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Abstract—We consider the problem of optimizing the freshness
of status updates that are sent from a large number of low-
power sources to a common access point. The source nodes utilize
carrier sensing to reduce collisions and adopt an asynchronized
sleep-wake scheduling strategy to achieve a target network
lifetime (e.g., 10 years). We use age of information (Aol) to
measure the freshness of status updates, and design sleep-wake
parameters for minimizing the weighted-sum peak Aol of the
sources, subject to per-source battery lifetime constraints. When
the sensing time (i.e., the time duration of carrier sensing) is
zero, this sleep-wake design problem can be solved by resorting
to a two-layer nested convex optimization procedure; however,
for positive sensing times, the problem is non-convex. We devise
a low-complexity solution to solve this problem and prove that,
for practical sensing times that are short, the solution is within
a small gap from the optimum Aol performance. When the
mean transmission time of status-update packets is unknown,
we devise a reinforcement learning algorithm that adaptively
performs the following two tasks in an “efficient way”’: a) it learns
the unknown parameter, b) it also generates efficient controls that
make channel access decisions. We analyze its performance by
quantifying its ‘“regret”, i.e., the sub-optimality gap between its
average performance and the average performance of a controller
that knows the mean transmission time. Our numerical and NS-
3 simulation results show that our solution can indeed elongate
the batteries lifetime of information sources, while providing a
competitive Aol performance.
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I. INTRODUCTION

In applications such as networked monitoring and control
systems, wireless sensor networks, autonomous vehicles, it is
crucial for the destination node to receive timely status updates
so that it can make accurate decisions. Age of information
(Aol) has been used to measure the freshness of status
updates. More specifically, Aol [2] is the age of the freshest
update at the destination, i.e., it is the time elapsed since the
freshest received update was generated. It should be noted that
optimizing traditional network performance metrics, such as
throughput or delay, do not attain the goal of timely updating.
For instance, it is well known that Aol could become very
large when the offered load is high or low [2]. In other words,
Aol captures the information lag at the destination, and is
hence more apt for achieving the goal of timely updates. Thus,
Aol has recently attracted a lot of interests (see [3], [4] and
references therein).

In a variety of information update systems, energy consump-
tion is also a critical concern. For example, wireless sensor
networks are used for monitoring crucial natural and human-
related activities, e.g. forest fires, earthquakes, tsunamis, etc.
Since such applications often require the deployment of sensor
nodes in remote or hard-to-reach areas, they need to be able
to operate unattended for long durations. Likewise, in medical
sensor networks, battery replacement/recharging involves a
series of medical procedures, leading to disutility to patients.
Hence, energy consumption must be constrained in order to
support a long battery life of 10-15 years [5]'. For networks
serving such real-time applications, prolonging battery-life is
crucial. Existing works on multi-source networks, e.g., [8]-
[11], [11]-[20], focused exclusively on minimizing the Aol
and overlooked the need to reduce power consumption. This
motivates us to derive scheduling algorithms that achieve a

IThe computations performed in [5] are based on the specifications of
commercially used devices. For example, the used transceiver is 2.4 GHz
chipset from Chipcon, the CC2420 [6], and the used microcontroller is
the Motorola 8-bit microcontroller MC9508RES [7]. For more detail about

the supply voltage and current consumption, please see the aforementioned
references.
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trade-off between the competing tasks of minimizing Aol and
reducing the energy consumption in multi-source networks.

Additionally, some status-update systems consist of a large
number (e.g., hundreds of thousands) of densely packed wire-
less nodes, which are serviced by a single access point (AP).
Examples include massive machine-type communications [21].
The dataloads in such “dense networks” [21], [22] are cre-
ated by applications such as home security and automation,
oilfield and pipeline monitoring, smart agriculture, animal
and livestock tracking, etc. This introduces high variability
in the data packet sizes so that the transmission times of data
packets are random. Thus, scheduling algorithms designed for
time-slotted systems with a fixed transmission duration, are
not applicable to these systems. Besides that, synchronized
scheduler for time-slotted systems are feasible when there are
relatively few sources and each source has sufficient energy.
However, if there are a huge number of sources, the signaling
overhead could be quite high. Since, each source may have
limited energy and low traffic rate, the system could be highly
inefficient. This motivates us to design asynchronized medium
access protocols that coordinate the transmissions of multiple
conflicting transmitters connected to a single AP.

Towards that end, we consider a wireless network with
M sources that contend for channel access and communicate
their update packets to an AP. Each source is equipped with
a battery that may get charged by a renewable source of
energy, e.g., solar. Moreover, each source employs a sleep-
wake scheduling scheme [23] under which the source transmits
a packet if the channel is idle; and sleeps if either: (i) The
channel is busy, (ii) it has completed a packet transmission.
This enables each source to save the precious battery energy
by switching off when it is unlikely to gain channel access for
packet transmissions. However, since a source cannot transmit
during the sleep period, this causes the Aol to increase. We
carefully design the sleep-wake parameters to minimize the
weighted-sum peak age of the sources, while ensuring that

the battery lifetime constraint of each source is satisfied.

A. Related Works

There have been significant recent efforts on analyzing
the Aol performance of popular queueing service disciplines,
e.g., the First-Come, First-Served (FCFS) [2] Last-Come,
First-Served (LCFS) with and without preemption [24], and
queueing systems with packet management [25]. In [18],
[26]-[29], the age-optimality of Last-Generated, First-Served

(LGFS)-type policies in multi-server and multi-hop networks

was established, where it was shown that these policies can
minimize any non-decreasing functional of the age processes.
The design of data sampling and transmission in information
update systems was investigated in [30], [31], where sampling
policies were derived to minimize nonlinear age functions in
single source systems. In [31], it was shown that a variety of
information freshness metrics can be represented as monotonic
functions of the age. The studies in [30], [31] were later
extended to a multi-source scenario in [32], [33].

Designing scheduling policies for minimizing Aol in multi-
source networks has recently received increasing attention,
e.g., [8]-[17]. Of particular interest are those pertaining to
designing distributed scheduling policies [8]-[13]. The work
in [8] considered a slotted ALOHA-like random access scheme
in which each node accesses the channel with a certain access
probability. These probabilities were then optimized in order to
minimize the Aol. However, the model of [8] allows multiple
interfering users to gain channel access simultaneously, and
hence allows for the collision. The authors in [9] generalized
the work in [8] to a wireless network in which the interference
is described by a general interference model. The Round Robin
or Maximum Age First policy was shown to be (near) age-
optimal for different system models, e.g., in [10]-[13], [18].

Carrier sensing distributed medium access mechanisms, e.g.,
Carrier Sense Multiple Access (CSMA), have been widely
adopted in many wireless networks; see [34], [35] for a
recent survey. There has been an interest in designing CSMA-
based scheduling schemes that optimize the Aol [36], [37].
In [36], the authors designed an idealized CSMA (similar
to that in [38]) to minimize the Aol with an exponentially
distributed packet transmission times. In [37], the authors
designed a slotted Carrier Sense Multiple Access/Collision-
Avoidance (CSMA/CA) (similar to that in [39]) to minimize
the broadcast age of information, which is defined, from a
sender’s perspective, as the age of the freshest successfully
broadcasted packet. Contrary to these works, the sleep-wake
scheduling scheme proposed by us emphasizes on reducing
the cumulative energy consumption in multi-source networks
in addition to minimizing the total weighted Aol. Moreover,
in our study, transmission times are not necessarily random
variables with some commonly used parametric density [36],
or deterministic [37], but can be any generally distributed
random variables with finite mean.

B. Key Contributions

Our key contributions are summarized as follows:



o In our model, sources utilize an asynchronized sleep-
wake scheduling strategy to achieve an extended battery
lifetime. We aim at designing the mean sleeping period of
each source, which controls its channel access probability,
in order to minimize the total weighted average peak age
of the sources while simultaneously meeting per-source
battery lifetime constraints. Although, the aforementioned
optimization problem is non-convex, we devise a solution.
In the regime for which the sensing time is negligible
compared to the packet transmission time, the proposed
solution is near-optimal (Theorem 1 and Theorem 3). Our
near-optimality results hold for general distributions of
the packet transmission times.

o We propose an algorithm that can be easily implemented
in many practical control systems. In particular, our
solution requires the knowledge of only two variables in
its implementation. These two variables are functions of
the network parameters. An implementation procedure to
compute these two variables is provided.

o As the ratio between the sensing time and the packet
transmission time reduces to zero, we show that the age
performance of our proposed algorithm is as good as
that of the optimal synchronized scheduler (e.g., for time-
slotted systems).

o Finally, since our solution is a function of the mean
transmission time of data packets, the network operator
needs to know this quantity in order to implement the
algorithm. The transmission times however depend upon
the environmental conditions, which in turn are hard
to predict before the system operation begins. To over-
come this challenge, we develop a reinforcement learning
(RL) [40]-[42] algorithm that maintains an estimate of
the (unknown) mean transmission time, and then utilizes
this estimate in order to derive a solution that is “seem-
ingly optimal” for the true system. We show that the
regret of the proposed RL algorithm scales as O(\/ﬁ ),2

where H is the operating time horizon.

II. MODEL AND FORMULATION

A. Network Model and Sleep-wake Scheduling

Consider a wireless network composed of M source nodes,
each observing a time-varying signal. The sources generate
update packets of the observed signals and send the packets to

an access point (AP) over a shared spectrum band. If multiple

20 hides factors that are logarithmic in H.

sources transmit packets simultaneously, a packet collision
occurs and these packet transmissions fail.

The sources use a sleep-wake scheduling scheme to access
the shared spectrum, where each source switches between a
sleep mode and a transmission mode over time, according the
following rules: Upon waking from the sleep mode, a source
first performs carrier sensing to check whether the channel is
occupied by another source, as illustrated in Figure 1. The
time duration of carrier sensing is denoted as ts, which is
sufficiently long to ensure a high sensing accuracy. If the
channel is sensed to be busy, the source enters the sleep mode
directly; otherwise, the source generates an update packet and
sends it over the channel. The source hereafter goes back to
the sleep mode.

In the above sleep-wake scheduling scheme, if two sources
start transmitting within a time duration of t4, then their
sensing periods are overlapping and they may not be able
to detect the transmission of each other. In order to obtain a
robust system design, we consider that they cannot detect each
other’s transmission and a collision occurs. Upon completing
a packet transmission, sources switch to the reception mode
and wait for an acknowledgement (ACK) that indicates the
outcome of their transmissions (successful transmission or
collision). They then go back to the sleep mode.

A sleep-wake cycle, or simply a cycle, is defined as the time
period between the ends of two successive packet transmission
or collision events. Each cycle consists of an idle period
and a transmission/collision period®. As depicted in Figure
1, the packet transmissions in Cycles 1-2 are successful, but
a collision occurs in Cycle 3 because Sources 1 and 2 wake
up within a short duration ¢,.

We use Tj,7 € {1,2,...} to represent the time incurred
by the j-th packet transmission or collision event, which
includes transmission/collision time and feedback delays. For
example, in Figure 1, 7 is the time duration of the packet
transmission event by Source 1, while 7% is the time duration
of the collision event between Source 1 and 2. We assume
that the T7’s are i.i.d. for all transmission and collision events,
with a general distribution. This assumption does not hold

3To make the sleep-wake scheduling problem solvable analytically, we
make several approximations. For example, in 802.11b frame structure, there
exists a Short Inter-frame Space (SIFS) between the packet transmission
frame and the ACK frame (i.e., the CTS frame). If another source wakes
up during the SIFS, then it may not detect the transmission/ACK frames,
leading to unexpected collisions. In our analytical model, such collision
events are omitted. In other words, we suppose that each cycle must start
with an idle period, where all sources are in the sleep mode, followed by
a transmission/collision period. NS-3 simulation results will be provided in

Section VI-B to show that these approximations have a negligible impact on
the age performance of our solution.
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Figure 1: [llustration of the sleep-wake cycles. In Cycles 1-2, we have successful packet transmissions. Let S; and So represent
the remaining sleeping times of Sources 1 and 2, respectively, after a successful transmission. Then, a collision occurs in Cycle
3 because the difference between wake-up times of Sources 1 and 2 is less than t,, i.e., 571 — S2 < ts. As we can observe,
each cycle consists of an idle period before a transmission/collision event.

in practice. Nonetheless, NS-3 simulation results in Section
VI-B show that this assumption has a negligible impact on
the performance of the proposed algorithm. When there is no
confusion, we omit the subscript j of T for simplicity, and use
T to denote the transmission/collision time, which is assumed
to have a finite mean, i.e., E[T] < oo. The sleep periods
of source [ are exponentially distributed random variables
with mean value E[T]|/r; and are independent across sources
and i.i.d. across time. Notice that, the sleep period parameter
r; > 0 has been normalized by the mean transmission time
E[T]. Letr = (74, ..

sleep period parameters.

., ) be the vector comprising of these

B. Total Weighted Average Peak Age

Let U, (t) represent the generation time of the most recently
delivered packet from source ! by time ¢. Then, the age of
information, or simply the age, of source [ is defined as [2]

Ay(t) =t = Ui(?), (1)

where A;(t) is right-continuous. As shown in Figure 2, the
age increases linearly with ¢, but is reset to a smaller value
upon the delivery of a fresher packet. Observe that a small age
A;(t) indicates that the AP has a fresh status update packet
that was generated at source [ recently. Hence, it is desirable
to keep A;(t) small for all the sources.

Let us introduce some notations and definitions. Let 7; be the
index of the i-th delivered packet from source [. We use ¢; ; and
tf)i to denote the generation and delivery times, respectively,

of the i-th delivered packet from source [, such that tgﬂ- —t1; =

Al(t) Apcak
1,3
peak
Al,2
peak
Al,l
ti1 bt t ta l] t
1,1 %11 Il,2 Il,2 1,3 Il,3
[ I |
Ty, I3

Figure 2: The age A;(t) of source .

T, * Let I, = tf)i — tf)i_l denote the i-th inter-departure time
of source [, which satisfies E[I; ;] = E[;] for all 7. The i-th
peak age of source [, denoted by A?;ak, is defined as the Aol

of source [ right before the i-th packet delivery from source (.

As shown in Figure 2, i.e., we have
AT = M), @)

where ¢ is the time instant just before the delivery time ; ;.
One can observe from Figure 2 that the peak age is [25]

A?;ak = T(i—l)z + Iz,i- 3)
Hence, the average peak age of source [ is given by
E[A}™] = E[T] + E[L), @

where we omit the subscripts ¢ and %; as [;;’s and T3,’s
are i.i.d. across time. The average peak age metric provides
information regarding the worst case age, with the advantage

4A packet of a particular source is deemed delivered when the source
receives the feedback.



of having a simpler formulation than the average age metric
[25]. Thus, it is suitable for applications that have an upper

bound restriction on Aol.

We now derive an expression for E[[;]. Let «; be the
probability of the event that the source [ obtains channel access
and successfully transmits a packet within a sleep-wake cycle.
As shown in [23], one can utilize the memoryless property of
exponential distributed sleep periods to get

t
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To keep the paper self-contained, we provide the derivation of
(5) in Appendix A. Let NV; denote the total number of sleep-
wake cycles between two subsequent successful transmissions
of source [. Because the probability that source ! obtains
channel access and transmits successfully in a given cycle is
ay, N; is geometrically distributed with mean a% By this and
(5), we get
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An inter-departure time duration of source [ is composed of 1V,
consecutive sleep-wake cycles. With a slight abuse of notation,

let cycle, ;, denote the duration of the k-th sleep-wake cycle
after a successful transmission of source [. Hence,

N;
Z cycleh,c] . (7
k=1

Note that cycle; ;.’s are i.i.d. across time. Moreover, since the

E[l] =E

event (N; = n) depends only on the history, IV, is a stopping
time [43]. Hence, it follows from Wald’s identity [44] that

E[l] = E[N.|E[cycle], ®)

where E[cycle] is the mean duration of a sleep-wake cy-
cle. Each cycle consists of an idle period and a transmis-
sion/collision time, see Figure 1. Using the memoryless prop-
erty of exponential distribution, we observe that the idle period
is the minimum of i.i.d. exponential random variables. Thus, it
can be shown that the idle period in each cycle is exponentially
distributed with mean value equal to E[T]/ Zﬁl r;, where
E[T]/r; is the mean of sleep periods of source I. Hence, we

E[T
% + E[T). 9)

i=1"1

have

E[cycle] =

Substituting the expressions for E[V;] and E[cycle] from (6)

and (9), respectively, into (8), and (4), we obtain

T

wr € TER[T] s, M
Elar) =S ——2) ] 5t vt <1 +Zm> + E[T].
=1
(10)

In this paper, we aim to minimize the total weighted average

peak age, which is given by

M M —rlﬁE[T] v . M
E Apeak — wie TR S [£2:03) 1 :
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where w; > 0 is the weight of source [. These weights
enable us to prioritize the sources according to their relative

importance [9], [15].

C. Energy Constraint

Each source is equipped with a battery that can possibly
be recharged by a renewable energy source, such as solar.
In typical wireless sensor networks, sources have a much
smaller power consumption in the sleep mode than in the
transmission mode. For example, if the sensor is equipped
with the radio unit TR 1000 from RF Monolithic [45], [46],
the power consumption in the sleep mode is 15 yW while
the power consumption in the transmission mode is 24.75
mW. Motivated by this, we assume that the energy dissipation
during the sleep mode is negligible as compared to the power
consumption in the transmission mode. Moreover, we assume
that the sensing time duration ¢ is much shorter than the
transmission time and hence neglect the energy consumed
during channel sensing. In Section VI-B, we show that these
assumptions have a negligible effect on the performance of
the proposed sleep-wake scheduling algorithm. Under these
assumptions, the amount of energy used by a source is equal
to the amount of energy consumed in packet transmissions and
feedback receptions.

The energy constraint on source [ is described by the
following parameters: a) Initial battery level B;, which denotes
the initial amount of energy stored in the battery, b) Target
lifetime D;, which is the minimum time-duration that the
source [ should be active before its battery is depleted, c)
Average energy replenishment rate’ R;, which is the rate at

which the battery of source ! receives energy from its energy

STt is assumed that Ry is either known, or it can be estimated accurately.



source. If source [ does not have access to an energy source,

then we have R; = 0. Define Py, for source [ as

B
Pmax,l = Hll + Rl; Vl,

where Ppax, 1S the maximum allowable power consumption

12)

of source [ such that the target lifetime D; is met.

For the sleep-wake scheduling mechanism under consider-
ation, it has been shown in [23] that the fraction of time in
which source [ is in the transmission mode is given by

ts ts

[L — e "FT] sz\il i + e E
Ziﬂil T + 1 '

For the sake of completeness, the derivation of o; is provided

13)

o] =

in Appendix B. Let P,,; denote the average power consump-
tion of source [ in the transmission mode. Then the actual

power consumption of source [, denoted by P, , is given by
Pici,y = 01 Payg,, VI (14)

For source [ to achieve its target lifetime D;, we must have
Pt < Prax,i, V1. (15)

Define b, £ Prax.1/ Py, as the target power efficiency of
source [. By using (13)-(14), the constraints in (15) can be

rewritten as

Is M —7 g

S rire
M

Zi:l r, +1

Because 0; < 1, if by > 1, then constraint (16) is always

satisfied.

[1—e "=

<, VI. (16)

g] =

D. Problem Formulation

Our goal is to find the optimal sleep-wake parameters r
that minimizes the total weighted average peak age in (11),
while simultaneously ensuring the energy constraints (16) for
all sources. Dividing the objective function (11) by E[T], we

obtain the following optimization problem: (Problem 1)

_ K M wleirlﬁ =M to M
AVP & min Y 2=t TET | ] r;
opt m>0Z T * : it
=1 i=1
M
Zwl (17)
=1
[1 — e—mﬁ] ZAfl r; + T‘le_rlﬁ
s.t. i < b, Vi
SMor+1 -
i=1Ti
where AgP “ is the optimal objective value of Problem 1.

We will use A¥Pe%(r) to denote the objective value for given

sleeping period parameters r. One can notice from (17) that

the optimal sleeping period parameters depend on the sensing
time ¢, and the mean transmission time E[T] only through their
ratio ¢s/IE[T']. This insight plays a crucial role in subsequent

analysis of Problem 1.

III. MAIN RESULTS

When ¢, = 0, although Problem 1 is non-convex, it can be
solved by defining an auxiliary variable y = Zf\il r; + 1 and
applying a nested optimization algorithm: In the inner layer,
we optimize r; for a given y. Then, we write the optimized
objective as a function of y. In the outer layer, we optimize y.
It happens that the inner and outer layer optimization problems
are both convex. The details can be found in Section III-C.

However, this method does not work for positive sensing
times ¢, > 0 and Problem 1 becomes non-convex. Hence, it
is challenging to optimize r for positive ¢s. In this section,
we develop a low-complexity closed-form solution which is
shown to be near-optimal if the sensing time ¢4 is short as
compared with the mean transmission time E[T']. Our solution
is developed by considering the following two regimes sepa-
rately: (i) Energy-adequate regime denoted as ZZ]\il b; > 1,
where the condition Zi\il b; > 1 means that the sources have
a sufficient amount of total energy to ensure that at least
one source is awake at any time, (ii) Energy-scarce regime
represented by Zf\il b; < 1, which indicates that the sources
have to sleep for some time to meet the sources’ energy

constraints.

A. Energy-adequate Regime

In the energy-adequate regime Zf\il b; > 1, our solution

*

r* = (r},...,r},) is given as

r; = min{b;, £/ w; }x*, VI, (18)

where x* and [* are expressed in terms of the parameters
{bi,w; } M, ts/E[T] as follows:

-1 1 E[T]
= — -4+ — 19
r 5 Tyt i (19)
and * is the unique root of
M
me{bi,ﬁ*./—wi} =1. (20)
i=1

The performance of the above solution r* is manifested in the

following theorem:



Theorem 1 (Near-optimality). If Zi\il b; > 1, then the

solution ™ (18) - (20) is near-optimal for solving (17) when

ts/E[T) is sufficiently small, in the following sense:®

[ s ts

Aw-peak (I‘*) o Aw-peak

opt
where
M "
o ; min{b;, 6~ /wi} (22)
Proof. See Section IV-A. o

From Theorem 1, we can obtain the following corollary:

Corollary 2 (Asymptotic optimality). If Zﬁl b; > 1, then
the solution r* (18) - (20) is asymptotically optimal for
Problem 1 in (17) as ts/E[T] — 0, i.e.,

lim  |AvPeak(pr) — Arpet| = 0. (23)
ﬁ—)O

Moreover; the asymptotic optimal objective value of Problem
1asts/E[T] — 0 is’

M
lim Apret = [L + wi] - (24
a0 P! ; min{b;, 5*/w; }
Proof. See Section IV-A. O

B. Energy-scarce Regime

Now, we present a solution to Problem 1 in the energy-
scarce regime Zﬁl b; < 1, and show it is near-optimal. The
solution r* of the energy-scarce regime is again given by (18),
where z* and [3* are

. min; ¢

Mo
‘T :77 ﬁ*: b
1=, b ;Vwi

(25)

®We use the standard order notation: f(h) = O(g(h)) means z; <
limy,_,o f(h)/g(h) < =z for some constants z; > 0 and z2 > 0, while
f(h) = o(g(h)) means limp_o f(h)/g(h) = 0.

7Observe that, according to (24), the asymptotic optimal average peak
age of source ! is (1/min{b;, 3*\/w;} + 1) which decreases with the
weight w;. The weighted average peak age is w;(1/ min{b;, 8*\/w;} + 1)
which increases with w;. This phenomenon is reasonable and agrees with our
expectation.

and

2by (1 -, bi)2
Qu ’

M 2
Q1 =b (1— bi)
i=1

M 4 M 2/ M .
+ b?<1—2b1>+4bl2 <1—Zbi> (Zbi—bl> —]E[ST].
i=1 i=1

=1

o= (26)

27)
The near-optimality of the proposed solution (i.e., r*) in the

energy scarce regime is explained in the following theorem:

Theorem 3 (Near-optimality). If Z?ilbi < 1, then the
solution r* (18) and (25) - (27) is near-optimal for solving
(17) when ts/E[T] is sufficiently small, in the following sense:

< Ls
~ E[T]

’Aw—peak (I'*) _ AW-peak

opt

ts
Ca+to (W) ;o (28)

where
M w M
Co=> ———r— (32@ — minbj> .9
= (1 =32000) \ i /
Proof. See Section IV-B. |

We obtain the following corollary from Theorem 3.

Corollary 4 (Asymptotic optimality). If Zf\il b; < 1, then
(23) holds for the solution v* (18) and (25) - (27). In other
words, our proposed solution is asymptotically optimal for
Problem 1 in (17) as ts/E[T] — 0. Moreover, the asymptotic
optimal objective value of Problem 1 as ts/E[T] — 0 is

M
lim Aw—peak _ |: : w; +’LU:|
RPN ; min{b;, B*\/w;}

E[T]

y (30)
Il [
— | b; i
i=1
Proof. See Section IV-B. O

Interestingly, the asymptotic optimal objective values of
Problem 1 in both regimes, given by (24) and (30), are of an
identical expression. However, in the energy-scarce regime, we

can observe that 8*, which is defined in (25), always satisfies
min{bl,ﬂ*,/wl} = bl for all [.

Remark 1. We would like to point out that the condition
ts/E[T] = 0 is satisfied in many practical applications. For
instance, in a wireless sensor network that is equipped with

low-power UHF transceivers [47], the carrier sensing time



is ts = 40 us, while the transmission time is around 5 ms.
Hence, ts/E[T] ~ 0.008.

C. Discussion

In this subsection, we present a simple implementation of
our proposed solution, discuss the nested convex optimization
method that can be used to solve Problem 1 when t; = 0,
provide some useful insights about our proposed solution at
the limit point ¢;/E[T] — 0, and provide a comparison with
synchronized schedulers performance.

1) Implementation of Sleep-wake Scheduling: We devise a
simple algorithm to compute our solution r*, which is pro-
vided in Algorithm 1. Notice that r* has the same expression
(18) in the energy-adequate and energy-scarce regimes. We
exploit this fact to simplify the implementation of sleep-wake
scheduling. In particular, the sources report w; and b; to the
AP, which computes 5* and z*, and broadcasts them back to
the sources. After receiving 5* and x*, source [ computes 7}
based on (18). In practical wireless sensor networks, e.g., smart
city networks and industrial control sensor networks [48], [49],
the sensors report their measurements via an access point (AP).
Hence, it is reasonable to employ the AP in implementing the

sleep-wake scheduler.

Algorithm 1: Implementation of sleep-wake scheduler.

1 The AP gathers the parameters {(w;, b;)M,, ts/E[T]};
2if M b; > 1 then

3 | The AP computes z*, 8* from (19) and (20);

4 else

5 | The AP computes x*, 8* from (25) - (27);

6 end

7 The AP broadcasts x*, 8* to all the M sources;

8 Upon hearing 2*, 8*, source [ compute 7} from (18);

In the above implementation procedure, the sources do not
need to know if the overall network is in the energy-adequate
or energy-scarce regime; only the AP knows about it. Further,
the amount of downlink signaling overhead is small, because
only two parameters S* and z* are broadcasted to the sources.
Moreover, when the node density is high, the scalability of the
network is a crucial concern and reporting w; and b; for each
source is impractical. In this case, the AP can compute * and
x* by estimating the distribution of w; and b;, as well as the
number of source nodes, which reduces the uplink signaling
overhead. Finally, when sources are not in the hearing range
of each other, hidden/exposed source problems arise. These
problems are challenging to solve analytically. However, this

can be solved by designing practical heuristic solutions based

on the theoretical solutions. One design method was given in
[23].
2) The Nested Convex Optimization Method for ts = 0:

If t; = 0, Problem 1 reduces to the following optimization

problem:
M
Cwpeak A My (1+Zi:1 7”1‘) M
Agyt = min + E wy
>0 T
=1 =1

u (€28

s.t. rp < bl(z r; + 1),Vl.
i=1
Observe that the optimization problem in (31) is non-convex.
To bypass this difficulty, we use an auxiliary variable y =
Zf\il r; + 1. Hence, we obtain the following optimization

problem for given y:

Moo Y
min { LLANT wi] (32)
>0 “= T
s.t. v < by, Vi, (33)
M
ori+l=y. (34)
i=1

The objective function in (32) is a convex function. Moreover,
the constraints in (33) and (34) are affine. Hence, Problem (32)
is convex. Exploiting (32), we solve (31) by using a two-layer
nested convex optimization method: In the inner layer, we
optimize r for given y. After solving r, we will optimize y in
the outer layer. This technique is used in the proof of Lemma 8
in Appendix D, where the reader can find the detailed solution.

3) Asymptotic Behavior of The Optimal Solution: In the
energy-adequate regime, the sleeping period parameter r; of
source [ tends to infinity as ¢, /E[T"] — 0, while the ratio 7} /r}
between source [ and source i is kept as a constant for all [
and 7. Hence, the sleeping time of the sources tends to zero.
Meanwhile, since t;/E[T] — 0, the sensing time becomes
negligible. The channel access probability of source [ in this
limit can be computed as

lim o7 =min{b;, 8*/wi}. (35)
FTT —>

E[T]

1. Hence, the

channel is occupied by the sources at all time, without any

Because of (20), lim; /gm0 Z?&Uf -

time overhead spent on sensing and sleeping.

On the other hand, in the energy-scarce regime, the sleeping
period parameter r; of source [ converges to a constant value
when ts/E[T] — 0, i.e., we have

by
lim 7= ——t (36)
- 1-M b



Since the cumulative energy is scarce, the sources necessarily
need to stay idle for some time in order to meet their target
lifetime. Hence, sleep periods are imposed for achieving
the optimal trade-off between minimizing Aol and energy
consumption.

4) Comparison with Synchronized Schedulers Performance:
We would like to show that the performance of our proposed
algorithm is asymptotically no worse than any synchronized
(e.g., centralized) scheduler. Consider a scheduler in which
the fraction of time during which source [ transmits update
packets is equal to a;, where we have a = {a;}1", and
Zi]\il a; < 1. In this scheduler, only one source is allowed to
access the channel at a time, i.e., there is no collision (this can
be achieved either by a deterministic scheduler or by assigning
a channel access probability a; for each source [ after each
packet transmission)®. We can perform an analysis similar to
that of Section II-B, and show that the total weighted average

peak age of a synchronized scheduler is given by

i [% + w; IE[T]] :

a:
i=1 v

(37)

Hence, the problem of designing an optimal synchronized
scheduler that minimizes the total weighted average peak age
under energy constraints can be cast as

M

At 2 min [Z’— + w} (38)
s.t. a; < by, Vi, 39)

M
> ai <, (40)

i=1

where we have divided the objective function by E[T]. Next,
we show that the performance of our proposed algorithm
converges to that of the optimal synchronized scheduler when
ts/E[T] — 0.

Corollary 5. For any (w;,b;)M,, we have

. A w-peak __ A w-peak
tlslm OAOPT = Dpprs - 41
iy

Proof. The proof is provided in Appendix G which is listed
at the end before Appendix H as it requires some results from
precedent appendixes. O

Synchronized schedulers were recently studied in [15] for
the case without energy constraints, i.e., b > 1 for all [.

8Note that if Zf\il a; < 1, then it is possible that the scheduler decides
not to serve any source after the transmission of some packet. In this case,
the scheduler waits for a random time that has the same distribution as the
transmission time 7" before deciding to serve another source.

According to Corollary 5, the channel access probability of
the synchronized scheduler in [15] is a special case of our
solution (35) where b; > 1 for all [.

IV. PROOFS OF THE MAIN RESULTS

In this section, we provide the proofs of Theorem 1,
Corollary 2, Theorem 3, and Corollary 4.

A. The Proofs of Theorem 1 and Corollary 2

We prove Theorem 1 and Corollary 2 in three steps:
Step 1: We show that our solution r* (18) - (20) is feasible
for Problem 1.

Lemma 6. IfZ?il b; > 1, then the solution r* (18) - (20) is
feasible for Problem 1.

Proof. See Appendix C. O

Hence, by substituting this solution r* into the objective
function of Problem 1 in (17), we get an upper bound on

w-peak

the optimal value Aopl , which is expressed in the following

lemma:

Lemma 7. If Y\ b; > 1, then

* tg

wie” T (1+ L)
- +wi|,
min{b;, 5*\/w; }
(42)

opt

M
Aw-peak < Aw—peak(r*) < Z
=1

where x*, 3* are defined in (19), (20).

Proof. In Lemma 6, we showed that our proposed solution r*
(18) - (20) is feasible for Problem 1. Hence, we substitute this

solution into Problem 1 to obtain the following upper bound:

M * ts o % ok ts
w;e” ET] (1 + zl_*) e min{b;,8" /Wi }a" g

Z min{b;, B*\/w; }

i=1

+ w;
(43)

Next, we replace e~ min{bi,f"/wi}e" (ts /E[T]) by 1 to derive
another upper bound with a simple expression, which is given
by (42). This completes the proof. O

Step 2: We now construct a lower bound on the optimal

(7‘1, .
feasible solution to Problem 1, such that r; > 0 and

value of Problem 1. Suppose that r = S TM) S a

ts ts

[1—e e SSM ry 4 pe TR
Z?; ri+1

Because [1 — e 7t(ts/BITD) ™M gy yemmi(te/EITD > 4y for

all [, r satisfies rl/(zgl r; + 1) < b;. Hence, the following

< by, V. (44)



Problem 2 has a larger feasible set than Problem 1: (Problem
2)

M oy te
k o wie E[T] ;
Aot —m;rég e eXEaristh 1+§ T
Ty I

=1 =1
y (45)
+ Zwl
=1
M
st < by (Zr + 1) W,

i=1

(46)

where Aj P * is the optimal value of Problem 2. The optimal
objective value of Problem 2 is a lower bound of that of
Problem 1. We note that the constraint set corresponding
to Problem 2 is convex. Thus, this relaxation converts the
constraint set of Problem 1 to a convex one, and hence enables
us to obtain a lower bound for the optimal value of Problem

1, which is expressed in the following lemma:

Lemma 8. If Y b, > 1, then

M

At > Aptett > [L +wil, @)

" e ; min{b;, 8*/w;}

where [* is the root of (20).

Proof. See Appendix D. O
Step 3: After the upper and lower bounds of AgF K were

derived in Steps 1-2, we are ready to analysis their gap. By
combining (42) and (47), the sub-optimality gap of the solution

r* (18) - (20) is upper bounded by

t
M gy, (em* R
<>

i=1

(1+4)-1)
mln{b’mﬂ*\/w_l} ’
(48)

Aw—peak (I‘*) o Aw-peak

opt

where x*, 5* are defined in (19), (20). Next, we characterize
the right-hand-side (RHS) of (48) by Taylor expansion. For
simplicity, let € =
(19), we have

* Y L ‘

€= — — —_— E= —mM—
2 4 € €2
2tV T

+ €

]Et[}]. Using the expression for z* from

= Ve +o(Ve).

(49)

Moreover,

8

*
I

I
N | =
_|_
] =

_|_

a |
I
_|_

o =
_|_
o =

|
S

_|_

)
7N
Sl-
SN—

=
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Substituting (49) and (50) in (48), we obtain
‘Aw-Peak(r*) _ A&;Feak (51)
wile V(1 + VE+ o(vE) ~ 1]
min{b;, 5*/w; )
wi[(1+veto(Ve)) A+ e+o(Ve)) —1]
1 min{b;, 5+ /t;)

o(Ve),

'M>

s
Il
-

|
M>

.
Il

=2y — 52

\/_; min{b;, f*\/w;} + (52)
where the second inequality involves the use of Taylor expan-
sion. This proves Theorem 1.

We can observe that the gap |AYPeak(p*) — Afjpg’eak in
the energy-adequate regime converges to zero at a speed of
O(y/€), as e — 0. Further, both the upper and lower bounds
(42), (47), converge to M [(w;/ min{b;, B*\/wi}) + w;]
as ts/E[T] — 0. Thus, this value is the asymptotic optimal

objective value of Problem 1. This proves Corollary 2.

B. The Proofs of Theorem 3 and Corollary 4

Similar to Section IV-A, we prove Theorem 3 and Corollary
4 also in three steps:
Step 1: We show that the proposed solution r* (18) and

(25) - (27) is a feasible solution for Problem 1.

Lemma 9. Ifzij\il b; < 1, then the solution r* (18) and (25)
- (27) is feasible for Problem 1.

Proof. See Appendix E. O

Now, we construct an upper bound on the optimal value of

Problem 1 using our proposed solution as follows:

Lemma 10. Ifzi]\il b; <1, then

M
A w-peak w eak wi 21 E[1 i .
gt < arven <3 (L3 )
+Zw
=1
(53)
where x* is defined in (25).

Proof. In Lemma 9, we showed that our proposed solution
r* (18) and (25) - (27) is feasible for Problem 1. Hence, we
substitute this solution into Problem 1 to obtain the following
upper bound:

* tg
ZM wle_blm BT s~ g,
B ) =1
b

=1 !

*ts

( +Zb> —i—Zwl

(54)



Next, we replace e ~bu gy by 1 to derive another upper
bound with a simple expression, which is given by (53). This

completes the proof. O

Step 2: Similar to the proof in Section IV-A, we use the
relaxed problem, Problem 2, to construct a lower bound as
follows:

Lemma 11. Ifoil b; <1, then

— 21 10 tg
A:)vpfeak > A:)vpfzak > Z wq el- ZM b, E[T] + Z w,. (55)
Proof. See Appendix F. O

Step 3: We now characterize the sub-optimality gap by
analyzing the upper and lower bounds constructed above. By
combining (53) and (55), the sub-optimality gap of the solution
r* (18) and (25) - (27) is upper bounded by

}Aw—peak(r*) _ Aw>peak

opt
<Z
=1

—Xiz1 b ts

Tﬁ( +Zb>—612111[]
x*

IWb

(56)

where x* is defined in (25). Next, we characterize the RHS
of (56) by Taylor expansion. For simplicity, let ¢ = ¢5/E[T],

Z = (it bi)/(L =32, bi). and ky = (302, by —b) /(1 —

Zi]\il b;)%. Using Taylor expansion, we are able to obtain the
following:
Inlin =1+ <mlin kl) e+ o(e), (57)
1 1
: =max — = 1+ ( maxk; | e + o(e). (58)
min; ¢ I q l

Using (57), (58), z* from (25), and Taylor expansion again,
we get

62?i1 bix*e =1 —+ 7 <1 —+ <mlm kl) €+ O(E)) €+ O(E)

=1+ Ze+ oe),
(59
M M
1 1—% it b
x_*+zlbl mlnlcl +Zb
- (60)
=1+ (maxkl> <I—Zb>e—|—0
¢ =1 Ze+ole). (61)

Substituting (59) -
Theorem (3).

(61) into (56), we get (28). This proves
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Moreover, we observe that the gap [AVPek(r*) — A%
in the energy-scarce regime converges to zero at a speed of
O(e), as € — 0. Further, both the upper and lower bounds
(53), (55), converge to S [(wi/b;) + w;] as ts/E[T] = 0
Thus, this value is the asymptotic optimal objective value of

Problem 1. This proves Corollary 4.

V. LEARNING TO OPTIMIZE AGE

Note that the optimal rate r* in Theorem 1 depends upon
the mean transmission time E [T']. Since the transmission time
also depends upon (possibly) time-varying channel conditions,
estimating E[T'] accurately a priori, could be cumbersome.
Thus, in this section, we derive learning algorithms that
optimize the total weighted average peak age of all sources
when the mean transmission time E[T] is unknown to the
scheduler. We begin by reducing our system to an equivalent
discrete-time Markov chain.

Contributions and Challenges: The simplest learning al-
gorithm is called the certainty equivalent rule [50]-[53]. In
this, the scheduler maintains an empirical estimate of E [T,
and utilizes sleep parameters that are optimal when the true
value of the mean transmission time is equal to this estimate.
The regret of a learning algorithm is the sub-optimality in the
performance that results because the algorithm does not know
the system parameters. What we are able to show is that by
using the CE rule, we are able to get o( H) regret, where H is
the time-horizon. This further implies that the long-term time-
average performance of our CE algorithm is asymptotically
optimal.

This result is important since it is well-known by now [54]
that in many reinforcement learning problems [40], the CE
rule fails to be yield long-term time average performance,
because it does not yield a correct estimate of the optimal
choices. Thus, more complex learning rules, such as optimism
in the face of uncertainty [41], [53] that utilize confidence
balls in addition to the empirical estimates and thus have
a significantly higher computational complexity, are required
in order to ensure optimality. Our main contribution is to
show that the vanilla CE rule yields asymptotically the same
long-term time average performance as the scheduler that
knows the system parameters in advance, i.e. (with a high
probability) the “sub-optimality gap” of the CE rule is o(H)
where H is the operating time horizon. This means that
instead of using more complex learning algorithm such as the
UCRL [41] or RBMLE [53], one could use CE thereby saving

precious computing power and attaining the optimal average



performance (asymptotically). We perform a finite-time per-
formance analysis of the CE rule and explicitly quantify its
sub-optimality by deriving an upper-bound on its “regret”, i.e.,
the gap between its average expected performance, and that
resulting from the application of optimal sleep parameter. The
problem of designing and analyzing learning algorithms for
our setup poses several challenges, primarily because the age
process evolves in continuous time on a continuous state-space
that is not compact. To address this difficulty, we show that for
the purpose of optimizing average age, we can equivalently
work with a discrete-time process. We then utilize several
techniques from the theory of general state-space Markov
chains [55] for analyzing the learning regret.

Sampling Continuous Time Process: Consider the multi-
source system in which the sleep durations are modulated
according to the parameter vector r = (71,72,...,70p)-
Throughout this section, we let n € N be the discrete time of
the sampled system. We sample the original continuous-time
system at those time instants when one out of the following

events occur:

o a source [ gets channel access and starts transmitting. We
say that it wakes up, denoted by m;(n) = 1,

« asource [ completes packet transmission, and hence goes
into sleep mode such that m;(n) = 0.

In what follows, we make this assumption.

Assumption 1. The transmission times are bounded, i.e., 0 <
T < Twax almost surely, where Tynax > 0. Moreover, the
probability density function f(-) of T satisfies

b < f(n) < ub,Vy € [0, Tinax],

where [b,ub > 0 are upper and lower bounds on the density
Sfunction. O

Define s;(n) := (A;(n),mi(n)), where A;(n) is the age,
and m;(n) € {0,1} is the mode of user [. Define,

s(n) := (s1(n), sa(n),...,sa(n)).

As is shown in Lemma 15 (see Appendix H), for the purpose

(62)

of adaptively choosing sleep parameters, the process s(n)
serves as a sufficient-statistics [56] for the optimization prob-
lem (17). In other words, s(n) is the state of a Markov decision
process. Hence, we will work exclusively with the discrete-
time system obtained by sampling the original continuous-
time system. We use S to denote the state space of a single
source, i.e., we have s;(n) € S. Consider the operation over a

time horizon of H discrete time-steps, and let K denote the
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(random) number of packets delivered to source ! until time

H. The cumulative cost incurred is given by

M K;

C(H) =Y wApk,

=1 i=1

(63)

where A?;ak denotes the i-th peak age of source . We let
ri(n) € R, denote the sleep period parameter for source I,
and denote r(n) := (r1(n),r2(n),...,rar(n)). As is shown
in Lemma 15, the expected value of the cumulative value of

peak age can be written as follows,

H—1
E (Z g(s(n») ,

n=1

(64)

where the function g is described in Lemma 15. However, in
our setup, the controller that chooses r(n) does not know the
density function f of the packet transmission time, and has to
adaptively choose the sleeping period paremeter r(n) so as to

minimize the operating cost (64).

Let ]-"t(d) denote the sigma-algebra generated by the random
variables {s(i)}7,, {r(i)}7=}' (the super-script d denotes the
fact that we are working with discretized system). A learning
policy is a collection of maps ]-"t(d) —r(n),n=12...,H
that chooses the sleep period parameter adaptively based on
past operation history of the system. The performance of a
learning policy is measured by its regret R(H), which is
defined as follows,

H
R(H) = g(s(n)) - HAP*(x*),

n=1

(65)

where AP (r*) is the optimal performance when the true
system parameter is known and hence the scheduler can
implement the optimal rate vector. Throughout this section
we use  to denote the mean transmission time E[T]. Since
the optimal rate depends upon the probability density function
f(-) only through its mean [E[T'], we also denote it by r}.

Certainty Equivalence Learning Algorithm: We begin
with some notations. Let col(i),i = 1,2,... be a random
variable that is equal to 1 if there is no collision at time ¢,
and is O otherwise. The empirical estimate of # at time n is
denoted by 6(n), and given as

) 1 S T)eolli)
N(n)v1

where N(n) : = Z col (i),
i=1

(66)
(67)

and T'(i) € [0,Tmax is the time taken to deliver packet at

time 7.



The learning rule operates in episodes. We let T
be the start time of the k-th episode, and let & :=
{7k, 7+ 1,...,7ks1 — 1} be the time-slots that comprise the
k-th episode, so that the duration of & is 741 — 7% time-slots.
We let 7, = 2F, use k(n) to denote the index of the current
episode at time n, and 6(n) to denote the empirical estimate

at the beginning of the current episode, defined by

k(n) : =max{k:m <t},
0(n) : = 0(Tiem))-

(68)
(69)

Within each single episode the algorithm implements a single
stationary controller that makes decisions only on the basis of
the state s(n) and the estimate 6(7y) obtained at the beginning
of the current ongoing episode k(n). It chooses the sleep
period parameter as r(n) = rg(n),Vn € &, li.e., it utilizes
the rate vector that is optimal for the system whose mean

transmission time is equal to 6(n). Thus, r(n) = To(r for

Tk)
Te <n < Ty — 1.

We summarize our learning rule in Algorithm 2. We will

Algorithm 2: Certainty Equivalence Learning for Age
Optimization
Input: N,v >4
Set A(1) = .5.
1. forn=1,2,... do
2. if n = 75, then

3 Calculate A(n) as in (66) and set 6(n) as
in (68)-(69).
4:  end if
Use r(n) =g,
5: end for

analyze its performance under the following assumptions.
Throughout, for a vector x, we let ||x|| denote its Euclidean
norm, and ||x||; denote its 1-norm.

Assumption 2. With a high probability, say greater than 1—4,
where 6 > 0 is a small constant, the state value s(Ty) at
the beginning of each episode k belongs to a compact set
K:={xe8M: x|y < K1}, where S is the state space of

a single source. [

The above is not a restrictive assumption, since the sched-
uler can always ensure that towards the end of each episode,
each source receives a sufficient amount of service in order
to ensure this condition. We now make a few assumptions

regarding the set © of “allowable parameters”.

Assumption 3. Recall that r; is the optimal sleep parameter

when the mean transmission time is equal to 0. The following
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two properties hold for the scheduler that uses r(n) =rjy,n €
N.
(i) The average cost is finite, i.e.

H
limsup% ZEI‘E (g9(s(n))) < Ky < o0, (70)

H—o00 n—1

(ii) Each user gets channel access with a non-zero probability

inf

(71)
0€0O,le[M]

P (cai(n) = 1r(n) =rp) > 0,

where ca)(i) is a random variable that is 1 if source | gets
channel access at time 1, while is 0 otherwise. We denote

inf

P =1 =ry).
ot P (car(n) = 1fe(n) = x5)

(72)

Pmin ‘=
0

It is easily verified that (70), (71) hold true whenever the
rate vector r is bounded.

The following result quantifies the learning regret of Algo-
rithm 2.

Theorem 12. Consider the problem of designing a learning
algorithm that does not know the statistics of the transmission
time T, and adaptively chooses the sleep period parameters
r(n) in order to minimize the cumulative peak age of M
sources. Let 91 € (0,pmin) be a constant. Then, under

Assumptions 1-3, the regret of Algorithm 2 can be bounded

as follows,
~vlog H (1 )}
E[R(H)| <K;max{ —57 o —=logH )|+
(R(H)) <K X{@mn—¢aw2 +log
g H~(log H)?

m
Ko— + Ly | —————F—.
6 (pmin Y 61)
where H is the operating time horizon, v > 4 is a constant,
Ko, pmin are as in Assumption 3, and the parameters 6, L > 0

are as in Lemma 19.

Proof. See Appendix H. |

VI. NUMERICAL AND SIMULATION RESULTS

We use Matlab and NS-3 to evaluate the performance of
our algorithm. We use ‘“age-optimal scheduler” to denote the
sleep-wake scheduler with the sleep period paramters s as
in (18), which was shown to be near-optimal in Theorem
1 and Theorem 3. By “throughput-optimal scheduler”, we
refer to the sleep-wake algorithm of [23] that is known to
achieve the optimal trade-off between the throughput and
energy consumption reduction. Moreover, we use “fixed sleep-

rate scheduler” to denote the sleep-wake scheduler in which
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Figure 3: Total weighted average peak age AW (r) in (11)

versus the ratio JEIE%] for M = 10 sources.

the sleep period parameters r;’s are equal for all the sources,
i.e., r; = k for all [, where the parameter k£ has been chosen
so as to satisfy the energy constraints of Problem 1. We also
let Auw,{peak(r) denote the unnormalized total weighted average
peak age in (11). Finally, we would like to mention that we do
not compare the performance of our proposed algorithm with
the CSMA algorithms of [36], [37] where the goal was solely
to minimize the age. Since they do not incorporate energy
constraints, it is not fair to compare the performance of our
algorithm with them.

Unless stated otherwise, our set up is as follows: The
average transmission time is E[T] = 5 ms. The weights w;’s
attached to different sources are generated by sampling from
a uniform distribution in the interval [0, 10]. The target power

efficiencies b;’s are randomly generated according to a uniform
distribution in the range [0, 1].

A. Numerical Evaluations

Figure 3 plots the total weighted average peak age
AP (r) in (11) as a function of the ratio ﬁ, where
the number of sources is M = 10. The age-optimal sched-
uler is seen to outperform the throughput-optimal and Fixed
sleep-rate schedulers. This implies that what minimizes the
throughput does not necessarily minimize Aol and vice versa.
Moreover, we observe that the total weighted average peak
age of all schedulers increases as the sensing time increases.
This is expected since an increase in the sensing time leads
to an increase in the probability of packet collisions, which in
turn deteriorates the age performance of these schedulers.

We then scale the number of sources M, and plot Ay (r)

un

in (11) as a function of M in Figure 4. While plotting, we
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Figure 4: Total weighted average peak age AP () in (11)
versus the number of sources M, where Am{peak(r) has been
normalized by M while plotting.
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Figure 5: Total weighted average peak age Ay (r) in (11)
versus the target power efficiency b for M = 100 sources,
where AJiP**(r) has been normalized by M while plotting.

normalize the performance by the number of sources M. The
sensing time ts is fixed at t; = 40 ps. The weights w;’s
corresponding to different sources are randomly generated
uniformly within the range [0, 2]. The age-optimal scheduler is
shown to outperform other schedulers uniformly for all values
of M. Moreover, as we can observe, the average peak age
of the sources under age-optimal scheduler increases up to
around 0.55 seconds only, while the number of sources rises
from 1 to 100. This indicates the robustness of our algorithm

to changes in the number of sources in a network.

In Figure 5, we fix the value of M as 100 and the target
power efficiencies at the same value for all the sources, i.e.,
b b for all [. We then vary the parameter b and plot
the resulting performance. While plotting, we normalize the

performance by the number of sources M. We exclude the
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Figure 6: Total weighted average peak age AW (r) in (11)
versus the target lifetime D for a dense network with M = 10°
sources, where Ampeak(r) has been normalized by M while
plotting. Since the throughput—optimal scheduler is infeasible
for values of D greater than 18 years, we do not plot its
performance for these values.

simulation of the throughput-optimal scheduler for b < 0.01
since the sleeping period parameters that are proposed in [23]
are not feasible for Problem 1 in the energy-scarce regime, i.e.,
when Zi\il b; < 1. The age-optimal scheduler outperforms
the other schedulers. Moreover, its performance is a decreasing
function of b, and then settles at a constant value. This occurs
because our proposed solution in (18) is a function solely of
the weights w;’s and 8* when b exceeds some value. Thus,
the performance of the proposed scheduler saturates after this

value of b.

We now show the effectiveness of the proposed sched-
uler when deployed in “dense networks™ [21], [22]. Dense
networks are characterized by a large number of sources
connected to a single AP. We fix M at 10° sources, and take
the target lifetimes of the sources to be equal, i.e., D; = D for
all [. The weights w;’s corresponding to different sources are
generated randomly by sampling from the uniform distribution
in the range [0,2]. We let the initial battery level B; = 8
mAh for all [ and the output voltage is 5 Volt. We also
let the energy consumption in a transmission mode to be
2475 mW for all sources. We vary the parameter D and
plot the resulting performance in Figure 6. While plotting,
we normalize the performance by the number of sources M.
We exclude simulations for the throughput-optimal scheduler
for values of D for which the scheduler is infeasible, i.e., its
cumulative energy consumption exceeds the total allowable
energy consumption. The age-optimal scheduler is seen to

outperform the others. As observed in Figure 6, under the
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Figure 7: The average actual lifetime versus the target lifetime
D.

age-optimal scheduler, sources can be active for up to 25
years, while simultaneously achieving a decent average peak
age of around .2 hour, i.e., 12 minutes. This makes it suitable
for dense networks, where it is crucial that the sources are

necessarily active for many years.

B. NS-3 Simulation

We use NS-3 [57] to investigate the effect of our model
assumptions on the performance of age-optimal scheduler
in a more practical situation. We simulate the age-optimal
scheduler by using IEEE 802.11b while disabling the RTS-
CTS and modifying the back-off times to be exponentially
distributed in the MAC layer. Our simulation results are
averaged over 5 system realizations. The UDP saturation
conditions are satisfied such that the source nodes always have
packets to send.

Our simulation consists of a WiFi network with 1 AP and 3
associated source nodes in a field of size 50m x 50m. We set
the sensing threshold to -100 dBm which covers a range of
110m. Thus, all sources can hear each other. The initial battery
level of each source is 60 mAh, where the output voltage
is 5 Volt. For each source, the power consumption in the
transmission mode is 24.75 mW, and the power consumption
in the sleep mode is 15 pW. Moreover, all weights are set to
unity, i.e., w; = 1 for all [.

Figure 7 plots the average actual lifetime of the sources
versus the target lifetime, where we take the target lifetimes
of all sources to be equal, i.e., D; = D for all [. As we can ob-
serve, the actual lifetime of the age-optimal scheduler always
achieves the target lifetime. This suggests that our assumptions
(i.e., (i) omitting the power dissipation in the sleep mode

and in the sensing times, (ii) the average transmission times
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and collision times are equal to each other) do not affect the
performance of the algorithm which reaches its target lifetime.

Figure 8 plots the total weighted average peak age versus
the target lifetime, where again we take the target lifetimes
of all sources to be equal, i.e., D; = D for all [. The age-
optimal scheduler (theoretical) curve is obtained using (11),
while the age-optimal scheduler (from NS-3) curve is obtained
using the NS-3 simulator. As we can observe, the difference
between the plotted curves does not exceed 2% of the age-
optimal scheduler (theoretical) performance. This emphasizes
the negligible impact of our assumptions on the performance
of our proposed algorithm.

VII. CONCLUSIONS

We designed an efficient sleep-wake scheduling algorithm
for wireless networks that attains the optimal trade-off be-
tween minimizing the Aol and energy consumption. Since
the associated optimization problem is non-convex, in general
we could not hope to solve it for all values of the system
parameters. However, in the regime when the carrier sensing
time ¢, is negligible as compared to the average transmission
time E[T], we were able to provide a near-optimal solution.
Moreover, the proposed solution is in a simple form that
allowed us to design an easy-to-implement algorithm to obtain
the solution. Furthermore, we showed that the performance of
our proposed algorithm is asymptotically no worse than that of
the optimal synchronized scheduler, as ¢s/E[T] — 0. Finally,
when the mean transmission time is unknown, we devise a
reinforcement learning algorithm that adaptively learns the

unknown parameter.

16

VIII. ACKNOWLEDGEMENTS

The authors appreciate Jiayu Pan and Shaoyi Li for their

great efforts in obtaining the ns-3 simulation results.

REFERENCES

[11 A. M. Bedewy, Y. Sun, R. Singh, and N. B. Shroff,
information freshness using low-power status updates via sleep-wake
scheduling,” in Proc. MobiHoc, 2020, pp. 51-60.

[2] S. Kaul, R. D. Yates, and M. Gruteser, ‘“Real-time status: How often
should one update?,” in Proc. IEEE INFOCOM, 2012, pp. 2731-2735.

[3] Y. Sun, I. Kadota, R. Talak, and E. Modiano, “Age of information: A new
metric for information freshness,” Synthesis Lectures on Communication
Networks, vol. 12, no. 2, pp. 1-224, 2019.

[4] R. D. Yates, Y. Sun, D. R. Brown III, S. K. Kaul, E. Modiano, and
S. Ulukus, “Age of information: An introduction and survey,” arXiv
preprint arXiv:2007.08564, 2020.

[5] N. F. Timmons and W. G. Scanlon, “Analysis of the performance of

“Optimizing

ieee 802.15. 4 for medical sensor body area networking,” in First
Annual IEEE Communications Society Conference on Sensor and Ad
Hoc Communications and Networks. IEEE SECON 2004., 2004, pp.
16-24.

[6] Chipcon AS SmartRF CC3420 Preliminary Datasheet, rev 1.0, 17
November 2003.

[7] Datasheet for MC9SO8RES motorola microcontroller.

[8] R.D. Yates and S. K. Kaul, “Status updates over unreliable multiaccess
channels,” in Proc. IEEE ISIT, 2017, pp. 331-335.

[9] R. Talak, S. Karaman, and E. Modiano,

algorithms for optimizing information freshness in wireless networks,”

in Proc. IEEE SPAWC, 2018, pp. 1-5.

R. Li, A. Eryilmaz, and B. Li, “Throughput-optimal wireless scheduling

with regulated inter-service times,” in Proc. IEEE INFOCOM, 2013, pp.

2616-2624.

I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano,

“Scheduling policies for minimizing age of information in broadcast

wireless networks,” IEEE/ACM Trans. Netw., vol. 26, no. 6, pp. 2637—

2650, 2018.

Y. Hsu, E. Modiano, and L. Duan, “Scheduling algorithms for mini-

“Distributed scheduling

[10]

[11]

[12]
mizing age of information in wireless broadcast networks with random
arrivals,” IEEE Transactions on Mobile Computing, 2019.

[13] Z. Jiang, B. Krishnamachari, X. Zheng, S. Zhou, and Z. Niu, “Timely
status update in massive iot systems: Decentralized scheduling for
wireless uplinks,” arXiv preprint arXiv:1801.03975, 2018.

[14] 1. Kadota, A. Sinha, and E. Modiano, “Optimizing age of information

in wireless networks with throughput constraints,” in Proc. INFOCOM,

2018, pp. 1844-1852.

R. Talak, S. Karaman, and E. Modiano,

freshness in wireless networks under general interference constraints,”

in Proc. MobiHoc, 2018, pp. 61-70.

Q. He, D. Yuan, and A. Ephremides, “Optimal link scheduling for age

minimization in wireless systems,” IEEE Trans. Inf. Theory, vol. 64,

no. 7, pp. 5381-5394, 2017.

[17] X. Guo, R. Singh, P. R. Kumar, and Z. Niu, “A risk-sensitive approach

for packet inter-delivery time optimization in networked cyber-physical

systems,” IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1976-1989, 2018.

Y. Sun, E. Uysal-Biyikoglu, and S. Kompella, “Age-optimal updates of

multiple information flows,” in IEEE INFOCOM - the 1st Workshop on

the Age of Information (Aol Workshop), 2018, pp. 136-141.

I. Kadota, E. Uysal-Biyikoglu, R. Singh, and E. Modiano, “Minimizing

[15]

“Optimizing information

[16]

[18]

[19]
the age of information in broadcast wireless networks,” in Proc. Allerton,
2016, pp. 844-851.



[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

R. Singh, X. Guo, and P. R. Kumar, “Index policies for optimal mean-
variance trade-off of inter-delivery times in real-time sensor networks,”
in Proc. IEEE INFOCOM. IEEE, 2015, pp. 505-512.

S. S. Kowshik, K. Andreev, A. Frolov, and Y. Polyanskiy,
efficient coded random access for the wireless uplink,” arXiv preprint
arXiv:1907.09448, 2019.

S. S. Kowshik and Y. Polyanskiy, “Fundamental limits of many-user

“Energy

mac with finite payloads and fading,” arXiv preprint arXiv:1901.06732,
2019.

S. Chen, T. Bansal, Y. Sun, P. Sinha, and N. B. Shroff, “Life-add:
Lifetime adjustable design for wifi networks with heterogeneous energy
supplies,” in Proc. WiOpt, 2013, pp. 508-515.

R. D. Yates and S. K. Kaul, “The age of information: Real-time status
updating by multiple sources,” IEEE Trans. Inf. Theory, vol. 65, no. 3,
pp. 1807-1827, 2018.

M. Costa, M. Codreanu, and A. Ephremides, “On the age of information
in status update systems with packet management,” IEEE Trans. Inf.
Theory, vol. 62, no. 4, pp. 1897-1910, 2016.

A. M. Bedewy, Y. Sun, and N. B. Shroff, “Optimizing data freshness,
throughput, and delay in multi-server information-update systems,” in
Proc. IEEE ISIT, 2016, pp. 2569-2573.

A. M. Bedewy, Y. Sun, and N. B. Shroff,
information through queues,” [EEE Trans. Inf. Theory, vol. 65, no. 8,
pp. 5215-5232, 2019.

A. M. Bedewy, Y. Sun, and N. B. Shroff, “Age-optimal information
updates in multihop networks,” in Proc. IEEE ISIT, 2017, pp. 576-580.
A. M. Bedewy, Y. Sun, and N. B. Shroff, “The age of information
in multihop networks,” IEEE/ACM Trans. Netw., vol. 27, no. 3, pp.
1248-1257, 2019.

Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” IEEE Trans. Inf. Theory,
vol. 63, no. 11, pp. 7492-7508, 2017.

Y. Sun and B. Cyr,
linear age functions,” Journal of Communications and Networks, vol.
21, no. 3, pp. 204-219, 2019.

A. M. Bedewy, Y. Sun, S. Kompella, and N. B. Shroff, “Age-optimal
sampling and transmission scheduling in multi-source systems,” in Proc.
MobiHoc, 2019, pp. 121-130.

A. M. Bedewy, Y. Sun, S. Kompella, and N. B. Shroff,
sampling and scheduling for timely status updates in multi-source
networks,” IEEE Trans. Inf. Theory, pp. 1-1, 2021.

S. Yun, Y. Yi, J. Shin, et al., “Optimal CSMA: a survey,” in Proc. ICCS,
2012, pp. 199-204.

R. Singh and P. R. Kumar, “Adaptive CSMA for decentralized
scheduling of multi-hop networks with end-to-end deadline constraints,”
accepted by IEEE/ACM Trans. Netw., 2021.

A. Maatouk, M. Assaad, and A. Ephremides, “Minimizing the age of

“Minimizing the age of

“Sampling for data freshness optimization: Non-

“Optimal

information in a CSMA environment,” arXiv preprint arXiv:1901.00481,
2019.

M. Wang and Y. Dong, “Broadcast age of information in CSMA/CA
based wireless networks,” arXiv preprint arXiv:1904.03477, 2019.

L. Jiang and J. Walrand, “A distributed CSMA algorithm for throughput
and utility maximization in wireless networks,” IEEE/ACM Trans. Netw.,
vol. 18, no. 3, pp. 960-972, 2010.

G. Bianchi, “Performance analysis of the IEEE 802.11 distributed
coordination function,” IEEE J. Sel. Areas Commun., vol. 18, no. 3,
pp- 535-547, 2000.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction,
MIT press, 1998.

T. Jaksch, R. Ortner, and P. Auer, “Near-optimal regret bounds for

[42]

[43]

[44]
[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

17

reinforcement learning.,” Journal of Machine Learning Research, vol.
11, no. 4, 2010.

R. Singh, A. Gupta, and N. B. Shroff, “Learning in Markov decision
processes under constraints,” arXiv preprint arXiv:2002.12435, 2020.
A. N. Shiryaev, Optimal stopping rules, New York: Springer-Verlag,
1978.

A. Wald, Sequential analysis, New York: Courier Corporation, 1973.
ASH transceiver TR1000 data sheet, RF Monolithic Inc.

K. F. Ramadan, M. L. Dessouky, M. Abd-Elnaby, and F. E. A. El-Samie,
“Energy-efficient dual-layer MAC protocol with adaptive layer duration
for wsns,” in 11th International Conference on Computer Engineering
Systems (ICCES), 2016, pp. 47-52.

A. El-Hoiydi, “Spatial TDMA and CSMA with preamble sampling for
low power ad hoc wireless sensor networks,” in Proc. IEEE Int. Symp.
Comput. Commun. (ISCC), 2002, pp. 685-692.

C. Lu, A. Saifullah, B. Li, M. Sha, H. Gonzalez, D. Gunatilaka, C. Wu,
L. Nie, and Y. Chen, “Real-time wireless sensor-actuator networks for
industrial cyber-physical systems,” Proceedings of the IEEE, vol. 104,
no. 5, pp. 1013-1024, 2016.

P. Hsieh and 1. Hou,
real-time wireless ad hoc networks with unreliable transmissions,” in

“A decentralized medium access protocol for

IEEE 38th International Conference on Distributed Computing Systems
(ICDCS), 2018, pp. 972-982.

P. Mandl, “Estimation and control in markov chains,”
Applied Probability, pp. 40-60, 1974.

H. Van de Water and J. Willems, “The certainty equivalence property

Advances in

in stochastic control theory,” IEEE Transactions on Automatic Control,
vol. 26, no. 5, pp. 1080-1087, 1981.

H. Mania, S. Tu, and B. Recht, “Certainty equivalence is efficient for
linear quadratic control,” in Advances in Neural Information Processing
Systems, 2019, pp. 10154-10164.

A. Mete, R. Singh, and P.R. Kumar,
likelihood estimation for reinforcement learning,”
arXiv:2011.07738, 2020.

V. Borkar and P. Varaiya, “Adaptive control of Markov chains, i: Finite

“Reward biased maximum

arXiv preprint

parameter set,” IEEE Transactions on Automatic Control, vol. 24, no.
6, pp. 953-957, 1979.

E. Nummelin, General irreducible Markov chains and non-negative
operators, vol. 83, Cambridge University Press, 2004.

C. Striebel, “Sufficient statistics in the optimum control of stochastic
systems,” Journal of Mathematical Analysis and Applications, vol. 12,
no. 3, pp. 576-592, 1965.

“NS-3.” https://www.nsnam.org/.

R. G. Gallager, Discrete stochastic processes, Boston: Kluwer Academic
Publishers, 1996.

S. Boyd and L. Vandenberghe, Convex optimization, New York, NY,
USA: Cambridge University Press, 2004.

S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability,
Springer Science & Business Media, 2012.

M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming (Wiley Series in Probability and Statistics),
Wiley-Interscience, 2005.

P. Billingsley, Probability and measure, John Wiley & Sons, 2008.

O. Herndndez-Lerma and J. B. Lasserre, Further topics on discrete-time
Markov control processes, vol. 42, Springer Science & Business Media,
2012.

J. K. Hunter, “Introduction to applied mathematics,” lecture notes of
Math 207A, University of California Davis, CA, Fall Quarter, 2011.
W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” in The Collected Works of Wassily Hoeffding, pp. 409-426.
Springer, 1994.



[66] R. Ayoub, “Euler and the zeta function,” The American Mathematical
Monthly, vol. 81, no. 10, pp. 1067-1086, 1974.

IX. APPENDIX

APPENDIX A
DERIVATION OF (5)

Define 5; as the residual sleeping period of source [ after a
sleep-wake cycle is over. Due to the memoryless property of
exponential distribution, since the sleeping period of source [ is
exponentially distributed with mean value E[T|/r;, S; is also
exponentially distributed with mean value E[T']/r;. According
to the proposed sleep-wake scheduler, source [ gains access
to the channel and transmits successfully in a given cycle if
S; > S; + ts for all ¢ # [. Hence, we have

o = P(SZ > S+ ts, Vi # l) (73)
@ RP(S; > 81 + ta, Vi £ 1/S)] (74)
Qg TIPS > S +t15) (75)
i#l
> —p; SLtts LR

= e EITT | ——¢ 'R {5 (76)

/ 11 B[]

rye" R
= 0 ; (77)
eZﬁ‘il T BT sz\il -
where (a) is due to P[A] = E[P(A|B)], and (b) is due to the
fact that S; is independent for different sources. O
APPENDIX B

DERIVATION OF (13)

Recall the definition of S; at the beginning of Appendix A.
Moreover, define P, as the probability that source [ transmits
a packet in a given cycle, regardless whether packet collision
occurs or not. For the sleep-wake scheduling mechanism the
we are utilizing here, source [ transmits in a given cycle as long
as no other source wakes up before S; — g, i.e., S; > S; — ts

for all 4 # [. Hence, we have

P =P(S; > S —ty, Vi #1) (78)
=P(S; > S —ts, Vi#£l, S >ts) +P(S; <ts), (79)
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where the first term in the RHS is given by

P(S; > S, —ts >0, Vi#1) (80)
=E[P(S; > S —ts >0, Vi #1[5)] )
=E [[[2(Si > Si —t. > 0|S))] (82)
i#l
o] . Sits 7 ey 5L
_ e TiET e 'ElTlds; (83)
Jo [T o
—e TRt L (84)

—r—
D1 T
Since 5 is exponentially distributed with mean value E[T]/r;,

we can determine the second term in the RHS of (79) as

follows:
P(S; < t,) =1 — e "ET, (85)
Substituting (84) and (85) back into (79), we get
iy s P 7 T
P=1—¢ "FTT 4 BT ———— (86)
: Zz]\il i

Let oo denote the collision probability in a given cycle. We
have oo = 1 — Zﬁl «;, because each cycle includes either
a successful transmission or a collision. Moreover, let E[Idle]
denote the mean of the idle duration in a cycle. By the renewal

theory in stochastic processes [58], o; is given by

PE|T
g1 = M HELT] (87)
X2y i + aeo)E[T] 4 E[Idle]
PE[T
R L - (88)
E[T] + s
i=1"7%
—r (ts M _r (ts
Zi:l ri+1
O
APPENDIX C

PROOF OF LEMMA 6

First of all, we need to show that (20) has a solution for
B
Lemma 13. Suppose that w; > 0, and by > 0 for all

L If ZZ]\il b; > 1, then (20) has a unique solution on
[0, max;(b;/\/w;)]; otherwise, (20) has no solution.

Proof. 1t is clear that if Zﬁl b; = 1, then 8* satisfies (20)
if and only if 8* > max;(b;/+/w;). Hence, (20) has a unique
solution on [0, max;(b;/+/w;)] in this case. We now focus on

the case of Zf\il b; > 1. In this case, we have the following:

o If 8* =0, then SV min{b,, *\/w;} = 0.



o If 8% = max;(by/\/wr), then S min{b;, *\/w;} >
1.

o The left hand side (LHS) of (20) is strictly increasing and
continuous in 5* on [0, max;(b;/\/wy)].

As a result, (20) has a unique solution on [0, max;(b;//w;)]
in this case as well. Finally, if Zﬁl b; < 1, then
M min{b,, 5wy < M b < 1. Hence, (20) has no
solution if ZZ]\il b; < 1. This completes the proof. O

Since we have Zf\il b; > 1, Lemma 13 implies that (20)
has a solution for 5*. Now, we are ready to prove Lemma 6.

Consider the following constraints:

to M )
TLE[T] > =1 Ti T

< b, Vi. (90)
Ziﬂil ri+1
Since we have
1— e TR < s 91
& ST E[T] 5 ( )
e TR < 1, 92)
then,
t M t t M
[1 — e "EMT) Z” + e THEITT < TIIE[;] Zri + 7. (93)

i=1 i=1
Thus, if the constraints in (90) are satisfied for a given solution
r, then the constraints of Problem 1 are satisfied as well. We
can observe that the constraints in (90) are equivalent to the

following set of constraints:

rp < bzxitl,w

M (94)
ZTZ' =XT.

i=1

Now, it is easy to show that if @ < \/E[T]/ts, then z <
(x +1)/[1 + (ts/E[T])z]. Meanwhile, our proposed solution
r* (18) - (20) satisfies ZM r¥ = x*. Thus, if we can show

i=1"1

that 2* < \/E[T]/ts, then
¥+ 1

ri = min{b;, B*w tr* < b < blﬁ, 95)

*

E[1]

and the constraints in (94) hold for our proposed solution r*.
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What remains is to prove that 2* < \/E[T]/ts. We have

(96)
E[T]
:___E_aﬁ 97)
1 1
s tyVat o
E[T]
E[T
< [T] 98)
E[T] ts

Hence, our proposed solution r* (18) - (20) satisfies (94),
which implies (90). This completes the proof. O

APPENDIX D
PROOF OF LEMMA 8

By replacing e~"1(t/EIT) X205, 7i(t:/EIT)) i (45) of Prob-

lem 2 by 1, we obtain the following optimization problem:

M w, M M
gl;% T_l (1 + Z rl-) + Z wy 99)
=1 =1 =1
M
si.mjgbl<§:7y4—1>,VL (100)
=1

Since e~ Tt(ts/E[T) XL mi(ts/EIT) > 1 Problem (99) serves
as a lower bound of Problem 2, and hence a lower bound of
Problem 1 as well. Define an auxiliary variable y = Zﬁl ri+
1. By this, we solve a two-layer nested optimization problem.
In the inner layer, we optimize r for a given y. After solving
r, we will optimize y in the outer layer. Now, fix the value

of y, we obtain the following optimization problem (the inner

layer):

Mor

min {ly+w4 (101)

;>0 = T

s.t. v < by, Vi, (102)
M
Sritl=y. (103)
i=1

The objective function in (101) is a convex function. More-
over, the constraints in (102) and (103) are affine. Hence,
Problem (101) is convex. We use the Lagrangian duality
approach to solve Problem (101). Problem (101) satisfies
Slater’s conditions. Thus, the Karush-Kuhn-Tucker (KKT)
conditions are both necessary and sufficient for optimality
[59]. Let v = (71, .. -
associated with constraints (102) and (103), respectively. Then,

,var) and p be the Lagrange multipliers



the Lagrangian of Problem (101) is given by

M
w;
L(r, v, p) ZZ [T_y + wz:|

2

i=1
" " (104)
+ Z’yi(ri—biy) +p <Z ri+1—y> .
i=1 i=1
Take the derivative of (104) with respect to r; and set it equal
to 0, we get
—wry
T‘F”YI—F/L:O. (105)
This and KKT conditions imply
wry
r = , 106
: Voutu (100
Y =01 —by <0, (107)
Yi(ri — biy) =0, (108)
M
(109)

Z r+1=uy.
i=1
If v, = 0, then r; = \/(wy)/p and r; < byy; otherwise, if

v > 0, then r; = by and r; < \/(w;y)/u. Hence, we have

r :min{bly, “”*y}, (110)
1
where by (103), p* satisfies
M —
Zmin{biy, f’}+1_y. (111)
=1 H

We can observe that p* is a function of y. Because of that,

we can define 5*(y) = /1/(yp*), which is a function of y
as well. Then, the optimum solution to (101) can be rewritten

as
= mln{blaﬂ*(y)m}%VL (112)
where 8*(y) satisfies
M 1
Zmin{bi,my)w@}w: 1. (113)
i=1 :

Substituting (112) and (113) back in Problem (101), we get

the following optimization problem (the outer layer):

M
. w; )
y>Hl1 — {min{bi,ﬁ*(y)\/w_i} T (114)
M
st. Y min{b;, B (y)vwi} + i =1. (115)

i=1
Problem (114) serves as a lower bound of Problem 2, and
hence a lower bound of Problem 1. We can observe that

the objective function in (114) is decreasing in 5*(y). More-

20

over, (115) implies that 5*(y) is strictly increasing in y if
Ziﬂil b; > 1. As a result, y = oo is the optimal solution of
Problem (114). At the limit, the constraint (115) converges to
(20). Since 5* serves as a solution for (20), we can deduce
that lim,_, 5*(y) = 5*. Thus, we have the following lower

bound:
M w
Aw—peak Z Aw—peak Z |:—z +w;l . (116)
opt opt,2 ; mln{bi,ﬁ*\/w_i}
This completes the proof. O
APPENDIX E
PROOF OF LEMMA 9
Because 1 — e™* < x, we can obtain
. . M
e I 4 [1 — e VRO Zri
i=1
. M
ZTl-l—[l—e_TlﬁsT]] (Zm—?‘l> (117)
i=1
<rtnge (3
T T T — T )
=7 lE[T] - 1
Hence, if r satisfies the constraint
r+ rlﬁ (Zf\il ri — Tl)
< by, (118)

Z?; i+ 1
then r also satisfies the constraint of Problem 1 in (17).
Consider the following set of solution indexed by a parameter
c>0:

r = cuy, VI, (119)
b
uy=——-"—>"l (120)
l 1 _Z?; bi

We want to find a ¢ such that the solution in (119) and (120)
is feasible for Problem 1. To achieve this, we first substitute
the solution (119) and (120) into the constraint (118), and get

2 te M
cuy + CCurgg (Zi:l w; — ul)
M
ey iqui+1

If equality is satisfied in (121), we can obtain the following

<. (121)

quadratic equation for c:

te (&
’UJZW (; ui—ul>

C2

M
+c <ul—bl ZUJl) —b, = 0.
=1
(122)

The solution to (122) is given by ¢; in (26). Hence, r; = ¢y

is feasible for the constraint (118) for source .



As feasibility for one source only is insufficient, we further
prove that the solution in (119) and (120) with ¢ = min; ¢;
is feasible for satisfying the energy constraints of all sources
l=1,...,
of the LHS of (121). By taking the derivative with respect to

M. To that end, let us consider the monotonicity

c, we get

Uy ]ETST] (Zﬁ1 Wi — “l) (02 Zi\il u; + 20) +

> 0.
(oM uy +1)2
(123)
Hence,
r = (mlincl> uy, Vi, (124)

is feasible for the energy constraints of all sources [ =

1,..., M. After some manipulations, the solution in (120) and

(124) are equivalently expressed as (18) and (25) - (27). This

completes the proof. O
APPENDIX F

PROOF OF LEMMA 11

By replacing e "1(t/EITD /py by = Xiimilt/EIT) /]
bl(Z?il r;+1)] and eXiZimi(ts/E[T]) by 1 in (45) of Problem

2, we obtain the following optimization problem:

) M wle—Zﬁvilnﬁ M
WL o TET
M
st < by (Z i + 1) VL.
1=1

Since r; < bz(Zfil r; +1), we have
e " Et[ST] - Zﬁl TiEti;‘
> .
K bl (Zz 17 + 1)

Moreover, we have eXi=1 7i(ts/E[T]) > 1 Thus, Problem (125)
and hence a lower

(126)

serves as a lower bound of Problem 2,
bound of Problem 1 as well. By removing the constant term
Zz]\i1 w; in the objective function of Problem (125) and then
taking the logarithm, Problem (125) is reformulated as

Mo M .
o (35 - St
" (127)
sty < by <Z "+ 1) VL.
i=1
Obviously, Problem (127) is a convex optimization problem
and satisfies Slater’s conditions. Thus, the KKT conditions

are are necessary and sufficient for optimality. Let 7 =

21

(T1,...,70m) be the Lagrange multipliers associated with the

constraints of Problem (127). Then, the Lagrangian of Problem
(127) is given by

M Mo
L(r,7) =log <Z b_1> - <Z T1W>

Mi:l i;l
+ZTi lm —b; <ZT1 + 1)
=1 i=1

Take the derivative of (128) with respect to r; and set it equal

(128)

to 0, we get
—ts
b = 12
E[T] +7(l=b) =Y 7bi=0. (129)
i#l
This and KKT conditions imply
ts i Tib;
7= i : (130)
E[T](1 —b) 1—-1b
M
7 >0,r—b <Zn+1> <0, (131)
i=1
M
7 ln —b (Z r + 1) =0. (132)
i=1

Since Zf\il b; < 1, (130) implies that 7; > 0 for all [. This

and (132) result in
M
=0 (Zri - 1) Vi
i=1

Because sz\i1 b; < 1, (133) has a unique solution, which is

(133)

given by
b

1- Z?; bi
Hence, the solution to (125) and (127) is given by (134).
Substitute (134) into (125), we get the following lower bound:

= VL. (134)

727 1 bi ts
w-pea w-peal ’LUlel E e
At > AR > Z —_— Zwl (135)
This completes the proof. |
APPENDIX G
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We start by solving Problem (38) for optimal a. Problem
(38) is a convex optimization problem and satisfies Slater’s
conditions. Thus, the KKT conditions are necessary and suf-
(M,...,An) and v be the
Lagrange multipliers associated with the constraints (39) and

ficient for optimality. Let A =

(40), respectively. Then, the Lagrangian of Problem (38) is



given by

M
L(a, A\, v) Z [a +wz]
l:1M M
+Z)\i(ai—bi)+y<2ai—1>.
i= 1=1

i=1

(136)

Take the derivative of (136) with respect to a; and set it equal

to 0, we get
N+ =0. (137)
@
This and KKT conditions imply
wy
= 138
a N (138)
A>0, a0 =0, <0, (139)
Ai(a; —by) =0, (140)
M
v>0, Y a—1<0, (141)
i=1
M
v (Z ai — 1) =0. (142)
1=1

If \; = 0, then we have a; = \/m and a; < b;. This
implies that ¥ > 0 and hence Zf\il a; = 1, which holds
when M b, > 1.

If A\, > 0, then we have a; = b, and a; < /w;/v. In
this case, we either have v > 0, which implies Zf\il a; =1
and this holds when Zi\il b; > 1; or v = 0, which implies
S2M a; <1 and this holds when "M b; < 1.

From the above argument, the solution can be driven ac-
cording to the following two cases:

Case 1 (Energy-adequate regime (Ziﬂil b; > 1)): In this

case, the optimal solution is given by

a; = min {bl, } Vi, (143)
\ v*
where we must have v* > 0, which implies Zl a7 = 1.
Hence, v* satisfies
M o
Zmin{bi,,/—j}zl. (144)
14
i=1

By comparing (144) with (20), we can deduce that \/1/v* =
B3*, where [3* satisfies
M
> min{b;, BV} = 1. (145)
i=1

Since Zi\il b; > 1, (145) has a solution for $* as shown

in Lemma 13. Hence, the solution to Problem (38) can be

22

rewritten as

a; = min{b;, 8*\/w;}, V. (146)
Substituting (146) into (38), we obtain
M w
AR = [— +wi (147)
pt- ; min{b;, 8*/w; }

which is equal to the asymptotic optimal objective value of
Problem 1 in energy-adequate regime in (24).

Case 2 (Energy-scarce regime (ZZ 1 bi < 1)): In this case,
the optimal solution is

a; = by, V. (148)
Substituting by this into (38), we obtain
M Tw
k i
At =" [bT + wl] : (149)

i=1
which is equal to the asymptotic optimal objective value of
Problem 1 in energy-scarce regime in (30). This completes
the proof. |
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A. Notation and Background on General State-Space Markov

Processes

While analyzing learning algorithm, we will have to work
with Markov processes on general state-space [55], [60]. In
this section we provide a brief account of such processes.

Notation: For a set of r.v. s X, we let F(X) denote the
smallest sigma-algebra with respect to which each r.v. in X" is
measurable. For a set X', we let X' denote its complement. For
an event X', we let 1(X') denote its indicator random variable.
For a set X, we let B(X) denote the sigma-algebra of Borel
sets of X.

We begin by showing that s(n) can be taken to be the system
state /sufficient statistics [56] in order to describe the sampled
process. In what follows, we let S := R, x {0, 1}. Denote by
9 o f max

of any source, i.e., we use the abbreviation § = E[T']. The

y)dy the mean transmission time of a packet

proof of the following result is omitted for brevity.

Lemma 14. Consider the system in which M sources share a
channel, and utilize the sleep period parameters as r(n) =r
in order to modulate the sleep durations of sources. We then
have that

P (s(n+1) € A|F) = K(s(n),r, A; f), (150)



where JF; denotes the sigma-algebra generated by all the
random variables until the n-th discrete sampling instant. The
SJunction K is the kernel [55] associated with the controlled

transition probabilities of the process s(n),

K:SMx RY x BRM) — [0,1]. (151)

Thus, K(s,r, A; f) is the probability with which the state at
time n + 1 belongs to the set A, given that the state at time
n is equal to s, and the vector comprising of sleep period
parameters at time n is equal to r. Note that the kernel is

parametrized by the density function of transmission time f.

We begin by stating some definitions associated with
Markov Chains on General State-Spaces. Though these can be
found in standard textbooks on General State-Space Markov
Chains such as [55], [60], we include them here in order to
make the paper self-contained.

Let us now fix the controls at r(n) = r, and consider the
resulting discrete-time Markov chain s(n) € SM. If A is a
Borel set, we let P™(x, A) denote the probability of the event
s(n) € A, given that s(0) = x.

Definition 1. (Small Set) A set C € B(SM) is called v,,, small
if for all x € C' we have that

P™(x, A) > v, (A), VA € B(SM),
for some non-trivial measure v, (-) and some m € N.

Definition 2. (Petite Set) Let q = {qn }nen be a probability
distribution on N. A set C € B(SM) and a non-trivial sub-

probability measure v,(-) are called petite if we have that

D anP"(x,A) > v4(A),VA € B(SM),Vz € C.

neN
Definition 3. (Strong Aperiodicity) If there exists a v small
set C' such that we have v1(C) > 0, then the chain s(n) is

strongly aperiodic.

B. Preliminary Results

We now show that in order to minimize the expected value
of C(H), it suffices to design controllers that “work directly”
with the sampled system. Thus, the quantity s(n) as described
in (62) serves as a sufficient statistic for the purpose of
optimizing the expectation of cumulative peak age [56]. We
also show that this objective can be posed as a constrained

Markov decision process [61].
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Lemma 15. Let s(n),n = 1,2,. .., be the sampled controlled
Markov process. There exists a function g : S™ +— R so that

H
E[C(H)] in (63) is given by E {Z g(s(n))]

n=1
Proof. Consider the cumulative peak-age cost (63) in which
the I-th source incurs a penalty of A?Zak upon delivery of the -
th packet. Let this delivery occur at the end of the n-th discrete
time-slot (note that this time n is random). Let us denote by
a'loeak(n) the peak age of source ! during the (continuous) time
interval (in the non-discretized system) corresponding to the
discrete time slots n — 1 and n. We could (instead of charging
a penalty of Af_:dk units at the end of n-th slot) charge the
quantity E {a?**(n)|s(n — 1),r(n — 1)} at the discrete time
instant n — 1. For sources k # [ that are not transmitting
between n — 1 and n, and have mg(n — 1) = 0, we let
g(s(n — 1)) = 0. It then follows from the law of the iterated
expectations [62] that the expected cost of the system under
this modified cost function remains the same as that of the

original system. This completes the proof. O

Ergodicity of s(n): We now derive a few useful results
about the Markov process s(n).

Lemma 16. Consider the multi-source wireless network
operating under the controls r(n) = r, and assume that the
sensing time ts is sufficiently small, i.e., it satisfies t5 < 1.
Consider the associated process s(n), n = 1,2,... We then

have the following:

1) Define
e; == (M —i)e, and m; = 0,¥i € [N],

where € > 0 is chosen to be sufficiently small. Consider

the set

C =L (M —i),(M =) +e] x {mi}]. (152)

The set C' is small for the process s(n).
2) For the process s(n), each compact set is peltite.

3) The process s(n) is strongly aperiodic.

Proof.

all the sources are sleeping. Consider the following set

1) Consider s(0) € C. It follows that at time n = 0,

denoted C’: Sources 1 and 2 wake up within ¢4 time
duration of each other, while the other sources wake
up much later than these two. Consequently, there is a
collision between Source 1 and Source 2, and hence at
time n = 1 these two sources enter into sleep mode,

so that at time n = 1 all the sources are asleep. Also



assume that the cumulative time elapsed for this event to
occur is approximately equal to t5 + d, where § > 0 is a
sufficiently small parameter. The probability of the event
{s(1) € C'} can be lower bounded as follows

Ste
P(s(1) e C') > (rl/ i exp(—rw)dx)
§
X tsro exp(—ra(d + €))
X {Hﬁ\ig /OO r; exp(—rix)dx} .
d+e
Since the above lower-bound on the probability of “reach-
ing C" is true for all s(0) € C, it follows from
Definition 1 that the set C' is small.

2) Consider the process s(n) starting in state s(0), and let
the age vector a(0) belong to a compact set, so that s(0)
also belongs to a compact set. We will derive a lower
bound on the probability of the event {s(N) € C'}, where
C is as in (152). This will prove (ii) since we have
already shown in (i) that the set C' is small. Consider
the following sample path: at each time ¢ € [1, M], we
have that source ¢ successfully transmits a packet, and
moreover the age of the packet received is approximately
equal to 1. We will derive a lower-bound on the prob-
ability of this event. In the following discussion we use
b>0and n € (0,1 —ts —b), where n denotes the time
when Source 1 wakes up. Since the counter of the i-
th source has a probability density equal to r;e~"", the
probability that during the i-th slot source 7 gets channel
access is lower bounded by (1 — exp(—nr;))ILjze”"7;
while the probability that the age of its delivered packet
is around 1, given that it wakes up at 7, is lower bounded
by fob f(y)dy. Thus, the probability of this sample path

is lower bounded by

b
TN | (1 — exp(—rrs) e / F(y)dy.
0

This concludes the proof since along this sample path we
have that s(N) € C.

3) It follows from the discussion on page 121 of [60] that
in order to prove the claim it suffices to show that the
volume of the set C'NC” is greater than 0. However, this
condition holds true if the parameter  in (i) above has
been chosen so as to satisfy t; + 9 < e.

O

We now show that the process s(n) has a certain “mixing
property”. For a measure p and a function f, we define

lully o= [ f(z)dp(z).
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Lemma 17 (Geometric Ergodicity). Consider the controlled
Markov process s(n), n = 1,2,..., associated with the
network in which the controller utilizes r(n) = r. The process
s(n) has an invariant probability measure, which we denote

as w(oco,r). Moreover,

[+ (P, = a(oo0) (3)

<R (sl +1)p" n €N, (153)

where R > 0, and p < 1.

Proof. Since we have shown in Lemma 16 that s(n) is
strongly aperiodic, it follows from Theorem 6.3 of [60] that in
order to prove the claim it suffices to show that the following
holds true when |s(n + 1)1 is sufficiently large

E([[s(n+ Dl[1[Fn) < Ms(n)llx + L, (154)

where A < 1. Note that each source gets to trans-
mit with a probability at least min; o, and also the ex-
pected value of the inter-sampling time is upper-bounded
by max {IE[T], Z“‘:;E]n +ts}. It then follows that (154)
holds true with A\ set equal to min; oy, and L equal to

max {IE[T], S+ ts}. O

Lemma 18. (Differential Cost Function) Consider the process
s(n), n=1,2,..., that describes the evolution of the network
in which the controller utilizes v(n) = r. Then, there exists a
function V : SM +— R that satisfies

V() + / g(x)dn(c0,1) = g(x) + / K (v, : )V (5)dy,
(155)

where K is the transition kernel as described in Lemma 14,
the function g is the one-step cost function as in Lemma (15).

Moreover; the function V' satisfies the following,

V) < = (1A + 1),

where the constant R is as in Lemma 17.

(156)

Proof. We have shown in Lemma 17 that the process s(n) is
geometrically ergodic. Hence, it follows from Theorem 7.5.10
of [63] that there exists a function V'(-) that satisfies (155),

and moreover it is given as follows,

V=3 [E (o(xm) ~ |

n—1 SM

g(y)dm(co,1)(y) |,z €S.

Substituting the geometric bound (153) into the above, we



obtain the following

V09 =3 B atxt) - [ o]
<3 (B glxlm) = [ o)dn(oen)(y)
<R(IxOfh +1) Y _p"

_ R(xO)+ 1)
1—0p ’
where p < 1. O

Lemma 19 (Smoothness properties of the optimal average
cost). The optimal sleep period parameters vy and average
cost AV Pk satisfy the following:
1) We have that the function rj : © — R_,I‘f[ that maps the
mean transmission time 0 to the optimal sleep period

parameter, is a continuous function of 0. Similarly, the

average peak age is a continuous function of r, i.e.,

H
|
Jim, }}gnooE;Er [9(s(n))]
1 H
= g 2 B [o(s()]

where the sub-script r in the expectation E, above refers
to the fact that the averaging is performed w.rt. the
measure induced by the policy that uses sleep rates equal
tor.

2) The cumulative peak-age is locally Lipschitz continuous

Sfunction of r. Thus,
ATk (155 0) — ATPON(r;0)| < Lo — ),

whenever ||r} — x| is sufficiently small, and where the

Lipschitz constant at sleep period parameter v is given
by

8Aw7peak
L1 := max ———(r).
ie[M] or;

Similarly, the optimal sleep period parameter is a locally

Lipschitz function of 0, so that we have,
Hrgl - rgg” S L2|91 - 92|5L2 > 07

whenever |01 — 02| is sufficiently small.

In summary, there exists a 6 > 0 such that whenever |0 —
02| <6, then

|Aw7peak(r51;9) _ Awfpeak (1‘52;9” < L|91 — 92|
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Proof. Continuity of the functions under discussion is im-
mediate from the relations (18), (19), (20), (25), (26), (27).
To prove the statement about Lipschitz continuity, it suffices
to show that the average peak age is a Lipschitz continuous
function of r, and the optimal rate r is Lipschitz continuous
function of 6. To prove this, it suffices to show that the average
peak age is a continuously differentiable function of r, and
also rj is a continuously differentiable function of 6 (see [64]
for more details). The continuously differentiable property is
evident from the relations (11), (18)-(20) and (25)-(27). This
completes the proof. |

Bounds on the Estimation Error: We now derive some
concentration results for the estimate é(n) around the true
value 0*. Let C(n) be the confidence interval associated with

the estimate 0(n), i.e.,

C(n) = {9;|e—é(n)| < &(n), 0 >o}, (157)
where
£(n) = Tonax 21%537), 1<n<H,

~ > 4 is a constant, N (n) is the total number of packet deliv-
eries until n, and T},,x is the maximum possible transmission
time. We begin by showing that with a high probability, our
confidence balls are true at all the times.

Lemma 20. Define
Gi(n) :={w:0"€C(n)},

where C(n) is as in (157), and 0* is the vector consisting of
true parameter values. We then have that

Proof. Fix a positive integer ng, and let 6 denote the empirical
T(?’Lo) of
the service times. It follows from Azuma-Hoeffding’s inequal-
ity [65] that

2
P(é—@* )< -~ ).
| | > x _exp< 272

max

estimate obtained from no samples 7'(1),T(2), ...,

By using x = Thax ﬂ%ﬁ”” in the above, we obtain,
o 1 vy
P <|6’ — 0" > Thnaxy/ oent ) < exp (—logn?)
no
1
T

Since the total number of samples ng can assume values from



the set {0,1,2,...,n}, the proof then follows by using union

bound on ng. O

Lemma 21. Fix a 81 € (0, pmin), Where pmin is as in (72).
Define the event,

Ga(n) = {w: N(n) > (pusn = V/o1)n}

where N(n) denotes the number of samples that have been

(158)

obtained until time n for estimating transmission times. We
then have that

P(G5(n)) < exp(=din).

Proof. Consider the following martingale difference sequence
m(l) =FE {C(’L)“/—"Zfl} — C(TL) Since E {C(l)‘]:zfl} Z Pmins
we have that

n

Z m(i) > cminn — N(n).

i=1

(159)

Since |m(i)] < 1, we have the following from Azuma-

Hoeffding’s inequality [65],

(| Som0]>5) <o (-5).

Letting x = /011, we get the following,

P <’ Zm(z) > \/5171) <exp(—din). (160)
i=1
Substituting (159) into the above inequality, we obtain
P (N(n) < (pmin — \/51) n) < exp (—din).
This completes the proof. O

C. Regret Analysis

The cumulative regret R(H ) (65) decomposes into the sum
of “episodic regrets” R(®) (k) as follows:

K
E[R(H)] =) E [ R(e)(k:)} : (161)
k=1
where R (k): =E { > gls(n)) — APk () fm} :
neéy
(162)

Combining the regret decomposition with the smoothness
properties of the optimal average cost that were derived in
Lemma 19, we obtain the following key result that allows us
to upper-bound R(H).
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Lemma 22. The cumulative expected regret (161) for a

learning algorithm can be upper-bounded as follows,

K
E[R(H)] < K2 ) (i1 — ) B(|0(m) — 67| > §)
k=1
N
+ LY (s = mE (16(r) = 0*[1{|0() — 0" < 3}) |
k=1

(163)
where the constant § > 0 is as in Lemma 19.

Proof. 1t follows from the ergodicity properties of the process
s(n) that were proved in Lemma 18 and Assumption 2
regarding s(n), that the episodic regret can be bounded as

follows (p, R are as in Lemma 18 and Assumption 2),

R©) (k) <t (K1 +1) (164)

hS)

=71_
+ Awfpeak (I‘*

Bire)? 0) — Aw'peak(r*) (Tht1 — Tk) -

(165)
The following two events are possible:

(i) |0* —0(7.)| < &: In this case it follows from Lemma 19
that

‘Awfpeak(r* 9) _ Aw-peak(r*) < L|9* _ é(Tk)|

0(m.)’

(i) |0* — O(7x)| > 0: It follows from Assumption 3
that the average performance under any sleep param-
eter cannot exceed K>, and hence we can bound

]Aw*peak(rg i 6) = AP () by K,

The proof then follows by substituting the bounds discussed

above for the two cases into (164), and using regret decom-

position result. O

We now separately bound the expressions obtained in the
two events (|0* — O(7y)| < 4, |0 — O(71)| > 0).

Regret when |0* — 6(7,)| > &:

Choose a sufficiently large ko € N that satisfies

Ty = O (ilogH) .

. (166)

Define the following event
G3 := Nig>1ko G2(Tk)-

By combining the result of Lemma 21 with the union bound
and using (166) we conclude that G3 has a probability greater
than 137, “exp(—617%) = 1—0O (4 ). On Gs, the number
of samples N (7;,) at the beginning of each episode k > ky is
greater than (pmin — V& ) Tk. Thus on G3, for episodes k > kg



~log H

T Let k1 be the

the radius of C(7y) is less than

(Pmin—

smallest integer that satisfies

vlog H 5 . 1
<5 e Ty, > —————v]og H,
(pmin Y 61)7791 ! (pmin Y 51)52

(167)

where the constant 6 > 0 is as in Lemma 19. Thus on
Gs, for episodes k > max {ko, k1}, the radius of confidence
intervals is less than d. Note that on NGy (7% ) the confidence
intervals (157) at the beginning of each episode are true.
Hence, on {N;G1(7)} N G3 we have |0(r) — 6*| < & for
epsiodes k > max {ko, k1}. Thus, on {NzGi(7)} N G5 this
regret is bounded by Ko max {7y, , 7k, }- Now consider sample
paths for which some of the confidence intervals fail. The
w —— (Lemma 20);
moreover since the episode duration of Ek, (Tk+1 — 1) is less

probability that C(7y) fails is less than

than 75, we have that the expected value of the regret during
&k in the event of failure of C(7y) is less than Ko —— 7 ——. Since
v > 4, the cumulative expected regret arising from this is
bounded by K Zk # < Kgg [66]. We summarize our

discussion as follows.

Lemma 23. Under Algorithm 2 the following is true,

K
(i1 — 76) P(|0(2.) — 6| > &)
k=1
~vlog H ( )} 72
< Komax{ —————,0 logH | p + Ko—,
: { (pmin - \/E)é2 51 s : 6
(168)
where v > 4.
Regret when |0* — 6(7,)| < &:

As discussed above, on NG (7 )NGs we have |0(7;)—0*| < 0
for episodes k£ > k1. Thus, after using the smoothness property
of optimal average cost that was developed in Lemma 19, we
obtain that the second summation in the r.h.s. of (163) can be

bounded by the following quantity,

vlog H
kgkjl (T =) (Pmin — VO1)Tk
Since we have 7,41 — 7, < Tk, the above can be bounded
p;iogH > k>k, V/Tk- By using Cauchy Schwart’z

inequality, the quantrty Zk>k1 \/Tr can be upper-bounded

s VHK, where K denotes the number of episodes. Since
K = O (log H), this regret is bounded by Mg%l) The
bound we discussed is summarized below.

Pmin

27

Lemma 24. Under Algorithm 2 the following is true,

LZN:(T,M = n)E (16(re) = %1 {|8(r) — 0" < 5})
k=1

H~(log H)?
<Ly ——————. 169
B (pmin Y 51) ( )

We are now in a position to prove main result Theorem 12.

Proof. (Theorem 12) The proof follows by substituting the
bounds obtained in Lemma 23 and Lemma 24 into the regret

decomposition result of Lemma 22. |
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