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Abstract—We consider the problem of optimizing the freshness

of status updates that are sent from a large number of low-

power sources to a common access point. The source nodes utilize

carrier sensing to reduce collisions and adopt an asynchronized

sleep-wake scheduling strategy to achieve a target network

lifetime (e.g., 10 years). We use age of information (AoI) to

measure the freshness of status updates, and design sleep-wake

parameters for minimizing the weighted-sum peak AoI of the

sources, subject to per-source battery lifetime constraints. When

the sensing time (i.e., the time duration of carrier sensing) is

zero, this sleep-wake design problem can be solved by resorting

to a two-layer nested convex optimization procedure; however,

for positive sensing times, the problem is non-convex. We devise

a low-complexity solution to solve this problem and prove that,

for practical sensing times that are short, the solution is within

a small gap from the optimum AoI performance. When the

mean transmission time of status-update packets is unknown,

we devise a reinforcement learning algorithm that adaptively

performs the following two tasks in an “efficient way”: a) it learns

the unknown parameter, b) it also generates efficient controls that

make channel access decisions. We analyze its performance by

quantifying its “regret”, i.e., the sub-optimality gap between its

average performance and the average performance of a controller

that knows the mean transmission time. Our numerical and NS-

3 simulation results show that our solution can indeed elongate

the batteries lifetime of information sources, while providing a

competitive AoI performance.
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I. INTRODUCTION

In applications such as networked monitoring and control

systems, wireless sensor networks, autonomous vehicles, it is

crucial for the destination node to receive timely status updates

so that it can make accurate decisions. Age of information

(AoI) has been used to measure the freshness of status

updates. More specifically, AoI [2] is the age of the freshest

update at the destination, i.e., it is the time elapsed since the

freshest received update was generated. It should be noted that

optimizing traditional network performance metrics, such as

throughput or delay, do not attain the goal of timely updating.

For instance, it is well known that AoI could become very

large when the offered load is high or low [2]. In other words,

AoI captures the information lag at the destination, and is

hence more apt for achieving the goal of timely updates. Thus,

AoI has recently attracted a lot of interests (see [3], [4] and

references therein).

In a variety of information update systems, energy consump-

tion is also a critical concern. For example, wireless sensor

networks are used for monitoring crucial natural and human-

related activities, e.g. forest fires, earthquakes, tsunamis, etc.

Since such applications often require the deployment of sensor

nodes in remote or hard-to-reach areas, they need to be able

to operate unattended for long durations. Likewise, in medical

sensor networks, battery replacement/recharging involves a

series of medical procedures, leading to disutility to patients.

Hence, energy consumption must be constrained in order to

support a long battery life of 10-15 years [5]1. For networks

serving such real-time applications, prolonging battery-life is

crucial. Existing works on multi-source networks, e.g., [8]–

[11], [11]–[20], focused exclusively on minimizing the AoI

and overlooked the need to reduce power consumption. This

motivates us to derive scheduling algorithms that achieve a

1The computations performed in [5] are based on the specifications of
commercially used devices. For example, the used transceiver is 2.4 GHz
chipset from Chipcon, the CC2420 [6], and the used microcontroller is
the Motorola 8-bit microcontroller MC9508RE8 [7]. For more detail about
the supply voltage and current consumption, please see the aforementioned
references.
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trade-off between the competing tasks of minimizing AoI and

reducing the energy consumption in multi-source networks.

Additionally, some status-update systems consist of a large

number (e.g., hundreds of thousands) of densely packed wire-

less nodes, which are serviced by a single access point (AP).

Examples include massive machine-type communications [21].

The dataloads in such “dense networks” [21], [22] are cre-

ated by applications such as home security and automation,

oilfield and pipeline monitoring, smart agriculture, animal

and livestock tracking, etc. This introduces high variability

in the data packet sizes so that the transmission times of data

packets are random. Thus, scheduling algorithms designed for

time-slotted systems with a fixed transmission duration, are

not applicable to these systems. Besides that, synchronized

scheduler for time-slotted systems are feasible when there are

relatively few sources and each source has sufficient energy.

However, if there are a huge number of sources, the signaling

overhead could be quite high. Since, each source may have

limited energy and low traffic rate, the system could be highly

inefficient. This motivates us to design asynchronized medium

access protocols that coordinate the transmissions of multiple

conflicting transmitters connected to a single AP.

Towards that end, we consider a wireless network with

M sources that contend for channel access and communicate

their update packets to an AP. Each source is equipped with

a battery that may get charged by a renewable source of

energy, e.g., solar. Moreover, each source employs a sleep-

wake scheduling scheme [23] under which the source transmits

a packet if the channel is idle; and sleeps if either: (i) The

channel is busy, (ii) it has completed a packet transmission.

This enables each source to save the precious battery energy

by switching off when it is unlikely to gain channel access for

packet transmissions. However, since a source cannot transmit

during the sleep period, this causes the AoI to increase. We

carefully design the sleep-wake parameters to minimize the

weighted-sum peak age of the sources, while ensuring that

the battery lifetime constraint of each source is satisfied.

A. Related Works

There have been significant recent efforts on analyzing

the AoI performance of popular queueing service disciplines,

e.g., the First-Come, First-Served (FCFS) [2] Last-Come,

First-Served (LCFS) with and without preemption [24], and

queueing systems with packet management [25]. In [18],

[26]–[29], the age-optimality of Last-Generated, First-Served

(LGFS)-type policies in multi-server and multi-hop networks

was established, where it was shown that these policies can

minimize any non-decreasing functional of the age processes.

The design of data sampling and transmission in information

update systems was investigated in [30], [31], where sampling

policies were derived to minimize nonlinear age functions in

single source systems. In [31], it was shown that a variety of

information freshness metrics can be represented as monotonic

functions of the age. The studies in [30], [31] were later

extended to a multi-source scenario in [32], [33].

Designing scheduling policies for minimizing AoI in multi-

source networks has recently received increasing attention,

e.g., [8]–[17]. Of particular interest are those pertaining to

designing distributed scheduling policies [8]–[13]. The work

in [8] considered a slotted ALOHA-like random access scheme

in which each node accesses the channel with a certain access

probability. These probabilities were then optimized in order to

minimize the AoI. However, the model of [8] allows multiple

interfering users to gain channel access simultaneously, and

hence allows for the collision. The authors in [9] generalized

the work in [8] to a wireless network in which the interference

is described by a general interference model. The Round Robin

or Maximum Age First policy was shown to be (near) age-

optimal for different system models, e.g., in [10]–[13], [18].

Carrier sensing distributed medium access mechanisms, e.g.,

Carrier Sense Multiple Access (CSMA), have been widely

adopted in many wireless networks; see [34], [35] for a

recent survey. There has been an interest in designing CSMA-

based scheduling schemes that optimize the AoI [36], [37].

In [36], the authors designed an idealized CSMA (similar

to that in [38]) to minimize the AoI with an exponentially

distributed packet transmission times. In [37], the authors

designed a slotted Carrier Sense Multiple Access/Collision-

Avoidance (CSMA/CA) (similar to that in [39]) to minimize

the broadcast age of information, which is defined, from a

sender’s perspective, as the age of the freshest successfully

broadcasted packet. Contrary to these works, the sleep-wake

scheduling scheme proposed by us emphasizes on reducing

the cumulative energy consumption in multi-source networks

in addition to minimizing the total weighted AoI. Moreover,

in our study, transmission times are not necessarily random

variables with some commonly used parametric density [36],

or deterministic [37], but can be any generally distributed

random variables with finite mean.

B. Key Contributions

Our key contributions are summarized as follows:
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• In our model, sources utilize an asynchronized sleep-

wake scheduling strategy to achieve an extended battery

lifetime. We aim at designing the mean sleeping period of

each source, which controls its channel access probability,

in order to minimize the total weighted average peak age

of the sources while simultaneously meeting per-source

battery lifetime constraints. Although, the aforementioned

optimization problem is non-convex, we devise a solution.

In the regime for which the sensing time is negligible

compared to the packet transmission time, the proposed

solution is near-optimal (Theorem 1 and Theorem 3). Our

near-optimality results hold for general distributions of

the packet transmission times.

• We propose an algorithm that can be easily implemented

in many practical control systems. In particular, our

solution requires the knowledge of only two variables in

its implementation. These two variables are functions of

the network parameters. An implementation procedure to

compute these two variables is provided.

• As the ratio between the sensing time and the packet

transmission time reduces to zero, we show that the age

performance of our proposed algorithm is as good as

that of the optimal synchronized scheduler (e.g., for time-

slotted systems).

• Finally, since our solution is a function of the mean

transmission time of data packets, the network operator

needs to know this quantity in order to implement the

algorithm. The transmission times however depend upon

the environmental conditions, which in turn are hard

to predict before the system operation begins. To over-

come this challenge, we develop a reinforcement learning

(RL) [40]–[42] algorithm that maintains an estimate of

the (unknown) mean transmission time, and then utilizes

this estimate in order to derive a solution that is “seem-

ingly optimal” for the true system. We show that the

regret of the proposed RL algorithm scales as Õ(
√
H),2

where H is the operating time horizon.

II. MODEL AND FORMULATION

A. Network Model and Sleep-wake Scheduling

Consider a wireless network composed of M source nodes,

each observing a time-varying signal. The sources generate

update packets of the observed signals and send the packets to

an access point (AP) over a shared spectrum band. If multiple

2Õ hides factors that are logarithmic in H .

sources transmit packets simultaneously, a packet collision

occurs and these packet transmissions fail.

The sources use a sleep-wake scheduling scheme to access

the shared spectrum, where each source switches between a

sleep mode and a transmission mode over time, according the

following rules: Upon waking from the sleep mode, a source

first performs carrier sensing to check whether the channel is

occupied by another source, as illustrated in Figure 1. The

time duration of carrier sensing is denoted as ts, which is

sufficiently long to ensure a high sensing accuracy. If the

channel is sensed to be busy, the source enters the sleep mode

directly; otherwise, the source generates an update packet and

sends it over the channel. The source hereafter goes back to

the sleep mode.

In the above sleep-wake scheduling scheme, if two sources

start transmitting within a time duration of ts, then their

sensing periods are overlapping and they may not be able

to detect the transmission of each other. In order to obtain a

robust system design, we consider that they cannot detect each

other’s transmission and a collision occurs. Upon completing

a packet transmission, sources switch to the reception mode

and wait for an acknowledgement (ACK) that indicates the

outcome of their transmissions (successful transmission or

collision). They then go back to the sleep mode.

A sleep-wake cycle, or simply a cycle, is defined as the time

period between the ends of two successive packet transmission

or collision events. Each cycle consists of an idle period

and a transmission/collision period3. As depicted in Figure

1, the packet transmissions in Cycles 1-2 are successful, but

a collision occurs in Cycle 3 because Sources 1 and 2 wake

up within a short duration ts.

We use Tj, j ∈ {1, 2, . . .} to represent the time incurred

by the j-th packet transmission or collision event, which

includes transmission/collision time and feedback delays. For

example, in Figure 1, T1 is the time duration of the packet

transmission event by Source 1, while T3 is the time duration

of the collision event between Source 1 and 2. We assume

that the Tj’s are i.i.d. for all transmission and collision events,

with a general distribution. This assumption does not hold

3To make the sleep-wake scheduling problem solvable analytically, we
make several approximations. For example, in 802.11b frame structure, there
exists a Short Inter-frame Space (SIFS) between the packet transmission
frame and the ACK frame (i.e., the CTS frame). If another source wakes
up during the SIFS, then it may not detect the transmission/ACK frames,
leading to unexpected collisions. In our analytical model, such collision
events are omitted. In other words, we suppose that each cycle must start
with an idle period, where all sources are in the sleep mode, followed by
a transmission/collision period. NS-3 simulation results will be provided in
Section VI-B to show that these approximations have a negligible impact on
the age performance of our solution.



4

Source 1

Source 2

Source 3

tsSensing

time

Sleep period

Channel is busy,

go to sleep mode

Packet transmission

Packet transmission

Cycle 1 Cycle 2

Collision

Feedback

S2

S1

S1 − S2 < ts

Cycle 3 Cycle 4

T1 T3

t3,1 t
′

3,1
t
′

3,2t3,2

Figure 1: Illustration of the sleep-wake cycles. In Cycles 1-2, we have successful packet transmissions. Let S1 and S2 represent

the remaining sleeping times of Sources 1 and 2, respectively, after a successful transmission. Then, a collision occurs in Cycle

3 because the difference between wake-up times of Sources 1 and 2 is less than ts, i.e., S1 − S2 < ts. As we can observe,

each cycle consists of an idle period before a transmission/collision event.

in practice. Nonetheless, NS-3 simulation results in Section

VI-B show that this assumption has a negligible impact on

the performance of the proposed algorithm. When there is no

confusion, we omit the subscript j of Tj for simplicity, and use

T to denote the transmission/collision time, which is assumed

to have a finite mean, i.e., E[T ] < ∞. The sleep periods

of source l are exponentially distributed random variables

with mean value E[T ]/rl and are independent across sources

and i.i.d. across time. Notice that, the sleep period parameter

rl > 0 has been normalized by the mean transmission time

E[T ]. Let r = (r1, . . . , rM ) be the vector comprising of these

sleep period parameters.

B. Total Weighted Average Peak Age

Let Ul(t) represent the generation time of the most recently

delivered packet from source l by time t. Then, the age of

information, or simply the age, of source l is defined as [2]

∆l(t) = t− Ul(t), (1)

where ∆l(t) is right-continuous. As shown in Figure 2, the

age increases linearly with t, but is reset to a smaller value

upon the delivery of a fresher packet. Observe that a small age

∆l(t) indicates that the AP has a fresh status update packet

that was generated at source l recently. Hence, it is desirable

to keep ∆l(t) small for all the sources.

Let us introduce some notations and definitions. Let il be the

index of the i-th delivered packet from source l. We use tl,i and

t′l,i to denote the generation and delivery times, respectively,

of the i-th delivered packet from source l, such that t′l,i−tl,i =

t

∆l(t)

tl,1 t
′

l,1 t
′

l,2tl,2 tl,3 t
′

l,3

Il,3

∆
peak

l,1

∆
peak

l,2

∆
peak

l,3

T2l

Figure 2: The age ∆l(t) of source l.

Til .
4 Let Il,i = t′l,i−t′l,i−1 denote the i-th inter-departure time

of source l, which satisfies E[Il,i] = E[Il] for all i. The i-th

peak age of source l, denoted by ∆
peak

l,i , is defined as the AoI

of source l right before the i-th packet delivery from source l.

As shown in Figure 2, i.e., we have

∆peak

l,i = ∆l(t
′−
l,i ), (2)

where t′−l,i is the time instant just before the delivery time t′l,i.

One can observe from Figure 2 that the peak age is [25]

∆peak

l,i = T(i−1)l + Il,i. (3)

Hence, the average peak age of source l is given by

E[∆peak

l ] = E[T ] + E[Il], (4)

where we omit the subscripts i and il as Il,i’s and Til ’s

are i.i.d. across time. The average peak age metric provides

information regarding the worst case age, with the advantage

4A packet of a particular source is deemed delivered when the source
receives the feedback.
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of having a simpler formulation than the average age metric

[25]. Thus, it is suitable for applications that have an upper

bound restriction on AoI.

We now derive an expression for E[Il]. Let αl be the

probability of the event that the source l obtains channel access

and successfully transmits a packet within a sleep-wake cycle.

As shown in [23], one can utilize the memoryless property of

exponential distributed sleep periods to get

αl =
rle

rl
ts

E[T ]

e
∑

M
i=1 ri

ts
E[T ]
∑M

i=1 ri
. (5)

To keep the paper self-contained, we provide the derivation of

(5) in Appendix A. Let Nl denote the total number of sleep-

wake cycles between two subsequent successful transmissions

of source l. Because the probability that source l obtains

channel access and transmits successfully in a given cycle is

αl, Nl is geometrically distributed with mean 1
αl

. By this and

(5), we get

E[Nl] =
e
∑M

i=1 ri
ts

E[T ]
∑M

i=1 ri

rle
rl

ts
E[T ]

. (6)

An inter-departure time duration of source l is composed of Nl

consecutive sleep-wake cycles. With a slight abuse of notation,

let cyclel,k denote the duration of the k-th sleep-wake cycle

after a successful transmission of source l. Hence,

E[Il] = E

[

Nl
∑

k=1

cyclel,k

]

. (7)

Note that cyclel,k’s are i.i.d. across time. Moreover, since the

event (Nl = n) depends only on the history, Nl is a stopping

time [43]. Hence, it follows from Wald’s identity [44] that

E[Il] = E[Nl]E[cycle], (8)

where E[cycle] is the mean duration of a sleep-wake cy-

cle. Each cycle consists of an idle period and a transmis-

sion/collision time, see Figure 1. Using the memoryless prop-

erty of exponential distribution, we observe that the idle period

is the minimum of i.i.d. exponential random variables. Thus, it

can be shown that the idle period in each cycle is exponentially

distributed with mean value equal to E[T ]/
∑M

i=1 ri, where

E[T ]/rl is the mean of sleep periods of source l. Hence, we

have

E[cycle] =
E[T ]
∑M

i=1 ri
+ E[T ]. (9)

Substituting the expressions for E[Nl] and E[cycle] from (6)

and (9), respectively, into (8), and (4), we obtain

E[∆peak

l ] =
e−rl

ts
E[T ]E[T ]

rl
e
∑M

i=1 ri
ts

E[T ]

(

1 +

M
∑

i=1

ri

)

+ E[T ].

(10)

In this paper, we aim to minimize the total weighted average

peak age, which is given by

M
∑

l=1

wlE[∆
peak

l ]=

M
∑

l=1

wle
−rl

ts
E[T ]E[T ]

rl
e
∑M

i=1 ri
ts

E[T ]

(

1+

M
∑

i=1

ri

)

+
M
∑

l=1

wlE[T ],

(11)

where wl > 0 is the weight of source l. These weights

enable us to prioritize the sources according to their relative

importance [9], [15].

C. Energy Constraint

Each source is equipped with a battery that can possibly

be recharged by a renewable energy source, such as solar.

In typical wireless sensor networks, sources have a much

smaller power consumption in the sleep mode than in the

transmission mode. For example, if the sensor is equipped

with the radio unit TR 1000 from RF Monolithic [45], [46],

the power consumption in the sleep mode is 15 µW while

the power consumption in the transmission mode is 24.75

mW. Motivated by this, we assume that the energy dissipation

during the sleep mode is negligible as compared to the power

consumption in the transmission mode. Moreover, we assume

that the sensing time duration ts is much shorter than the

transmission time and hence neglect the energy consumed

during channel sensing. In Section VI-B, we show that these

assumptions have a negligible effect on the performance of

the proposed sleep-wake scheduling algorithm. Under these

assumptions, the amount of energy used by a source is equal

to the amount of energy consumed in packet transmissions and

feedback receptions.

The energy constraint on source l is described by the

following parameters: a) Initial battery level Bl, which denotes

the initial amount of energy stored in the battery, b) Target

lifetime Dl, which is the minimum time-duration that the

source l should be active before its battery is depleted, c)

Average energy replenishment rate5 Rl, which is the rate at

which the battery of source l receives energy from its energy

5It is assumed that Rl is either known, or it can be estimated accurately.
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source. If source l does not have access to an energy source,

then we have Rl = 0. Define Pmax,l for source l as

Pmax,l =
Bl

Dl
+ Rl, ∀l, (12)

where Pmax,l is the maximum allowable power consumption

of source l such that the target lifetime Dl is met.

For the sleep-wake scheduling mechanism under consider-

ation, it has been shown in [23] that the fraction of time in

which source l is in the transmission mode is given by

σl =
[1− e−rl

ts
E[T ] ]

∑M
i=1 ri + rle

−rl
ts

E[T ]

∑M
i=1 ri + 1

. (13)

For the sake of completeness, the derivation of σl is provided

in Appendix B. Let Pavg,l denote the average power consump-

tion of source l in the transmission mode. Then the actual

power consumption of source l, denoted by Pact,l, is given by

Pact,l = σlPavg,l, ∀l. (14)

For source l to achieve its target lifetime Dl, we must have

Pact,l ≤ Pmax,l, ∀l. (15)

Define bl , Pmax,l/Pavg,l as the target power efficiency of

source l. By using (13)-(14), the constraints in (15) can be

rewritten as

σl =
[1− e−rl

ts
E[T ] ]

∑M
i=1 ri + rle

−rl
ts

E[T ]

∑M
i=1 ri + 1

≤ bl, ∀l. (16)

Because σl ≤ 1, if bl ≥ 1, then constraint (16) is always

satisfied.

D. Problem Formulation

Our goal is to find the optimal sleep-wake parameters r

that minimizes the total weighted average peak age in (11),

while simultaneously ensuring the energy constraints (16) for

all sources. Dividing the objective function (11) by E[T ], we

obtain the following optimization problem: (Problem 1)

∆̄
w-peak
opt , min

rl>0

M
∑

l=1

wle
−rl

ts
E[T ]

rl
e
∑M

i=1 ri
ts

E[T ]

(

1 +

M
∑

i=1

ri

)

+

M
∑

l=1

wl

s.t.
[1 − e−rl

ts
E[T ] ]

∑M
i=1 ri + rle

−rl
ts

E[T ]

∑M
i=1 ri + 1

≤ bl, ∀l,

(17)

where ∆̄
w-peak
opt is the optimal objective value of Problem 1.

We will use ∆̄w-peak(r) to denote the objective value for given

sleeping period parameters r. One can notice from (17) that

the optimal sleeping period parameters depend on the sensing

time ts and the mean transmission time E[T ] only through their

ratio ts/E[T ]. This insight plays a crucial role in subsequent

analysis of Problem 1.

III. MAIN RESULTS

When ts = 0, although Problem 1 is non-convex, it can be

solved by defining an auxiliary variable y =
∑M

i=1 ri +1 and

applying a nested optimization algorithm: In the inner layer,

we optimize rl for a given y. Then, we write the optimized

objective as a function of y. In the outer layer, we optimize y.

It happens that the inner and outer layer optimization problems

are both convex. The details can be found in Section III-C.

However, this method does not work for positive sensing

times ts > 0 and Problem 1 becomes non-convex. Hence, it

is challenging to optimize r for positive ts. In this section,

we develop a low-complexity closed-form solution which is

shown to be near-optimal if the sensing time ts is short as

compared with the mean transmission time E[T ]. Our solution

is developed by considering the following two regimes sepa-

rately: (i) Energy-adequate regime denoted as
∑M

i=1 bi ≥ 1,

where the condition
∑M

i=1 bi ≥ 1 means that the sources have

a sufficient amount of total energy to ensure that at least

one source is awake at any time, (ii) Energy-scarce regime

represented by
∑M

i=1 bi < 1, which indicates that the sources

have to sleep for some time to meet the sources’ energy

constraints.

A. Energy-adequate Regime

In the energy-adequate regime
∑M

i=1 bi ≥ 1, our solution

r⋆ := (r⋆1 , . . . , r
⋆
M ) is given as

r⋆l = min{bl, β⋆√wl}x⋆, ∀l, (18)

where x⋆ and β⋆ are expressed in terms of the parameters

{bi, wi}Mi=1, ts/E[T ] as follows:

x⋆ =
−1

2
+

√

1

4
+

E[T ]

ts
, (19)

and β⋆ is the unique root of

M
∑

i=1

min{bi, β⋆√wi} = 1. (20)

The performance of the above solution r⋆ is manifested in the

following theorem:
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Theorem 1 (Near-optimality). If
∑M

i=1 bi ≥ 1, then the

solution r⋆ (18) - (20) is near-optimal for solving (17) when

ts/E[T ] is sufficiently small, in the following sense:6

∣

∣

∣
∆̄w-peak(r⋆)− ∆̄w-peak

opt

∣

∣

∣
≤ 2

√

ts
E[T ]

C1+o

(√

ts
E[T ]

)

, (21)

where

C1 =

M
∑

i=1

wi

min{bi, β⋆√wi}
. (22)

Proof. See Section IV-A.

From Theorem 1, we can obtain the following corollary:

Corollary 2 (Asymptotic optimality). If
∑M

i=1 bi ≥ 1, then

the solution r⋆ (18) - (20) is asymptotically optimal for

Problem 1 in (17) as ts/E[T ] → 0, i.e.,

lim
ts

E[T ]
→0

∣

∣

∣
∆̄w-peak(r⋆)− ∆̄w-peak

opt

∣

∣

∣
= 0. (23)

Moreover, the asymptotic optimal objective value of Problem

1 as ts/E[T ] → 0 is7

lim
ts

E[T ]
→0

∆̄w-peak
opt =

M
∑

i=1

[

wi

min{bi, β⋆
√
wi}

+ wi

]

. (24)

Proof. See Section IV-A.

B. Energy-scarce Regime

Now, we present a solution to Problem 1 in the energy-

scarce regime
∑M

i=1 bi < 1, and show it is near-optimal. The

solution r⋆ of the energy-scarce regime is again given by (18),

where x⋆ and β⋆ are

x⋆ =
minl cl

1−
∑M

i=1 bi
, β⋆ =

M
∑

i=1

1√
wi

, (25)

6We use the standard order notation: f(h) = O(g(h)) means z1 ≤
limh→0 f(h)/g(h) ≤ z2 for some constants z1 > 0 and z2 > 0, while
f(h) = o(g(h)) means limh→0 f(h)/g(h) = 0.

7Observe that, according to (24), the asymptotic optimal average peak
age of source l is (1/min{bl, β⋆

√
wl} + 1) which decreases with the

weight wl. The weighted average peak age is wl(1/min{bl, β⋆
√
wl}+ 1)

which increases with wl. This phenomenon is reasonable and agrees with our
expectation.

and

cl =
2bl

(

1−∑M
i=1 bi

)2

Ql
, (26)

Ql =bl

(

1−
M
∑

i=1

bi

)2

+

√

√

√

√b2l

(

1−
M
∑

i=1

bi

)4

+4b2l

(

1−
M
∑

i=1

bi

)2(M
∑

i=1

bi−bl

)

ts
E[T ]

.

(27)

The near-optimality of the proposed solution (i.e., r⋆) in the

energy scarce regime is explained in the following theorem:

Theorem 3 (Near-optimality). If
∑M

i=1 bi < 1, then the

solution r⋆ (18) and (25) - (27) is near-optimal for solving

(17) when ts/E[T ] is sufficiently small, in the following sense:

∣

∣

∣
∆̄w-peak(r⋆)− ∆̄w-peak

opt

∣

∣

∣
≤ ts

E[T ]
C2+o

(

ts
E[T ]

)

, (28)

where

C2 =

M
∑

l=1

wl

bl(1 −
∑M

i=1 bi)

(

3

M
∑

i=1

bi −min
j

bj

)

. (29)

Proof. See Section IV-B.

We obtain the following corollary from Theorem 3.

Corollary 4 (Asymptotic optimality). If
∑M

i=1 bi < 1, then

(23) holds for the solution r⋆ (18) and (25) - (27). In other

words, our proposed solution is asymptotically optimal for

Problem 1 in (17) as ts/E[T ] → 0. Moreover, the asymptotic

optimal objective value of Problem 1 as ts/E[T ] → 0 is

lim
ts

E[T ]
→0

∆̄w-peak
opt =

M
∑

i=1

[

wi

min{bi, β⋆√wi}
+ wi

]

=
M
∑

i=1

[

wi

bi
+ wi

]

.

(30)

Proof. See Section IV-B.

Interestingly, the asymptotic optimal objective values of

Problem 1 in both regimes, given by (24) and (30), are of an

identical expression. However, in the energy-scarce regime, we

can observe that β⋆, which is defined in (25), always satisfies

min{bl, β⋆√wl} = bl for all l.

Remark 1. We would like to point out that the condition

ts/E[T ] ≈ 0 is satisfied in many practical applications. For

instance, in a wireless sensor network that is equipped with

low-power UHF transceivers [47], the carrier sensing time
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is ts = 40 µs, while the transmission time is around 5 ms.

Hence, ts/E[T ] ≈ 0.008.

C. Discussion

In this subsection, we present a simple implementation of

our proposed solution, discuss the nested convex optimization

method that can be used to solve Problem 1 when ts = 0,

provide some useful insights about our proposed solution at

the limit point ts/E[T ] → 0, and provide a comparison with

synchronized schedulers performance.

1) Implementation of Sleep-wake Scheduling: We devise a

simple algorithm to compute our solution r⋆, which is pro-

vided in Algorithm 1. Notice that r⋆ has the same expression

(18) in the energy-adequate and energy-scarce regimes. We

exploit this fact to simplify the implementation of sleep-wake

scheduling. In particular, the sources report wl and bl to the

AP, which computes β⋆ and x⋆, and broadcasts them back to

the sources. After receiving β⋆ and x⋆, source l computes r⋆l
based on (18). In practical wireless sensor networks, e.g., smart

city networks and industrial control sensor networks [48], [49],

the sensors report their measurements via an access point (AP).

Hence, it is reasonable to employ the AP in implementing the

sleep-wake scheduler.

Algorithm 1: Implementation of sleep-wake scheduler.

1 The AP gathers the parameters {(wi, bi)
M
i=1, ts/E[T ]};

2 if
∑M

i=1 bi ≥ 1 then

3 The AP computes x⋆, β⋆ from (19) and (20);

4 else

5 The AP computes x⋆, β⋆ from (25) - (27);

6 end

7 The AP broadcasts x⋆, β⋆ to all the M sources;

8 Upon hearing x⋆, β⋆, source l compute r⋆l from (18);

In the above implementation procedure, the sources do not

need to know if the overall network is in the energy-adequate

or energy-scarce regime; only the AP knows about it. Further,

the amount of downlink signaling overhead is small, because

only two parameters β⋆ and x⋆ are broadcasted to the sources.

Moreover, when the node density is high, the scalability of the

network is a crucial concern and reporting wl and bl for each

source is impractical. In this case, the AP can compute β⋆ and

x⋆ by estimating the distribution of wl and bl, as well as the

number of source nodes, which reduces the uplink signaling

overhead. Finally, when sources are not in the hearing range

of each other, hidden/exposed source problems arise. These

problems are challenging to solve analytically. However, this

can be solved by designing practical heuristic solutions based

on the theoretical solutions. One design method was given in

[23].

2) The Nested Convex Optimization Method for ts = 0:

If ts = 0, Problem 1 reduces to the following optimization

problem:

∆̄w-peak
opt , min

rl>0

M
∑

l=1

wl

(

1 +
∑M

i=1 ri

)

rl
+

M
∑

l=1

wl

s.t. rl ≤ bl(

M
∑

i=1

ri + 1), ∀l.

(31)

Observe that the optimization problem in (31) is non-convex.

To bypass this difficulty, we use an auxiliary variable y =
∑M

i=1 ri + 1. Hence, we obtain the following optimization

problem for given y:

min
ri>0

M
∑

i=1

[

wiy

ri
+ wi

]

(32)

s.t. rl ≤ bly, ∀l, (33)

M
∑

i=1

ri + 1 = y. (34)

The objective function in (32) is a convex function. Moreover,

the constraints in (33) and (34) are affine. Hence, Problem (32)

is convex. Exploiting (32), we solve (31) by using a two-layer

nested convex optimization method: In the inner layer, we

optimize r for given y. After solving r, we will optimize y in

the outer layer. This technique is used in the proof of Lemma 8

in Appendix D, where the reader can find the detailed solution.

3) Asymptotic Behavior of The Optimal Solution: In the

energy-adequate regime, the sleeping period parameter r⋆l of

source l tends to infinity as ts/E[T ] → 0, while the ratio r⋆l /r
⋆
i

between source l and source i is kept as a constant for all l

and i. Hence, the sleeping time of the sources tends to zero.

Meanwhile, since ts/E[T ] → 0, the sensing time becomes

negligible. The channel access probability of source l in this

limit can be computed as

lim
ts

E[T ]
→0

σ⋆
l = min{bl, β⋆√wl}. (35)

Because of (20), limts/E[T ]→0

∑M
i=1 σ

⋆
i = 1. Hence, the

channel is occupied by the sources at all time, without any

time overhead spent on sensing and sleeping.

On the other hand, in the energy-scarce regime, the sleeping

period parameter r⋆l of source l converges to a constant value

when ts/E[T ] → 0, i.e., we have

lim
ts

E[T ]
→0

r⋆l =
bl

1−∑M
i=1 bi

. (36)
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Since the cumulative energy is scarce, the sources necessarily

need to stay idle for some time in order to meet their target

lifetime. Hence, sleep periods are imposed for achieving

the optimal trade-off between minimizing AoI and energy

consumption.

4) Comparison with Synchronized Schedulers Performance:

We would like to show that the performance of our proposed

algorithm is asymptotically no worse than any synchronized

(e.g., centralized) scheduler. Consider a scheduler in which

the fraction of time during which source l transmits update

packets is equal to al, where we have a = {al}Ml=1 and
∑M

i=1 ai ≤ 1. In this scheduler, only one source is allowed to

access the channel at a time, i.e., there is no collision (this can

be achieved either by a deterministic scheduler or by assigning

a channel access probability al for each source l after each

packet transmission)8. We can perform an analysis similar to

that of Section II-B, and show that the total weighted average

peak age of a synchronized scheduler is given by

M
∑

i=1

[

wiE[T ]

ai
+ wi E[T ]

]

. (37)

Hence, the problem of designing an optimal synchronized

scheduler that minimizes the total weighted average peak age

under energy constraints can be cast as

∆̄
w-peak
opt-s , min

ai>0

M
∑

i=1

[

wi

ai
+ wi

]

(38)

s.t. al ≤ bl, ∀l, (39)

M
∑

i=1

ai ≤ 1, (40)

where we have divided the objective function by E[T ]. Next,

we show that the performance of our proposed algorithm

converges to that of the optimal synchronized scheduler when

ts/E[T ] → 0.

Corollary 5. For any (wi, bi)
M
i=1, we have

lim
ts

E[T ]
→0

∆̄w-peak
opt = ∆̄w-peak

opt-s . (41)

Proof. The proof is provided in Appendix G which is listed

at the end before Appendix H as it requires some results from

precedent appendixes.

Synchronized schedulers were recently studied in [15] for

the case without energy constraints, i.e., bl ≥ 1 for all l.

8Note that if
∑

M

i=1
ai < 1, then it is possible that the scheduler decides

not to serve any source after the transmission of some packet. In this case,
the scheduler waits for a random time that has the same distribution as the
transmission time T before deciding to serve another source.

According to Corollary 5, the channel access probability of

the synchronized scheduler in [15] is a special case of our

solution (35) where bl ≥ 1 for all l.

IV. PROOFS OF THE MAIN RESULTS

In this section, we provide the proofs of Theorem 1,

Corollary 2, Theorem 3, and Corollary 4.

A. The Proofs of Theorem 1 and Corollary 2

We prove Theorem 1 and Corollary 2 in three steps:

Step 1: We show that our solution r⋆ (18) - (20) is feasible

for Problem 1.

Lemma 6. If
∑M

i=1 bi ≥ 1, then the solution r⋆ (18) - (20) is

feasible for Problem 1.

Proof. See Appendix C.

Hence, by substituting this solution r⋆ into the objective

function of Problem 1 in (17), we get an upper bound on

the optimal value ∆̄w-peak
opt , which is expressed in the following

lemma:

Lemma 7. If
∑M

i=1 bi ≥ 1, then

∆̄w-peak
opt ≤ ∆̄w-peak(r⋆) ≤

M
∑

i=1

[

wie
x⋆ ts

E[T ]
(

1 + 1
x⋆

)

min{bi, β⋆
√
wi}

+ wi

]

,

(42)

where x⋆, β⋆ are defined in (19), (20).

Proof. In Lemma 6, we showed that our proposed solution r⋆

(18) - (20) is feasible for Problem 1. Hence, we substitute this

solution into Problem 1 to obtain the following upper bound:

M
∑

i=1

[

wie
x⋆ ts

E[T ]
(

1 + 1
x⋆

)

e−min{bi,β⋆√wi}x⋆ ts
E[T ]

min{bi, β⋆
√
wi}

+ wi

]

.

(43)

Next, we replace e−min{bi,β⋆√wi}x⋆(ts/E[T ]) by 1 to derive

another upper bound with a simple expression, which is given

by (42). This completes the proof.

Step 2: We now construct a lower bound on the optimal

value of Problem 1. Suppose that r = (r1, . . . , rM ) is a

feasible solution to Problem 1, such that rl > 0 and

[1− e−rl
ts

E[T ] ]
∑M

i=1 ri + rle
−rl

ts
E[T ]

∑M
i=1 ri + 1

≤ bl, ∀l. (44)

Because [1 − e−rl(ts/E[T ])]
∑M

i=1 ri + rle
−rl(ts/E[T ]) > rl for

all l, r satisfies rl/(
∑M

i=1 ri + 1) ≤ bl. Hence, the following
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Problem 2 has a larger feasible set than Problem 1: (Problem

2)

∆̄w-peak
opt,2 , min

rl>0

M
∑

l=1

wle
−rl

ts
E[T ]

rl
e
∑M

i=1 ri
ts

E[T ]

(

1 +

M
∑

i=1

ri

)

+

M
∑

l=1

wl

(45)

s.t. rl ≤ bl

(

M
∑

i=1

ri + 1

)

, ∀l, (46)

where ∆̄w-peak
opt,2 is the optimal value of Problem 2. The optimal

objective value of Problem 2 is a lower bound of that of

Problem 1. We note that the constraint set corresponding

to Problem 2 is convex. Thus, this relaxation converts the

constraint set of Problem 1 to a convex one, and hence enables

us to obtain a lower bound for the optimal value of Problem

1, which is expressed in the following lemma:

Lemma 8. If
∑M

i=1 bi ≥ 1, then

∆̄w-peak
opt ≥ ∆̄w-peak

opt,2 ≥
M
∑

i=1

[

wi

min{bi, β⋆
√
wi}

+ wi

]

, (47)

where β⋆ is the root of (20).

Proof. See Appendix D.

Step 3: After the upper and lower bounds of ∆̄w-peak
opt were

derived in Steps 1-2, we are ready to analysis their gap. By

combining (42) and (47), the sub-optimality gap of the solution

r⋆ (18) - (20) is upper bounded by

∣

∣

∣
∆̄w-peak(r⋆)−∆̄w-peak

opt

∣

∣

∣
≤

M
∑

i=1

wi

(

ex
⋆ ts

E[T ] (1+ 1
x⋆ )−1

)

min{bi, β⋆
√
wi}

,

(48)

where x⋆, β⋆ are defined in (19), (20). Next, we characterize

the right-hand-side (RHS) of (48) by Taylor expansion. For

simplicity, let ǫ = ts
E[T ] . Using the expression for x⋆ from

(19), we have

x⋆ǫ =− ǫ

2
+

√

ǫ2

4
+ ǫ =

ǫ

ǫ
2 +

√

ǫ2

4 + ǫ
=

√
ǫ+ o(

√
ǫ).

(49)

Moreover,

x⋆ =− 1

2
+

√

1

4
+

1

ǫ
=

1
ǫ

1
2 +

√

1
4 + 1

ǫ

=
1√
ǫ
+ o

(

1√
ǫ

)

.

(50)

Substituting (49) and (50) in (48), we obtain

∣

∣

∣
∆̄w-peak(r⋆)− ∆̄

w-peak
opt

∣

∣

∣
(51)

≤
M
∑

i=1

wi[e
√
ǫ+o(

√
ǫ)(1 +

√
ǫ+ o(

√
ǫ))− 1]

min{bi, β⋆√wi}

=

M
∑

i=1

wi[(1+
√
ǫ+o(

√
ǫ))(1+

√
ǫ+o(

√
ǫ))−1]

min{bi, β⋆√wi}

= 2
√
ǫ

M
∑

i=1

wi

min{bi, β⋆√wi}
+ o(

√
ǫ), (52)

where the second inequality involves the use of Taylor expan-

sion. This proves Theorem 1.

We can observe that the gap

∣

∣

∣
∆̄w-peak(r⋆)− ∆̄w-peak

opt

∣

∣

∣
in

the energy-adequate regime converges to zero at a speed of

O(
√
ǫ), as ǫ → 0. Further, both the upper and lower bounds

(42), (47), converge to
∑M

i=1[(wi/min{bi, β⋆√wi}) + wi]

as ts/E[T ] → 0. Thus, this value is the asymptotic optimal

objective value of Problem 1. This proves Corollary 2.

B. The Proofs of Theorem 3 and Corollary 4

Similar to Section IV-A, we prove Theorem 3 and Corollary

4 also in three steps:

Step 1: We show that the proposed solution r⋆ (18) and

(25) - (27) is a feasible solution for Problem 1.

Lemma 9. If
∑M

i=1 bi < 1, then the solution r⋆ (18) and (25)

- (27) is feasible for Problem 1.

Proof. See Appendix E.

Now, we construct an upper bound on the optimal value of

Problem 1 using our proposed solution as follows:

Lemma 10. If
∑M

i=1 bi < 1, then

∆̄w-peak
opt ≤ ∆̄w-peak(r⋆) ≤

M
∑

l=1

wl

bl
e
∑M

i=1 bix
⋆ ts

E[T ]

(

1

x⋆
+

M
∑

i=1

bi

)

+

M
∑

l=1

wl,

(53)

where x⋆ is defined in (25).

Proof. In Lemma 9, we showed that our proposed solution

r⋆ (18) and (25) - (27) is feasible for Problem 1. Hence, we

substitute this solution into Problem 1 to obtain the following

upper bound:

M
∑

l=1

wle
−blx

⋆ ts
E[T ]

bl
e
∑M

i=1 bix
⋆ ts

E[T ]

(

1

x⋆
+

M
∑

i=1

bi

)

+

M
∑

l=1

wl.

(54)
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Next, we replace e−blx
⋆ ts

E[T ] by 1 to derive another upper

bound with a simple expression, which is given by (53). This

completes the proof.

Step 2: Similar to the proof in Section IV-A, we use the

relaxed problem, Problem 2, to construct a lower bound as

follows:

Lemma 11. If
∑M

i=1 bi < 1, then

∆̄w-peak
opt ≥ ∆̄w-peak

opt,2 ≥
M
∑

l=1

wl

bl
e

−

∑M
i=1 bi

1−
∑M

i=1
bi

ts
E[T ]

+

M
∑

l=1

wl. (55)

Proof. See Appendix F.

Step 3: We now characterize the sub-optimality gap by

analyzing the upper and lower bounds constructed above. By

combining (53) and (55), the sub-optimality gap of the solution

r⋆ (18) and (25) - (27) is upper bounded by
∣

∣

∣
∆̄w-peak(r⋆)− ∆̄w-peak

opt

∣

∣

∣

≤
M
∑

l=1

wl

bl

[

e
∑M

i=1 bix
⋆ ts

E[T ]

(

1

x⋆
+

M
∑

i=1

bi

)

−e
−

∑M
i=1 bi

1−
∑M

i=1
bi

ts
E[T ]

]

.

(56)

where x⋆ is defined in (25). Next, we characterize the RHS

of (56) by Taylor expansion. For simplicity, let ǫ = ts/E[T ],

Z = (
∑M

i=1 bi)/(1−
∑M

i=1 bi), and kl = (
∑M

i=1 bi − bl)/(1−
∑M

i=1 bi)
2. Using Taylor expansion, we are able to obtain the

following:

min
l

cl = 1 +

(

min
l

kl

)

ǫ+ o(ǫ), (57)

1

minl cl
= max

l

1

cl
= 1 +

(

max
l

kl

)

ǫ+ o(ǫ). (58)

Using (57), (58), x⋆ from (25), and Taylor expansion again,

we get

e
∑M

i=1 bix
⋆ǫ = 1 + Z

(

1 +

(

min
l

kl

)

ǫ+ o(ǫ)

)

ǫ + o(ǫ)

= 1 + Zǫ+ o(ǫ),

(59)

1

x⋆
+

M
∑

i=1

bi =
1−∑M

i=1 bi
minl cl

+
M
∑

i=1

bi

= 1 +

(

max
l

kl

)

(

1−
M
∑

i=1

bi

)

ǫ+ o(ǫ),

(60)

e−Zǫ = 1− Zǫ+ o(ǫ). (61)

Substituting (59) - (61) into (56), we get (28). This proves

Theorem (3).

Moreover, we observe that the gap

∣

∣

∣
∆̄w-peak(r⋆)− ∆̄w-peak

opt

∣

∣

∣

in the energy-scarce regime converges to zero at a speed of

O(ǫ), as ǫ → 0. Further, both the upper and lower bounds

(53), (55), converge to
∑M

i=1[(wi/bi) + wi] as ts/E[T ] → 0.

Thus, this value is the asymptotic optimal objective value of

Problem 1. This proves Corollary 4.

V. LEARNING TO OPTIMIZE AGE

Note that the optimal rate r⋆ in Theorem 1 depends upon

the mean transmission time E [T ]. Since the transmission time

also depends upon (possibly) time-varying channel conditions,

estimating E[T ] accurately a priori, could be cumbersome.

Thus, in this section, we derive learning algorithms that

optimize the total weighted average peak age of all sources

when the mean transmission time E [T ] is unknown to the

scheduler. We begin by reducing our system to an equivalent

discrete-time Markov chain.

Contributions and Challenges: The simplest learning al-

gorithm is called the certainty equivalent rule [50]–[53]. In

this, the scheduler maintains an empirical estimate of E [T ],

and utilizes sleep parameters that are optimal when the true

value of the mean transmission time is equal to this estimate.

The regret of a learning algorithm is the sub-optimality in the

performance that results because the algorithm does not know

the system parameters. What we are able to show is that by

using the CE rule, we are able to get o(H) regret, where H is

the time-horizon. This further implies that the long-term time-

average performance of our CE algorithm is asymptotically

optimal.

This result is important since it is well-known by now [54]

that in many reinforcement learning problems [40], the CE

rule fails to be yield long-term time average performance,

because it does not yield a correct estimate of the optimal

choices. Thus, more complex learning rules, such as optimism

in the face of uncertainty [41], [53] that utilize confidence

balls in addition to the empirical estimates and thus have

a significantly higher computational complexity, are required

in order to ensure optimality. Our main contribution is to

show that the vanilla CE rule yields asymptotically the same

long-term time average performance as the scheduler that

knows the system parameters in advance, i.e. (with a high

probability) the “sub-optimality gap” of the CE rule is o(H)

where H is the operating time horizon. This means that

instead of using more complex learning algorithm such as the

UCRL [41] or RBMLE [53], one could use CE thereby saving

precious computing power and attaining the optimal average
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performance (asymptotically). We perform a finite-time per-

formance analysis of the CE rule and explicitly quantify its

sub-optimality by deriving an upper-bound on its “regret”, i.e.,

the gap between its average expected performance, and that

resulting from the application of optimal sleep parameter. The

problem of designing and analyzing learning algorithms for

our setup poses several challenges, primarily because the age

process evolves in continuous time on a continuous state-space

that is not compact. To address this difficulty, we show that for

the purpose of optimizing average age, we can equivalently

work with a discrete-time process. We then utilize several

techniques from the theory of general state-space Markov

chains [55] for analyzing the learning regret.

Sampling Continuous Time Process: Consider the multi-

source system in which the sleep durations are modulated

according to the parameter vector r = (r1, r2, . . . , rM ).

Throughout this section, we let n ∈ N be the discrete time of

the sampled system. We sample the original continuous-time

system at those time instants when one out of the following

events occur:

• a source l gets channel access and starts transmitting. We

say that it wakes up, denoted by ml(n) = 1,

• a source l completes packet transmission, and hence goes

into sleep mode such that ml(n) = 0.

In what follows, we make this assumption.

Assumption 1. The transmission times are bounded, i.e., 0 ≤
T ≤ Tmax almost surely, where Tmax > 0. Moreover, the

probability density function f(·) of T satisfies

lb ≤ f(n) ≤ ub, ∀y ∈ [0, Tmax],

where lb, ub > 0 are upper and lower bounds on the density

function. �

Define sl(n) := (∆l(n),ml(n)), where ∆l(n) is the age,

and ml(n) ∈ {0, 1} is the mode of user l. Define,

s(n) := (s1(n), s2(n), . . . , sM (n)) . (62)

As is shown in Lemma 15 (see Appendix H), for the purpose

of adaptively choosing sleep parameters, the process s(n)

serves as a sufficient-statistics [56] for the optimization prob-

lem (17). In other words, s(n) is the state of a Markov decision

process. Hence, we will work exclusively with the discrete-

time system obtained by sampling the original continuous-

time system. We use S to denote the state space of a single

source, i.e., we have sl(n) ∈ S. Consider the operation over a

time horizon of H discrete time-steps, and let Kl denote the

(random) number of packets delivered to source l until time

H . The cumulative cost incurred is given by

C(H) :=

M
∑

l=1

Kl
∑

i=1

wl∆
peak

l,i , (63)

where ∆peak

l,i denotes the i-th peak age of source l. We let

rl(n) ∈ R+ denote the sleep period parameter for source l,

and denote r(n) := (r1(n), r2(n), . . . , rM (n)). As is shown

in Lemma 15, the expected value of the cumulative value of

peak age can be written as follows,

E

(

H−1
∑

n=1

g(s(n))

)

, (64)

where the function g is described in Lemma 15. However, in

our setup, the controller that chooses r(n) does not know the

density function f of the packet transmission time, and has to

adaptively choose the sleeping period paremeter r(n) so as to

minimize the operating cost (64).

Let F (d)
t denote the sigma-algebra generated by the random

variables {s(i)}ni=1, {r(i)}n−1
i=1 (the super-script d denotes the

fact that we are working with discretized system). A learning

policy is a collection of maps F (d)
t 7→ r(n), n = 1, 2, . . . , H

that chooses the sleep period parameter adaptively based on

past operation history of the system. The performance of a

learning policy is measured by its regret R(H), which is

defined as follows,

R(H) :=

H
∑

n=1

g(s(n))−H∆̄w-peak(r⋆), (65)

where ∆̄w-peak(r⋆) is the optimal performance when the true

system parameter is known and hence the scheduler can

implement the optimal rate vector. Throughout this section

we use θ to denote the mean transmission time E[T ]. Since

the optimal rate depends upon the probability density function

f(·) only through its mean E [T ], we also denote it by r⋆θ .

Certainty Equivalence Learning Algorithm: We begin

with some notations. Let col(i), i = 1, 2, . . . be a random

variable that is equal to 1 if there is no collision at time i,

and is 0 otherwise. The empirical estimate of θ at time n is

denoted by θ̂(n), and given as

θ̂(n) :=

∑n
i=1 T (i)col(i)

N(n) ∨ 1
, (66)

where N(n) : =

n
∑

i=1

col(i), (67)

and T (i) ∈ [0, Tmax] is the time taken to deliver packet at

time i.
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The learning rule operates in episodes. We let τk

be the start time of the k-th episode, and let Ek :=

{τk, τk + 1, . . . , τk+1 − 1} be the time-slots that comprise the

k-th episode, so that the duration of Ek is τk+1−τk time-slots.

We let τk = 2k, use k(n) to denote the index of the current

episode at time n, and θ(n) to denote the empirical estimate

at the beginning of the current episode, defined by

k(n) : = max {k : τk ≤ t} , (68)

θ(n) : = θ̂(τk(n)). (69)

Within each single episode the algorithm implements a single

stationary controller that makes decisions only on the basis of

the state s(n) and the estimate θ(τk) obtained at the beginning

of the current ongoing episode k(n). It chooses the sleep

period parameter as r(n) = r⋆θ(n), ∀n ∈ Ek, i.e., it utilizes

the rate vector that is optimal for the system whose mean

transmission time is equal to θ(n). Thus, r(n) = r⋆θ(τk) for

τk ≤ n ≤ τk+1 − 1.

We summarize our learning rule in Algorithm 2. We will

Algorithm 2: Certainty Equivalence Learning for Age

Optimization

Input: N, γ ≥ 4
Set θ̂(1) = .5.

1: for n = 1, 2, . . . do

2: if n = τk then

3: Calculate θ̂(n) as in (66) and set θ(n) as

in (68)-(69).

4: end if

Use r(n) = r⋆θ(n)
5: end for

analyze its performance under the following assumptions.

Throughout, for a vector x, we let ‖x‖ denote its Euclidean

norm, and ‖x‖1 denote its 1-norm.

Assumption 2. With a high probability, say greater than 1−δ,

where δ > 0 is a small constant, the state value s(τk) at

the beginning of each episode k belongs to a compact set

K :=
{

x ∈ SM : ‖x‖1 ≤ K1

}

, where S is the state space of

a single source. �

The above is not a restrictive assumption, since the sched-

uler can always ensure that towards the end of each episode,

each source receives a sufficient amount of service in order

to ensure this condition. We now make a few assumptions

regarding the set Θ of “allowable parameters”.

Assumption 3. Recall that r⋆θ is the optimal sleep parameter

when the mean transmission time is equal to θ. The following

two properties hold for the scheduler that uses r(n) ≡ r⋆θ , n ∈
N.

(i) The average cost is finite, i.e.

lim sup
H→∞

1

H

H
∑

n=1

Er
⋆
θ
(g(s(n))) ≤ K2 < ∞, (70)

(ii) Each user gets channel access with a non-zero probability

inf
θ∈Θ,l∈[M ]

P (cal(n) = 1|r(n) = r⋆θ) > 0, (71)

where cal(i) is a random variable that is 1 if source l gets

channel access at time i, while is 0 otherwise. We denote

pmin := inf
θ∈Θ,l∈[M ]

P (cal(n) = 1|r(n) = r⋆θ) . (72)

�

It is easily verified that (70), (71) hold true whenever the

rate vector r is bounded.

The following result quantifies the learning regret of Algo-

rithm 2.

Theorem 12. Consider the problem of designing a learning

algorithm that does not know the statistics of the transmission

time T , and adaptively chooses the sleep period parameters

r(n) in order to minimize the cumulative peak age of M

sources. Let δ1 ∈ (0, pmin) be a constant. Then, under

Assumptions 1-3, the regret of Algorithm 2 can be bounded

as follows,

E [R(H)] ≤K2 max

{

γ logH

(pmin −
√
δ1)δ2

, O

(

1

δ1
logH

)}

+

K2
π2

6
+ L

√

Hγ(logH)2

(pmin −
√
δ1)

.

where H is the operating time horizon, γ ≥ 4 is a constant,

K2, pmin are as in Assumption 3, and the parameters δ, L > 0

are as in Lemma 19.

Proof. See Appendix H.

VI. NUMERICAL AND SIMULATION RESULTS

We use Matlab and NS-3 to evaluate the performance of

our algorithm. We use “age-optimal scheduler” to denote the

sleep-wake scheduler with the sleep period paramters r⋆l ’s as

in (18), which was shown to be near-optimal in Theorem

1 and Theorem 3. By “throughput-optimal scheduler”, we

refer to the sleep-wake algorithm of [23] that is known to

achieve the optimal trade-off between the throughput and

energy consumption reduction. Moreover, we use “fixed sleep-

rate scheduler” to denote the sleep-wake scheduler in which
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Figure 3: Total weighted average peak age ∆̄w-peak
un (r) in (11)

versus the ratio ts
E[T ] for M = 10 sources.

the sleep period parameters rl’s are equal for all the sources,

i.e., rl = k for all l, where the parameter k has been chosen

so as to satisfy the energy constraints of Problem 1. We also

let ∆̄w-peak
un (r) denote the unnormalized total weighted average

peak age in (11). Finally, we would like to mention that we do

not compare the performance of our proposed algorithm with

the CSMA algorithms of [36], [37] where the goal was solely

to minimize the age. Since they do not incorporate energy

constraints, it is not fair to compare the performance of our

algorithm with them.

Unless stated otherwise, our set up is as follows: The

average transmission time is E[T ] = 5 ms. The weights wl’s

attached to different sources are generated by sampling from

a uniform distribution in the interval [0, 10]. The target power

efficiencies bl’s are randomly generated according to a uniform

distribution in the range [0, 1].

A. Numerical Evaluations

Figure 3 plots the total weighted average peak age

∆̄
w-peak
un (r) in (11) as a function of the ratio ts

E[T ] , where

the number of sources is M = 10. The age-optimal sched-

uler is seen to outperform the throughput-optimal and Fixed

sleep-rate schedulers. This implies that what minimizes the

throughput does not necessarily minimize AoI and vice versa.

Moreover, we observe that the total weighted average peak

age of all schedulers increases as the sensing time increases.

This is expected since an increase in the sensing time leads

to an increase in the probability of packet collisions, which in

turn deteriorates the age performance of these schedulers.

We then scale the number of sources M , and plot ∆̄w-peak
un (r)

in (11) as a function of M in Figure 4. While plotting, we

20 40 60 80 100
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0.4

0.5
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Throughput-optimal scheduler
Age-optimal scheduler

Figure 4: Total weighted average peak age ∆̄w-peak
un (r) in (11)

versus the number of sources M , where ∆̄w-peak
un (r) has been

normalized by M while plotting.
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Figure 5: Total weighted average peak age ∆̄
w-peak
un (r) in (11)

versus the target power efficiency b for M = 100 sources,

where ∆̄w-peak
un (r) has been normalized by M while plotting.

normalize the performance by the number of sources M . The

sensing time ts is fixed at ts = 40 µs. The weights wl’s

corresponding to different sources are randomly generated

uniformly within the range [0, 2]. The age-optimal scheduler is

shown to outperform other schedulers uniformly for all values

of M . Moreover, as we can observe, the average peak age

of the sources under age-optimal scheduler increases up to

around 0.55 seconds only, while the number of sources rises

from 1 to 100. This indicates the robustness of our algorithm

to changes in the number of sources in a network.

In Figure 5, we fix the value of M as 100 and the target

power efficiencies at the same value for all the sources, i.e.,

bl = b for all l. We then vary the parameter b and plot

the resulting performance. While plotting, we normalize the

performance by the number of sources M . We exclude the



15

5 10 15 20 25 30
0.15

0.2

0.25

0.3

0.35

0.4

Fixed sleep-rate scheduler
Throughput-optimal scheduler
Age-optimal scheduler

Figure 6: Total weighted average peak age ∆̄w-peak
un (r) in (11)

versus the target lifetime D for a dense network with M = 105

sources, where ∆̄w-peak
un (r) has been normalized by M while

plotting. Since the throughput–optimal scheduler is infeasible

for values of D greater than 18 years, we do not plot its

performance for these values.

simulation of the throughput-optimal scheduler for b < 0.01

since the sleeping period parameters that are proposed in [23]

are not feasible for Problem 1 in the energy-scarce regime, i.e.,

when
∑M

i=1 bi < 1. The age-optimal scheduler outperforms

the other schedulers. Moreover, its performance is a decreasing

function of b, and then settles at a constant value. This occurs

because our proposed solution in (18) is a function solely of

the weights wl’s and β⋆ when b exceeds some value. Thus,

the performance of the proposed scheduler saturates after this

value of b.

We now show the effectiveness of the proposed sched-

uler when deployed in “dense networks” [21], [22]. Dense

networks are characterized by a large number of sources

connected to a single AP. We fix M at 105 sources, and take

the target lifetimes of the sources to be equal, i.e., Dl = D for

all l. The weights wl’s corresponding to different sources are

generated randomly by sampling from the uniform distribution

in the range [0, 2]. We let the initial battery level Bl = 8

mAh for all l and the output voltage is 5 Volt. We also

let the energy consumption in a transmission mode to be

24.75 mW for all sources. We vary the parameter D and

plot the resulting performance in Figure 6. While plotting,

we normalize the performance by the number of sources M .

We exclude simulations for the throughput-optimal scheduler

for values of D for which the scheduler is infeasible, i.e., its

cumulative energy consumption exceeds the total allowable

energy consumption. The age-optimal scheduler is seen to

outperform the others. As observed in Figure 6, under the
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Figure 7: The average actual lifetime versus the target lifetime

D.

age-optimal scheduler, sources can be active for up to 25

years, while simultaneously achieving a decent average peak

age of around .2 hour, i.e., 12 minutes. This makes it suitable

for dense networks, where it is crucial that the sources are

necessarily active for many years.

B. NS-3 Simulation

We use NS-3 [57] to investigate the effect of our model

assumptions on the performance of age-optimal scheduler

in a more practical situation. We simulate the age-optimal

scheduler by using IEEE 802.11b while disabling the RTS-

CTS and modifying the back-off times to be exponentially

distributed in the MAC layer. Our simulation results are

averaged over 5 system realizations. The UDP saturation

conditions are satisfied such that the source nodes always have

packets to send.

Our simulation consists of a WiFi network with 1 AP and 3

associated source nodes in a field of size 50m × 50m. We set

the sensing threshold to -100 dBm which covers a range of

110m. Thus, all sources can hear each other. The initial battery

level of each source is 60 mAh, where the output voltage

is 5 Volt. For each source, the power consumption in the

transmission mode is 24.75 mW, and the power consumption

in the sleep mode is 15 µW. Moreover, all weights are set to

unity, i.e., wl = 1 for all l.

Figure 7 plots the average actual lifetime of the sources

versus the target lifetime, where we take the target lifetimes

of all sources to be equal, i.e., Dl = D for all l. As we can ob-

serve, the actual lifetime of the age-optimal scheduler always

achieves the target lifetime. This suggests that our assumptions

(i.e., (i) omitting the power dissipation in the sleep mode

and in the sensing times, (ii) the average transmission times
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Figure 8: Total weighted average peak age ∆̄w-peak
un (r) versus

the target lifetime D.

and collision times are equal to each other) do not affect the

performance of the algorithm which reaches its target lifetime.

Figure 8 plots the total weighted average peak age versus

the target lifetime, where again we take the target lifetimes

of all sources to be equal, i.e., Dl = D for all l. The age-

optimal scheduler (theoretical) curve is obtained using (11),

while the age-optimal scheduler (from NS-3) curve is obtained

using the NS-3 simulator. As we can observe, the difference

between the plotted curves does not exceed 2% of the age-

optimal scheduler (theoretical) performance. This emphasizes

the negligible impact of our assumptions on the performance

of our proposed algorithm.

VII. CONCLUSIONS

We designed an efficient sleep-wake scheduling algorithm

for wireless networks that attains the optimal trade-off be-

tween minimizing the AoI and energy consumption. Since

the associated optimization problem is non-convex, in general

we could not hope to solve it for all values of the system

parameters. However, in the regime when the carrier sensing

time ts is negligible as compared to the average transmission

time E[T ], we were able to provide a near-optimal solution.

Moreover, the proposed solution is in a simple form that

allowed us to design an easy-to-implement algorithm to obtain

the solution. Furthermore, we showed that the performance of

our proposed algorithm is asymptotically no worse than that of

the optimal synchronized scheduler, as ts/E[T ] → 0. Finally,

when the mean transmission time is unknown, we devise a

reinforcement learning algorithm that adaptively learns the

unknown parameter.

VIII. ACKNOWLEDGEMENTS

The authors appreciate Jiayu Pan and Shaoyi Li for their

great efforts in obtaining the ns-3 simulation results.

REFERENCES

[1] A. M. Bedewy, Y. Sun, R. Singh, and N. B. Shroff, “Optimizing

information freshness using low-power status updates via sleep-wake

scheduling,” in Proc. MobiHoc, 2020, pp. 51–60.

[2] S. Kaul, R. D. Yates, and M. Gruteser, “Real-time status: How often

should one update?,” in Proc. IEEE INFOCOM, 2012, pp. 2731–2735.

[3] Y. Sun, I. Kadota, R. Talak, and E. Modiano, “Age of information: A new

metric for information freshness,” Synthesis Lectures on Communication

Networks, vol. 12, no. 2, pp. 1–224, 2019.

[4] R. D. Yates, Y. Sun, D. R. Brown III, S. K. Kaul, E. Modiano, and

S. Ulukus, “Age of information: An introduction and survey,” arXiv

preprint arXiv:2007.08564, 2020.

[5] N. F. Timmons and W. G. Scanlon, “Analysis of the performance of

ieee 802.15. 4 for medical sensor body area networking,” in First

Annual IEEE Communications Society Conference on Sensor and Ad

Hoc Communications and Networks. IEEE SECON 2004., 2004, pp.

16–24.

[6] Chipcon AS SmartRF CC3420 Preliminary Datasheet, rev 1.0, 17

November 2003.

[7] Datasheet for MC9S08RE8 motorola microcontroller.

[8] R. D. Yates and S. K. Kaul, “Status updates over unreliable multiaccess

channels,” in Proc. IEEE ISIT, 2017, pp. 331–335.

[9] R. Talak, S. Karaman, and E. Modiano, “Distributed scheduling

algorithms for optimizing information freshness in wireless networks,”

in Proc. IEEE SPAWC, 2018, pp. 1–5.

[10] R. Li, A. Eryilmaz, and B. Li, “Throughput-optimal wireless scheduling

with regulated inter-service times,” in Proc. IEEE INFOCOM, 2013, pp.

2616–2624.

[11] I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano,

“Scheduling policies for minimizing age of information in broadcast

wireless networks,” IEEE/ACM Trans. Netw., vol. 26, no. 6, pp. 2637–

2650, 2018.

[12] Y. Hsu, E. Modiano, and L. Duan, “Scheduling algorithms for mini-

mizing age of information in wireless broadcast networks with random

arrivals,” IEEE Transactions on Mobile Computing, 2019.

[13] Z. Jiang, B. Krishnamachari, X. Zheng, S. Zhou, and Z. Niu, “Timely

status update in massive iot systems: Decentralized scheduling for

wireless uplinks,” arXiv preprint arXiv:1801.03975, 2018.

[14] I. Kadota, A. Sinha, and E. Modiano, “Optimizing age of information

in wireless networks with throughput constraints,” in Proc. INFOCOM,

2018, pp. 1844–1852.

[15] R. Talak, S. Karaman, and E. Modiano, “Optimizing information

freshness in wireless networks under general interference constraints,”

in Proc. MobiHoc, 2018, pp. 61–70.

[16] Q. He, D. Yuan, and A. Ephremides, “Optimal link scheduling for age

minimization in wireless systems,” IEEE Trans. Inf. Theory, vol. 64,

no. 7, pp. 5381–5394, 2017.

[17] X. Guo, R. Singh, P. R. Kumar, and Z. Niu, “A risk-sensitive approach

for packet inter-delivery time optimization in networked cyber-physical

systems,” IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1976–1989, 2018.

[18] Y. Sun, E. Uysal-Biyikoglu, and S. Kompella, “Age-optimal updates of

multiple information flows,” in IEEE INFOCOM - the 1st Workshop on

the Age of Information (AoI Workshop), 2018, pp. 136–141.

[19] I. Kadota, E. Uysal-Biyikoglu, R. Singh, and E. Modiano, “Minimizing

the age of information in broadcast wireless networks,” in Proc. Allerton,

2016, pp. 844–851.



17

[20] R. Singh, X. Guo, and P. R. Kumar, “Index policies for optimal mean-

variance trade-off of inter-delivery times in real-time sensor networks,”

in Proc. IEEE INFOCOM. IEEE, 2015, pp. 505–512.

[21] S. S. Kowshik, K. Andreev, A. Frolov, and Y. Polyanskiy, “Energy

efficient coded random access for the wireless uplink,” arXiv preprint

arXiv:1907.09448, 2019.

[22] S. S. Kowshik and Y. Polyanskiy, “Fundamental limits of many-user

mac with finite payloads and fading,” arXiv preprint arXiv:1901.06732,

2019.

[23] S. Chen, T. Bansal, Y. Sun, P. Sinha, and N. B. Shroff, “Life-add:

Lifetime adjustable design for wifi networks with heterogeneous energy

supplies,” in Proc. WiOpt, 2013, pp. 508–515.

[24] R. D. Yates and S. K. Kaul, “The age of information: Real-time status

updating by multiple sources,” IEEE Trans. Inf. Theory, vol. 65, no. 3,

pp. 1807–1827, 2018.

[25] M. Costa, M. Codreanu, and A. Ephremides, “On the age of information

in status update systems with packet management,” IEEE Trans. Inf.

Theory, vol. 62, no. 4, pp. 1897–1910, 2016.

[26] A. M. Bedewy, Y. Sun, and N. B. Shroff, “Optimizing data freshness,

throughput, and delay in multi-server information-update systems,” in

Proc. IEEE ISIT, 2016, pp. 2569–2573.

[27] A. M. Bedewy, Y. Sun, and N. B. Shroff, “Minimizing the age of

information through queues,” IEEE Trans. Inf. Theory, vol. 65, no. 8,

pp. 5215–5232, 2019.

[28] A. M. Bedewy, Y. Sun, and N. B. Shroff, “Age-optimal information

updates in multihop networks,” in Proc. IEEE ISIT, 2017, pp. 576–580.

[29] A. M. Bedewy, Y. Sun, and N. B. Shroff, “The age of information

in multihop networks,” IEEE/ACM Trans. Netw., vol. 27, no. 3, pp.

1248–1257, 2019.

[30] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,

“Update or wait: How to keep your data fresh,” IEEE Trans. Inf. Theory,

vol. 63, no. 11, pp. 7492–7508, 2017.

[31] Y. Sun and B. Cyr, “Sampling for data freshness optimization: Non-

linear age functions,” Journal of Communications and Networks, vol.

21, no. 3, pp. 204–219, 2019.

[32] A. M. Bedewy, Y. Sun, S. Kompella, and N. B. Shroff, “Age-optimal

sampling and transmission scheduling in multi-source systems,” in Proc.

MobiHoc, 2019, pp. 121–130.

[33] A. M. Bedewy, Y. Sun, S. Kompella, and N. B. Shroff, “Optimal

sampling and scheduling for timely status updates in multi-source

networks,” IEEE Trans. Inf. Theory, pp. 1–1, 2021.

[34] S. Yun, Y. Yi, J. Shin, et al., “Optimal CSMA: a survey,” in Proc. ICCS,

2012, pp. 199–204.

[35] R. Singh and P. R. Kumar, “Adaptive CSMA for decentralized

scheduling of multi-hop networks with end-to-end deadline constraints,”

accepted by IEEE/ACM Trans. Netw., 2021.

[36] A. Maatouk, M. Assaad, and A. Ephremides, “Minimizing the age of

information in a CSMA environment,” arXiv preprint arXiv:1901.00481,

2019.

[37] M. Wang and Y. Dong, “Broadcast age of information in CSMA/CA

based wireless networks,” arXiv preprint arXiv:1904.03477, 2019.

[38] L. Jiang and J. Walrand, “A distributed CSMA algorithm for throughput

and utility maximization in wireless networks,” IEEE/ACM Trans. Netw.,

vol. 18, no. 3, pp. 960–972, 2010.

[39] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed

coordination function,” IEEE J. Sel. Areas Commun., vol. 18, no. 3,

pp. 535–547, 2000.

[40] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction,

MIT press, 1998.

[41] T. Jaksch, R. Ortner, and P. Auer, “Near-optimal regret bounds for

reinforcement learning.,” Journal of Machine Learning Research, vol.

11, no. 4, 2010.

[42] R. Singh, A. Gupta, and N. B. Shroff, “Learning in Markov decision

processes under constraints,” arXiv preprint arXiv:2002.12435, 2020.

[43] A. N. Shiryaev, Optimal stopping rules, New York: Springer-Verlag,

1978.

[44] A. Wald, Sequential analysis, New York: Courier Corporation, 1973.

[45] ASH transceiver TR1000 data sheet, RF Monolithic Inc.

[46] K. F. Ramadan, M. I. Dessouky, M. Abd-Elnaby, and F. E. A. El-Samie,

“Energy-efficient dual-layer MAC protocol with adaptive layer duration

for wsns,” in 11th International Conference on Computer Engineering

Systems (ICCES), 2016, pp. 47–52.

[47] A. El-Hoiydi, “Spatial TDMA and CSMA with preamble sampling for

low power ad hoc wireless sensor networks,” in Proc. IEEE Int. Symp.

Comput. Commun. (ISCC), 2002, pp. 685–692.

[48] C. Lu, A. Saifullah, B. Li, M. Sha, H. Gonzalez, D. Gunatilaka, C. Wu,

L. Nie, and Y. Chen, “Real-time wireless sensor-actuator networks for

industrial cyber-physical systems,” Proceedings of the IEEE, vol. 104,

no. 5, pp. 1013–1024, 2016.

[49] P. Hsieh and I. Hou, “A decentralized medium access protocol for

real-time wireless ad hoc networks with unreliable transmissions,” in

IEEE 38th International Conference on Distributed Computing Systems

(ICDCS), 2018, pp. 972–982.

[50] P. Mandl, “Estimation and control in markov chains,” Advances in

Applied Probability, pp. 40–60, 1974.

[51] H. Van de Water and J. Willems, “The certainty equivalence property

in stochastic control theory,” IEEE Transactions on Automatic Control,

vol. 26, no. 5, pp. 1080–1087, 1981.

[52] H. Mania, S. Tu, and B. Recht, “Certainty equivalence is efficient for

linear quadratic control,” in Advances in Neural Information Processing

Systems, 2019, pp. 10154–10164.

[53] A. Mete, R. Singh, and P.R. Kumar, “Reward biased maximum

likelihood estimation for reinforcement learning,” arXiv preprint

arXiv:2011.07738, 2020.

[54] V. Borkar and P. Varaiya, “Adaptive control of Markov chains, i: Finite

parameter set,” IEEE Transactions on Automatic Control, vol. 24, no.

6, pp. 953–957, 1979.

[55] E. Nummelin, General irreducible Markov chains and non-negative

operators, vol. 83, Cambridge University Press, 2004.

[56] C. Striebel, “Sufficient statistics in the optimum control of stochastic

systems,” Journal of Mathematical Analysis and Applications, vol. 12,

no. 3, pp. 576–592, 1965.

[57] “NS-3,” https://www.nsnam.org/.

[58] R. G. Gallager, Discrete stochastic processes, Boston: Kluwer Academic

Publishers, 1996.

[59] S. Boyd and L. Vandenberghe, Convex optimization, New York, NY,

USA: Cambridge University Press, 2004.

[60] S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability,

Springer Science & Business Media, 2012.

[61] M. L. Puterman, Markov Decision Processes: Discrete Stochastic

Dynamic Programming (Wiley Series in Probability and Statistics),

Wiley-Interscience, 2005.

[62] P. Billingsley, Probability and measure, John Wiley & Sons, 2008.

[63] O. Hernández-Lerma and J. B. Lasserre, Further topics on discrete-time

Markov control processes, vol. 42, Springer Science & Business Media,

2012.

[64] J. K. Hunter, “Introduction to applied mathematics,” lecture notes of

Math 207A, University of California Davis, CA, Fall Quarter, 2011.

[65] W. Hoeffding, “Probability inequalities for sums of bounded random

variables,” in The Collected Works of Wassily Hoeffding, pp. 409–426.

Springer, 1994.



18

[66] R. Ayoub, “Euler and the zeta function,” The American Mathematical

Monthly, vol. 81, no. 10, pp. 1067–1086, 1974.

IX. APPENDIX

APPENDIX A

DERIVATION OF (5)

Define Sl as the residual sleeping period of source l after a

sleep-wake cycle is over. Due to the memoryless property of

exponential distribution, since the sleeping period of source l is

exponentially distributed with mean value E[T ]/rl, Sl is also

exponentially distributed with mean value E[T ]/rl. According

to the proposed sleep-wake scheduler, source l gains access

to the channel and transmits successfully in a given cycle if

Si ≥ Sl + ts for all i 6= l. Hence, we have

αl = P(Si ≥ Sl + ts, ∀i 6= l) (73)

(a)
= E[P(Si ≥ Sl + ts, ∀i 6= l|Sl)] (74)

(b)
= E





∏

i6=l

P(Si ≥ Sl + ts|Sl)



 (75)

=

∫ ∞

0





∏

i6=l

e−ri
sl+ts
E[T ]





rl
E[T ]

e−rl
sl

E[T ] dsl (76)

=
rle

rl
ts

E[T ]

e
∑

M
i=1 ri

ts
E[T ]
∑M

i=1 ri
, (77)

where (a) is due to P[A] = E[P(A|B)], and (b) is due to the

fact that Sl is independent for different sources.

APPENDIX B

DERIVATION OF (13)

Recall the definition of Sl at the beginning of Appendix A.

Moreover, define Pl as the probability that source l transmits

a packet in a given cycle, regardless whether packet collision

occurs or not. For the sleep-wake scheduling mechanism the

we are utilizing here, source l transmits in a given cycle as long

as no other source wakes up before Sl − ts, i.e., Si ≥ Sl − ts

for all i 6= l. Hence, we have

Pl = P(Si ≥ Sl − ts, ∀i 6= l) (78)

= P(Si ≥ Sl − ts, ∀i 6= l, Sl ≥ ts) + P(Sl < ts), (79)

where the first term in the RHS is given by

P(Si ≥ Sl − ts ≥ 0, ∀i 6= l) (80)

=E[P(Si ≥ Sl − ts ≥ 0, ∀i 6= l|Sl)] (81)

=E





∏

i6=l

P(Si ≥ Sl − ts ≥ 0|Sl)]



 (82)

=

∫ ∞

ts





∏

i6=l

e−ri
sl−ts
E[T ]





rl
E[T ]

e−rl
sl

E[T ] dsl (83)

=e−rl
ts

E[T ]
rl

∑M
i=1 ri

. (84)

Since Sl is exponentially distributed with mean value E[T ]/rl,

we can determine the second term in the RHS of (79) as

follows:

P(Sl < ts) = 1− e−rl
ts

E[T ] . (85)

Substituting (84) and (85) back into (79), we get

Pl = 1− e−rl
ts

E[T ] + e−rl
ts

E[T ]
rl

∑M
i=1 ri

. (86)

Let αcol denote the collision probability in a given cycle. We

have αcol = 1 −∑M
i=1 αi, because each cycle includes either

a successful transmission or a collision. Moreover, let E[Idle]

denote the mean of the idle duration in a cycle. By the renewal

theory in stochastic processes [58], σl is given by

σl =
PlE[T ]

(
∑M

i=1 αi + αcol)E[T ] + E[Idle]
(87)

=
PlE[T ]

E[T ] + E[T ]
∑

M
i=1 ri

(88)

=
[1− e−rl

ts
E[T ] ]

∑M
i=1 ri + rle

−rl
ts

E[T ]

∑M
i=1 ri + 1

. (89)

APPENDIX C

PROOF OF LEMMA 6

First of all, we need to show that (20) has a solution for

β⋆.

Lemma 13. Suppose that wl > 0, and bl > 0 for all

l. If
∑M

i=1 bi ≥ 1, then (20) has a unique solution on

[0,maxl(bl/
√
wl)]; otherwise, (20) has no solution.

Proof. It is clear that if
∑M

i=1 bi = 1, then β⋆ satisfies (20)

if and only if β⋆ ≥ maxl(bl/
√
wl). Hence, (20) has a unique

solution on [0,maxl(bl/
√
wl)] in this case. We now focus on

the case of
∑M

i=1 bi > 1. In this case, we have the following:

• If β⋆ = 0, then
∑M

i=1 min{bi, β⋆√wi} = 0.
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• If β⋆ = maxl(bl/
√
wl), then

∑M
i=1 min{bi, β⋆√wi} >

1.

• The left hand side (LHS) of (20) is strictly increasing and

continuous in β⋆ on [0,maxl(bl/
√
wl)].

As a result, (20) has a unique solution on [0,maxl(bl/
√
wl)]

in this case as well. Finally, if
∑M

i=1 bi < 1, then
∑M

i=1 min{bi, β⋆√wi} ≤ ∑M
i=1 bi < 1. Hence, (20) has no

solution if
∑M

i=1 bi < 1. This completes the proof.

Since we have
∑M

i=1 bi ≥ 1, Lemma 13 implies that (20)

has a solution for β⋆. Now, we are ready to prove Lemma 6.

Consider the following constraints:

rl
ts

E[T ]

∑M
i=1 ri + rl

∑M
i=1 ri + 1

≤ bl, ∀l. (90)

Since we have

1− e−rl
ts

E[T ] ≤ rl
ts

E[T ]
, (91)

e−rl
ts

E[T ] ≤ 1, (92)

then,

[1− e−rl
ts

E[T ] ]

M
∑

i=1

ri + rle
−rl

ts
E[T ] ≤ rl

ts
E[T ]

M
∑

i=1

ri + rl. (93)

Thus, if the constraints in (90) are satisfied for a given solution

r, then the constraints of Problem 1 are satisfied as well. We

can observe that the constraints in (90) are equivalent to the

following set of constraints:

rl ≤ bl
x+ 1

1 + ts
E[T ]x

, ∀l

M
∑

i=1

ri = x.

(94)

Now, it is easy to show that if x ≤
√

E[T ]/ts, then x ≤
(x + 1)/[1 + (ts/E[T ])x]. Meanwhile, our proposed solution

r⋆ (18) - (20) satisfies
∑M

i=1 r
⋆
i = x⋆. Thus, if we can show

that x⋆ ≤
√

E[T ]/ts, then

r⋆l = min{bl, β⋆√wl}x⋆ ≤ blx
⋆ ≤ bl

x⋆ + 1

1 + ts
E[T ]x

⋆
, (95)

and the constraints in (94) hold for our proposed solution r⋆.

What remains is to prove that x⋆ ≤
√

E[T ]/ts. We have

x⋆ =
−1

2
+

√

1

4
+

E[T ]

ts
(96)

=

E[T ]
ts

1
2 +

√

1
4 + E[T ]

ts

(97)

≤
E[T ]
ts

√

E[T ]
ts

=

√

E[T ]

ts
. (98)

Hence, our proposed solution r⋆ (18) - (20) satisfies (94),

which implies (90). This completes the proof.

APPENDIX D

PROOF OF LEMMA 8

By replacing e−rl(ts/E[T ])e
∑M

i=1 ri(ts/E[T ]) in (45) of Prob-

lem 2 by 1, we obtain the following optimization problem:

min
rl>0

M
∑

l=1

wl

rl

(

1 +
M
∑

i=1

ri

)

+
M
∑

l=1

wl (99)

s.t. rl ≤ bl

(

M
∑

i=1

ri + 1

)

, ∀l. (100)

Since e−rl(ts/E[T ])e
∑M

i=1 ri(ts/E[T ]) ≥ 1, Problem (99) serves

as a lower bound of Problem 2, and hence a lower bound of

Problem 1 as well. Define an auxiliary variable y =
∑M

i=1 ri+

1. By this, we solve a two-layer nested optimization problem.

In the inner layer, we optimize r for a given y. After solving

r, we will optimize y in the outer layer. Now, fix the value

of y, we obtain the following optimization problem (the inner

layer):

min
ri>0

M
∑

i=1

[

wiy

ri
+ wi

]

(101)

s.t. rl ≤ bly, ∀l, (102)

M
∑

i=1

ri + 1 = y. (103)

The objective function in (101) is a convex function. More-

over, the constraints in (102) and (103) are affine. Hence,

Problem (101) is convex. We use the Lagrangian duality

approach to solve Problem (101). Problem (101) satisfies

Slater’s conditions. Thus, the Karush-Kuhn-Tucker (KKT)

conditions are both necessary and sufficient for optimality

[59]. Let γ = (γ1, . . . , γM ) and µ be the Lagrange multipliers

associated with constraints (102) and (103), respectively. Then,
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the Lagrangian of Problem (101) is given by

L(r, γ, µ) =

M
∑

i=1

[

wiy

ri
+ wi

]

+

M
∑

i=1

γi(ri−biy) + µ

(

M
∑

i=1

ri+1−y

)

.

(104)

Take the derivative of (104) with respect to rl and set it equal

to 0, we get

−wly

r2l
+ γl + µ = 0. (105)

This and KKT conditions imply

rl =

√

wly

γl + µ
, (106)

γl ≥ 0, rl − bly ≤ 0, (107)

γl(rl − bly) = 0, (108)

M
∑

i=1

ri + 1 = y. (109)

If γl = 0, then rl =
√

(wly)/µ and rl ≤ bly; otherwise, if

γl > 0, then rl = bly and rl <
√

(wly)/µ. Hence, we have

rl = min

{

bly,

√

wly

µ⋆

}

, (110)

where by (103), µ⋆ satisfies

M
∑

i=1

min

{

biy,

√

wiy

µ⋆

}

+ 1 = y. (111)

We can observe that µ⋆ is a function of y. Because of that,

we can define β⋆(y) =
√

1/(yµ⋆), which is a function of y

as well. Then, the optimum solution to (101) can be rewritten

as

rl = min{bl, β⋆(y)
√
wl}y, ∀l, (112)

where β⋆(y) satisfies

M
∑

i=1

min{bi, β⋆(y)
√
wi}+

1

y
= 1. (113)

Substituting (112) and (113) back in Problem (101), we get

the following optimization problem (the outer layer):

min
y>1

M
∑

i=1

[

wi

min{bi, β⋆(y)
√
wi}

+ wi

]

(114)

s.t.

M
∑

i=1

min{bi, β⋆(y)
√
wi}+

1

y
= 1. (115)

Problem (114) serves as a lower bound of Problem 2, and

hence a lower bound of Problem 1. We can observe that

the objective function in (114) is decreasing in β⋆(y). More-

over, (115) implies that β⋆(y) is strictly increasing in y if
∑M

i=1 bi ≥ 1. As a result, y = ∞ is the optimal solution of

Problem (114). At the limit, the constraint (115) converges to

(20). Since β⋆ serves as a solution for (20), we can deduce

that limy→∞ β⋆(y) = β⋆. Thus, we have the following lower

bound:

∆̄w-peak
opt ≥ ∆̄w-peak

opt,2 ≥
M
∑

i=1

[

wi

min{bi, β⋆√wi}
+ wi

]

. (116)

This completes the proof.

APPENDIX E

PROOF OF LEMMA 9

Because 1− e−x ≤ x, we can obtain

rle
−rl

ts
E[T ] + [1− e−rl

ts
E[T ] ]

M
∑

i=1

ri

= rl + [1− e−rl
ts

E[T ] ]

(

M
∑

i=1

ri − rl

)

≤ rl + rl
ts

E[T ]

(

m
∑

i=1

ri − rl

)

,

(117)

Hence, if r satisfies the constraint

rl + rl
ts

E[T ]

(

∑M
i=1 ri − rl

)

∑M
i=1 ri + 1

≤ bl, (118)

then r also satisfies the constraint of Problem 1 in (17).

Consider the following set of solution indexed by a parameter

c > 0:

rl = cul, ∀l, (119)

ul =
bl

1−∑M
i=1 bi

, ∀l (120)

We want to find a c such that the solution in (119) and (120)

is feasible for Problem 1. To achieve this, we first substitute

the solution (119) and (120) into the constraint (118), and get

cul + c2ul
ts

E[T ]

(

∑M
i=1 ui − ul

)

c
∑M

i=1 ui + 1
≤ bl. (121)

If equality is satisfied in (121), we can obtain the following

quadratic equation for c:

c2

[

ul
ts

E[T ]

(

M
∑

i=1

ui−ul

)]

+c

(

ul−bl

M
∑

i=1

ui

)

−bl = 0.

(122)

The solution to (122) is given by cl in (26). Hence, rl = clul

is feasible for the constraint (118) for source l.
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As feasibility for one source only is insufficient, we further

prove that the solution in (119) and (120) with c = minl cl

is feasible for satisfying the energy constraints of all sources

l = 1, . . . ,M . To that end, let us consider the monotonicity

of the LHS of (121). By taking the derivative with respect to

c, we get

ul
ts

E[T ]

(

∑M
i=1 ui − ul

)(

c2
∑M

i=1 ui + 2c
)

+ ul

(c
∑M

i=1 ui + 1)2
> 0.

(123)

Hence,

rl =

(

min
l

cl

)

ul, ∀l, (124)

is feasible for the energy constraints of all sources l =

1, . . . ,M . After some manipulations, the solution in (120) and

(124) are equivalently expressed as (18) and (25) - (27). This

completes the proof.

APPENDIX F

PROOF OF LEMMA 11

By replacing e−rl(ts/E[T ])/rl by e−
∑M

i=1 ri(ts/E[T ])/[

bl(
∑M

i=1 ri+1)] and e
∑M

i=1 ri(ts/E[T ]) by 1 in (45) of Problem

2, we obtain the following optimization problem:

min
rl>0

M
∑

l=1

wle
−∑M

i=1 ri
ts

E[T ]

bi
+

M
∑

l=1

wl

s.t. rl ≤ bl

(

M
∑

i=1

ri + 1

)

, ∀l.
(125)

Since rl ≤ bl(
∑M

i=1 ri +1), we have

e−rl
ts

E[T ]

rl
≥ e−

∑M
i=1 ri

ts
E[T ]

bl

(

∑M
i=1 ri + 1

) . (126)

Moreover, we have e
∑M

i=1 ri(ts/E[T ]) ≥ 1. Thus, Problem (125)

serves as a lower bound of Problem 2, and hence a lower

bound of Problem 1 as well. By removing the constant term
∑M

l=1 wl in the objective function of Problem (125) and then

taking the logarithm, Problem (125) is reformulated as

min
ri>0

log

(

M
∑

i=1

wi

bi

)

−
M
∑

i=1

ri
ts

E[T ]

s.t. rl ≤ bl

(

M
∑

i=1

ri + 1

)

, ∀l.
(127)

Obviously, Problem (127) is a convex optimization problem

and satisfies Slater’s conditions. Thus, the KKT conditions

are are necessary and sufficient for optimality. Let τ =

(τ1, . . . , τM ) be the Lagrange multipliers associated with the

constraints of Problem (127). Then, the Lagrangian of Problem

(127) is given by

L(r, τ) = log

(

M
∑

i=1

wi

bi

)

−
(

M
∑

i=1

ri
ts

E[T ]

)

+

M
∑

i=1

τi

[

ri − bi

(

M
∑

i=1

ri + 1

)]

.

(128)

Take the derivative of (128) with respect to rl and set it equal

to 0, we get

−ts
E[T ]

+ τl(1− bl)−
∑

i6=l

τibi = 0. (129)

This and KKT conditions imply

τl =
ts

E[T ](1− bl)
+

∑

i6=l τibi

1− bl
, (130)

τl ≥ 0, rl − bl

(

M
∑

i=1

ri + 1

)

≤ 0, (131)

τl

[

rl − bl

(

M
∑

i=1

ri + 1

)]

= 0. (132)

Since
∑M

i=1 bi < 1, (130) implies that τl > 0 for all l. This

and (132) result in

rl = bl

(

M
∑

i=1

ri + 1

)

, ∀l. (133)

Because
∑M

i=1 bi < 1, (133) has a unique solution, which is

given by

rl =
bl

1−∑M
i=1 bi

, ∀l. (134)

Hence, the solution to (125) and (127) is given by (134).

Substitute (134) into (125), we get the following lower bound:

∆̄w-peak
opt ≥ ∆̄w-peak

opt,2 ≥
M
∑

l=1

wle
−

∑M
i=1 bi

1−
∑M

i=1
bi

ts
E[T ]

bl
+

M
∑

l=1

wl. (135)

This completes the proof.

APPENDIX G

PROOF OF COROLLARY 5

We start by solving Problem (38) for optimal a. Problem

(38) is a convex optimization problem and satisfies Slater’s

conditions. Thus, the KKT conditions are necessary and suf-

ficient for optimality. Let λ = (λ1, . . . , λM ) and ν be the

Lagrange multipliers associated with the constraints (39) and

(40), respectively. Then, the Lagrangian of Problem (38) is
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given by

L(a, λ, ν) =

M
∑

i=1

[

wi

ai
+ wi

]

+

M
∑

i=1

λi(ai − bi) + ν

(

M
∑

i=1

ai − 1

)

.

(136)

Take the derivative of (136) with respect to al and set it equal

to 0, we get

−wl

a2l
+ λl + ν = 0. (137)

This and KKT conditions imply

al =

√

wl

λl + ν
, (138)

λl ≥ 0, al − bl ≤ 0, (139)

λl(al − bl) = 0, (140)

ν ≥ 0,

M
∑

i=1

ai − 1 ≤ 0, (141)

ν

(

M
∑

i=1

ai − 1

)

= 0. (142)

If λl = 0, then we have al =
√

wl/ν and al ≤ bl. This

implies that ν > 0 and hence
∑M

i=1 ai = 1, which holds

when
∑M

i=1 bi ≥ 1.

If λl > 0, then we have al = bl and al ≤
√

wl/ν. In

this case, we either have ν > 0, which implies
∑M

i=1 ai = 1

and this holds when
∑M

i=1 bi ≥ 1; or ν = 0, which implies
∑M

i=1 ai ≤ 1 and this holds when
∑M

i=1 bi ≤ 1.

From the above argument, the solution can be driven ac-

cording to the following two cases:

Case 1 (Energy-adequate regime (
∑M

i=1 bi ≥ 1)): In this

case, the optimal solution is given by

a⋆l = min

{

bl,

√

wl

ν⋆

}

, ∀l, (143)

where we must have ν⋆ > 0, which implies
∑M

i=1 a
⋆
i = 1.

Hence, ν⋆ satisfies

M
∑

i=1

min

{

bi,

√

wi

ν⋆

}

= 1. (144)

By comparing (144) with (20), we can deduce that
√

1/ν⋆ =

β⋆, where β⋆ satisfies

M
∑

i=1

min{bi, β⋆√wi} = 1. (145)

Since
∑M

i=1 bi ≥ 1, (145) has a solution for β⋆ as shown

in Lemma 13. Hence, the solution to Problem (38) can be

rewritten as

a⋆l = min{bl, β⋆√wl}, ∀l. (146)

Substituting (146) into (38), we obtain

∆̄w-peak
opt-s =

M
∑

i=1

[

wi

min{bi, β⋆
√
wi}

+ wi

]

, (147)

which is equal to the asymptotic optimal objective value of

Problem 1 in energy-adequate regime in (24).

Case 2 (Energy-scarce regime (
∑M

i=1 bi < 1)): In this case,

the optimal solution is

a⋆l = bl, ∀l. (148)

Substituting by this into (38), we obtain

∆̄w-peak
opt-s =

M
∑

i=1

[

wi

bi
+ wi

]

, (149)

which is equal to the asymptotic optimal objective value of

Problem 1 in energy-scarce regime in (30). This completes

the proof.

APPENDIX H

PROOF OF THEOREM 12

A. Notation and Background on General State-Space Markov

Processes

While analyzing learning algorithm, we will have to work

with Markov processes on general state-space [55], [60]. In

this section we provide a brief account of such processes.

Notation: For a set of r.v. s X , we let F(X ) denote the

smallest sigma-algebra with respect to which each r.v. in X is

measurable. For a set X , we let X c denote its complement. For

an event X , we let 1(X ) denote its indicator random variable.

For a set X , we let B(X ) denote the sigma-algebra of Borel

sets of X .

We begin by showing that s(n) can be taken to be the system

state /sufficient statistics [56] in order to describe the sampled

process. In what follows, we let S := R+×{0, 1}. Denote by

θ :=
∫ Tmax

y=0 y f(y)dy the mean transmission time of a packet

of any source, i.e., we use the abbreviation θ = E [T ]. The

proof of the following result is omitted for brevity.

Lemma 14. Consider the system in which M sources share a

channel, and utilize the sleep period parameters as r(n) ≡ r

in order to modulate the sleep durations of sources. We then

have that

P
(

s(n+ 1) ∈ A
∣

∣Ft

)

= K(s(n), r, A; f), (150)
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where Ft denotes the sigma-algebra generated by all the

random variables until the n-th discrete sampling instant. The

function K is the kernel [55] associated with the controlled

transition probabilities of the process s(n),

K : SM × R
M
+ × B(RM ) 7→ [0, 1]. (151)

Thus, K(s, r, A; f) is the probability with which the state at

time n + 1 belongs to the set A, given that the state at time

n is equal to s, and the vector comprising of sleep period

parameters at time n is equal to r. Note that the kernel is

parametrized by the density function of transmission time f .

We begin by stating some definitions associated with

Markov Chains on General State-Spaces. Though these can be

found in standard textbooks on General State-Space Markov

Chains such as [55], [60], we include them here in order to

make the paper self-contained.

Let us now fix the controls at r(n) ≡ r, and consider the

resulting discrete-time Markov chain s(n) ∈ SM . If A is a

Borel set, we let Pn(x, A) denote the probability of the event

s(n) ∈ A, given that s(0) = x.

Definition 1. (Small Set) A set C ∈ B(SM ) is called νm small

if for all x ∈ C we have that

Pm(x, A) ≥ νm(A), ∀A ∈ B(SM ),

for some non-trivial measure νm(·) and some m ∈ N.

Definition 2. (Petite Set) Let q = {qn}n∈N be a probability

distribution on N. A set C ∈ B(SM ) and a non-trivial sub-

probability measure νq(·) are called petite if we have that

∑

n∈N

qnP
n(x, A) ≥ νq(A), ∀A ∈ B(SM ), ∀x ∈ C.

Definition 3. (Strong Aperiodicity) If there exists a ν1 small

set C such that we have ν1(C) > 0, then the chain s(n) is

strongly aperiodic.

B. Preliminary Results

We now show that in order to minimize the expected value

of C(H), it suffices to design controllers that “work directly”

with the sampled system. Thus, the quantity s(n) as described

in (62) serves as a sufficient statistic for the purpose of

optimizing the expectation of cumulative peak age [56]. We

also show that this objective can be posed as a constrained

Markov decision process [61].

Lemma 15. Let s(n), n = 1, 2, . . . , be the sampled controlled

Markov process. There exists a function g : SM 7→ R so that

E [C(H)] in (63) is given by E

[

H
∑

n=1
g(s(n))

]

.

Proof. Consider the cumulative peak-age cost (63) in which

the l-th source incurs a penalty of ∆peak

l,i upon delivery of the i-

th packet. Let this delivery occur at the end of the n-th discrete

time-slot (note that this time n is random). Let us denote by

apeak

l (n) the peak age of source l during the (continuous) time

interval (in the non-discretized system) corresponding to the

discrete time slots n−1 and n. We could (instead of charging

a penalty of ∆peak

l,i units at the end of n-th slot) charge the

quantity E
{

apeak(n)|s(n− 1), r(n− 1)
}

at the discrete time

instant n − 1. For sources k 6= l that are not transmitting

between n − 1 and n, and have mk(n − 1) = 0, we let

g(s(n− 1)) = 0. It then follows from the law of the iterated

expectations [62] that the expected cost of the system under

this modified cost function remains the same as that of the

original system. This completes the proof.

Ergodicity of s(n): We now derive a few useful results

about the Markov process s(n).

Lemma 16. Consider the multi-source wireless network

operating under the controls r(n) ≡ r, and assume that the

sensing time ts is sufficiently small, i.e., it satisfies ts < 1.

Consider the associated process s(n), n = 1, 2, . . . We then

have the following:

1) Define

ei := (M − i)ǫ, and mi = 0, ∀i ∈ [N ],

where ǫ > 0 is chosen to be sufficiently small. Consider

the set

C := ⊗N
i=1 [[(M − i), (M − i) + ei]× {mi}] . (152)

The set C is small for the process s(n).

2) For the process s(n), each compact set is petite.

3) The process s(n) is strongly aperiodic.

Proof. 1) Consider s(0) ∈ C. It follows that at time n = 0,

all the sources are sleeping. Consider the following set

denoted C′: Sources 1 and 2 wake up within ts time

duration of each other, while the other sources wake

up much later than these two. Consequently, there is a

collision between Source 1 and Source 2, and hence at

time n = 1 these two sources enter into sleep mode,

so that at time n = 1 all the sources are asleep. Also
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assume that the cumulative time elapsed for this event to

occur is approximately equal to ts + δ, where δ > 0 is a

sufficiently small parameter. The probability of the event

{s(1) ∈ C′} can be lower bounded as follows

P(s(1) ∈ C′) ≥
(

r1

∫ δ+ǫ

δ

exp(−r1x)dx

)

× tsr2 exp(−r2(δ + ǫ))

×
[

ΠN
i=3

∫ ∞

δ+ǫ

ri exp(−rix)dx

]

.

Since the above lower-bound on the probability of “reach-

ing C′” is true for all s(0) ∈ C, it follows from

Definition 1 that the set C is small.

2) Consider the process s(n) starting in state s(0), and let

the age vector a(0) belong to a compact set, so that s(0)

also belongs to a compact set. We will derive a lower

bound on the probability of the event {s(N) ∈ C}, where

C is as in (152). This will prove (ii) since we have

already shown in (i) that the set C is small. Consider

the following sample path: at each time i ∈ [1,M ], we

have that source i successfully transmits a packet, and

moreover the age of the packet received is approximately

equal to 1. We will derive a lower-bound on the prob-

ability of this event. In the following discussion we use

b > 0 and η ∈ (0, 1− ts − b), where η denotes the time

when Source 1 wakes up. Since the counter of the i-

th source has a probability density equal to rie
−rix, the

probability that during the i-th slot source i gets channel

access is lower bounded by (1 − exp(−ηri))Πj 6=ie
−rj ;

while the probability that the age of its delivered packet

is around 1, given that it wakes up at η, is lower bounded

by
∫ b

0 f(y)dy. Thus, the probability of this sample path

is lower bounded by

ΠN
i=1(1− exp(−ηri))Πj 6=ie

−rj

∫ b

0

f(y)dy.

This concludes the proof since along this sample path we

have that s(N) ∈ C.

3) It follows from the discussion on page 121 of [60] that

in order to prove the claim it suffices to show that the

volume of the set C ∩C′ is greater than 0. However, this

condition holds true if the parameter δ in (i) above has

been chosen so as to satisfy ts + δ < ǫ.

We now show that the process s(n) has a certain “mixing

property”. For a measure µ and a function f , we define

‖µ‖f :=
∫

f(x)dµ(x).

Lemma 17 (Geometric Ergodicity). Consider the controlled

Markov process s(n), n = 1, 2, . . . , associated with the

network in which the controller utilizes r(n) ≡ r. The process

s(n) has an invariant probability measure, which we denote

as π(∞, r). Moreover,
∫

(‖y‖1 + 1) d (Pn(x, ·) − π(∞, r)) (y)

≤ R (‖s(0)‖1 + 1)ρn, n ∈ N, (153)

where R > 0, and ρ < 1.

Proof. Since we have shown in Lemma 16 that s(n) is

strongly aperiodic, it follows from Theorem 6.3 of [60] that in

order to prove the claim it suffices to show that the following

holds true when ‖s(n+ 1)‖1 is sufficiently large

E (‖s(n+ 1)‖1|Fn) ≤ λ‖s(n)‖1 + L, (154)

where λ < 1. Note that each source gets to trans-

mit with a probability at least minl αl, and also the ex-

pected value of the inter-sampling time is upper-bounded

by max
{

E[T ], E[T ]
∑

M
i=1 ri

+ ts

}

. It then follows that (154)

holds true with λ set equal to minl αl, and L equal to

max
{

E[T ], E[T ]
∑

M
i=1 ri

+ ts

}

.

Lemma 18. (Differential Cost Function) Consider the process

s(n), n = 1, 2, . . . , that describes the evolution of the network

in which the controller utilizes r(n) ≡ r. Then, there exists a

function V : SM 7→ R that satisfies

V (x) +

∫

g(x)dπ(∞, r) = g(x) +

∫

K(x, r, y; f)V (y)dy,

(155)

where K is the transition kernel as described in Lemma 14,

the function g is the one-step cost function as in Lemma (15).

Moreover, the function V satisfies the following,

V (x) ≤ R

1− ρ
(‖∆(0)‖1 + 1) , (156)

where the constant R is as in Lemma 17.

Proof. We have shown in Lemma 17 that the process s(n) is

geometrically ergodic. Hence, it follows from Theorem 7.5.10

of [63] that there exists a function V (·) that satisfies (155),

and moreover it is given as follows,

V (x) =

∞
∑

n=1

[

Ex (g(x(n))) −
∫

SM

g(y)dπ(∞, r)(y)

]

, x ∈ S.

Substituting the geometric bound (153) into the above, we
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obtain the following

V (x) =

∞
∑

n=1

[

Ex g(x(n)) −
∫

SM

g(y)dπ(∞, r)(y)

]

≤
∞
∑

n=1

∣

∣

∣
Ex g(x(n)) −

∫

SM

g(y)dπ(∞, r)(y)
∣

∣

∣

≤ R (‖x(0)‖1 + 1)

∞
∑

n=1

ρn

=
R (‖x(0)‖1 + 1)

1− ρ
,

where ρ < 1.

Lemma 19 (Smoothness properties of the optimal average

cost). The optimal sleep period parameters r⋆θ and average

cost ∆̄w−peak satisfy the following:

1) We have that the function r⋆θ : Θ 7→ R
M
+ that maps the

mean transmission time θ to the optimal sleep period

parameter, is a continuous function of θ. Similarly, the

average peak age is a continuous function of r, i.e.,

lim
r→r

⋆
θ

lim
H→∞

1

H

H
∑

n=1

Er [g(s(n))]

→ lim
H→∞

1

H

H
∑

n=1

Er
⋆
θ
[g(s(n))] ,

where the sub-script r in the expectation Er above refers

to the fact that the averaging is performed w.r.t. the

measure induced by the policy that uses sleep rates equal

to r.

2) The cumulative peak-age is locally Lipschitz continuous

function of r. Thus,

|∆̄w−peak(r⋆θ ; θ)− ∆̄w−peak(r; θ)| ≤ L1‖r⋆θ − r‖,

whenever ‖r⋆θ − r‖ is sufficiently small, and where the

Lipschitz constant at sleep period parameter r is given

by

L1 := max
i∈[M ]

∂∆̄w−peak

∂ri
(r).

Similarly, the optimal sleep period parameter is a locally

Lipschitz function of θ, so that we have,

‖r⋆θ1 − r⋆θ2‖ ≤ L2|θ1 − θ2|, L2 > 0,

whenever |θ1 − θ2| is sufficiently small.

In summary, there exists a δ > 0 such that whenever |θ1 −
θ2| ≤ δ, then

|∆̄w−peak(r⋆θ1 ; θ)− ∆̄w−peak(r⋆θ2 ; θ)| ≤ L|θ1 − θ2|.

Proof. Continuity of the functions under discussion is im-

mediate from the relations (18), (19), (20), (25), (26), (27).

To prove the statement about Lipschitz continuity, it suffices

to show that the average peak age is a Lipschitz continuous

function of r, and the optimal rate r⋆θ is Lipschitz continuous

function of θ. To prove this, it suffices to show that the average

peak age is a continuously differentiable function of r, and

also r⋆θ is a continuously differentiable function of θ (see [64]

for more details). The continuously differentiable property is

evident from the relations (11), (18)-(20) and (25)-(27). This

completes the proof.

Bounds on the Estimation Error: We now derive some

concentration results for the estimate θ̂(n) around the true

value θ⋆. Let C(n) be the confidence interval associated with

the estimate θ̂(n), i.e.,

C(n) :=
{

θ : |θ − θ̂(n)| ≤ ξ(n), θ > 0
}

, (157)

where

ξ(n) := Tmax

√

2 log (nγ)

N(n)
, 1 ≤ n ≤ H,

γ ≥ 4 is a constant, N(n) is the total number of packet deliv-

eries until n, and Tmax is the maximum possible transmission

time. We begin by showing that with a high probability, our

confidence balls are true at all the times.

Lemma 20. Define

G1(n) := {ω : θ⋆ ∈ C(n)} ,

where C(n) is as in (157), and θ⋆ is the vector consisting of

true parameter values. We then have that

P (Gc
1(n)) ≤

1

nγ−1
.

Proof. Fix a positive integer n0, and let θ̂ denote the empirical

estimate obtained from n0 samples T (1), T (2), . . . , T (n0) of

the service times. It follows from Azuma-Hoeffding’s inequal-

ity [65] that

P

(

|θ̂ − θ⋆| > x
)

≤ exp

(

− n0x
2

2T 2
max

)

.

By using x = Tmax

√

2 log(nγ)
n0

in the above, we obtain,

P

(

|θ̂ − θ⋆| > Tmax

√

lognγ

n0

)

≤ exp (− lognγ)

=
1

nγ
.

Since the total number of samples n0 can assume values from
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the set {0, 1, 2, . . . , n}, the proof then follows by using union

bound on n0.

Lemma 21. Fix a δ1 ∈ (0, pmin), where pmin is as in (72).

Define the event,

G2(n) :=
{

ω : N(n) > (pmin −
√

δ1)n
}

, (158)

where N(n) denotes the number of samples that have been

obtained until time n for estimating transmission times. We

then have that

P(Gc
2(n)) ≤ exp (−δ1n) .

Proof. Consider the following martingale difference sequence

m(i) = E
{

c(i)
∣

∣Fi−1

}

− c(n). Since E
{

c(i)
∣

∣Fi−1

}

≥ pmin,

we have that

n
∑

i=1

m(i) ≥ cminn−N(n). (159)

Since |m(i)| ≤ 1, we have the following from Azuma-

Hoeffding’s inequality [65],

P

(

∣

∣

∣

n
∑

i=1

m(i)
∣

∣

∣
≥ x

)

≤ exp

(

−x2

n

)

.

Letting x =
√
δ1n, we get the following,

P

(

∣

∣

∣

n
∑

i=1

m(i)
∣

∣

∣
≥
√

δ1n

)

≤ exp (−δ1n) . (160)

Substituting (159) into the above inequality, we obtain

P

(

N(n) ≤
(

pmin −
√

δ1

)

n
)

≤ exp (−δ1n) .

This completes the proof.

C. Regret Analysis

The cumulative regret R(H) (65) decomposes into the sum

of “episodic regrets” R(e)(k) as follows:

E [R(H)] =

K
∑

k=1

E

[

R(e)(k)
]

, (161)

where R(e)(k) : = E

{

∑

n∈Ek

g(s(n))− ∆̄w-peak(r⋆)
∣

∣

∣
Fτk

}

.

(162)

Combining the regret decomposition with the smoothness

properties of the optimal average cost that were derived in

Lemma 19, we obtain the following key result that allows us

to upper-bound R(H).

Lemma 22. The cumulative expected regret (161) for a

learning algorithm can be upper-bounded as follows,

E [R(H)] ≤ K2

K
∑

k=1

(τk+1 − τk)P(|θ̂(τk)− θ⋆| > δ)

+ L
N
∑

k=1

(τk+1 − τk)E
(

|θ̂(τk)− θ⋆|1
{

|θ̂(τk)− θ⋆| ≤ δ
})

,

(163)

where the constant δ > 0 is as in Lemma 19.

Proof. It follows from the ergodicity properties of the process

s(n) that were proved in Lemma 18 and Assumption 2

regarding s(n), that the episodic regret can be bounded as

follows (ρ,R are as in Lemma 18 and Assumption 2),

R(e)(k) ≤ R

1− ρ
(K1 + 1) (164)

+
∣

∣

∣
∆̄w−peak(r⋆

θ̂(τk)
; θ)− ∆̄w-peak(r⋆)

∣

∣

∣
(τk+1 − τk) .

(165)

The following two events are possible:

(i) |θ⋆ − θ̂(τk)| < δ: In this case it follows from Lemma 19

that

∣

∣

∣
∆̄w−peak(r⋆

θ̂(τk)
; θ)− ∆̄w-peak(r⋆)

∣

∣

∣
≤ L|θ⋆ − θ̂(τk)|.

(ii) |θ⋆ − θ̂(τk)| > δ: It follows from Assumption 3

that the average performance under any sleep param-

eter cannot exceed K2, and hence we can bound
∣

∣

∣
∆̄w−peak(r⋆

θ̂(τk)
; θ)− ∆̄w-peak(r⋆)

∣

∣

∣
by K2.

The proof then follows by substituting the bounds discussed

above for the two cases into (164), and using regret decom-

position result.

We now separately bound the expressions obtained in the

two events (|θ⋆ − θ̂(τk)| < δ, |θ⋆ − θ̂(τk)| > δ).

Regret when |θ⋆ − θ̂(τk)| > δ:

Choose a sufficiently large k0 ∈ N that satisfies

τk0 = O

(

1

δ1
logH

)

. (166)

Define the following event

G3 := ∩k≥k0G2(τk).

By combining the result of Lemma 21 with the union bound

and using (166) we conclude that G3 has a probability greater

than 1−
∑

k>k0
exp(−δ1τk) = 1−O

(

1
H

)

. On G3, the number

of samples N(τk) at the beginning of each episode k > k0 is

greater than
(

pmin −
√
δ1
)

τk . Thus on G3, for episodes k > k0
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the radius of C(τk) is less than
√

γ logH
(pmin−

√
δ1)τk

. Let k1 be the

smallest integer that satisfies

γ logH

(pmin −
√
δ1)τk1

≤ δ2, i.e. τk1 ≥ 1

(pmin −
√
δ1)δ2

γ logH,

(167)

where the constant δ > 0 is as in Lemma 19. Thus on

G3, for episodes k ≥ max {k0, k1}, the radius of confidence

intervals is less than δ. Note that on ∩kG1(τk) the confidence

intervals (157) at the beginning of each episode are true.

Hence, on {∩kG1(τk)} ∩ G3 we have |θ̂(τk) − θ⋆| < δ for

epsiodes k ≥ max {k0, k1}. Thus, on {∩kG1(τk)} ∩ G3 this

regret is bounded by K2 max {τk0 , τk1}. Now consider sample

paths for which some of the confidence intervals fail. The

probability that C(τk) fails is less than 1

τγ−1
k

(Lemma 20);

moreover since the episode duration of Ek, (τk+1− τk) is less

than τk , we have that the expected value of the regret during

Ek in the event of failure of C(τk) is less than K2
1

τγ−2
k

. Since

γ ≥ 4, the cumulative expected regret arising from this is

bounded by K2

∑

k
1

τγ−2
k

≤ K2
π2

6 [66]. We summarize our

discussion as follows.

Lemma 23. Under Algorithm 2 the following is true,

K
∑

k=1

(τk+1 − τk)P(|θ̂(τk)− θ⋆| > δ)

≤ K2 max

{

γ logH

(pmin −
√
δ1)δ2

, O

(

1

δ1
logH

)}

+K2
π2

6
,

(168)

where γ ≥ 4.

Regret when |θ⋆ − θ̂(τk)| < δ:

As discussed above, on ∩kG1(τk)∩G3 we have |θ(τk)−θ⋆| < δ

for episodes k > k1. Thus, after using the smoothness property

of optimal average cost that was developed in Lemma 19, we

obtain that the second summation in the r.h.s. of (163) can be

bounded by the following quantity,

∑

k>k1

(τk+1 − τk)

√

γ logH

(pmin −
√
δ1)τk

.

Since we have τk+1 − τk ≤ τk, the above can be bounded

by
√

γ logH
(pmin−

√
δ1)

∑

k>k1

√
τk. By using Cauchy Schwart’z

inequality, the quantity
∑

k>k1

√
τk can be upper-bounded

as
√
HK , where K denotes the number of episodes. Since

K = O (logH), this regret is bounded by
√

Hγ(logH)2

(pmin−
√
δ1)

. The

bound we discussed is summarized below.

Lemma 24. Under Algorithm 2 the following is true,

L

N
∑

k=1

(τk+1 − τk)E
(

|θ̂(τk)− θ⋆|1
{

|θ̂(τk)− θ⋆| ≤ δ
})

≤ L

√

Hγ(logH)2

(pmin −
√
δ1)

. (169)

We are now in a position to prove main result Theorem 12.

Proof. (Theorem 12) The proof follows by substituting the

bounds obtained in Lemma 23 and Lemma 24 into the regret

decomposition result of Lemma 22.
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