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Abstract—A new converse bound is presented for the two-
user multiple-access channel under the average probability of
error constraint. This bound shows that for most channels of
interest, the second-order coding rate—that is, the difference
between the best achievable rates and the asymptotic capacity
region as a function of blocklength n with fixed probability
of error—is O(1//n) bits per channel use. The principal tool
behind this converse proof is a new measure of dependence
between two random variables called wringing dependence, as
it is inspired by Ahlswede’s wringing technique. The O(1/y/n)
gap is shown to hold for any channel satisfying certain regularity
conditions, which includes all discrete-memoryless channels and
the Gaussian multiple-access channel. Exact upper bounds as a
function of the probability of error are proved for the coefficient
in the O(1//n) term, although for most channels they do not
match existing achievable bounds.

Index Terms—Multiple-access channel, second-order, disper-
sion, wringing, dependence measures.

I. INTRODUCTION

HE multiple-access channel (MAC) is the fundamental

information theory problem that addresses coordination
among independent parties. In this problem, multiple transmit-
ters! independently send signals into a noisy channel, and a
receiver attempts to recover a message from each transmitter.
The MAC was alluded to by Shannon in [1]; the discrete-
memoryless version was formally stated and its capacity region
determined in [2]-[4]. The capacity region for the Gaussian
case was found in [5], [6].

These results were first-order asymptotic, meaning they
considered the channel coding rates in the regime where the
probability of error goes to zero and the blocklength goes to
infinity. One may consider refinements to these results. For
example, a strong converse states that, if the probability of
error is fixed above zero and the blocklength goes to infinity,
then the set of achievable rates is identical to the standard ca-
pacity region. The strong converse for the discrete-memoryless
MAC was first proved by Dueck in [7]; this argument made use
of the blowing-up lemma and a so-called wringing step. An
alternative strong converse proof was presented by Ahlswede
in [8]; this proof used Augustin’s converse argument [9] in
place of the blowing-up lemma, followed by a more refined
wringing step. A strong converse for the Gaussian MAC was
proved in [10], using an argument based on that of [8].
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I'Throughout this paper, we will focus on the case with two transmitters.

One may refine the strong converse even further by fixing
the probability of error, and asking how quickly the coding
rates at blocklength n approach the capacity region. This work
dates back to Strassen [11], who showed that for the point-
to-point channel coding problem, the backoff from capacity
at blocklength n is O(1/+/n), and also characterized the
coefficient on this term. Recently, there has been renewed
interest in this second-order (also known as dispersion) regime
following [12], which refined Strassen’s asymptotic analysis
via the information spectrum, and [13], which also focused
on non-asymptotic information theoretic bounds.

However, in the fixed-error second-order regime, the MAC
has turned out to be significantly more difficult than the point-
to-point channel. Achievable bounds are proved in [14]-[19],
each of which gives lower bounds of order O(1/4/n) on the
back-off term in the coding rate. Second-order results for
the related problem of the MAC with degraded message sets
were presented in [20], [21], including matching second-order
converse bounds. For the standard MAC under the maximal
probability of error criterion, a second-order converse bound
is presented in [22]. Recently, a bound for the maximal
probability of error version, based on the technique of the
present paper, was presented in [23], which was published after
the preprint of this paper. (See Sec. V-C for a brief discussion
of the maximal-error case.) Herein we focus on the average
probability of error case. Second-order results for a random-
access model, wherein an unknown number of transmitters
send messages to a receiver, were derived in [24].

Despite this progress, the best converse bound for the
second-order rate of the standard MAC with average probabil-
ity of error has remained [8]. While [8] is primarily interested
in proving a strong converse, rather than characterizing the
asymptotic behavior of the coding rate, the converse bound
presented there shows that

logn

'R(n,e)QC—O—O(\/ﬁ) (1)
where R(n, €) is the set of achievable rate pairs at blocklength
n and average probability of error €, and C is the capacity
region. In this paper, we improve upon the converse bound
from [8] to show that for most MACs of interest—including
discrete-memoryless MACs and the Gaussian MAC—the
achievable rate region is bounded by

1
This result asserts that achievable second-order bounds of
[14]-[19] are order-optimal; that is, the gap between the
capacity region and the blocklength-n achievable region, in
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either direction, is at most O(1/+/n). We provide a specific
upper bound on the coefficient in the O(1/4/n) term, although
for most channels it does not match the achievability bounds.

The main difficulty in proving a second-order converse for
the MAC is to properly deal with the independence between
the transmitters. The problem variant with degraded message
sets, as studied in [20], [21], seems to be easier precisely
because the transmitted signals are not independent. The
independence that is inherent to the standard MAC prohibits
many of the methods to prove second-order converses for
the point-to-point channel; for example, one cannot restrict
the inputs to a fixed type (empirical distribution), which
is one of the steps in the point-to-point converse in [13],
since imposing a fixed joint type on the two input signals
creates dependence. An alternative approach adopted in [25]
to prove second-order converses uses the notion of reverse
hypercontractivity. This technique provides a strengthening of
Fano’s inequality, wherein the coding rate is upper bounded by
the mutual information plus an O(1/4/n) error term. However,
this technique relies on the geometric average error criterion,
which is stronger than the usual average error criterion (but
weaker than the maximal error criterion). The method of
[25] can be applied to the average error criterion by first
expurgating the code—i.e., removing some of the codewords
with the largest probability of error. However, with the MAC,
we cannot just expurgate codewords, we must expurgate
codeword pairs, which again introduces some dependence
between inputs. For this reason, reverse hypercontractivity
can be viewed as a replacement for the blowing-up lemma
or Augustin’s converse, but does not remove the need for
wringing. Interestingly, the technique that we use here seems
to be related to hypercontractivity;, see Sec. III-D for more
details.

To handle the independence between transmitters, the strong
converse of [8] adopted the following approach: given any
MAC code, first expurgate it by restricting to those channel
inputs with limited maximal probability of error. Of course,
this expurgation introduces some dependence between the
transmissions. Second, this dependence is “wrung out” by
further restricting the channel inputs so as to restore some
measure of independence between them. Our bound follows
the same basic outline, but we use a different technique for
wringing. Namely, we introduce a new dependence measure
called wringing dependence. In the wringing step, we restrict
the channel inputs so that the wringing dependence between
them is small. This method of wringing proves to be more
efficient than that of [8]. In addition to being critical to our
converse proof, the wringing dependence measure is interest-
ing in its own right: it satisfies many natural properties of any
dependence measure, including the data processing inequality,
and all 7 of the axioms for dependence measures that Rényi
proposed in [26]. Using this tool, we show that a bound of
the form (2) holds for any MAC that satisfies two regularity
conditions. All discrete-memoryless MACs, and the Gaussian
MAC, are shown to satisfy these conditions.

The remainder of the paper is organized as follows. Sec. II
gives notational conventions and describes the setup for the
MAC problem. Sec. I1I is devoted to the wringing dependence:

it is defined, some simple examples are presented, and its main
properties are proved. Sec. IV gives a finite blocklength con-
verse bound for the MAC; this bound includes the core steps of
our converse argument based on the wringing dependence. In
Sec. V, second-order asymptotic bounds are proved, applying
the finite blocklength bound from Sec. IV to prove (2) under
certain regularity conditions. Specifically, two second-order
bounds are proved: one that applies to any channel that satisfies
two regularity conditions, and a tighter bound that holds for
discrete-memoryless channels. Sec. VI illustrates the results
with some specific example channels, including the Gaussian
MAC. We conclude in Sec. VII. Several of the more technical
proofs are contained in appendices.

II. PRELIMINARIES
A. Notation

Throughout, all logs and exponential have base e unless
otherwise specified; log base 2 is denoted log,. For a random
variable, we use the corresponding calligraphic letter to indi-
cate its alphabet; e.g. X has alphabet X. While most results
in the paper hold for arbitrary probability spaces, to simplify
notation we do not typically specify the event space. For an
alphabet X, the set of all distributions on that alphabet is
denoted P(X). Given two alphabets X',), the channel W
from X to Y is a collection (W,)zcx where W, € P())
for each ¢ € X. The set of all channels from X to ) is
denoted P(X — ). We will also sometimes use the notation
Py x for a channel from X’ to ) where Py|x—, € P()) is
the conditional distribution given X = z. We use E[X] for
expectation of a real-valued random variable X; usually the
underlying distribution will be clear from context, but if not
we write Ep[X] to mean [ XdP. For variance, Var(X) or
Varp(X) are used in the same way. The probability of an
event is denoted with P in a similar manner. For a set A C X,
we write the indicator function for A as 1(x € A). For an
integer n, we denote [n] = {1,...,n}. A sequence z" € X"
means z" = (x1,...,T,). We adopt the standard O(-) and
o(+) notations. Specifically, for functions f(n), g(n), we write
g(n) = O(f(n)) to indicate

lim sup
n—oo

< o0. 3)

‘ g(n)
fn)
Similarly, g(n) = o(f(n)) means lim, . g(n)/f(n) =
0. We also use this notation when the limit goes to 0
instead of infinity; for example ¢(6) = O(f(d)) means
limsup;_,o |9(8)/f(8)| < co. We write |z|T = max{0,z}
for positive part.

We also adopt the following standard definitions. Given two
distributions P, @@ € P(X), the Kullback-Leibler divergence is
denoted P

D(P =Ep |log— 4

(P1Q) = Er |1ox 5 | @

where g—P is the Radon-Nikodym derivative. We will also need
the Rényi divergence of order oo, given by

P(A)
QA)

Do (P|Q) = sup log (5)
C
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where the supremum is over all events A in the probability
space. The total variational distance is

drv(P,Q) = sup |P(A) — Q(A)|. (6)
AcCx
The hypothesis testing fundamental limit is given by
W (P,Q) = inf Eo|T(X)]. 7
fa(P.Q) = | inf  Eq[T(X) ™
Ep[T(X)]>a

Here, T'(x) represents the probability that a hypothesis test
outputs hypothesis 1 when X = z. The divergence variance
is denoted

V(PQ) = Varp (1og jg) | ®)

The third absolute moment of the log-likelihood ratio is given

by ,
] . 9)

For distributions Px € P(X),Qy € P(Y) and a channel
W € P(X — )), the conditional divergence and conditional
divergence variance are denoted

T(P|Q) = Ep

d
log % ~D(P|Q)

D(W(Qy|Px) = / dPx () D(W,|Qy).  (10)

V(W Qy|Py) = / dPx (VW |Qy).  (1D)

Given joint distribution Pxy € P(X x Y), the mutual
information is given by
I(X;Y) = D(Py|x||Py|Px) (12)

where Px, Py, Py|x are the induced marginal and conditional
distributions. The conditional mutual information is given by

I(X;Y|Z):D(Py|Xz||Py|Z|sz). (13)
For a discrete distribution Px, the entropy is
H(X) =Y —Px(z)log Px (). (14)

zeX

We also use Hj(p) to denote the binary entropy; i.e. Hy(p) =
H(X) where X ~ Ber(p).

B. Multiple-Access Channel Problem Setup

A one-shot multiple-access channel (MAC) with two users
is given by a channel W € P(X x Y — Z) where X’ and
Y are the input alphabets, and Z is the output alphabet. A
(stochastic) code is given by

1) a user 1 encoder Py, € P([M1] — X),

2) auser 2 encoder Py s, € P([M2] — V),

3) adecoder P, 7., € P(Z — [Mi] x [Ms]).
The average probability of error is given by ]P’((fl,fg) +
(I1,1I5)) where (I1,I2) represent the messages, which are
uniformly distribution over [M;] X [Ms], and

(XY, Z, 11, I)|(Ih, I2) = (i1, i)
~ Px1,=iy (#) Py |10, () Way (2) Pf, 7,72, (11, 02). (15)

Here, recall that W is the channel distribution from (X,Y")
to Z. A code with message counts M;, Ms and average
probability of error at most ¢ is called an (M, My, €) code.

Given a one-shot channel W, the n-length product channel
is given by

n
Wanyr = [ [ Werp - (16)
t=1
For n-length channels, we also impose cost-constraints on the
channel inputs. Specifically, there are functions b; : X — R,
by : Y — R, and constants By, B, € R; we assume that
the encoders Pxn|1,, Py« s, are such that the channel inputs
X™ Y™ satisfy the following almost surely:

l — 1 —
E;bﬂxt) < By, ﬁ;bﬂyt) <By. (17

Of course, a lack of cost constraint is included in this model
simply by taking by (z) = by(y) = 0 for all x,y. We consider
(W, b1, ba, By, Bs) to constitute the channel specification. We
say an (n, My, Ms,€) code is a code for n-length channel
with average probability of error e. For any blocklength n and
probability of error € € (0, 1), the set of achievable rates are

log My log M-
R(n,e):{(Og 1770g 2>:

n n

Jan (n, My, Ma,¢) code}. (18)

The operational definition for the capacity region is given by?

C = () liminf R(n,e). (19)
e>0

n—oo

The first-order asymptotic result, proved in [2]-[6], is that the
capacity region is

c= U

Puxy: X L1Y|U,
E[b1(X)]<B1,
Efb2(Y)]<B:

Ry <I(X;Z|Y,U), Ry <I(Y;Z|X,U)} (20)

{(R1,R2) : Ri + Ry < I(X,Y; Z|U),

where X | Y|U indicates that X and Y are independent
given U. Here, U is the time-sharing random variable.® Using
Carathéodory’s theorem, we can restrict the alphabet cardinal-
ity of U in the union to || < 6.

Because of the multi-dimensional nature of achievable
rate regions for network information theory problems such
as the MAC, articulating second-order results can be a bit
complicated. There are at least three equivalent methods for
describing these results: (i) characterize the region of second-
order coding rate pairs around a specific point on the boundary
of the capacity region, (ii) fix an angle of approach to a
point on the capacity region boundary, or (iii) bound the
maximum achievable weighted sum-rate. See [27, Chapter 6]
for a discussion of these issues for network information theory
problems. We have chosen to focus on the weighted sum-rate

ZRecall that the lim-inf of a sequence of sets An is U, >1 Ni>p Ak

3We have chosen to use U rather than the more standard Q, since the letter
Q is primarily used for other concepts in this paper.
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approach, which has the advantage that we can work with
scalar quantities, and we do not need to specify a point on
the capacity region boundary. Specifically, for non-negative
constants oy, a2, we define the largest achievable weighted-
sum rate as

(&3] 10g Ml —+ o log M2 .
n :

R:;l,(XQ (TL, 6) = Sup {
Jan (n, M1, Ms,€) code}. (21)

In particular, R} ;(n, €) is the largest achievable standard sum
rate. Note that for any constant c,

R} (n,e) = c R

cay,ca 1,09 (TL, 6)' (22)
Thus, it is enough to consider only pairs («7, ) where
max{ai,as} = 1. We also define the weighted-sum capacity
as

Ca17a2 = sup{oqu + as Ry : (Rl, Rg) S C} (23)
Since the capacity region C is convex, it is equivalently
characterized by Cy, q,. From the result in (20), it is easy
to see that

Caros = sup [ minfar, a2} (X, Y3 2|U)
Pyxy:XLY|U,
E[b1 (X)]< B,
E[b2 (Y)]<Bs
+lon = ezl I(X; ZIY,U) + |az — aa[F1(Y; ZIX,U) .
(24
Our goal is to prove bounds of the form
N 1
Ral,ag (n, 6) S Cal,ag + O % . (25)

Note that if such a bound can be proved in which the implied
constant in the O(1/4/n) term is uniformly bounded over all
aq, o where max{ag, as} = 1, then

R(n,e) CC+O0 <1) . (26)

vn

III. WRINGING DEPENDENCE

This section is devoted to defining and characterizing the
wringing dependence, a new dependence measure that will be
critical in our converse proof for the MAC. In Sec. III-A, we
first outline Ahlswede’s proof of the MAC strong converse
from [8] as motivation for the wringing dependence, and then
we define it. The basic properties of wringing dependence are
described in Sec. III-B. The wringing lemma, which is the
primary use of wringing dependence in our MAC converse
proof, is given in Sec. III-C. We present some relationships be-
tween wringing dependence and other dependence measures—
specifically hypercontractivity and maximal correlation—in
Sec. III-D.

A. Motivation and Definition

Consider a one-shot MAC given by W € P(X x Y — Z).
Ahlswede’s converse proof from [8], and ours, involves these
basic steps:

1) given any MAC code, expurgate it by restricting to the
subset I' C X x Y of input pairs with limited maximal
probability of error,

2) choose sets X C X,) C Y so that when the code is
restricted to input pairs (X,Y) € I'N(X x)), the inputs
are close to independent,

3) prove a converse bound on the code restricted to I' N
(X x V),

4) relate this converse bound back to the original code.
Step 2 is called “wringing,” as the dependence between X and
Y introduced by restricting the code to I is “wrung out” in the
choice of X', ). This step is also where our proof deviates most
significantly from Ahlswede’s. In the wringing step, choosing
the sets X', ) requires trading-off between two objectives: (i)
maximizing the probability of the sets X’ x ), so that in Step 4,
there is limited difference between the subset and the original
code; and (ii) minimizing the dependence between the inputs
when restricted to X x ), so that the converse bound proved in
Step 3 captures the independence between transmissions that
is inherent to the MAC. The key result addressing this trade-
off in Ahlswede’s proof is [8, Lemma 4]; the following is a
slight modification of this lemma.*

Lemma 1: Let Pxnyn € P(X"xY"), Qxn € P(X™), and
Qyn € P(Y") be distributions such that

Doo(Pxry»[|Qx»Qyn) < log(1+c).

For any 0 < v < ¢, 0 < € < 1, there exist sets X C A", C
V" such that

27)

Pxnyn(X,Y) > e/ (28)
and forallt € [n],z € X,y €Y
PXtY,,\X"eA?,Y"eji(x>y)
< max{e, (1 +7)Qx, | xnecx(®)Qy,jyrey®)} (29

In this lemma, one can see the two objectives at play: (28)
is a bound on the probability of X x ), and (29) is a guarantee
on dependence of the channel inputs. The two parameters y
and € allow one to trade-off between these two objectives; as
v,€ — 0, the guarantee on the probability becomes weaker,
while the guarantee on the dependence becomes stronger. In
the extreme case that v = € = 0, (29) states that X; and Y;
are independent, whereas (28) becomes trivial.

Ahlswede’s lemma is proved iteratively. The process is
initialized with X = XY = Y". At each step, if (29) is
violated for some ¢ € [n], T; € X,9; € ), then the sets X,
are revised to

X =xn{z":z =%}, YV =YN{":y=70} (30)

4The main difference is that Ahlswede’s lemma has only one sequence X,
even though when the lemma is applied in the converse proof, it is done with
two sequences X, Y. Here, we have stated the lemma with two sequences
to make the connection to our technique clearer.
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Because each step involves a violation of (29), at that point

Px,v, xnex yney(@e, U) > € 31)
PXth\X”eX,Ynej(ft, Ut)

Qx,|xnex(T)Qy,|yrey(Ut)

>1+47 (32)

Here, (31) ensures that the probability of the pair (Zy,J:) is
not too small, while (32) ensures that each step “eats into”
the Rényi divergence between P and @) from (27) by at least
log(1 ++). The latter implies that the number of steps cannot
exceed llgg((llj_fy)) < ¢/, which leads to the guarantee on the
probability in (28).

To improve on Ahlswede’s lemma, we make three principal
observations:

1) Wringing can be done in the one-shot setting.

2) The set reduction steps in (30) need not be limited to
individual pairs (Z,¥;); we may instead use arbitrary
sets A C X, B C Y, and revise the sets as X' = X N A,
V' =YnB.

3) The trade-off between the probability as in (31) and
the likelihood ratio as in (32) is most efficient by
maximizing

log g Cgu s _ loa Qx(A)Qy (B)

—logPXy(.A, B) - logPXy(.A,B) -t

(33)

Note that if the quantity in (33) is maximized, then
neither the likelihood ratio nor the probability of (A, B)
will be too small. Moreover, maximizing this quantity
ensures that if a pair (.4, B) has low probability, then
the likelihood ratio is larger, ensuring that this step “eats
into” the Rényi divergence by a greater amount.

We are now ready to give the definition for wringing depen-
dence, in which the quantity in (33) plays a key role.

Definition 1: Given random variables X,Y with joint dis-
tribution Pxy, the wringing dependence between X and Y is
given by’

A(X;Y) = inf sup
Qx,Qy Acx,BCY

Pxy (A, B < Qx(A)Qy (B)}.

inf{6 >0:
(34)

Note that for any p,q € (0,1), inf{§ > 0 : p'*? < ¢} =

+
%ggg — 1‘ . Therefore an alternative definition is

log Qx(A)Qv(B) _|"
log PXY (.A, B)
(35)

A(X;Y) = inf sup
Qx,Qy Acx,BCYy

SWhile technically, the wringing dependence is a function of the joint
distribution Pxy rather than a function of the random variables X,Y
themselves, we have chosen to use the notation A(X;Y) wherein the
dependence measure is an operator on the random variables. This notational
choice is made consistently for all dependence measures in the paper: for
example mutual information is 7(X;Y"), maximal correlation is pm (X;Y),
etc. In all cases, the underlying distribution will be clear from context, or
specified in a subscript such as Ap(X;Y).

where 1084 really means inf{f : p? < ¢}, so by convention

logp
1
084 =0ifp=0orq=1,p<1,
log p
1
089 _ ifp=1,9<1, (36)
logp
log 1
= —00.
log1

To compute the wringing dependence given a joint distribu-
tion Pxy requires optimizing over Q) x and Qy. In fact, this
optimization is convex, as shown as follows. We may write
the quantity inside the positive part in (35) as

logQx (A)Qy(B)
log Pxy (A, B)
log Qx (A) log Qy (B)

-1

= 37

10g ny(.A, B) IOg PXy(.A, B) ( )
For fixed sets A, B, log Pxy (A, B) < 0, which means each of
terms in the right-hand side (RHS) of (37) is jointly convex in
(Qx,Qy). Using the fact that the supremum (or maximum)
of convex functions is also convex, this implies that

log Qx(A)Qy(B) i
log Pxy (A, B)

is jointly convex in (Q) x, Qy ). Thus, the wringing dependence
can in principle be computed via convex optimization if X’ and
Y are finite sets. However, this computation quickly becomes
impractical as the alphabet sizes grow, since the number of sets
A, B is exponential in the alphabet cardinality. The following
is one example of a simple distribution for which it can be
computed in closed form.

Example 1: Consider a doubly symmetric binary source
(DSBS) (X,Y), wherein X,Y are each uniform on {0, 1},
and Pyxy(1,1) = Pxy(0,0) = £. Since this distribution is
symmetric between X and 1 — X, and between Y and 1 -V,
the convexity of (38) in (Qx,Qy) means that the optimal
Qx,Qy are each uniform on {0, 1}. Thus, if p < 1/2, then
A(X;Y) is given by

(38)
ACX,BCY

e logl/4 logl/4
A Y) = max {O’ logp/2 ' log(1—p)/2 1} &
log 4 1 (40)

- log 2 — log(1 — p)
~ 1+4logy(1—p)

=22 41)
1 —logy(1 —p)
Therefore, for any p,
1+1 1-—
A(X:Y) = L logy max{p, 1~ p} “2)

1 — logy max{p,1 — p}
The wringing dependence for a DSBS as a function of p is
shown in Fig. 1.

B. Properties

The most important property of the wringing dependence
is a counterpart of Ahlswede’s lemma, which is presented
in Sec. III-C. But before stating this result, we prove some
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Wringing Dependence
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Fig. 1. The wringing dependence for a doubly symmetric binary source, as
a function of the crossover probability p.

basic properties of the dependence measure. In particular, the
following result states that wringing dependence satisfies many
properties that one would expect of any dependence measure:
it is non-negative, is zero iff X and Y are independent, and
satisfies the data processing inequality. Indeed, this result
shows that wringing dependence satisfies 6 out of the 7
axioms for dependence measures proposed in [26]. (It also
satisfies the 7th, which is that for bivariate Gaussians, the
wringing dependence equals the correlation coefficient; this
fact is established in Sec. III-D.) The theorem also includes
some other properties that will be useful throughout the paper.

Theorem 2: The wringing dependence A(X;Y) satisfies the
following:

) AX:;Y)=A(Y; X).
1.

2) 0<A(X;Y) <
3) If A(X;Y) <4, then for all AC X,BC ),
Pxy (A, B) < (14 20) (Px(A)Py(B))/ | 43)
|Pxy (A, B) — Px(A)Py(B)| <25.  (44)

4) A(X;Y) =0 if and only if X and Y are independent.
5) A(X;Y) =1if X and Y are decomposable, meaning
there exist sets A C X, B C Y where 0 < Px(A) < 1
and 1(X € A) = 1(Y € B) almost surely®. Moreover,
if X, are finite sets and A(X;Y) =1, then X and YV
are decomposable.
6) For any Markov chain W — X —Y — Z, A(W;Z) <
A(X;Y).
Proof: (1) Symmetry between X and Y follows trivially
from the definition.
(2) The fact that A(X;Y) > 0 follows immediately from
the definition. To upper bound A(X;Y'), we may take Qx =
Px, Qy = Py, SO

A(X;Y) <inf{d > 0: Pxy(A,B)'*° < Px(A)Py(B)

SDecomposability is equivalent to the Gacs-Korner common information
being positive [28].

forall AC X,BC Y} 45)

Since Pxy(A,B) < Px(A) and Pxy(A,B) < Py(B),
Pxy(A,B)? < Px(A)Py(B) for all A,B. That is, § = 1
is feasible in (45), so A(X;Y) < 1.

(3) Suppose A(X;Y) < 4. Thus, for any ¢’ > ¢, there exist
Qx,Qy such that

Pxy (A, B < Qx(A)Qy (B) forall AC X,BC Y.
(46)
Consider the function f(p) = p'*+" for p > 0. Since &' > 0,
f is convex, so it can be lower bounded by any tangent line.
In particular, forming the tangent line around p = 1 gives

P =fp) = )+ - 1)
=1+(1+8p-1)=>0+)p-17".

Using this bound to lower bound the left-hand side (LHS) of
(46) gives

(47)

Qx(A)Qy(B) = (1+¢")Pxy(AB) —d".  (48)
Taking B = Y gives
Qx(A) > (1+0)Px(A) -4 (49)

Since this may hold for A€ in place of .4, we may write

Qx(A)=1-Qx(A9) (50)
<1—(1+8)Px(A%)+¢ (51)
= (1+0)Px(A). (52)

By the same argument, for any B C Y, Qy(B) < (1 +
8") Py (B). Thus

Pxy (A, B)'* < Qx(A)Qy (B) (53)
< (1+0)Px(A)Py(B). (54
As this holds for all §’ > ¢, we have
Pxy (A, B)'0 < (14 0)?Px (A) Py (B). (55)
Thus
Pxy (A, B) < [(1+6)2Px(A)Py (B (56)

Noting that (1 4 §)%/(1+9) < 1 + 26 proves (43). Using again
the tangent line bound from (47) to lower bound the LHS of
(55) gives

(14+6)Pxy(A,B) — 6 < (1+8)*Px(A)Py(B). (57
Thus
Pxy(A,B) < (14 6)Px(A)Py(B) + % (58)
1)

SPX(A)PY(B)+5+m (59)
< Px(A)Py(B) + 24. (60)

We prove the corresponding lower bound as follows:
Pxvy(A,B) = Px(A) — Pxy (A, B°) (61)
> Px(A) — Px(A)Py (B°) — 26 (62)
= Px(A)Py(B) — 20 (63)
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where (62) is simply an application of (60) with B¢ swapped
with B. Combining (60) and (63) proves (44).

@ If AX;Y) = 0, then (44) immediately gives
Pxy(A,B) = Px(A)Py(B) for all A C X, B C ), ie.,
X and Y are independent. Conversely, suppose X and Y are
independent. Thus, if we take Qx = Px,Qy = Py, then

Pxy(A,B) < Qx(A)Qy(B). (64)

This proves that A(X;Y") = 0 by the definition in (34).

(5) Assume there exist sets A, B as stated. Since 1(X €
A) = 1(Y € B) almost surely, Pxy(A,B) = Px(A) =
Py (B), and Pxy (A, B¢) = Px(A°¢) = Py (B°), and also by
assumption each of these probabilities is strictly between 0 and
1. For convenience let p = Pxy (A, B). Using the definition
in (35), we may lower bound the wringing dependence by

A(X;Y)> inf max{log QX(.A)Qy(B)’
QnyY logp
log @x (A°)Qy (B°) } 6
log(1 - p)
o log¢®> log(1 — ¢)?
a qeu[%f,l] max{ logp’ log(1—p) | L (66)
_ logp? log(1—p)®|
B max{ logp ' log(1l —p) 1 (67)
- (68)

where (66) holds since the RHS of (65) is concave in
(Qx,Qy) and symmetric between Q x (A) and Qy (B), so the
optimal choice is Qx(A) = Qy (B) = ¢ for some ¢ € [0, 1];
(67) holds since the first term in the max in (66) is decreasing
in ¢ while the second term is increasing, so the infimum is
achieved when the two terms in the max are equal, which
occurs at ¢ = p; and (68) holds by the fact that 0 < p < 1.
Since we know that in general A(X;Y) < 1, this proves
A(X;Y) = 1. For the partial converse, assume X', ) are finite
sets, and that A(X;Y) = 1. This implies that

log PX(.A)Py(B)
Acx,Bcy log Pxy(A,B)

—2. (69)

Since X, ) are finite, the supremum is attained, so there exist
sets A, B where 0 < Pxy (A, B) <1 and

Px(A)Py(B) = Pxy (A, B)*. (70)

This only holds if Pxy(A,B) = Px(A) = Py(B), which
implies that 1(X € A) = 1(Y € B) almost surely.

(6) The symmetry of the wringing dependence means that
it is enough to show A(X;Z) < A(X;Y). We have

. log Qx (A)Qz(B) |"
A(X;Z)= inf su -1
( ) Qx,Qz .ACX,E’CZ log Pxz(A,B')
(71)
1 dQy (y)Pzy—, (B’ *
< inf sup 08 Qx(A) J dQv [y 21y = )_1
Qx,Qy Acx, log PXZ(-Aa B')
B/CZ
(72)
= inf sup

Qx,Qy ACX,B'CZ

log Qx (A) [dQy (W)Pzv=y(B) "
log [ dPxy (z,y)1(z € A)Pyy—y(B')
log Qx (A) Egg(Y)] "
< f -1
= oo, S S | Teg ERI(X € A)g(Y)]
(74)

where (72) holds because for any @y, a valid distribution
on Z can be formed via Qz = [dQy(y) (y)Pz|y=y; in the
denominator of (73) we have used the fact that X — Y — 7 is
a Markov chain; and (74) holds because in (73) we may take
9(y) = Pzjy—,(B’) which is feasible for the supremum over
g in (74). For fixed Qx, Qy, and A, define

log Qx (A) Eq[g(Y)] i
G= -1 75
syl OB ER[I(X € A)g(V)] "
We may also define
' log Qx (A) Qv (B) "
G = -1 76
sey | log Pxy (4, B) 7o

To complete the proof, it is enough to show that G < G’.
Rearranging (76), for any B C ),

Py y (A, B < Qx(A)Qy (B).

For any function g : ) — [0, 1], define the sets B; = {y :
g(y) < t}. Thus

(77

1
oly) = /0 Ly € By)dt 78)

Since G’ > 0, f(z) = 21
allows us to write

(Ep[L(X € A)g(Y))'+

is a convex function, which

1 1+G’
= <]Ep { (X € A) / Y € Bt)dtD (79)
0
1
< / AHEP[L(X € ALY € B))*C (80)
0
:/ Pxy (A, B)'"T¢ dt (81)
01
< / Qx(A)Qy (By)dt (82)
0
1
= QX(A)/ EqlY € Byldt (83)
0
=Qx(A)Eq[g(Y)] (84)

where (80) follows from Jensen’s inequality and the fact that
fol dt = 1, and (82) follows from (77). Since (84) holds for all
functions g, this implies G < G’, which completes the proof.

|

C. The Wringing Lemma

The following result is our counterpart of Ahlswede’s
Lemma 4 from [8].

Lemma 3: Let Pxy € P(X xY), Qx € P(X), and Qy €
P(Y) be distributions such that

Do (Pxy||@xQy) <o (85)
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where ¢ is finite. For any § > 0, there exist sets X C X,) C
Y such that

}&y@ay)Z@m{—%} (86)

and
AX;Y)<$§ (87)
where (X,Y’) are distributed according to Pxy|xc %, yey-
As we outlined in Sec. III-A, Ahlswede’s proof of [8,
Lemma 4] involved iteratively restricting the wringing sets
until the desired property is achieved. While a proof of
Lemma 3 along these lines would work for discrete variables,
it does not directly generalize to arbitrary variables. Instead,
we present a slightly different proof that does work in general.
Proof of Lemma 3: Let < be the collection of pairs of
sets (A, B) where A C X', B C Y such that Pxy (A, B) > 0
and

Pxy (A, B)'*° > Qx (A)Qy (B).

This set o/ is always non-empty, since it includes (A, B) =
(X,Y). For any (A,B) € <, using the assumption that
Pxvy (A, B) > 0, we may rearrange (88) to write

(88)

1/6
e (S48
> exp { — % } (90)

where the second inequality follows from the assumption that
Doo(Pxy ||QxQy) < 0. o

We proceed to construct a pair of sets (X,)) € < that
satisfy the following property:

forall AC X,BC),

if ny(.A, B) < ny(/?,‘)_)) then (A, B) ¢ o ©D

These sets can be easily found if the infimum is attained in

inf

Pxy (A, B).
(AB)eos

92)
That is, if there exist (X,)) € &/ such that Pxy(X,)) <
Pxy(A,B) for all (A,B) € &, then (91) follows easily.
Note that the infimum in (92) is always attained if X',) are
finite sets. However, if this infimum is not attained we need a
different argument.

We create a sequence of pairs of sets (Ag, Bx) € o for
each non-negative integer k, as follows. First let (Ao, By) =
(X,Y). For any k > 1, given (Ag—_1, Bi_1), define (A, By)
as follows. Let
inf

= PXY(Aa B)
ACAk—1,BCBr_1:(A,B)ed/

Dk (93)

Let Ay C Ag_1, B C Bir—1 be such that (Ag, By) € o/ and

1
Pxy (Ag, Bi) < pr + T

This iteratively defines the sets Ay, B}, for all k. We now define

X=)A Y={)B

k>0 k>0

(94)

95)

We need to prove that (X,)) € & and that (91) is satisfied.
By the dominated convergence theorem,

Pxy(X,Y) = kli_{lolo Pxy (A, B),
Qx(X) = klgfolo Qx (Ag),
Qy(Y) = Jim Qy (B)-

(96)

These limits imply that X,)) satisfy (88). Moreover, since
(Ag, Br) € o for each k, the lower bound in (90) implies
that Pxy (Ag, Br) > exp{—%}, so Pxy(X,)) is bounded
away from 0. Thus (X, )) € /. To prove (91), consider any
A C X,B C Y where Pxy(A,B) < Pxy(X,)). Note that

1
lim ny(Ak,Bk) - =

k00 R) = DoY),

o7
Thus, there exists a finite k& such that Pxy(A,B) <
Pxy (Ak, Bi)— 1. By (94), this implies that Pxy (A, B) < py,
which means A, 3 cannot be feasible for the infimum defining
pr in (93). In particular, since A C X C Ai_: and
B C Y C By, it must be that (A, B) ¢ o/. This proves
the desired property of (X,)) in (91).

Given (91), we now complete the proof. Since (X,))) € <7,
we immediately have the probability bound in (86). We now
need to prove the bound on the wringing dependence in (87).
To show that A(X;Y) < 4, it is enough to show that for all
ACX,BcC),

Pxy|xex,yey(A, B)'*° < Qx| xex(A) Qyyey(B). (98)
Letting A’ = ANX,B' = BN)), we have

P ' B
Pxyixexyey(A,B) = %7
Qx (A
PrixextD) = Q);((X)) : (99)
B/
QYlYej}(B) = gi((‘)ei

Consider the case that Pyy (A’,B') = Pxy(X,)). Since
A’ C X, B C Y, wemust have Pxy (X xY)\(A'xB")) = 0.
By the assumption that ¢ is finite, Pxy < QxQy, so
in particular QxQy ((X x V) \ (A x B')) = 0, and thus
Qx(A)Qy(B') = Qx(X)Qy(Y). Thus, each side of (98)
equals 1, so the inequality holds. Now consider the case that
Pxy (A’,B") = 0. This implies that the LHS of (98) is 0, so
it holds trivially.

The remaining case is when 0 < Pxy(A,B) <
Pxy(X,)). By the key property of (X,)) in (91), we must
have (A’,B') ¢ «f. Thus

ny(.Al, B/)1+5

PxyixexyeyA B = 5= msimy (100
Qx(A)Qy(B')

oWy ATt (101)
Qx(A)Qy(B')

)@y (D 102

S o@ev) 1%

= Qx|xex(A) Qy|yey(B)
(103)
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where (101) follows since (A’,B') ¢ &/ and Pxy (A’,B’) >
0, which i{np}y that (88) must be violated; and (102) follows
because (X,)) € /. This proves (98) forall A C X, B C ).

| |

D. Relationship to Other Dependence Measures

1) Hypercontractivity: One of the first uses of hypercon-
tractivity in information theory was [29], wherein Ahlswede
and Gécs were interested in establishing conditions under
which random variables X, Y satisfy

Pxy(A,B) < Px(A)°Py(B)” forall AC X,BC ).
(104)
To establish this inequality, they actually proved something
stronger, namely

E[f(X)gM)] < [lf (X1/elg(¥)l1/-

forall f: X >R, g:Y—>R (105)

where for a real-valued random variable Z, ||Z], =
(E[|Z|"])*/". By optimizing over f, one finds that (105) is
equivalent to

IE[GY)I Xl /a0y < 9]l » for all g: Y = R.
(106)
Such an inequality is known as hypercontractivity. If the
inequality is reversed, it is known reverse hypercontractivity
[30]. The advantage of working with hypercontractivity rather
than the more operationally meaningful inequality (104) is that
hypercontractivity tensorizes: that is, if (106) holds for X,Y,
then it also holds for X™, Y™ where (X¢,Y;) are i.i.d. with
the same distribution as X, Y.

The relationship between hypercontractivity and wringing
dependence is apparent from (104); namely this inequality is
identical to the inequality defining the wringing dependence in
(34) but with Qx = Px,Qy = Py,and 0 =7 = 1/(1 —|—(5)
We make this relationship precise as follows.

For a pair of random variables X,Y, [31] defined the
hypercontractivity ribbon R x .y as the set of pairs (r, s) where
one of the following hold:

e 1 <s<r,andforallg:)Y — R,

[E[g(Y)IX][l- < lg(Y) s, (107)
e 1>s>r,and forall g:)Y — R,
IE[g(Y)IX]I[» > [lg(Y)]]s- (108)

The second condition concerns reverse hypercontractivity,
which does not appear to be related to the wringing depen-
dence, but we have included it for completeness. The following
proposition, which is proved in Appendix A connects the
wringing dependence to the hypercontractivity ribbon.
Proposition 4: Given random variables X,Y, let

Ahyp(X;Y) = 11’1f{6 € [O, 1] : (1 + 1/(5, 1+ 6) S RX;y}.
(109)
Then

A(X;Y) < Apgp(X;Y). (110)

Moreover, if we let X™, Y™ be jointly i.i.d. where Px,y, =
Pxy for each t € [n], then A(X™;Y™) is a non-decreasing
sequence such that
: n, ny __ .
7}1—>H<§OA(X ;Y™) = Apyp(X;Y).

Note that the quantity Apy,(X;Y") defined in (109) involves
checking whether (r,s) € Rx,y where r = 1+ 1/§ and
s = 1+ 6 for some 6 € [0,1]; this is the regime where
1 < s < r, which corresponds to hypercontractivity rather
than reverse hypercontractivity. The proof of the upper bound
on wringing dependence in (110) follows from essentially the
same argument as the one [29] used to establish inequalities of
the form (104) via hypercontractivity. The limiting behavior of
the wringing dependence in (111) is proved by an argument
very similar to that of [32], which gives several equivalent
characterizations of the hypercontractivity ribbon.

We illustrate Prop. 4 with two examples: the doubly-
symmetric binary source, and bivariate Gaussians. For the
DSBS, Apyp(X;Y) is shown to be strictly larger than the
wringing dependence, and so (110) is a loose bound. For
bivariate Gaussians, (109) gives a tight bound. In fact, the
wringing dependence for bivariate Gaussians is quite difficult
to compute directly from the definition, but Prop. 4 allows
us to find it exactly: for bivariate Gaussians with correlation
coefficient p, A(X;Y) = |p|. This establishes that the last of
Rényi’s axioms from [26] holds for wringing dependence.

Example 2 (DSBS): Let (X,Y) be a DSBS with parameter
p as in Example 1. In [31], it was established that the hyper-
contractivity ribbon consists of the pairs (r,s) where either
(1-2p)2(r—1)+1<s<rorr<s<(1-2p)2(r—1)+1.
In particular, (1+1/9,1+6) € Ry,y iff

(111)

(172p)2%+1§1+5 (112)

which holds if § > |1—2p|. Therefore, Apyp(X;Y) = [1-2p|.
Note that this quantity is strictly smaller than the wringing
dependence as calculated in Example 1, except for the trivial
cases where p € {0,1/2,1}.

Example 3 (Bivariate Gaussians): Let (X,Y) have a bi-
variate Gaussian distribution with correlation coefficient p. We
claim that A(X;Y") = |p|. Without loss of generality, we may
assume that X, Y each have zero mean, and covariance matrix

1]

We may assume that p > 0, since if not we may simply
replace Y with —Y. We upper bound A(X;Y) via Prop. 4. A
result originally by Nelson [33], which is also a consequence
of the Gaussian log-Sobolev inequality [34], is that for any
function ¢ : R — R, (107) holds for » > s > 1 if
p <+/(s—=1)/(r —1).(See [35, Sec. 3.2] for an information-
theoretic treatment of this inequality.) Thus, with r = 1+1/§
and s = 1+, (r,s) € Rxyy if p < 4. Therefore
Apyp(X;Y) < p, and so A(X;Y) < p by Prop. 4.

We now show that A(X;Y) > p. If p =1, then X =Y,
so A(X;Y) = 1. Now suppose that p < 1. Let § = A(X;Y).
Applying (43) from Thm. 2, for any A, B C R

Pxy (A, B) < (1+28)(Px(A)Py(B))"/0+9,

(113)

(114)
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In particular, for a parameter a > 0 (we will eventually take
the limit @ — 00), we may choose A = B = [a,a + 1]. Let
¢(x) be the standard Gaussian PDF. Since ¢(z) is decreasing
for z € [a,a + 1], we have

a+1
Pe(A) = Pr(B) = [ ola)de < o(a).

a

(115)

The joint PDF of (X,Y) is

1 x2+y22pxy}
zy)=———expd—— 2 I E (116
fovlo) =5 A= p{ a0 1Y

In particular, fxy (x,y) is decreasing in = and y if x > py
and y > pz. From the assumption that p < 1, these conditions
hold for all z,y € [a,a + 1] for sufficiently large a. Thus

a+1 a+1
Pay (A B) = / da / dy fry (2,)

> fxy(a+1,a+1). (117)

Plugging into (114) gives

v

) 1/(146)
< (1+20) (27r exp{—a2}> . (118)
Thus

a 2
_(a+1)” log(2m/1 — p?)

1+p
B a? _ log(2m)
- 14946 1+46

+log(1+24). (119)
Dividing by a? and taking a limit as a — oo gives p < 4.
That is, A(X;Y) > p.

2) Maximal Correlation: The maximal correlation, which
was introduced in [36], [37] and further studied in [26], is
given by

pm(X;Y) = S}lpp(f(X);g(Y))

(120)

where the supremum is over all real-valued functions f :
X - Rand g : Y — R such that f(X) and ¢g(Y)
have finite, non-zero variances, and p(-;-) is the correlation
coefficient. The maximal correlation shares much in common
with the wringing dependence: in particular, both satisfy all 7
axioms from [26]. Moreover, the maximal correlation provides
a simple bound on the hypercontractivity ribbon (see [31]); this
implies that Apyp(X;Y) > pin (X;Y), where Ay, is defined
in (109). The following result, proved in Appendix B, shows
that if the wringing dependence is small, then the maximal
correlation is also small.

Lemma 5: If A(X;Y) <6, then the maximal correlation is
bounded by

pm(X;Y) < O(5logs™1). (121)

This result will be particularly useful when addressing the
Gaussian MAC; see Sec. VI-B. Unfortunately, the bound in
Lemma 5 is not linear; in fact, no universal bound of the form

pm(X;Y) < K A(X;Y) is possible.” This is illustrated in the
following example. This example also shows that Lemma 5 is
order-optimal; in fact, for any 0 < ¢ < 1 and any § > 0, there
exists a distribution Pxy where A(X;Y) < and

pm(X;Y) > cologdt. (122)

Example 4: For any a € [0,1/2], let X,Y be binary
variables with joint PMF given by

X
v 0 1
0 1—2a a
1 a 0

Note that Px = Py = Ber(a). We first calculate the maximal

correlation. Since X,Y are both binary, the only nontrivial

functions of them are the identity function and its complement,

o)

[E[XY] — E[X]E[Y]|
Var(X) Var(Y)

pm(X3Y) = [p(X;Y)] =

a® _a
a(l—a) 1-a’
To compute the wringing dependence, recall that the function
of (Qx,Qy) in the definition in (35) is concave. Since X and
Y have the same distribution, the optimal choice has Qx =
Qy. If we let Qx = Qy = Ber(q), then we see that wringing
dependence between X and Y is

{1ogq(1 —q)

(123)

log(1 — q)* } 1

" log(1 — 2a)

(124)
While there is no simpler closed-form expression, this quantity
can be easily computed. Fig. 2 shows the relationship between
maximal correlation and wringing dependence across the range
of a. To analytically establish that this example satisfies the
claim (122), we may upper bound the wringing dependence
by plugging in ¢ = a, to find

A(X;Y)= inf max

q€[0,1] loga

loga(l —a) log(l—a)?
A(X;Y) < -1 (12
(X:Y) = max{ loga  "log(l — 2a) (125)
1 _
_loga(l—a) (126)
log a
= M. (127)
loga
Thus
I A(X;Y)log A(X;Y)~t
al_>nlo pm(X;Y)
. l—alog(l—a) loga
<1 1 128
=450 q loga ©8 <10g(1 —a) (128)
=lim(l—a) —>—- log(1 — a)
a—0 a
log(— log a) — log(— log(1 —
log(—loga) —log(—log(l —a)) (129)
—loga

We proceed to show that the limit as a — 0 of each of the
three multiplied terms in (129) is 1. The limit of the first term

7If there were such a bound, analyzing the Gaussian MAC would dramat-
ically simplify.
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Fig. 2. The relationship between wringing dependence and maximal corre-
lation for Example 4, plotted across the range of a € [0,1/2]. Of particular
note about this example is that, in the vicinity of the point (0, 0), the slope
of the curve is infinite.

is certainly 1; the limit of the second term can be seen to be
1 by an application of L’Hdpital’s rule. For the third term, we
have

lim log(—loga) — log(—log(1 — a))

a—0 —loga

1 1
= iy ZTET * _(117;) Tog(1-a) (130)
= lim 1o_g1a T - IZg(l ~a) (131)
=lma _a);;u —a) (132)
:J%i@ﬁ%aii (139
=1 (134)

where (130) and (133) follow from L"Hopital’s rule, and (132)
holds since log a — —oo. Therefore, for any 0 < ¢ < 1, there
exists a sufficiently small a such that (122) holds.

Another interesting fact is that while Lemma 5 upper
bounds the maximal correlation by a function of the wringing
dependence, no lower bound is possible. The follow example
illustrates that the maximal correlation can be arbitrarily close
to 0 while the wringing dependence is arbitrarily close to 1.

Example 5: Given parameter a, let X, Y be binary variables
with joint PMF given by

X
y 0 1
0 a aloga™!
1 aloga™ 1—a—2aloga™!

We claim that as a — 0, p,,, (X;Y) — 0 while A(X;Y) — 1.
The maximal correlation can be computed as

a—(a+aloga=')?

m(X;Y) =

pm ) (a+aloga=t)(1 —a—aloga=1)
a—o(a) 1—0(1)

aloga=! +o(aloga=1))  loga~! (135)

which vanishes as ¢ — 0. We may lower bound the wringing
dependence by

log ¢ log(1 — )2

A(X;Y) > infmax { ~2 L og(l —q) .

q loga’ log(l —a —2aloga=1)
(136)

; {10gq2 log(1 — q)? }

= sup min , S

q loga ’ log(l —a —2aloga=t)
137)

where (137) holds since the first function inside the maximum
in (136) is decreasing in ¢ while the second function is
increasing. We may now lower bound (137) by choosing
q = 2aloga~!, which gives

log ¢? B 2log(2alogat) _ 2loga+2log(2loga™!)
loga loga N loga
logloga™*
—9_of8er (138)
loga—1!
and
log(1 — ¢)? 2log(1 —2aloga™?!)

log(l —a —2aloga=!)  log(l —a — 2aloga=1)
_ daloga™!+O(a%log’a™') B 1
N 2aloga=!+ O(a) N loga=! )"
(139)

Therefore, in the limit as a — 0, (137) approaches 1.

IV. FINITE BLOCKLENGTH CONVERSE BOUND

Before stating our main finite blocklength bound, we need
the following definition. Given distributions P, Q1, ..., on
alphabet X', we define the achievable region for a hypothesis
test between a simple hypothesis P and the composite hypoth-

esis {Q1,...,Qk} by the set
6()4(P?Q1?"'7Qk): U {(61,...,Bk)€[0,1]k:
T:x—[0,1],
Ep[T(X)]>a
Eo,[T(X)] < B fori=1,...,k}. (140)

The following is our finite blocklength converse bound for
the MAC. It follows the same core steps as Ahlswede’s proof
from [8], while using wringing dependence in the wringing
step, and is also written in a one-shot manner.

Theorem 6: Suppose there exists an (M7, M, €) code for
the one-shot MAC W € P(X x Y — Z). For any A > ¢,
d > 0, there exists a distribution Pxy € P(X x )
where A(X;Y) < 0, and for any Qz € P(2),Qzy €
P(Z|Y),Qzx € P(Z|X),

> (1= ) By

141
MMy — A ( )
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1 e\ 1+1/0
1 € 1+1/6

where the expectations are with respect to Pxy, and for each
x? y’

(612(x7 y)a ﬂl(xa y)a BQ(-T, y))
€ B1zWay, Qz,Qz|y=y, Qz|x=2)-

Proof: Consider a (stochastic) code given by encoders
Px|;, € P([Mi] — X) and Py, € P([Ma] — V), and
decoder P 7., € P(Z — [Mi] x [M,]) with average
probability of error at most e. Let Qx be the distribution
induced on X assuming [; is uniform on [M;]; i.e.,

(144)

1 M

Qx(A) = M, Z Px1,=i, (A).

i1=1

(145)

Let Qy be the corresponding distribution induced on Y
assuming I is uniform on [M3]. Also let Qxy = QxQy
be the product distribution. Let £ be the error event, that is

£={(I1, 1) # (I, I)}. (146)
Given any A\ > ¢, we may define the expurgation set by

I={(z,y) €XxYV:PE|X =2,V =y) <A\}. (147)

That is, T' is the set of transmitted pairs (x,y) that give
probability of error at most A. From the assumption that the
probability of error is at most e,

e >P(€) (148)
>PE,(X,)Y)¢T) (149)
>(1-Qxy(D)A (150)
) .
Qxy(T) 21— % 1s1)
Let Pxyr = Qxy|x,y)er- We may bound the Rényi
divergence between these two distributions by
Pxiy/(F
Deo(Pyyr||Qxy) = sup log LX) (152)
FCXxY Qxy (F)
Qxy(F n F)
= sup lo (153)
chriy gQXY(F)QXY(F)
< —log Qxy (I (154)
€
< - - —).
< —log (1 A) (155)

We may now apply Lemma 3 with 0 = —log(1 — ¢/)) and
any fixed 6 > 0, to find sets X C X,Y C ). Let Pxy =
Pxryixrex,yrey- From the lemma,
A(X;Y) <9,
Pxryi(X,Y) > exp{—0c/6}.
Using an identical calculation to the earlier bound on Rényi
divergence,

DOO(PXY”QXY) < —IOngy(l—‘ﬂ)E X 7)
= —log Qxy (T)Px:y/(X,))

(156)
(157)

(158)
(159)

<o+ % (160)
1 €
= - <1+5> g (1-5). a6
Thus
ap —1-1/6
=2 (2,y) < exp{Doo(Pxv[|Qxy)} < (1 . E) .

We now define a hypothesis testing function 7' : X x Y x Z —
[0,1] given by

T(z,y,2) = P(E(X,Y, Z) = (2,9, 2)). (163)

From the definition of T, for any (z,y) € T,

[ dWas(&)T (.9 = BE|XY) = (@) 2 1 A
(164)
Thus, by the definition of the hypothesis testing quantity in
(140), for any Qz,Qz)y,Qz x, (144) holds with

b1a(o.0) = [ dQz(2)T(,1.2) (165)
b1 = [dQzy-y (w2, (160
pal.) = [ @z T@pz) (67
Thus
BlBa(X,Y)) = [ dPxy(e.)dQz(T(e.0.)  (168)

S/dny(:v,y)sz(Z)lP’(S“I(X,KZ):(x,y,Z)) (169)

<(-9" / 4Qx (2)AQy (1)dQ(2)

eN—1-1/6 1

<(1-3)

A M Mo
where (170) holds by the bound on the Rényi divergence from
(162), and (171) holds because if (X,Y,Z) ~ RxQyQyz,
then (17, I5) are uniformly random on [M;]x [M3] and (11, I2)
are independent from them, so the probability of correct

1

decoding is at most 5. Rearranging (171) yields (141).

By a nearly identical argument,

(171)

E[B,(X,Y)] = / APy (2.9)dQz1y—y ()T (z,y,2) (172)

<(1-9)" [ a@x@)iQr )iQzy-, ()

PENX,Y, Z) = (2,y,2)) (173)
eN—1-1/6 1
< (1 - X) i (174)

where (174) holds because if (X,Y, Z) ~ QxQyQz|y. then
I, and I; are independent. Rearranging yields (142). The same
calculation for E[55(X,Y)] yields (143). [ |
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V. ASYMPTOTIC RESULTS

We present two asymptotic results, each characterizing the
second-order rate as O(1/4/n) under certain assumptions on
the channel. The first result (Thm. 7) aims to bound the
second-order rate with minimal assumptions on the channel,
while giving the simplest possible proof of the result. In
particular, Thm. 7 avoids an assumption on the third-moment
of the information density. The second result (Thm. 9) applies
only to MACs with finite alphabets, but it gives a substantially
tighter bound on the second-order rate for these channels.
Thm. 9 is intended to give the tightest possible bound on the
second-order rate, at the cost of a more complicated proof.
We state both results first, and then prove them in Secs. V-A
and V-B. Sec. V-C provides some discussion of the maximal
probability of error case.

For a; > a9 > 0, and any § > 0, define

Coy 0, (0) = sup

Py xy:A(X;Y|U=u)<4 for all u,
E[by (X)]< B,
E[bs (Y)]< B2

[ I(X,Y; Z|U) + (a1 — a2)I(X; Z|Y,U)].  (175)

For ag > ay > 0, we define Cy, o, (0) similarly, except there
is a term with I(Y;Z|X,U) in place of the I(X;Z|Y,U)
term. Note that C, 0,(0) = Co, a,. Also let Cy, . () be
the derivative of Cy, o, () with respect to ¢. Since Ci, o, (6)
is non-decreasing in ¢, Cy, . (0) is well-defined, although it
may be infinite. Let

Vinax =

sup max{V(W||PZ|U|PUXy),

Pyxy:
E[b1(X)|<Bx,
E[b2(Y)]<B2

V(W||PzyulPuxy), VIW||Pz xulPuxy)} (176)

where Pz 7, Pzyu, Pzxu are the induced distributions from
Py xy. Note that in this definition, there is no independence
constraint on Py xy.

Theorem 7: For any aq,as where max{aj,as} = 1, and
any € € (0,1),

Ry (TL, 6) < Cozl,az

1,02
1

A anax
in [2¢/C’  (0)1 Jmax |
+Ag}g}1)[\/mm()ogA_€+\/1_A Tn

1
to (\/ﬁ) . (177)

The proof of this result, found in Sec. V-A, applies an
Augustin-type argument (cf. [9]), wherein Chebyshev’s in-
equality is used to bound the hypothesis testing fundamental
limit. Thus, the bound is only meaningful if the second
moment statistic Vi, .« is finite, but there is no requirement on
the third moment, which allows Thm. 7 to hold in a great deal
of generality, although it can typically be improved with more
careful analysis. The following corollary comes by plugging
in, for example, A = # into (177).

Corollary 8: Tf (1) Vipax < o0, and (ii) C, ,,(
uniformly bounded for all «y,as where max{ay, as
then for any € € (0,1),

0) is
= 1,

1
R(n,€) QC—%—O(\/ﬁ).

As seen from Corollary 8, the second-order coding rate
is O(1/y/n) as long as two regularity conditions hold. The
condition on Vj,.x 1S not surprising, as any result of this
form requires that the information density has a finite second
moment. One slight complication arises from the fact that,
in the definition of V.« in (176), one cannot choose the
output distribution Pz separately from the input distribution.
That is, even though in Thm. 6 the distribution @z (and
Qz)y,Qzx) is a free choice, we select only the induced
output distribution. This complicates the analysis for some
channels; for example, for the Gaussian point-to-point channel,
in the second-order converse bound one typically chooses an
i.i.d. Gaussian for the output distribution, as in [13, Sec. III-J].
By contrast, here that choice is not available. This difficulty
is addressed for the Gaussian MAC in Appendix E.

The second regularity condition, on the boundedness of
Cl,,.a,(0), wherein the wringing dependence appears, is more
particular to our method. Verifying this condition requires
analyzing the effect of the wringing dependence between the
two inputs on the maximum achievable weighted-sum-rate. In
the sequel, we establish that this condition holds in two cases:
for any discrete-memoryless channel, as shown in Thm. 9,
and for the Gaussian MAC, as discussed in Sec. VI-B with
the proof in Appendix E.

We now state a more precise result for discrete-memoryless
channels, which will require a few new definitions. Let P(ifl s
be the set of distributions Py xy satisfying the supremum in
the characterization of C,, o, in (24). For any « € [0, 1], let

(178)

Vit = sup [a\/V(WHPZW\PUXY)

in
UXYE'PLQ

2
+(1— O‘)\/V(W”PZ\YU|PUXY)J (179)

where Pz and Pzyy are the induced distributions from
Py xy. Also let

= inf
PUXY,leyl‘U

2
+ (L= ) VW IPgyu|Puxy)] (180)

Vl,a

[a\/V(WHPZ\U|PUX’Y/)

where the infimum is over all Pyxy € Piffa and Pxry/|u
satisfying

aD(W||Pziu|Puxry:) + (1 — a)D(W| Pz yu|Puxiy)
:Cl,a- (181)

Define V., and Vojf . analogously. For any «i,as where
max{ay,as} =1 and any A € (0,1), let

VA _ Vaj,aga
Qg0 V+

Q,02?

A<1/2

A>1/2. (182)
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Theorem 9: If X,), Z are finite sets, then both regularity
conditions in Corollary 8 are satisfied. In addition, for any
ay, ay where max{ay,as} =1, and any € € (0,1),

Rzl,ag (TL,E) S <OO(1,O¢2+

A 1 k%
) ’ 1 _ A -1
\/Coq,ag (0) og N\ — e Val,ag Q ()‘)‘| ﬁ)

1
+0 (\/ﬁ> (183)

where Q is the Gaussian complementary CDF and Q1 is
its inverse function, and (-)** represents the lower convex
envelope as a function of («ay, as).

Note that V! ., and V,;, ,, are not quite complementary.
In particular, V| ., is in general smaller than the quantity
obtained by simply replacing the supremum with an infimum
in (179). However, for at least some channels of interest, such
as the binary additive erasure channel (see Sec. VI-A), all of
these divergence variance quantities are equal.

Thm. 9 settles the question, at least for some discrete
channels, of whether the maximum achievable rates approach
the capacity region from below or above for sufficiently small
probability of error. We state this precisely in the following
corollary.

Corollary 10: Let X, Y, Z be finite sets. If V.||,
for sufficiently small € and sufficiently large n,

min
AE(e,1)

> 0, then

R}, .. (n,€) < Coyan-

1,02

(184)

This corollary is proved by choosing, for example, A = 2¢ in
(183) and taking € to be sufficiently small.

A. Proof of Thm. 7

Consider any (n, M, M, €) code for the n-length product
channel. We consider (ap,a2) = (1,«) where o € [0,1].
The alternative case is proved identically. We apply Thm. 6
wherein the one-shot input alphabets X', ) are replaced by the
cost-constrained input sets

{x” cx™: Zbl(:ct) < nBl},

t=1

{y" €V ba(m) < nBQ} :

t=1

(185)

Thus, for any A > ¢, > 0, there exists a distribution Pxnyn
such that X™ and Y™ fall into the sets in (185) almost surely,
A(X™Y™) <4, and

log(M1My) < —logE[B1_x(Wxnyn, 11—, Pz,)]
+ (1 + 1) log A
) A—¢’
log M1 < - IOgE[ﬂl_)\(WXnyn,H?:l PZt\Yt:Yt)]
+ (1 + 1) log A
5 A—¢€’
log My < —1log E[f1-A(Wxnyn, [T;—) Pz, x,=x,)]

(186)

(187)

+ ((1S+1) log)\ie. (188)
Here, we have relaxed Thm. 6 by noting that if (31,...,0%) €
B (P, Q1,...,Qk), then §; > [1_x(P,Q;) for each i €
[k]. We have also chosen the induced product distributions
for Qz,Qz)y,Qz x- Since by Thm. 2, wringing dependence
satisfies the data processing inequality, A(X;;Y;) < ¢ for
any ¢ € [n]. We will make use of the e-information spectrum
divergence (cf. [27], [38]), which is given by

dpP
D:(P||Q) = sup {R eR:P (log @(Z) < R) < 6} .
(189)
The hypothesis testing quantity can be related to the informa-
tion spectrum divergence as

“logBia(P.Q) < | _inf  [DIT(P]Q) ~logn] . (190)

Using Chebyshev’s inequality, the information spectrum diver-
gence may in turn be bounded by (see e.g., [27, Prop. 2.2])
V(PlQ)

D(PQ) < D(PIQ) + )~

(191)

and so

—log B1-A (P, Q)

w — 10g77> . (192)

0<n<l—XA

< D(P|Q)+ inf ( [ —

Applying (192) to the bound in (186) gives, for any 0 < n <
1—A,

1
log (M M) — <6 + 1> log

. (193)

< _log/dPXnyn (", y™) exp{ - ZD(W%%HPZJ
t=1

1

1_)\_n)f=21V(nyf” Zf)+0g77} (9)

< ) D(W||Pz,|Px,y,)
t=1
1 n
+ mZV(WHPZJPXm)*lOg?? (195)

t=1
= TLD(W||PZ‘U|PXYU

n
* \/1_/\_,r]V(WPZ|U|PXYU) —logn  (196)
nvmax

where (195) holds by convexity of the exponential and con-
cavity of the square root; in (196) we have let U ~ Unif[n],
X = Xy,Y =Yy, Z = Zy; and (197) follows from the
definition of Vi« in (176). Applying the same derivation to
(187) gives

1 A
long— (5+1> log)\fc
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Vmax

<nI(X;Z|VU) + | — 22 _logn. (198)
1-X—n

Recall that for each t € [n], A(X};Y:) < 0, which means that

for each u, A(X;Y|U = u) < . Moreover, by the fact that

X™ Y™ fall into the cost-constrained sets in (185),

1 n
E[by (X)] = — > Ebi (X)) < By, (199)
t=1
1 n
E[bo(Y)] =~ > E[e2(¥)] < Ba. (200)
t=1
Thus, from the definition of C 4 (d) in (175),
ol(XY; Z|U) + (1 — a)I(X; Z|Y,U)
< 017()[(5) = Cl,(, + CLG(O) o+ 0(5) (201)

where the equality follows from the definition of the derivative.
We may combine (197) and (198), then plug in (201) to find

log M1 + alog My < nCy o +nCi ,(0)0 + o(nd)
1 Viax 1 A

Recall that ¢ is a free parameter. The optimal choice (ignoring

log 52—

the o(nd) term) is § = 7O ) which gives

log M7 + alog My < nCh o + 2\/nC{Aa(O) log 3
’ —€

Toa_y losntlogy

A

— +o(yv/n) (203)
We now distinguish two cases. If Viax > 0, then the optimal

value of X in the minimization in (177) is bounded away from

1. Let X take on this optimal value, and we choose nn = 1/+/n

to give

A
log M7 + alog My < nCh o + 2\/710{7&(0) log .
Vmax
+ Z_A Fo(yn). (204)

If alternatively Vi,ax = 0, then the optimal value of A in the
minimization in (177) is A = 1, but plugging A = 1 into (203)
does not quite work, because of the requirement that n < 1—\.
Instead we may choose A =1—2/n and n = 1/n to give

log My + alog M>
nCy,

<nCiq+2 o(0)1og(1 — €)=t 4+ o(y/n). (205)

B. Proof of Thm. 9

We will need the following lemma, which is proved in
Appendix C.

Lemma 11: Consider a MAC where X,),Z are finite
sets. Let Wy,in be the smallest non-zero value of W, ().

Consider any random variables X,Y with distribution Pxy

where A(X;Y) < 4. Let (X,Y,Z) ~ PxPyW. Then
I(X,Y;2) < I(X,Y;Z) + 16 + O(62), (206)
I(X;Z]Y) < I(X Z|Y) + 26 4+ 0(5?), (207)
I(Y; Z|X) < I(X; Z|Y) + ¢36 + O(6?). (208)

where ¢y, ca, c3 are constants depending only on
and Win.

Lemma 11 immediately gives that C7, , (0) is uniformly
bounded for any a1, ay with max{a, 042} = 1. To prove that
Viax < 00, we note that for any distribution Pxy and its

induced distribution Pz

Z
V(W||Pz|Pxy) <E [1og2 %} (209)
2
< (\/E [log? Wy (2)] + {/Eflog” PZ<Z)}) (210)
2
< (2v/4e2]) @11
=16e72|Z| (212)

where we have used the fact that plog2p < 4e72. By the
same argument, V(W||Pzy||Pxy),V(W| Pz x| Pxy) are
also bounded by 16e2| Z].

Recall that R}, az( ,€), as defined in (18), is the supremum
of linear functions in (o, as), so it is convex in (o, @s).
Thus, to prove the theorem it is enough to show (183) but
without the lower convex envelope. We assume that (a1, as) =
(1, @) for a € [0, 1]. We proceed with with the first step as in
the proof of Thm. 7; namely from Thm. 6 we derive (186)—
(188). Combining (186) and (187), and using the fact that
p*ql= is concave in (p,q), gives

log M7 + alog Mo
—logE [ (Bi-a(Wxnyn, [Tj=y Pz,))"
(Broa(Wxnyn, Ty Pzt\yt:Yt))l_a}
+ ((15 + 1> log \ i
Since we will apply a Berry-Esseen bound to the hypothesis
testing quantities, rather than a Chebyshev bound as in Thm. 7,

(213)

we need to avoid some potentially badly-behaving (x",y™)
sequences. In particular, define the set
1

Qp = {(x",y”) s Px,y, (2, yt) < = for some ¢ € [n]
214)
Let po = Pxny= (o). By the union bound,
" 1
po< > P (me(Xt,Yt) < ng) (215)

t=1

n 1
=Y > Py (ay)1 (me (z,y) < n2> (216)
t=1 z,y
< 1INy (217)
n
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From the fact that the 8 quantities are non-negative, we may
further bound (213) by

log M7 + alog Mo
—10gE[1((X", ") € 95) (Br-r(Wxeyn, Ty Pz,))”
n 11—«
. (ﬁlfk(WX"'Y”a Ht:l PZt|Yt:Yt)) :|
1 A
—+1])1
+ ((5 + > og P
We now use the Berry-Esseen theorem via [27, Prop. 2.1]

to bound each of the hypothesis testing quantities in (218).
Specifically, for any =", y"

—log 31— A( ac”y”th 1PZ,)

(218)

67,
< . _ 1 n .
- 0<7}I§1f17>\nDn nVnQ </\+n+ \/775’> logn
(219)
where
D, =~ ZD con |1 P2,), (220)
V,=— ZV (W, | Pz,), (221)
Th=— Z T(Wa,y, | Pz,)- (222)
For any (2™, y™) € Q§, any t € [n], and any z € Z,
log —¥222 — Jog Lyt (223)
STPLG) R, Px @)W, ()
<log ——— (224)
s Px,y, (4, yt)
< 2logn (225)

where the last inequality follows from the definition of €2y in
(214). (In fact, this is the purpose of the set the set €2y in the
first place.) We may prove a simple lower bound by, for any
z where W, (2) > 0,

Wﬂ?tyt (Z)
Pz,(2)
where Wiin = ming .., , (2)>0 Way(2). For any fixed
channel with finite alphabets, Wy,;,, > 0. Thus, for sufficiently

large n,

(226)

log > log Wy, (2) > log Wiyin.

log —4222 1 < 2log . 227)
P ) ©
This implies that 0 < D(W,,,,||Pz,) < 2logn, so we have
log 27 D(W,,, || P
og PZt (Z) ( tytH Zt)

< 2logn — log Wiin < 3logn  (228)

where the last inequality holds for sufficiently large n. Thus,
for any (z",y") € QS,

Tn S maXT(WfL’tytHPZt) S

31 3.
te[n] ( = n)

(229)

By the same argument, V,, < (3logn)3. Applying the upper
bound on T, in (229) to the bound on the hypothesis testing
quantity from (219) and selecting 7 = min{1/+/n, 1 — A}, for
any (2", y") € Qf we have

logﬁl )\( xnyn,Ht 1PZt)

3
<nD, —+/nV, Q! </\—|——|—6(310‘(‘;/?>+;10gn
n n

(230)

where we adopt the convention that Q~*(p) = —oc if p >
1. We now consider two cases. Consider first the case that
V,, > n~Y4 This implies \/nV3 > n'/8, so in particular
\/nV3 — oco. Thus, applying a Taylor expansion to the Q!
function, there exists a constant ¢y depending only on A such
that, for sufficiently large n,

3
e (v 3y S0

4 1 6(3logn)?
3
= VVa Q7 ) — 6o (W 4 §(3logn)” o n) > (232)
>V, QNN — ¢ ((3logn)3/2 + 162 n/*1og? n)
(233)

Now consider the case that V,, < n~'/%. Then we apply the

simpler Chebyshev bound of [27, Prop. 2.2] on the hypothesis
testing quantity to write

— log B1-x(W. zryn 7Ht IPZt)

i s Y s =
<nD, + 21 iﬂ;n ~log 1 ; - >
— Dy — /nV, Q! A)—&—M(Q_l( +1_2A>
g ] ; A (236)
<nD, —/nV, Q7Y (\) 4 n®/® (|Q |++13/\>
g} ; A (237)

where in (235) we have selected ) = % Thus, in all cases,

if (2™, y™) € QF, then for sufficiently large n,
—log 31— A( xnyn 7Ht 1PZ, <TLD \/TLVnQ +an
(238)
where
@, = max {{co ((310g n)*? +162n'/*log® n) ,
3/8 -1 + 2 -1 1= 2
n (|Q (N +1)\) 0g —5— (- (239)
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Note that the constants in the definition of a,, depend only
on A, and that for any A > 0, a, = o(y/n). By a similar
argument, if (2™, y™) € QF, then for sufficiently large n

—1og B1-x(Wanyn, [T/—1 Pz,|vi=y.)

< Z D(Wmtyt ||PZtD/t:yt)
t=1

- Z V(Wrtyt ||PZf,\Yf,:yf,) Q_l()‘) + Qn (240)
t=1

Applying both bounds to (218) gives

log M; + alog My < —log]E{l((X”,Y") € Qf)

- exp {an(X", Y™+ /nV(X? Yn)QH(N) — an}]

1 A
- +1])1 241
+(5+ >0g/\_6 (241)
where we have defined the statistics
n n 1 -
D(l‘ Y ) = E [O‘D(thytHPZt)
t=1
+ (1= ) D(Wayy, | Pz, v,=y,)],  (242)
n n 1 -
V(I‘ Y ) - @ E V(Wﬂ?tl}t”PZt)
t=1
2
1 n
+(1 - Oé) 5 t_zl V(Wmtyt ||PZ1,\Yt=yt) . (243)

Consider any A > 1/2. From (241), by the convexity of the
exponential, we have

log My + alog Ms

1 n n C n n
< 1_pOE[u(X Y )EQO)(nD(X Y
—/nV (X", Y"™) Q_l()\))} + a, —log(1 — po)
1 A
n (5 n 1) log 1=~ (244)
1 n n n n —1
< 1_pOIE[nD(X V) = AV (XY Q]
+ a, —log(1 — po) + ((15 + 1) log /\i (245)

where we have used the facts that D(z",y") and V(z",y™)
are non-negative, and since A > 0, Q1()\) < 0. Note that

E[D(X™,Y™)]

1 n
= H Z[QD(W||PZ1|PXth)
t=1

+ (L= ) D(W||Pz, v, |Px.v.)] (246)
1 n
= %Z[OJ(Xt,Yt;Zt)+(lfoz)I(Xt;Zt|Yt)] (247)
t=1
=aol(X,Y;ZIU)+ (1 — )I(X; Z]Y,U) (248)

where in the last equality we have defined U ~ Unif[n] and
X = Xy,Y =Yy, Z = Zy. Moreover, by concavity of the
square root,

E [ V(X”,Y")]

1 n
< — V(W | Pz, |P.
<a nz (W Pz, Px.v,)

t=1

1 n
+(1—a) |~ > V(W|[Yz v, |Pxy)  (249)
t=1
= a\/V(W||PZ|U|PUXY)
+ (1= )\ V(W[ Py | Poxy). (250)

Thus, since Q~*(\) <0,
log My + alog Mo

<
1 —po

- \/ﬁ(a\/V(W”PZ\U|PUXY)

+ (- @ VI Payo o)) Q)]

[n(aI(X,Y;Z|U) +(1-)I(X;Z|Y,U))

1 A
+ap, —log(l —po) + <(5 + 1> log . (251)
< n(aI(X,Y: ZU) + (1 — ) I(X; Z]¥, 1))
- \/ﬁ(a\/V(WHPZ\UUDUXY)
+(1- a)\/V(W||PZ|YU|PUXY))Q_1(/\)
+ (1 + 1) log A + o(v/n) (252)
1) A—e€

where we have used the facts that a,, = o(v/n), p, = O(1/n),
and that the quantity inside the square brackets in (251) is at
most nlog|Z| — v/nVmax Q1 (A). From the cost-constraint
assumptions on the code, we also have E[b;(X)] < B; and
E[b2(Y)] < Bs. By Carathédory’s theorem, we may reduce
the cardinality of U to [U{| < 6 while preserving the following
values:

od(X,)Y;ZIU)+ (1 —a)I(X; Z|Y,U),
VW||PzulPuxy), VIW|Pzyu|Puxy),
E[b1(X)], E[b2(Y)].

(253)

Choosing § = O(n~'/2) allows us to derive the crude bound

log My + alog My < n(al(X,Y; Z|U)
+ (1 —a)I(X;Z|Y,U)) + O(/n).

Define X , f/, Z where
PX?Z\U:u(%y, Z) = PX|U:u(x)PY|U:u(y)ny(Z)' (255)

By Lemma 11,

(254)

log M1 + alog My < n(al( Y Z, U)

+(1—a)I(X;Z|Y,U)) + O(v/n). (256)
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Our goal is to prove that

log M7 + alog My < nCh o + 2\/110{7&(0) log .

— /7Y, Q7 (N +o(vn).  (257)

Since @~1()\) < 0, we may assume that

log My + alog My > nCh o (258)

or else there is nothing to prove. Thus

RS S A 1
a](X,Y;Z,U)—l—(1—a)I(X;Z|Y,U)ZCLQ—O<\/H>.
(259)

Noting that the mutual information is continuous over distri-
butions with finite alphabets, by the definition of C o, (259)
implies that there exists a distribution Ppyy € Pj", where
drv(Py v, Pixy) < o(1). Since A(X;Y|U = u) < 6,
from Thm. 2 we have

| Pxyv=u(®,y) — PX};‘U:u(a:,y)\ < 20. (260)

As we have taken § = O(1/y/n), then drv (Pyxy, Py y) <
o(1). Thus by the triangle inequality, drv (Puxy, Phxy) <
o(1). Since the dispersion variance is also is a continuous
function of Py xy (again for finite alphabets), we must have

ay/VIWIIPzip|Puxy) + (1= a) V(W] Pzyu| Poxy)

(261)
< o\ [VIWIIP 4| Pixy)

+(1— a)\/V(W|\P;|YU|P,§XY) +o(1) (262)
<V, +o(1) (263)

where the second inequality holds since Py - € PP, and by
the definition of Vlfa in (179). Now returning to the bound in
(252),

log My + alog Mo

<n(al(X,Y; Z|U) + (1 - a)I(X; Z]Y,U))

— /i QTN + ((15 + 1) log ) i -+ o(v/n)

(264)
<nCh,q(0) — nVlfa Q_l()\)
1 A
+(=+1)log +o(v/n) (265)
1) A—¢€
=nCla + C] 4(0)8 + o(nd) — /nVi', Q7H(N)
1 A
+(=4+1)log +o(v/n) (266)
1) A—¢€
(265) holds by the definition of C (6); and (266) follows by
0n 2
the definition of the derivative. Selecting 6 = IC{g *(‘Oe), we

derive the desired bound in (257).
Now consider any A < 1/2. Our goal is to show that

log My + alog My < nCi o (8) —4/nVy, Q ()

1 A
+ <(5 + 1> log . +o(vn) (267)

where eventually we will choose § = O(n~'/2). Thus, we
may assume

log M + aclog M > nCy o —4/nVy, Q (N

1 A
+(5+1>log>\_e

(268)
or else we are done. Now let
o = { (a4 D)
<nCra —1\/nVi, Q'(\) —a, —log n}, (269)
Q2 ={(2",y") : nD(a",y") > nC1,4(5) +1logn} (270)

and let p; = Pxrnyn(Q; NQ5) for ¢ = 1,2. To upper bound
p1, beginning from the bound in (241) we may write

1
log M7 + alog Ms + log(1 — po) — <(5 + 1> log

A—c¢
271)

< —log Pxnyn (2™, y") exp { —nD(z",y")

>

(zm,y™)€Q1NQG

+/nV(zn y) QTN — an}
)

(zm,ym)EQ1NQS

+/nVi, Q' (\) +log n}

(272)

< —log Pxnyn(z™,y") exp { —nCi

(273)

= —logp1 +nCia —4/nVi, Q '(\) —logn (274)

where in (273) we have used the definition of €, and the
fact that Q~*(\) > 0 since A < 1/2; and (274) holds by the
definition of p;. Thus by the assumption in (268)

1 1
P T = © <n> (275)
since pg = O(1/n).
Let
V' =min{V (2™, y") : (z",y") € (2 UQ2)°}.  (276)

We will prove that V' > V" — o(1). Fix (2",y") € (1 U
2)¢. By the definitions of Q1, Qs, since a,, = o(y/n) we have

Cla —OM™2) < D™ y™) < C1.0(0) +logn. (277)

Since 6 = O(n~'/?), by Taylor’s theorem and the fact from
Lemma 11 that C7 ,(0) is bounded, C;4(0) = Cio +
O(n=1/2). Thus |D(2™,y")—C1.o| < O(n~'/2). If we again
let U ~ Unif[n], and

Pxrynu=t(z,y) = Wz = 24,y = y1) (278)
then we may write
D(z",y") = aD(W|Pzu|Pyxy)
+ (1 —a)D(W||PzyulPuxry),  (279)
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VVi(nyr) = a\/V(W||PZ\U|PUX’Y’)
+ (1 - O‘)\/V(W”PZ\YU‘PUX/Y’)' (280)
Also note that E[b;(X")] = 137 bi(z,) < By, and
similarly E[b2(Y”")] < By. We may perform a dimensionality
reduction on I/ where || < 9 to preserve the following values:

Ql(X,Y; Z)U) + (1 — ) I(X; Z|Y,U),  (281)
aD(W | Pziy|Puxiy) + (1 — ) D(W||Pzyu|Puxry),

(282)
V(W Pziu|Puxy), VIWPziyulPuxry:), — (283)
E[by (X)), E[b2(Y)], E[b1(X")], E[b2(Y")]. (284)

Note that this is not the same dimensionality reduction
as above; in particular, this one depends on z”,y™. Since
0 = O(n’l/ 2), by the same argument as above, there exists
Pjyy € PP, where dry(Puxy,Pjxy) < o(l). Since
|D(z™,y™) — C1,a] < o(1), by continuity of the relative en-
tropy (for finite alphabets) there exists a distribution P)*(,Y,‘U
such that dTV(PUX/YUP[}X/y/) < 0(1) and

QD(W||P§|U|P5X/Y/) +(1- a)D(WHP§|YU|P5X/Y/)
=C1qa. (285)
That is, (Pfxy P)*(,Y,‘U) satisfy the feasibility condition for
the definition of V;_, in (181). By continuity of the divergence
variance, this implies that V(z",y") > Vi, — o(1). This

proves that V' > Vi — o(1). Now we may lower bound
the expectation in (241) by

]E{l((X”,Y") € QF) exp { —nD(X™, Y™
VAV XY Q) — ay }]

> Z Pxnyn (2", y") exp { —nD(z",y")
(zm,y™)E(QoUN1UN2)®

+WQ—1(A)—%}

> Z Pxnyn(z", y™) exp { —nD(z",y")
(zm,ym)€(QoUN1)°

+ \/nT/’Q_l()\) —an}

_ Z Pxnyn(z", y™) exp { —nD(z",y")

(am ™) 25N

(286)

(287)

VAV QI — an} (288)
1
> (1p0p1)exp{ 1 po—pr

>

(z7,y™)€(Q0UN1)°

+VnV' Q) an}

Pxnyn (Z'n, yn)nD(xna yn)

— D2 €xXp {fncl,a((i) + VvV’ Q1 (\) —logn — an}
(289)
1

— — pE[D(X™, Y™
—— [D( )]

> (1—po—p1)eXp{—

19
+ VnV’Qfl()\) — an}
— exp {—nC’La(é) +VnV' QY (\) —logn — an)}
(290)
1
> (1—=po—p1) eXP{ - mncl,a(é)
+ VRV’ QT (\) — an}
—exp {—nClya(d) +vVnV' Q7Y (\) —logn — an}
(291)
= exp {—nCLa(§) + VRV’ QTN — an}
. (exp { log(1 —po —p1) — %n()w(a)
- 0(1)} - 711) (292)
— exp {fnCL(,((;) VAV QI — an} o)  (293)

> exp {—nCLa(é) +4/nV1 . Q') - o(\/ﬁ)} (294)

where (287) holds by the definition of V', (289) holds by the
definition of 25 and by convexity of the exponential, (290)
holds by extending the sum over all (z”,y™), (291) holds since
E[D(X",Y")] = oI(X,Y; Z|U) + (1 — a)I(X; Z|Y,U) <
C1 o (); (293) holds since py + p1 = O(1/n), which implies
that log(1 — po —p1) = —O(1/n) and % = 0(1), and
we also use the fact that Cq () < log|Z];and (294) holds
since V' >V, — o(1) and a,, = o(y/n). This proves (267).
Again using the definition of the derivative, and choosing ¢
optimally (this involves 6 = O(n~'/2) as promised) completes
the proof.

C. Discussion of the Maximal Error Case

While the results in this paper focus on the average error
probability criterion, an important variant of the problem
is the one using maximal error probability. In a sense, the
maximal error variant is an easier problem, because it imposes
a stronger condition on each message pair. Unfortunately, as
originally shown in [39], the capacity regions for the two
problem variants can differ, and in general the capacity region
of the maximal error case (with deterministic encoders) is not
even known.

A second-order converse bound for the maximal-error case
was presented in [22]; however, the proof of the main result of
[22] appears to have a gap (namely, the derivation of equation
(28)). The recent work [23] used a wringing-based proof
(following a similar approach as this paper) to derive a similar
bound to that claimed in [22]. The result derived in [23] is as
follows. Let Ry™3*(n,¢) be the largest achievable weighted-
sum rate for a length-n code with maximal probability of error
e. Consider a discrete-memoryless MAC such that there is a
unique optimal input distribution for the standard sum-rate; i.e.
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Pil‘jl contains a single distribution P% Py. Then [23] shows
that

Rfjﬂax(n, €) <Ci — \/?Ql(f) +o (\}ﬁ) (295)

where V* = V(W/||P%|P%P;) where P} is the induced
output distribution from P%Py. This constitutes a tighter
bound on the sum-rate than Thm. 9. However, note that in
(295), C,1 is the average-case sum-capacity, which may not
be the same as the maximal-error sum-capacity, and indeed the
maximal-error sum-capacity may not even be known. Thus, for
many channels the gap between the best-known achievability
and converse bounds for the maximal-error case is O(1), as
opposed to O(1/4/n) for the average-error case.

VI. EXAMPLE MULTIPLE-ACCESS CHANNELS
A. Binary Additive Erasure Channel
Let X € {0,1}, Y € {0,1}, 2 = {0,1,2,e}. Given
(X,Y) = (z,y), Z = e with probability v, and Z = z+y with
probability ¥ = 1 — ~. The capacity region for this channel is
the pentagonal region

3
C= {(Rl,Rg) TR+ Ry < 5’710g2,

Ri <Alog2, Ry < ’legQ}. (296)
Thus the weighted-sum-capacity is
1
Coyan = (max{oq, ast + 3 min{ay, a2}> Flog2. (297)

In order to apply Thm. 9, we need to find C,, ,,,(0), V., ..
and V.. First we compute C, ,(5). Since the channel is
symmetric between the two inputs, Cy, o,(0) = Ca,.a, (9).
Let (a1, a2) = (1, ) for @ € [0, 1]. Since this channel has no
cost constraints, the time sharing variable U can be eliminated

in the definition of Co, «, () in (175). Thus

C1.a(8)

= max[ad(X,Y52) 4 (1= a)[(X52)Y)
(298)

= ey BB, TOHE 4Y) 4 (1 - ) HXY)].
(299)

To lower bound C (), we may take Pxy to be a DSBS with
parameter p < 1/2. Recalling the calculation from Example 1,
AX;Y) = 1tlogy(1-p)

1-log,(1-p)’
C10(0) > max

. 1tlogo(1—p)
pgl/Q.%SS

Y[a(Hy(p) + (1 — p)log2)

+ (1 —a)H,y(p)] (300)
5 [H,(21-2/0+9))
= + a2!=%/ (149 Jog 2],
Yllog(1 +27%) + arlog 2],

1—log, (1427 %)
1+log, (14+27«)?

1—log, (1427%)
J z 1+log, (142~ )

0 <

(301)

where (301) follows from a straightforward entropy calcula-
tion. In fact, this lower bound is tight, although the proof is
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a little more difficult. The following proposition is proved in
Appendix D.

Proposition 12: For any o € [0,1] and 6 € [0,1], C1,4(0)
is equal to the expression in (301).

Given the expression for C; (d) in (301), the first-order
Taylor expansion is given by

Cia(0) =% (1 + %) log 2 + Fa(log? 2)8 + O(62). (302)

In particular, C; ,(0) = ya log® 2.

We now calculate the dispersion variance quantities
Vot a9 Var.ap- For any® a € (0,1], P{", is the set of
distributions Py xy where Pyy |y—, is uniform on {0, 132
That is, (X,Y) are independent of U, so we may ignore
U. Taking Pz, Pz)y to be the induced distributions from the

unique optimal input distribution, we may calculate
D(Way| Pz) = (14 1(z = y))7log2, (303)
D(ny”PZ\Y:y) = 7log 2. (304)

Note that OLD(W||PZ|PX/y/)+(17Q)D(W||Pz‘y|PX/Y/) =
Cl,a iff PX/Y/(O, 0) + PX/Y/(L 1) = 1/2 Moreover,

V(WayllPz) = y3(1+4- 1(x =y))log”2,  (305)
V(Wayl|Pzjy —y) = v7log? 2. (306)
Thus )
5
Vie=77 (a\/; +1-— a) . (307)

Moreover, Vf,ra is the same quantity. Thm. 9 now gives

* - o . /_ A
RY ,(n,e) < <7 (1 + 5) 10g2+)\r€1%g11)2 Falog .

- (a\/§+ | _a> Q-1<A>>** T o Uﬁ) '
(308)

In fact, the quantity inside the (-)** is concave (see Fig. 3),
so it is equivalent to simply take the convex combination of
the points at « = 0 and o = 1. At o = 0 one can see that it
is optimal to choose A\ = €. Thus

(1= a)v37Q7 (e)

o
* < A e
Rlﬁa(n,e)fv(l—&— 2)log2+
. _ A 5 log 2
24/71 - QA
+)\rer%1€r,11)a<\/'yog/\_€ \/V’YZQ ())]\/ﬁ
1

The corresponding achievability bound from any of [14]—
[18]° is

Taln, e >%5 (1 + %) log2+ L(a,€)log2 — o <\1F>

n
310)

8The o = 0 case allows other optimal input distributions, although this case
is somewhat trivial, as is reduces to a point-to-point binary erasure channel.

9The achievable bound from [18] is in general the strongest, but for this
channel these all produce the same bound.
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where

L(a,€e) = sup{as; + (1 — a)sa :

P(S1 > 51,5 > s9) > 1—¢€} (311)

and (S1,S2) are jointly Gaussian with zero mean and covari-

ance matrix
_| 5/2 3/2
g o1 |-

Fig. 3 illustrates the upper and lower bounds on the coefficient
in the O(1/+/n) term. The figure shows bounds on the second-
order coefficient for Ry o (n,¢€) for v = 0.25,¢ = 1073, and
also bounds on Rj (n,e)—i.e., the standard sum-rate—for
all ¥ € [0,1] and ¢ = 1072, Unfortunately, the upper and
lower bounds only match for essentially trivial cases: when
o = 0, wherein the problem reduces to the point-to-point
binary erasure channel, and when v = 1, wherein the output is
independent from the inputs so no communication is possible.

(312)

B. Gaussian MAC

In the Gaussian MAC, X,Y,Z are all real-valued, the
output is Z = X +Y + N, where N ~ N(0,1), and
the input sequences X™, Y™ are subject to power constraints
Sb, X2 <nSpand Y7 | Y2 <nS,. The following result,
proved in Appendix E, states that the Gaussian MAC satisfies
the conditions of Corollary 8, and so its second-order rate is
O(1/Vi).

Theorem 13: For the Gaussian MAC, CY, . (0) is uni-
formly bounded for all a1, as where max{a;, a2} = 1, and
Vinax < 00.

In the statement of this theorem, we have omitted any
specific bound on C’(’h’a2 (0) or Vinax- While such bounds can
be extracted from the proof, we have sought clarity of the
proof over optimality of the bounds'’, and so we have elected
to highlight the order of the bound on the second-order rate,
rather than the coefficient.

VII. CONCLUSION

The main result of this paper is that, for most multiple-
access channels of interest, under the average probability of
error constraint the second-order coding rate is O(1/+/n)
bits per channel use. Along the way, we introduced and
characterized the wringing dependence, which was a critical
element in the proof of the main results.

Possible future work includes extensions to more than two
transmitters, or applying similar techniques to other network
information theory problems (the interference channel with
strong interference should be a straightforward extension).
Moreover, there are a number of ways that our results could
potentially be improved even for the two-user MAC. First, the
regularity conditions given in Corollary 8, under which we
are able to prove the second-order bound of O(1/+/n), are
quite difficult to verify for non-discrete channels. The only
continuous channel for which we have successfully verified
the conditions is the Gaussian MAC; the proof of this in

10The length and complexity of the proof in Appendix E may make you
skeptical of this claim, but it’s true!

21

0.6 e

-0.8 /

Second-order coefficient
N
T
L

Upper bound
-------- Upper bound without convex envelope
Lower bound
-1.8 : : ‘
0 0.2 0.4 0.6 0.8 1

Weighted sum-rate coefficient «
(@
0.2 T
Upper bound J
0 Lower bound
-0.2 -

04 F

-0.6

Second-order coefficient
o
oo
T

1.4t :

0 0.2 0.4 0.6 0.8 1
Erasure probability ~

(b)

Fig. 3. Upper and lower bounds on the second-order coefficient for the binary
additive erasure channel. Subfigure (a) shows the second-order bounds for
the maximum achievable weighted-sum-rate RI, o(n, €) as a function of a €
[0,1] for erasure probability v = 0.25 and probability of error ¢ = 1073,
Subfigure (b) shows second-order bounds for the standard sum-rate Ry ; (r, €)
as a function of v € [0,1] for ¢ = 1073, The lower bound is from prior
work [14]-[18], while the upper bound is our contribution. In subfigure (a),
along with the upper bound from (309), we also show the weaker upper bound
found by not taking the lower convex envelope in (308). Note that the stronger
bound is simply the lower convex envelope of the weaker bound.

Appendix E is quite technical, as well as being very specific
to the Gaussian channel. It would be advantageous to find
conditions that are easier to verify under which the second-
order bound holds.

A second potential improvement has to do with the quantity
Va)‘haz in Thm. 9. Specifically, the form of V|, in (180) is
not especially natural; it may be possible to improve the result
so that this quantity is complementary to Vat,a ,> that is, (179)
with an infimum instead of a supremum. In addition, Thm. 9
could be strengthened using dispersion quantities extracted
from multi-dimensional Gaussian CDFs, along the lines of the
achievable bounds in [14]-[19]. One may also wish to prove

something similar to Thm. 9 for non-discrete channels.
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Of course, the ultimate goal would be to determine the
second-order coefficient exactly. Even if the above improve-
ments could be made, there would remain a gap between
achievability and converse bounds for almost all channels,
including such simple examples as the deterministic binary
additive channel. It appears that new ideas are required in
order to close the gap completely. One possible direction of
improvement, which the method used here fails to address, is
the following. Consider the distribution of the error probability
conditioned on the message pair. That is, let €(i1,72) be the
error probability given message pair (i1,42). Taking (11, I3)
to be uniformly random over the message sets, it is critical to
characterize the distribution of the random variable €(11, I2)
in any MAC converse proof. In our proof, we do not use
anything about the distribution of €([1,I3) beyond that its
expected value is the overall error probability. In particular,
the proof would allow €(Iy, I5) to take values only {0, A} for
some A. Intuitively, no good code could give rise to such a
distribution on €(I1, I2). Indeed, existing achievable bounds
produce distributions on €(I1, I2) that are close to Gaussian—
very different from a distribution taking only two values. The
independence of the messages would seem to impose certain
restrictions on the distribution of this variable, but the precise
nature of these restrictions remains elusive.

Another intriguing area of inquiry relates to hypercontrac-
tivity. As discussed in Sec. III-D, the wringing dependence can
be upper bounded by a quantity related to hypercontractivity.
However, this upper bound did not actually help in the
converse proof. A lower bound on wringing dependence could
help establish that the regularity conditions of Corollary 8
are satisfied, as one must show that the information capacity
region does not grow too much by allowing a small wringing
dependence between the channel inputs. It is unclear whether
there is some alternative method of wringing that uses hyper-
contractivity more directly. Another question along these lines
is whether there is any connection between the technique used
here and that of [25], which proves second-order converses for
a variety of problems via reverse hypercontractivity.

APPENDIX A
PROOF OF PROPOSITION 4

To prove (110), we take § € [0,1] to be such that (1 +
1/6,14 9) € Rx.y, and we will show A(X;Y) < 4. Let
r=1+4+1/§ and s = 1+ §. It was found in [31] that an
equivalent condition for (r,s) € Rx,y is that, for all f :
X >R g:Y—R,

E[f(X)g(W)] < [[F X))l

where 7/ is the Holder conjugate of r, defined by % + % =1.
In this case, since r = 1+ 1/4, v’ = 1+ 4. Thus, for all
real-valued functions f and g,

E[f(X)g(W)] < 1F(X)Mlr+sllg(Y) 146

Given any A C X, B C Y, let f(z) = 1(x € A) and g(y) =
1(y € B). Thus

Pxy (A, B) = E[f(X)g(Y)]

(313)

(314)

(315)
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< (X)) itsllg(Y 146 (316)
_ (E [f(X)l+5] E [g(Y)1+5])1/(1+6) (317)
= (Px(A)Py(B)Y/ 1+ (318)

Therefore, § satisfies the feasibility condition in (34) with
QX ZPx,QY = Py, SO A(X,Y) S d.

It follows from the data processing inequality for wringing
dependence that A(X™;Y™) is non-decreasing in n. We now
prove the limiting behavior in (111). Due to the tensorization
property of hypercontractivity (cf. [30]), Rx».y» = Rx.y,
and 50 Apyp(X™Y™) = Apyp(X;Y). From the upper bound
we have already proved, A(X™;Y") < Ayy,p(X;Y) for any
n. Now it is enough to show

lm A(X™Y") > Apyp(X3Y).

n—r oo

(319)

To prove this lower bound, suppose first that X', ) are finite
sets; we will later relax this assumption. We will need some
results from the method of types. In particular, let P, (X") be
the set of n-length types on alphabet X’; that is, distributions
P € P(X) where P(z) is a multiple of 1/n for each z € X.
For a sequence z™, let Pyn € P, (X) be its type:

P () = w

Fix a finite alphabet ¢/, and a conditional distribution Py xy-.

(320)

Let Pyxy = PxyPy|xy. For each integer n, let P[(];zy be
the element of P, (U x X x )) closest in total variational
distance to Py xy. Note that dTv(P[(]T;gy,Pny) — 0 as
n — co. Define the type class

T(X) = {z" : P = P{"}:; (321)

T(U),T(XY), etc. are defined similarly. Given a sequence
u™ € T(U), define the conditional type class

T(X|u™) = {&" : Pyngn = PYY}; (322)

again T(Y|u"™),T(XY |u™) are defined similarly. A basic
result from the method of types (see e.g. [40, Chap. 11]) is
that
1 n
mexp{nH(XW)} < [T(X|u")]|
< exp(nH(X|U)} (323)

where the conditional entropy is with respect to Pg}gy.

Moreover, for any z" € T(X |[u™),
Pxn(2") = exp{—n(H(X) + D(P{" | Px)}.  (324)

Similar facts hold for T'(Y|u™),T(XY |u™). We may now
lower bound A(X™;Y™) by restricting A and B to the sets
T(X|u™) and T(Y|u™) respectively, for some u™ € T(U).
Thus
AX™YT) >

inf max
Qxn,Qyn uneT(U)

log Qx» (T(X[u™) @y (T(Y|u™))

log Pxnyn (T(X [um), T(Y [u™))
In this expression, QQx~» is only evaluated on sequences
2™ € T(X). Moreover, the objective function is symmetric

-1

(325)
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among the sequences z" in this type class. Similar facts hold
for Qy~. Thus, by the convexity of the expression in (325)
in (Qxn,Qyn), the optimal choices of Qx» and Qy~ are
uniform over 7T'(X) and T(Y) respectively. Thus, for any
u™ € T(U),

nyy _ 1 T(Xu™)]
Qxn(T(X[u™)) = T
< (n+ DI¥lexp{—nI(U; X)}.  (326)
Similarly
Qyn(T(Y[u")) < (n+ )M exp{-nI(U;Y)}.  (327)
We may also write
Pxnyn (T(X[u"), T(Y]u"))
Z PX'rLY'rL (T(XY"LL”)) (328)

= [T(XY[u")| exp{—n(H(XY) + D(PYy[Pxy)} (329)
_ ep{—n(I(U: XY) + D(PYY|[Pxy))}

2 (01 AP (330)
Thus
AX™Y™) >
—I(U; X)I(U;Y) + (| X] + | Y] esletl)
—I(U; XY) — D(PY)||Pxy) — (|X]| Y] u]) 2t
(331)

By the continuity of Kullback-Leibler divergence for finite
alphabets, D(P)(("}),HPXy) — 0 as n — oo. Thus, if we take
a limit as n — oo, we find

IU; X)+ 1(U;Y)
I(U; XY)

where we have taken a supremum over all finite alphabets U/
and all conditional distributions Py xy, and now the mutual
informations are with respect to Py xy .

We now show that the RHS of (332) is lower bounded by
Apyp(X;Y). As shown in [32], for any 7 > s > 1, (1,5) €
Rx,y if and only if

-1 (332

n—oo

lim A(X™Y™) > sup
U

§ rI(U;Y)
s> sgp rI(U; XY) — (r —1)I(U; X)

where the supremum is over variables U with finite alphabets.
(In fact, an alphabet of size 2 is enough.) Consider any § <
Apyp(X;Y). By the definition of Ay, in (109), it must be that
(14+1/6,1+06) ¢ Rx,y. By the equivalent characterization
of Rx.y in (333), this implies there exists a variable U such
that

(333)

1+6< : 334
i+ pixy) - oz Y
Rearranging gives
HU;y))+1(U; X
0 < (U:Y) + (U X) -1 (335)

I(U; XY)

As this holds for any 0 < Apy,p(X;Y), the RHS of (332) is
indeed lower bounded by Apy,(X;Y).
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While the above argument only applies for finite alphabets,
for infinite alphabets we may apply a quantization argument as
follows. Let [X], [Y] be finite quantizations of X,Y". We write
[X]* = ([X4],...,[Xn]) where each [X] is the quantization
of X, using the same quantization. By the data processing
inequality and the fact that we have already proved the lower
bound in (319) for finite alphabets,

lim A(X™; V™) > Tim A(IX]"; [Y]") > Ay ([X]; [Y]).
n— oo n—oo
(336)
We may take a supremum on the RHS over all finite quan-
tizations, so it is enough to show that this supremum equals
Apyp(X;Y). Some equivalent forms for Ay, are as follows:
Ahyp()(§ Y)
= inf{6 > 0: E[f(X)g(Y)] < IF(X)]1+5l9(Y) 1+
for all f, g} (337)
=sup{d > 0: E[f(X)g(Y)] > [F(X)]1+5llg(Y)]l1+s
for some f,g}. (338)

Recalling the definition of a simple function as one that takes
on only finitely many values, we may write

sup
finite quantizations [X],[Y’]

= sup{d > 0: E[f(X)g(Y)] > I/ (X)[l1+sllg(Y)ll1+s
for some simple f,g}. (339)

Ahyp([X]§ [Y])

By the wusual definition of the Lebesgue integral, if
there exist functions f,g such that E[f(X)g(Y)] >
1f(X)l146]lg(Y)||1+6, then there also exist simple functions
satisfying the same inequality. This proves that the quantity in
(339) equals Apyp(X;Y).

APPENDIX B
PROOF OF LEMMA 5

Assume A(X;Y) < 4. One way to express the maximal
correlation is

pm(X3Y) = sup E[f(X)g(Y)].  (340)

E[(X)]=Elg(V)]=0.
Var(f(X))=Var(g(Y))=1

Take any f, g such that f(X), g(Y) have zero mean and unit
variance. We wish to show that E[f(X)g(Y)] < O(logd—1).
We may define X’ = f(X) and Y’ = ¢(Y'). By the fact that
A satisfies the data processing inequality, A(X'";Y’) < 4.
To simplify notation, we drop the primes, and assume that
X and Y are themselves real-valued random variables with
zero mean and unit variance. Now it is enough to show that
E[XY] < O(Slogd1).

We upper bound E[X Y] by breaking into pieces as follows:

E[XY] =E[XY1(X >0,Y > 0)]
+EXY1L(X >0,Y <0)]
+EXY1(X <0,Y > 0)]

+E[XY1(X <0,Y <0)]. (341)

We will proceed to show that
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[EXY1(X >0,Y >0)] —E[X1(X > 0)|E[Y1(Y > 0)]|

<O(Slogd™h). (342)

This is enough to prove the lemma, since each term in (341)
can be bounded using (342) by swapping X with —X and/or
Y with —Y. The primary tool we use to prove (342) is
the consequence of A(X;Y) < ¢ in (43), which upper
bounds a joint probability over Pxy in terms of the marginal
probabilities raised to the power 1/(1 + ¢). To apply this fact
to bound the expectation requires writing the expectation in
terms of probabilities, which can be done as follows:

E[XY1(X >0,Y > 0)]
z/ dx/ dyP(X > z,Y >y). (343)
0 0

We may now apply (43) to the probability P(X > z,Y > y)
to derive the upper bound

E[XY1(X >0,Y > 0)] < (1+29)
. / P(X > x)1/<1+5>dx/ P(Y > y)Y/ 1+ dy.  (344)
0 0
We may now bound one of the integrals in (344) by writing

oo

P(X > )Y/ dz — E[X1(X > 0)]

S—

/oo [P(X > z)V/1+) _p(x > x)} dx (345)

0

o 1
< / [IP(X > z)t/(1+0) _ P(X > x)} dr  (346)
0 1+6
L o [\ 1
< dzr + — ——|d
_/0 1+60 /1 <x2) (14 6)a? .
(347)
46
=15 (348)
— 0(5) (349)
where (347) holds because the function p s pt/(1+9) — =5

is an increasing function for any § with a maximum value
of %5, and since P(X > z) < 1/2? from the assumption
that E[X?2] = 1 and Chebyshev’s inequality. Since the same
argument holds for the integral over y in (344), we have
E[XY1(X > 0,Y > 0)]

< (1+20)(E[X1L(X > 0)]+ O0))(E[Y1(Y > 0)] + O(0))

(350)

<EXL(X >0)]E[YLY > 0)]+ O(9) (351)
where we have used the fact that

E[X1(X > 0)] < VE[X21(X > 0)] < VE[X2] <1 (352)

and the same holds for Y.

We now lower bound E[XY1(X > 0,Y > 0)]. Again
using the integral expansion in (343), we may do so by lower
bounding P(X > z,Y > y). It will be convenient to define
the function

1_’_2(5 1/(146) _ , <1
ks(p) = {( » hre (353)

26, p>1"
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For p > 0, ks(p) is non-decreasing, concave, and 0 < ks(p) <
26. For any x > 0,y > 0,

P(X >zY >y)

=P(X >z)-P(X >zY <y) (354)
>P(X > z) — (1+20) [P(X > 2)P(Y < )]/
(355)
P(X > 2)P(Y > y)+P(X > z)P(Y <y)
— (1+420) [P(X > 2)P(Y < )]/ (356)
=P(X >2)P(Y >y) —ks(P(X >2,Y <y)) (357
>P(X > 2)P(Y > y) — ks(P(X > z)) (358)

where in (355) we have again applied (43), in (357) we have
used the definition of ks, and in (358) we have used the fact
that ks is non-decreasing. We may now bound

E[X1(X > 0)|E[YL(Y > 0)] - E[XY1(X > 0,Y > 0)]
(359)
/ d:z:/ dy [P(X > 2)P(Y > y)
—P(X >2,Y >y)] (360)
< /0 dx/o dymin{P(X > z)P(Y > y),
ks(P(X > x)), ks(P(Y > y)} (361)

where (361) holds by three upper bounds on P(X > z)P(Y >
y) — P(X > x,Y > y): the fact that P(X > z,Y > y) >
0, the bound in (358), and the bound in (358) with X and
Y swapped. To further upper bound (361), we separate the
integral over x and y into three regions: when x,y > 61/,
we upper bound the integrand by P(X > z)P(Y > y); when
y < xz and y < 6 /2, we upper bound the integrand by
ks(P(X > z)); when = < y and = < 6~ /2, we upper bound
the integrand by ks(P(Y > y)). Thus (361) is at most

oo

/ P(X > x)da:/ P(Y > y)dy
§5—1/2 §5—1/2

9] min{w,é’l/z}
+/ da:/ dy ks (P(X > z))
0 0

00 min{y,6 " /2}
+/ dy/ dx ks(P(Y >y)). (362)
0 0

We now bound each term in (362) in turn. In the first term in
(362), Chebyshev’s inequality gives

/ P(X > z)dx < /
5-1/2 5=

The same calculation holds for Y, so the first term in (362)
is at most . The second term in (362) may be bounded by

oo

—dx—ﬁ

1/2 xQ

(363)

/ min{z,§~?}ks(P(X > x))dx (364)
0 §—1/2
:/ rks(P(X > x))dz
0
+ 5*1/2/ ks(P(X > x))dzx (365)
5—1/2
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1 5-1/2
< % J, 20z ks(P(X > x))dx
+5*1/2/ / ks(1/x?)dx (366)
§5—1/2
1 §—1/2
< %ktg (/ 20xP(X > x))
1420)(1
+ 6712 <( + 152((5 * 6)52(1+5) 51/2> (367)
1 1426 6
< %ké((g) + %5 8/(146) _ (368)
1 5/(146) (1+28)(A+9) c_s5/(144)
72((1”5)5 1) S ]
-1 (369)
= O(—0dlog?) (370)

where (366) holds by Chebyshev’s inequality and the fact
that ks is increasing; (367) holds since ks is concave and

512 .
/i 26z = 1; (368) holds since
27P(X > z) < / 20P(X > ) =E[X? =1
0

0
/6
’ (371)
and (370) holds since 6=%/(1+9) = 1 — §log § + O(62 log? ).
The third term in (362) may be bounded by an identical

calculation. This completes the proof of (342), which therefore
proves the lemma.

—1/2

APPENDIX C
PROOF OF LEMMA 11

Given that A(X;Y) <4,

drv(Pxy, PxPy)

= Z\PXY @,y) — Px(2)Py (y)[* (372)
= Z Z (Pxy(z,y) — Px(z) Py (y))
T y:Pxy(z,y)>Px (z)Py (y)
(373)
<> 2 (374)
= 25| x| (375)

where in (374) we have applied (44) from Thm. 2 with the
particularizations A = {z} and B = {y : Pxvy(z,y) >
Px (x)Py (y)}. Applying the same argument swapping X and
Y gives

dTv(ny,PXpy) S 25m1n{|X\,Dﬂ|} (376)

Since Z is the output of the channel with X, Y as the inputs,

while Z is the output of the channel with X,Y as the inputs,

this also means that drv (Pxyz, Pgyz) < 26 min{|X|, |V|}.
We may relate the conditional entropies as follows:

H(Z|X.,Y)

—ZPny y)H

(Z|IX =2,Y =vy) (377)

25

>ZPX

H(ZIX =2,Y =y)

—ZInyafy Px(x)Py(y)|TH(Z|X = z,Y =y)
(378)
> H(Z|X,Y) - 26 min{|X|, |V|} log | Z]. (379)

To complete the proof of the lemma, we must bound H (%),
H(Z|X), and H(Z|Y'). The main difficulty is that the entropy
is not Lipschitz continuous, so the fact that the total variational
distance is O(d) does not immediately imply that the entropies
differ by O(6). We circumvent this problem using the stronger
consequence of A(X;Y) < ¢ in (43) from Thm. 2. We first
bound H(Z). Let z € Z be such that P;(z) > 1/4. Then by

the total variational bound,
Pz(z) > Pz(2) — 26 min{|X|, |Y|} > e (380)

where the second inequality holds for sufficiently small §, and

since e=2 < 1/4. Consider the function f(p) = —plogp.
Since f'(p) = —logp — 1, if p > e 2 then
|f'(p)] < 1. (381)

Since we have established that Pz(z), Pz(z) > e 2, and
|Pz(2) = Pz(2)] <

— Pz(2)log Pz(2) < —Pz(2)log Pz(2) + 2min{|X|, [V|}4.
(382)
Note there are at most 4 values of z where P;(z) > 1/4, so

>, [P

z:Pgz(2)>1/4

(2)log Pz (z) + Pz(z)log P5(2)]

< 8min{|X[, [V[}6. (383)

Now suppose z € Z is such that P;(z) < 1/4. Let r, =
>y W(z|z,y). Assume without loss of generality that all
letters in Z are reachable (i.e. W(z|z,y) > 0 for some z,y).
Thus r, > Wyin. We may now bound

ZPXY z,y)W (2|2, y) (384)
< Z (14 26)(Px (2) Py () O+ W (2|2, y)
- (385)
w

— (1 + 25)1"2 zzy: W(PX (x)Py(y))l/(1+5)
(386)
/(1+36)

W(z|z,
I’y

(387)
= (14 26)r —5/(1+6)P~( )1/(1+5) (388)
< (14 20) W/ U0 Py () /O (389)

< (1+20)(1 — §log Winin + O(6%)) P (2)"/ %)
(390)

where (385) follows from (43), and (387) holds by the
definition of 7, and by the concavity of the function p'/(1+9)
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By the assumption that P;(z) < 1/4, for sufficiently small ¢,
(390) is less than e~!. Thus, we are in the increasing regime
of the function —plog p. In particular

— Pz(z)log Pz(2)
{(1 +20)(1 — &1log Winin + O(0%)) Pz (2 )1/<1+6)}

- log [(1-1—2(5)(1—510ngm+O(52)) (2 )1/(1_,’_5)}

(391)

1420
— g (1= 0108 Wnint+ O(8%) Py ()" 17" log P (2)
(392)

where in (392) we have simply dropped terms greater than
1 inside the log. Here we need a technical result. For any
p € [0,1], let g,(8) = —p*/ (19 log p. We claim that for all
0 >0,

gp(8) < —plogp + e~ 26. (393)

Since g,(0) = —plogp, it is enough to show that g, (d) <
4e2 for all 6. The first and second derivatives of gp are

pl/(1+6) log P

50 =5 (394)
-2 log p
1(8) = pt/(1+0) |ng2 - 395
9,(0)=p P\ T ep  Grop (395)
Note that g, (6) < 0 iff
—2(149) —logp <0. (396)
That is, g, (0) is maximized at § = =182 1. Thus
2
p~rer log” p
g;((S) 5 = 4p—10gp
<7logp)
2
2 -2
= 4exp logp_logp =4de “. 397)

This proves the claim in (393). Applying this result to (392)
gives

— Pz(2’> 1ngz(z)
1+26 9
< 146 (1 _610ng1n+O(6 ))
[~ P3(2)log Py (2) + 4e24] (398)
< —P;(z )1og Py(2) + [(1 — log Wiin)e ' +4e7%] 6
+0(5?) (399)

where in (399) we have used the fact that —plogp < e!
Therefore

H(Z) - H(Z)

< 8min{|X], [V[}6

+ Z ([(1 = log Winin)e ™" +4e72] 6 + O(6%))

P;(2)<1/4
(400)
< [8min{|X], |V} + 2] (1 — log Winin)e ™! +4e72)]
+0(5%) (401)

26

Combining (401) with the bound on conditional entropy in
(379) proves (206).

To prove the bound on I(X;Z|Y) in (207), we need to
bound H(Z|Y'), or equivalently H(Y,Z), since H(Y) =
H(Y). We may almost the same argument as above, but with
the joint distribution Py 7 in place of Pz. In particular, if
Pyz(y,z) > 1/4, then

— Pyz(y,z)log Pyz(y, )
<~ Py (. 2)log Py (1, ) + 2min{|X], Y]}, (402)
To deal with Py ;(y,2) < 1/4, let v, = > W{(z|z,y). I

721y = 0, then Py z(y, z) = Py ;(y, 2) = 0, so this letter pair
can be discarded. Otherwise, Toly = W inin, SO

Pyz(y,2 ZPXY (@, y)W (2|,y) (403)
< Z 1+ 28)(Px () Py () HOW (2], y)

404)

< (14 20)r ) TPy 5 (y, )4 (405)

< (1+28)W, mfi{ Py (y, 2) 09 406)

The remainder of the proof is essentially identical, and so we
find

H(Z|Y) < H(Z|Y) + [8min{|X],|YV[}
+ V2] (1 = log Winin)e ™ +4e72) |6 + O(6°).

Combining with the bound on the entropy conditioned on X, Y
in (379) proves (207). The bound on I(Y; Z|X) in (208) is
proved by the same argument.

(407)

APPENDIX D

PROOF OF PROP. 12

Ifé > %, then we may simply ignore the

constraint on the wringing dependence, so

C1.a(6) < maxy [aH(X +Y) + (1 = a) H(X|V)]

=7 [log(1+27%) + alog?2] .
Now consider § < %. We define for convenience
r, =P(X+Y =2) for z=0,1,2. Note that

aHX+Y)+ (1 —-a)H(X|Y)

<aHX+Y)+(1-a)HXaY)
+ (1 — Ot)Hb(TO + Tg)
where @ is modulo 2 addition, and we have used the fact that
XY =0iff X+Y € {0,2}. Since A(X;Y) < 4, using the
properties of the wringing dependence in Thm. 2, there exist
Qx,Qy € P({0,1}) such that

ro = Pxy(0,0) < (Qx(0)Qy (0))Y/ A+,
(Qx(1)Qy (1)) Thus

(408)

:OZH(To,Tl,TQ) (409)

(410)
Similarly rg <

VIS Vs

< (Qx(0)Qy (0))Y ) 4 (Qx (1)Qy (1)1 21+
(411)
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< 21-1/(1+9) 412)
where (412) holds because (pq)” is concave in (p,q) for
0 < p <1, and so the quantity in (411) is maximized with
QRx(0) = Qy(0) = 1/2. We may rewrite the constraint in
(412) as

rgry < (211040 g

— )2, 413)

Thus

aH (rg,r1,72) + (1 — a)Hy(ro + 72) (414)
< max

< [— (1 =ro—r2)log(l —ro—732)
7“0,7‘26[0,1]:
ro+r2<1,
4T07‘2S(2171/0+6)—T0—T2)2

+ a(—rglogrg — rologrsa)

_ (1*0‘)(7'0+7"2)10g(7"0+r2)} @15)
= rgg ro,r2€00,1]: [ = (1 =70 = r2)log(1 = 1o —13)
ro+re<1
+ a(—rglogrg — r2logrs)
— (1= a)(ro +r2) log(rg + 1)
F A2V g — )2 — drgry)]. (416)

Let f(ro,r2; A) be the function in (416). We claim that for
any A < a, f(rg,r2; ) is concave in (rg,r2). The Hessian
with respect to (rg,r2) is given by

VQf(To,ﬁ;)\) =

__rotra(l—ro—m)a
ro(l—ro—r2)(ro+r2) +A

_1-(=ro—r2)ar A
(I=ro—72)(ro+r2)

_ 1-(Q—=ro—ra)ax
(117‘0(—17"2)(7”0+7“)2)
T2+T0 —Tro—T2)x °
T re(I—ro—r2)(ro+T2) +A
“417)

We need to show that V2 f(rg, 72; \) is negative semi-definite;
this requires that the upper left element is non-positive, and the
determinant is non-negative. The upper left element is given
by

ro+1ra(l —rg— 1o

B 7’0(1 — 719 — 7’2)(7‘0 + 7“2)
1

+ A

< - A 418
- (1—T0—7’2)(7"0+T2)+ ( )
< —44 ) 419)
<-3 (420)

where (418) holds because o > 0, (419) holds because x(1 —
x) < 1/4, and (420) holds by the assumption that A < o < 1.
The determinant of the Hessian is given by

|V2f(7“0,7‘2;)\)|

. (7’0 —+ 7’2)0& — (47’07"2 —+ (1 —7To — 7’2)(7”0 — 7‘2)204))\
7‘07“2(1 — 7o — 7‘2)(7‘0 + 7“2)

421)
= a[ro + 12 —drory — (1 — 1o — 12)(ro — 12)%a] (422)
rora(l — 1o — r2)(ro + 72)
« [’r‘o + 1o — 4rory — (1 —To— TQ)(TO - 7"2)2]
423
- 7»07»:2(177'0—7"2)(7’0+T‘2) ( :
_ afl—ro(l —ro) = a1 = 73) — 2rors] (424)

7“07”2(1 —To — 7“2)
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>0 (425)

where (422) holds by the assumption that A < «, (423) holds
since & < 1, and (425) holds again since (1 —z) < 1/4 and
since rg + ro < 1. We may upper bound (416) by choosing
any A > 0. With some hindsight, we choose

A = 9~ 2+1/(1+9) [log (2—1+2/<1+6> — 1) +alog 2} . (426)
Note that A > 0 if

1< 20 (2—1+2/<1+5> _ 1) . (427)
This indeed holds by the assumption that § < %.

In addition, noting that X is decreasing in 9,

log 2
a8 <«

A< 27t [log(Z1 — 1)+ alog2| = (428)

Thus, by the above claim, for this value of A, f(rg,r2;\)
is concave. Since the function is also symmetric between 1
and 79, it is maximized at 7o = 7o = 7. Differentiating this
function, the maximizing value of r is found at
d
0= d—f(nr; A) =2log(1l —2r) —2logr
T
— (1 —a)2log2 —4-217/0+0 )\ (429)

This is solved at r = 2-2/(1+9) At this value, the constraint
in (413) holds with equality. Thus the upper bound from (416)
becomes

()éH(’/’o,?"l,’l"g) + (1 — O()Hb(’l"() + TQ)
< Hy (2172 (49)) 4 q2172/(0+9) 1659, (430)

This gives an upper bound on C ,(J) that exactly matches
the lower bound in (301).

APPENDIX E
PROOF OF THM. 13

A. Bounding C!, , (0)

1,002

Let (a1, a2) = (1, ) for o € [0, 1]. Recall that

C10(0) = sup
XY, U:A(X;Y |[U=u)<68 Vu,
E[X?]<Sy,
E[Y?]<Ss
[aI(X,Y; ZIO)+ (1 - a)I(X; Z]Y, U)] (431)
Note that
1 1
C1,a(0) = a§1og(1+51 —|-52)+(1—oz)§ log(1+4S7). (432)
Since C () is convex in «,
C1.0(6) < aCy1(6) + (1 — a)Cy0(6). (433)
We may easily bound the second term:
Cr0(0) = sup I(X; Z|Y,U) (434)
XY, U:A(X;Y | U=u)<§ Vu,
E[X?]<S1,
E[Y?]<Ss
< sup hMX + N)—h(N) (435)

CX,YE[X2]<S1,E[Y2]<S,
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1
< 3 log(1 + 51)

(436)
(437)

where h(-) denotes the differential entropy. This implies that
C1,0(0) = 0. Thus, to uniformly bound C1 ,(9) for all a, it
is enough to prove that C7 ;(0) < oco. Let X,Y,U be any set
of variables satisfying the constraints in the infimum in (431).
Note that

[(X,Y; Z|U) < h(Z|U) — h(N) (438)

1
= h(Z|U) - 5 log 2re. (439)
Now it is enough to show h(Z|U) < 3 log2me(1+ 51+ S2)+
O(6). For each u, let S, = E[X?|U = u), S, = E[Y?|U =
u]. Thus > Py(u)S1y < 51, ), Pu(u)Sa, < Sa. Our goal
is to show that, for each u

1
WZ|U = u) < Slog2me(1+ Sty + S5u) + O(3)  (440)
which implies
MZIU) =) Pu(uwWh(Z|U = u)
1
< 3 log 2me(1 + S1 4+ S2) + O(9) (441)

where we have used the concavity of the log. For convenience,
for the remainder of the proof we drop the conditioning on .
Throughout this proof, we are careful to use O(-) notation
only when the implied constant is universal, and in particular
does not depend on S7, So.

We may assume without loss of generality that X and Y
have zero mean, since if they do not, shifting their means to
zero does not change h(Z), and only reduces E[X?], E[Y?2].
For convenience define S = 1+ 57 + Ss. Since our goal to is
to prove (440), we may assume

Wz) > %log(%reS) (442)

because otherwise we have nothing to prove. Let 0% =
E[Z?]. Since A(X;Y) < 4§, from Lemma 5, we have
pm(X;Y) < O(Slogd™!). This implies that E[XY] <
V5152 0(5log §~1). Thus,

oz =E[(X +Y + N)? (443)
— S+ 2E[XY] (444)
< S +2v/5.5,0(51logd™ ) (445)
<S+S0(5logs™) (446)

where in (444) we have used the fact that N is independent
from (XJ Y"), and (446) follows because 2+/5153 < S1+53 <
S. Let Z ~ N(0,5), so

2

1
hZ) = ;log2r$ + g—g — D(P4||Py) (447)
1 1
< S log2rS + o + O(dlog §71) = 2dpv (Pg||P2)?
(448)

1
= 5 log2meS + O(6log 671 — 2dry (Py||Py)?
(449)
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where the (448) follows from the bound on a% in (446) and
from Pinsker’s inequality. Applying the lower bound on h(Z)
from (442) gives

dry (Py]|P5) < O(y/5logd D). (450)
For any function f : R — [0, fmax,
[EL/(2)] - EL1(2))]
frmax -
=\ RU@) > 0 ~R((2) > e @)
Frnax )
< / P(f(Z) > a) — P(f(Z) > a)‘ da  (452)
0
S fmaxdTV(PZ”PZ) (453)
< fmax O(\/W) (454)

where (453) follows from the fact that for any A4 C R,
|Pz(A) — Pz(A)| < drv(Pz, Py).

The following definitions will be key to the remainder of
the proof:

Sy VS
X = 7; s log g, (453)
Sy VS
N 6
1
— 457
AN 7
1
TzzTX+TY+TN:\/§<1_4IOg5>v (458)
my = E [ey/\/gl(y < TY)} : (460)

Similarly to the proof of Lemma 5, the core of the proof
involves upper and lower bounding

E[XY1(X >0,Y >0)] - EX1(X > 0)]E[Y1(Y > 0)].
461)
Since A(X;Y) < 4, the same argument as in (343)—(351)
shows that the quantity (461) is upper bounded by

V518, 0(8) < SO(5).

To lower bound (461), we cannot use precisely the same argu-
ment as in Lemma 5, since we need a bound that eliminates
the log 6~ ! term. We first divide (461) into four terms:

(462)

EXY1(X >0,Y > 0)] - EX1(X > 0)]E[Y1(Y > 0)]
- (E[XYI(O <X <7x,0<Y <1y)]
~E[X1(0 < X < 7¢)]E[Y1(0 <Y < TY)])
+ (E[XYl(X > 1,0 <Y < 1y)]
~EX1(X > %) EY1(0<Y < Ty)])
+ (E[XYl(O <X <7x,Y >1v)

~E[X1(0 < X < )] E[Y1(Y 2 7v)])
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n (E[XYl(X >7x,Y > 1y)]
—EX1(X > mx)]E[Y1(Y > Ty)])~

In order to bound the first term in the RHS of (463),
we tighten the proof technique of Lemma 5 by bounding
mx,my. Since mx, my are essentially values of the moment
generating functions for X and Y, bounding mx,my allows
us to apply Chernoff bounds to probabilities involving X and
Y. We exploit the fact that Chernoff bounds are stronger than
the Chebyshev’s bounds used in the proof of Lemma 5 to
prove a tighter bound in this context. We first relate mx, my
to a moment generating function for Z, by writing

(463)

E [eZ/V51(Z < 14) (464)

B[P INMNVEUX 1Y + N <7x +7v +TN)]
) (465)
>E [e XHY+N/VE(X < 14, Y < 7y,N < TN)} (466)
=F »e(XJrY)/‘/gl(X <7x,Y < Ty):| %el/(w) 467)
1
>3 (E [ex/ﬁl(x < TX)] E [ey/\/gl(Y < Ty)}
— O(dlog 61)\/Var (ex/ﬁl(X < TX))
Ve (s < m)) (468)
1
= (E [eX/\/?uX < TX)] E [ey/ﬁl(y < Ty)}
- O((Slogé‘l)\/E [eQX/\/gl(X < Tx)]
: \/E [eQY/\/El(Y < Ty)D (469)
LT
> 3 |mxmy — O(61logd™") exp {TX\;_ETYH (470)
1] 1
=5 [mxmy — O((Slogé_l)exp{s1 _552 ~1 log §
i 471)
> % _mey — 0(53/4 log 671)} 472)

where (466) holds because the random quantity in (465)
is non-negative and since X < 7x,Y < 7v,N < 7n
implies Z < 7z, (467) holds since N is a standard Gaussian
independent of (X, Y"), (468) holds by the bound on p,,(X;Y)
from Lemma 5, (470) holds from the simple upper bound on
E eQX/‘/gl(X < Tx)} found by plugging in X = 7x, and
(472) holds since S7 + Sz < S. We now apply the total
variational bound in (454) to upper bound the quantity in
(464). Specifically, since ez/‘/gl(z <71z) < eTZ/\/g,

E [eZ/ﬁI(Z < Tz)}

<E [ef/ﬁuz < TZ)} +e2/VS0(\/3logd-1)  (473)

< el 4es V10 (\/dlog 1) 474)
=e2 4+ 064\ /log 1) (475)
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where in (474) we have used the fact that Z ~ N (0, 5).
Combining the bounds in (472) and (475) yields

mxmy < 2e'/? + 0(51/4\/log6*1).

Since 2e < 4, and recalling that the implied constant in
the O(-) term in (476) is universal, we may assume that J is
sufficiently small that mxmy < 4.

We now lower bound the first term in (463), or equivalently
upper bound the negative of this term. As in the proof of
Lemma 5, we will use the function ks, defined in (353). By
an identical argument as in (354)—(358),

(476)

1/2

Ploa< X <7mx)Ply<Y <71y)
—Pr< X <7tx,y<Y <71y)

<ks(min{P(z < X <7x),Ply <Y <7v)}). 477)
Thus
E[X10< X < x)]E[Y1(0 <Y < 7v)]
—EXY1(0< X <7x,0<Y < 7y)] (478)

TX TY
= / dm/ dy[Plz < X <7x)P(y <Y < 71y)
0 0

Pz <X <7x,y <Y <1v)] (479)
< /TX dx /Ty dy k(g(min{IP(:v < X < 71x),
(;P’(y < YO < Ty)}). (480)
For any =z < 7x, a Chernoff-type bound gives
Pa< X <71x) < e */VSE [eX/\/gl(X < Tx)
— e/ VSmy 481)

and similarly P(y <Y < 7x) < e~v/ */gmy, so the difference
in (478) is at most

TX TY
/ dx/ dy ks (min{e‘m/‘/gmx, e_y/\/gmy})
0 0

(482)
< / do / dyks (e @) iy ) (483)
0 0
< / d;v/ dy ks (26_(””“’)/(2\/?)) (484)
0 0
:45/ zks (2¢7%) dz (485)
0
log 2
=45 / 20zdz
0
+/ P ((1 +26)(2e72)1/ (49 _ 2e—2) dz} (486)
log 2
= 4S[(log?2)d + (1 4+ 26)(1 + 6)(1 + & + log 2)
— (14 1log2)] (487)
= S0(6) (488)

where (483) follows since the integrand is non-negative, so
the upper limits of the integral may be extended to oo, as well
as because min{a, b} < v/ab and k; is non-decreasing; (484)
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holds by the above conclusion that mxmy < 4; (485) holds
by the change of variables z = ;*g; and (486) follows from
the definition of k. This proves that the first term in (463) is
lower bounded by —S O(9).

We now consider the second term in (463). Applying again
the bound on p,,,(X;Y) from Lemma 5 gives

EXY1(X > 7x,0 <Y < 7x)]

~E[X1(X > )| E[Y1(0 < Y < 7y)] (489)

> —0(6log 6~ H/E[X21(X > 7x)|E[Y21(0 < Y < 7x)]
(490)
> —0(slog 6~ 1)/E[X21(X > 7x)]| S (491)

where the second inequality holds since E[Y?1(0 < Y <
7x)] < E[Y?] < S5 < S. We now need to upper bound
E[X?1(X > 7x)]. Define

Px = ]P)(X Z TX)a

ax = E[X?1(X > 7x)].

(492)
(493)
Intuitively, if X > 7x, then we expect Z also to be large, and

so we expect px to be small. This intuition can be formalized
by writing

P(Z > 7x — 21/S2)

=P(X +Y + N >7x —21/55) (494)
>P(X >7x,Y > —2¢/55, N >0) (495)
- %IP’(X >7x,Y > —21/5,) (496)
> %]P’(X > 7x)P(Y > —2/S5) — 6 (497)
> gpx -6 (498)

where (496) holds because N is Gaussian and independent of
X,Y, (497) holds by the consequence of A(X;Y) < 4 in
(44), and (498) holds by Chebyshev’s inequality on Y. Thus

px < SP(Z 2 7y~ 2/5;) + 00) (499)
< 21@(2 > 1y —24/S5) + O(\/3log o~ 1) (500)
8 - S VS
= §P (ZZ \/§810g52\/572>

+O(/3logd—1) (501)
< gP (Z > Vs (—;logé - 2)) + O(/dlogd—1)
(502)
8 1/ 1 ?
< 3 eXP {2 <8log5 — 2> } + O(+/dlogd—1)
(503)
=O(y/dlogo—1) (504)

where (500) holds by the bound on total variational distance
in (450), (502) holds since Sy < S, (503) holds since Z ~
N(0,S5) and by the Chernoff bound on the Gaussian CDF,
and (504) holds since exp{—O(log” )} vanishes faster than
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O(y/dlogd—1). In order to bound ax, we bound the mean-
squared of Z conditioned on either X < 7x or X > 7x. In
particular,

E[Z*1(X < 7x)]

=E[(X +Y + N)21(X < 7x)] (505)
=1+ EX*1(X < 7x)] + E[Y?1(X < 7x)]
+2B[XY1(X < 7x)] (506)
<145 —ax+52
+0(5log 6~ 1) VE[X21(X < 7x)]E[Y2]  (507)
<S—ax+S0(blogs™) (508)

where (507) again uses the maximal correlation bound from
Lemma 5, and (508) follows from the mean squared bounds
on X and Y. Thus

S—ax +SO0(5logds™t)

E[Z?|X < 7x] < (509)
1-px
Moreover
2 1 —1
E[Z2|X > ] < 02 < ST500EIT) gy,

bx Px
We now apply these two bounds to upper bound the differential
entropy of Z. In particular, if we let F'= 1(X > 7x), then
hWZ)< H(F)+ h(Z|F) (511)
= Hy(px) + (1 — px)W(Z|X < 7x) + pxM(Z|X = 7x)

(512)
1 S —ax +80(5log !
SHb(px)+(1—pX)§10g27T€ iad 1—p;(( gd)
1 log 61
+px S logame 2 3 O0logd ) (513)
2 Px

3 1
= iHb(px)+(1 *px)i log 2me(S — ax+S O(Slog 6™ 1))

+pxélog27re(5+SO((Slogé_l)) (514)

where (513) follows from the fact that differential entropy is
upper bounded by that of a Gaussian with the same variance
and the bounds in (509)—(510). Recalling the assumption that
h(Z) > 1 log2meS, we have

3 1 —ax+SO0(Slog 51
0§§Hb(px)+(1*px)§log <1+ X S( g )>

1
+pX§log (14+O(5logé™)) (515)
3 —ax +SO(flogd~1)
< Z _
S 2Hb(PX) + (1 - px) 95
+pxO(Slogs™) (516)
]_ —
= 3 i) — TP L 5100 671, (517)
2 28
Rearranging gives
ax < [3Hy(px) + O(6log 6~ 1)] (518)
1—-px

< S(1+0(y/5logs 1)) [0(51/2(1og5—1)3/2)

+ 0@ log 5*1)} (519)
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= SO(6Y%(log 6 1)%/?) (520)

where in (519) we have applied the bound on px from (504),
as well as the fact that for small p, Hy(p) = O(plogp~1).
Plugging this bound back into (491), we find

EXYL(X >7y,0<Y < 7x)]
—E[X1(X >7x)]E[Y1(0 <Y < 7v)]

> —S0(6%*(log 6~ 1)7/4).  (521)

By the same argument as the above bound on ax, we may
similarly find

E[Y21(Y > 7v)] < SO(6Y%(log 67 1)%/?). (522)

This implies that the third term in (463) is lower bounded by

EXY1(X < 7x,Y > 1v)]
—EX1(X < 7x)[EY1(Y > 7v)]
> —S0(0°*(log 6 1)7/*)  (523)

and the fourth term in (463) is lower bounded by

E[XYl(X >71x,Y > Ty)]
—EX1(X > 7x)EYL(Y < 71v)]

> —S0(8%?(log 671)%/2).  (524)

Note that for each of the bounds in (521), (523), and (524),
the function of § grows smaller than O(d). Putting everything
together, we now have

[E[XY1(X >0,Y >0)] —E[X1(X > 0)]E[Y1(Y > 0)]|

< S0(5). (525)

Applying this bound by swapping X with —X and/or Y with
—Y gives

E[XY] < 50(3). (526)

Therefore
hZ) <
This proves (440).

1 1
3 log2meS(1+ O(4)) = B log 2meS + O(9). (527)

B. Bounding Viax
Recall that

Vinax = sup maX{V(W”PZ\U|PUXY),
Puxy E[X?]<S1,E[Y?]<S2

V(W||PzyulPuxy), VIW||Pzixu|Puxy)}

Each of the terms in the maximum can be shown to be finite
by showing that the equivalent point-to-point quantity is finite:

V(W/||PZ|U|PUX)

(528)

sup (529)

Py xE[X2]<S
where W' € P(R — R) is the point-to-point channel where
Z = X+N,N ~ N(0,1). Consider any Py x where E[X?] <
S. Fix u, and let S,, = E[X?|U = u]. To simplify notation, we
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again drop the conditioning on U = u. Define the information
density

di2) = log 22 (2) (530)
Note that
V(W'||Pz|Px)
= E [Var(«(X; 2)| X)) (531)
< E[(X; Z)?] (532)
=E[(X;2)*1((X; Z) <0)] +E[u(X; 2)?1(u(X; Z) > 0)]
(533)

where (X, Z) are distributed according to PxW’. To lower
bound the information density, we may upper bound the
Radon-Nikodym derivative

dPZ dW’
T = [arca@) G o) (534)
AW _ 2
:/dPX(x’)eXp{—(Z 21:) + (= 236) }
(535)
)2
< exp{(z 25“) } (536)
Thus )
1(x;z) > _(z—Tsc) (537)
Thus the first term in (533) may now be upper bounded by
E(X; Z)*1(:(X; Z) < 0)]
—X)2\?
<E <(ZQX)> 1(X; 2) < 0)1 (538)
_ x4
<E [<Z4X)} (539)
3
=1 (540)

where we have used the fact that Z — X = N is a standard
Gaussian.

We now upper bound the second term in (533). For any
integer k, let A, = [k, k+1). Let pp, = P(X € Ag). Also let
wr = E[X|X € Ay] and 07 = Var(X|X € Ay). Since Ay, is
an interval of length 1, U,% < 1/4. Then for any integer k, the
PDF of Pz is lower bounded by

z)z/dPX(x)\/l?eXp{—(z _2”3)2} (541)

> f exp {]E } } (543)
1 2

= pi m exp { (Z 2'uk) — 02’“} (544)
1 — 2 1

Zpkmexp{—(zg"“)—g} (545)

where (543) holds by the convexity of the exponential, (544)
holds by the definitions of uj and o, and (545) holds since
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0,% < 1/4. Thus, for any k the information density can be

upper bounded by

(> — 1)2 _ 2
a2y < “E70) ; (=)™ | é ~logpy  (546)
Applying this bound to the second term in (533) gives
E[(X; 2)*1((X; Z) > 0)] (547)
<> [ ar)
k= —oo Y TEAL
(7 )2 _ 2 2
-E ( (Z—2)" +(Z =) +1—logpk> X=x
2 8
(548)
= Z/ dPX(x)
L zeAyg
— 2 1 2
(2 — ) + (W +3- 1ogpk) (549)
5 2
< ;Pk 1+ (8 - 10gpk> (550)
(551)

<2+ [~2pilogpi + prlog® pi]
k

where (550) holds since |z — pg| < 1 for x € Ay, because
ur € Ai and Ay has length 1, and in (551) we have upper
bounded 5/8 by 1 to simplify the expression. By Chebyshev’s
inequality, for £ > 0

Sy,
kaP(XGAk)SP(XZk)Sﬁ.

(552)
Note that for p € [0,1], —plogp < 1/e, and this function
is increasing for p < 1/e. Thus, if we consider the sum of
—pi log pi, for k > 0, we have

[ee] "\/ eSu-‘

oo

1 Su, Su
doowelogpe< D o4 Y —iglesy
k=0 k=0 k=[veS,]+1

(553)
1 < Sy Su
S g(\/ ESu —+ 2) + / - _7'72 log ﬁdr
(554)

:@+2+3m (555)

Ve Ve
4V'Sy

e
2
+ =

= 556
N (556)
By an identical calculation, Z/Z:l_oo —prlogpr < % +

%. Similarly, note that plog2 p <4/ e2, and this function is
increasing for p < 1/e2. Thus

> Ty =S, 58
2 u 2 Pu
E prlog” pr < E =T § ﬁlog = (557)
k=0 k=0 [eV/Sy]+1
4 i Su 2 Su
S?(e\/5u+2)+/cj SuﬁlOg ﬁdr

(558)
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4 201/S,
= ;2(6\/ Su+2)+ — (559)
= L VS + 2 (560)

e e?’

Again the same holds for the summation over & < 0. Applying
the bounds in (556) and (560) to (551) gives

E[(X; 2)*1((X; Z) < 0)] < 2+ 8\\/[‘:7+2‘+48\€/$+:2,
(561)

Now combining the bounds on each of the terms in (533) gives
V(W'||Pzu|Pux)
11 4 4 8 48
< P —+ -+ = — 4+ — Su| (562
N L

11 4 4 (8

<-4ty (= 563
stttz (563)

48
+ ) VS.
4 e
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