral may be extended to∞, as well
as because min{a, b} ≤

√
ab and kδ is non-decreasing; (484)
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holds by the above conclusion that mXmY ≤ 4; (485) holds
by the change of variables z = x+y

2
√
S

; and (486) follows from
the definition of kδ . This proves that the first term in (463) is
lower bounded by −S O(δ).

We now consider the second term in (463). Applying again
the bound on ρm(X;Y ) from Lemma 5 gives

E[XY 1(X ≥ τX , 0 < Y < τX)]

− E[X1(X ≥ τX)]E[Y 1(0 < Y < τY )] (489)

≥ −O(δ log δ−1)
√
E[X21(X ≥ τX)]E[Y 21(0 < Y < τX)]

(490)

≥ −O(δ log δ−1)
√
E[X21(X ≥ τX)]S (491)

where the second inequality holds since E[Y 21(0 < Y <
τX)] ≤ E[Y 2] ≤ S2 ≤ S. We now need to upper bound
E[X21(X ≥ τX)]. Define

pX = P(X ≥ τX), (492)

aX = E[X21(X ≥ τX)]. (493)

Intuitively, if X ≥ τX , then we expect Z also to be large, and
so we expect pX to be small. This intuition can be formalized
by writing

P(Z ≥ τX − 2
√
S2)

= P(X + Y +N ≥ τX − 2
√
S2) (494)

≥ P(X ≥ τX , Y ≥ −2
√
S2, N ≥ 0) (495)

=
1

2
P(X ≥ τX , Y ≥ −2

√
S2) (496)

≥ 1

2
P(X ≥ τX)P(Y ≥ −2

√
S2)− δ (497)

≥ 3

8
pX − δ (498)

where (496) holds because N is Gaussian and independent of
X,Y , (497) holds by the consequence of ∆(X;Y ) ≤ δ in
(44), and (498) holds by Chebyshev’s inequality on Y . Thus

pX ≤
8

3
P(Z ≥ τX − 2

√
S2) +O(δ) (499)

≤ 8

3
P(Z̃ ≥ τX − 2

√
S2) +O(

√
δ log δ−1) (500)

=
8

3
P

(
Z̃ ≥ S1√

S
−
√
S

8
log δ − 2

√
S2

)
+O(

√
δ log δ−1) (501)

≤ 8

3
P

(
Z̃ ≥

√
S

(
−1

8
log δ − 2

))
+O(

√
δ log δ−1)

(502)

≤ 8

3
exp

{
−1

2

(
−1

8
log δ − 2

)2
}

+O(
√
δ log δ−1)

(503)

= O(
√
δ log δ−1) (504)

where (500) holds by the bound on total variational distance
in (450), (502) holds since S2 ≤ S, (503) holds since Z̃ ∼
N (0, S) and by the Chernoff bound on the Gaussian CDF,
and (504) holds since exp{−O(log2 δ)} vanishes faster than

O(
√
δ log δ−1). In order to bound aX , we bound the mean-

squared of Z conditioned on either X < τX or X ≥ τX . In
particular,

E[Z21(X < τX)]

= E[(X + Y +N)21(X < τX)] (505)

= 1 + E[X21(X < τX)] + E[Y 21(X < τX)]

+ 2E[XY 1(X < τX)] (506)
≤ 1 + S1 − aX + S2

+O(δ log δ−1)
√
E[X21(X < τX)]E[Y 2] (507)

≤ S − aX + S O(δ log δ−1) (508)

where (507) again uses the maximal correlation bound from
Lemma 5, and (508) follows from the mean squared bounds
on X and Y . Thus

E[Z2|X < τX ] ≤ S − aX + S O(δ log δ−1)

1− pX
. (509)

Moreover

E[Z2|X ≥ τX ] ≤ σ2
Z

pX
≤ S + S O(δ log δ−1)

pX
. (510)

We now apply these two bounds to upper bound the differential
entropy of Z. In particular, if we let F = 1(X ≥ τX), then

h(Z) ≤ H(F ) + h(Z|F ) (511)
= Hb(pX) + (1− pX)h(Z|X < τX) + pXh(Z|X ≥ τX)

(512)

≤ Hb(pX) + (1− pX)
1

2
log 2πe

S − aX + S O(δ log δ−1)

1− pX

+ pX
1

2
log 2πe

S + S O(δ log δ−1)

pX
(513)

=
3

2
Hb(pX)+(1− pX)

1

2
log 2πe(S − aX+S O(δ log δ−1))

+ pX
1

2
log 2πe(S + S O(δ log δ−1)) (514)

where (513) follows from the fact that differential entropy is
upper bounded by that of a Gaussian with the same variance
and the bounds in (509)–(510). Recalling the assumption that
h(Z) ≥ 1

2 log 2πeS, we have

0 ≤ 3

2
Hb(pX)+(1− pX)

1

2
log

(
1+
−aX+S O(δ log δ−1)

S

)
+ pX

1

2
log
(
1 +O(δ log δ−1)

)
(515)

≤ 3

2
Hb(pX) + (1− pX)

−aX + S O(δ log δ−1)

2S
+ pXO(δ log δ−1) (516)

=
3

2
Hb(pX)− (1− pX)aX

2S
+O(δ log δ−1). (517)

Rearranging gives

aX ≤
S

1− pX
[
3Hb(pX) +O(δ log δ−1)

]
(518)

≤ S(1 +O(
√
δ log δ−1))

[
O(δ1/2(log δ−1)3/2)

+O(δ log δ−1)
]

(519)
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= S O(δ1/2(log δ−1)3/2) (520)

where in (519) we have applied the bound on pX from (504),
as well as the fact that for small p, Hb(p) = O(p log p−1).
Plugging this bound back into (491), we find

E[XY 1(X ≥ τX , 0 < Y < τX)]

− E[X1(X ≥ τX)]E[Y 1(0 < Y < τY )]

≥ −S O(δ5/4(log δ−1)7/4). (521)

By the same argument as the above bound on aX , we may
similarly find

E[Y 21(Y ≥ τY )] ≤ S O(δ1/2(log δ−1)3/2). (522)

This implies that the third term in (463) is lower bounded by

E[XY 1(X < τX , Y ≥ τY )]

− E[X1(X < τX)]E[Y 1(Y ≥ τY )]

≥ −S O(δ5/4(log δ−1)7/4) (523)

and the fourth term in (463) is lower bounded by

E[XY 1(X ≥ τX , Y ≥ τY )]

− E[X1(X ≥ τX)]E[Y 1(Y < τY )]

≥ −S O(δ3/2(log δ−1)5/2). (524)

Note that for each of the bounds in (521), (523), and (524),
the function of δ grows smaller than O(δ). Putting everything
together, we now have

|E[XY 1(X > 0, Y > 0)]− E[X1(X > 0)]E[Y 1(Y > 0)]|
≤ S O(δ). (525)

Applying this bound by swapping X with −X and/or Y with
−Y gives

E[XY ] ≤ S O(δ). (526)

Therefore

h(Z) ≤ 1

2
log 2πeS(1 +O(δ)) =

1

2
log 2πeS +O(δ). (527)

This proves (440).

B. Bounding Vmax

Recall that

Vmax = sup
PUXY :E[X2]≤S1,E[Y 2]≤S2

max{V (W‖PZ|U |PUXY ),

V (W‖PZ|Y U |PUXY ), V (W‖PZ|XU |PUXY )}. (528)

Each of the terms in the maximum can be shown to be finite
by showing that the equivalent point-to-point quantity is finite:

sup
PUX :E[X2]≤S

V (W ′‖PZ|U |PUX) (529)

where W ′ ∈ P(R → R) is the point-to-point channel where
Z = X+N , N ∼ N (0, 1). Consider any PUX where E[X2] ≤
S. Fix u, and let Su = E[X2|U = u]. To simplify notation, we

again drop the conditioning on U = u. Define the information
density

ı(x; z) = log
dW ′x
dPZ

(z). (530)

Note that

V (W ′‖PZ |PX)

= E [Var(ı(X;Z)|X)] (531)

≤ E[ı(X;Z)2] (532)

= E[ı(X;Z)21(ı(X;Z) ≤ 0)] + E[ı(X;Z)21(ı(X;Z) ≥ 0)]
(533)

where (X,Z) are distributed according to PXW
′. To lower

bound the information density, we may upper bound the
Radon-Nikodym derivative

dPZ
dW ′x

(z) =

∫
dPX(x′)

dW ′x′

dW ′x
(z) (534)

=

∫
dPX(x′) exp

{
− (z − x′)2

2
+

(z − x)2

2

}
(535)

≤ exp

{
(z − x)2

2

}
. (536)

Thus

ı(x; z) ≥ − (z − x)2

2
. (537)

Thus the first term in (533) may now be upper bounded by

E[ı(X;Z)21(ı(X;Z) ≤ 0)]

≤ E

[(
(Z −X)2

2

)2

1(ı(X;Z) ≤ 0)

]
(538)

≤ E
[

(Z −X)4

4

]
(539)

=
3

4
(540)

where we have used the fact that Z − X = N is a standard
Gaussian.

We now upper bound the second term in (533). For any
integer k, let Ak = [k, k+ 1). Let pk = P(X ∈ Ak). Also let
µk = E[X|X ∈ Ak] and σ2

k = Var(X|X ∈ Ak). Since Ak is
an interval of length 1, σ2

k ≤ 1/4. Then for any integer k, the
PDF of PZ is lower bounded by

fZ(z) =

∫
dPX(x)

1√
2π

exp

{
− (z − x)2

2

}
(541)

≥
∫
x∈Ak

dPX(x)
1√
2π

exp

{
− (z − x)2

2

}
(542)

≥ pk
1√
2π

exp

{
E
[
− (z −X)2

2

∣∣∣∣X ∈ Ak]} (543)

= pk
1√
2π

exp

{
− (z − µk)2

2
− σ2

k

2

}
(544)

≥ pk
1√
2π

exp

{
− (z − µk)2

2
− 1

8

}
(545)

where (543) holds by the convexity of the exponential, (544)
holds by the definitions of µk and σk, and (545) holds since
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σ2
k ≤ 1/4. Thus, for any k the information density can be

upper bounded by

ı(x; z) ≤ −(z − x)2 + (z − µk)2

2
+

1

8
− log pk (546)

Applying this bound to the second term in (533) gives

E[ı(X;Z)21(ı(X;Z) ≥ 0)] (547)

≤
∞∑

k=−∞

∫
x∈Ak

dPX(x)

· E

[(
−(Z − x)2 + (Z − µk)2

2
+

1

8
− log pk

)2 ∣∣∣∣X = x

]
(548)

=
∑
k

∫
x∈Ak

dPX(x)

·

[
(x− µk)2 +

(
(x− µk)2

2
+

1

8
− log pk

)2
]

(549)

≤
∑
k

pk

[
1 +

(
5

8
− log pk

)2
]

(550)

≤ 2 +
∑
k

[
−2pk log pk + pk log2 pk

]
(551)

where (550) holds since |x − µk| ≤ 1 for x ∈ Ak, because
µk ∈ Ak and Ak has length 1, and in (551) we have upper
bounded 5/8 by 1 to simplify the expression. By Chebyshev’s
inequality, for k > 0

pk = P(X ∈ Ak) ≤ P(X ≥ k) ≤ Su
k2
. (552)

Note that for p ∈ [0, 1], −p log p ≤ 1/e, and this function
is increasing for p ≤ 1/e. Thus, if we consider the sum of
−pk log pk for k ≥ 0, we have

∞∑
k=0

−pk log pk ≤
d
√
eSue∑
k=0

1

e
+

∞∑
k=d
√
eSue+1

−Su
k2

log
Su
k2

(553)

≤ 1

e
(
√
eSu + 2) +

∫ ∞
√
eSu

−Su
r2

log
Su
r2
dr

(554)

=

√
Su√
e

+
2

e
+

3
√
Su√
e

(555)

=
4
√
Su√
e

+
2

e
. (556)

By an identical calculation,
∑−1
k=−∞−pk log pk ≤ 4

√
Su√
e

+
2
e . Similarly, note that p log2 p ≤ 4/e2, and this function is
increasing for p ≤ 1/e2. Thus

∞∑
k=0

pk log2 pk ≤
de
√
Sue∑

k=0

4

e2
+

∞∑
de
√
Sue+1

Su
k2

log2 Su
k2

(557)

≤ 4

e2
(e
√
Su + 2) +

∫ ∞
e
√
Su

Su
r2

log2 Su
r2
dr

(558)

=
4

e2
(e
√
Su + 2) +

20
√
Su
e

(559)

=
24
√
Su
e

+
2

e2
. (560)

Again the same holds for the summation over k < 0. Applying
the bounds in (556) and (560) to (551) gives

E[ı(X;Z)21(ı(X;Z) ≤ 0)] ≤ 2+
8
√
Su√
e

+
4

e
+

48
√
Su
e

+
4

e2
.

(561)
Now combining the bounds on each of the terms in (533) gives

V (W ′‖PZ|U |PUX)

≤
∑
u

PU (u)

[
11

4
+

4

e
+

4

e2
+

(
8√
e

+
48

e

)√
Su

]
(562)

≤ 11

4
+

4

e
+

4

e2
+

(
8√
e

+
48

e

)√
S. (563)
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