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Abstract—This work addresses the cooperation facilitator (CF)
model, in which network nodes coordinate through a rate lim-
ited communication device. For multiple-access channel (MAC)
encoders, the CF model is known to show significant rate benefits,
even when the rate of cooperation is negligible. Specifically, the
benefit in MAC sum-rate, as a function of the cooperation rate
CCF , sometimes has an infinite slope at CCF = 0 when the
CF enables transmitter dependence where none was possible
otherwise. This work asks whether cooperation through a CF can
yield similar infinite-slope benefits when dependence among MAC
transmitters has no benefit or when it can be established without
the help of the CF. Specifically, this work studies the CF model
when applied to relay nodes of a single-source, single-terminal,
diamond network comprising a broadcast channel followed by a
MAC. In the relay channel with orthogonal receiver components,
careful generalization of the partial-decode-forward/compress-
forward lower bound to the CF model yields sufficient conditions
for an infinite-slope benefit. Additional results include derivation
of a family of diamond networks for which the infinite-slope rate-
benefit derives directly from the properties of the corresponding
MAC studied in isolation.

I. INTRODUCTION

The information theory and communication literatures ap-
proach the goal of improving network communication perfor-
mance in a variety of ways. While some studies investigate
how to get the best possible performance out of existing
networks, others seek better designs for future networks. In
practice, the way that networks improve over time is some-
where in between — a combination of adding new resources
and making better use of what is already there. We here seek
new tools for guiding that process, focusing on the questions
of whether and where small changes to an existing network
can have a big impact on network capacity.

One example of a network in which incremental network
modifications can achieve radical network improvement, in-
troduced in [2], employs the multiple-access channel (MAC)
and a node called a cooperation facilitator (CF). In practice, the
CF is any communicating device that can receive information
from multiple transmitters. In any MAC for which dependent
channel inputs from the transmitters would yield a higher
mutual information between the MAC’s inputs and output than
is achievable with the independent channel inputs employed in
calculating the MAC capacity, adding a small communication
link from the CF to either or both of the transmitters yields
a disproportionately large capacity improvement [2]. Specif-
ically, the curve describing the improvement in MAC sum-
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capacity as a function of the capacity CCF of the cooperation-
enabling CF output link has slope infinity at CCF = 0 [2,
Theorem 3]. In some cases, even a single bit — not rate 1,
but a single bit no matter what the blocklength, suffices to
change the network capacity [3], [4].

Since the infinite-slope improvement in the MAC-capacity
results from creating dependence where none is possible
otherwise, it is tempting to believe that the infinite-slope
phenomenon cannot occur either in cases where dependence
is already attainable or where dependence is not critical to
attaining the best possible performance. In this paper, we
explore these two intuitions — seeking to understand whether
incremental changes can achieve disproportionate channel
benefits in these scenarios.

Toward this end, we investigate a single coding framework
where both scenarios can arise. We pose this framework as a
diamond network in which a single transmitter communicates
to a collection of relays, and the relays work independently to
transmit information to a shared receiver. Since the communi-
cation goal in the diamond network is to transmit information
from a single transmitter at the start of the diamond network
to a single receiver at its end, dependence at the relays may
be available naturally; we investigate whether this availability
precludes the possibility of incremental change with dispropor-
tionate impact. When the links from relays to the receiver are
independent, point-to-point channels, the resulting degenerate
MAC fails to meet the prior condition specifying that input
dependence should increase sum capacity; we investigate
whether this failure precludes the desired small cost, large
benefit tradeoff to incremental network modifications.

The rest of this paper is organized as follows. In Section II,
we set up the problem of the diamond relay network with N
relay nodes and a cooperation facilitator (Fig. 1), which allows
us to pose our main question about the power of cooperation in
a relay network. Our results focus on two special cases of this
network. The first, covered in Section III, is the relay channel
with orthogonal receiver components (Fig. 2). When viewed
in isolation, the MAC employed derives no benefit from the
addition of a CF. We investigate whether an infinite slope is
possible employing this MAC in a larger network. Here, we
present an achievability bound for the CF problem, as well
as sufficient conditions for the infinite-slope phenomenon to
occur. In Section IV, we explore a 3-relay example (Fig. 3)
that allows us to exploit the results of [2] on the MAC to
demonstrate the infinite-slope phenomenon in certain diamond
networks.

II. PROBLEM SETUP

Notation: For any integer k, [k] denotes the set {1, 2, . . . , k}.
Capital letters (e.g., X) denote random variables, lower-
case letters (e.g., x) denote realizations of the corresponding
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Fig. 1. General diamond relay network with N nodes and a cooperation facilitator (CF).

Fig. 2. Relay channel with orthogonal receiver components and a cooperation
facilitator, a special case of the general diamond relay network.

variable, and calligraphic letters (e.g., X ) denote the corre-
sponding alphabet. Vectors are denoted with superscript (e.g.,
xn = (x1, . . . , xn)). We use standard notation for mutual
information and entropy.

A diamond relay network with N relay nodes and a
cooperation facilitator (CF)—shown in Fig. 1—is given by
a broadcast channel p(y1, . . . , yN |x), followed by a MAC
p(y|x1, . . . , xN ). An (n,R) code for the diamond relay net-
work is composed of
• an encoder f : [2nR]→ Xn,
• a CF-encoder fCF :

∏
j∈[N ] Ynj → [2nCCF ],

• a relay encoder fj : Ynj × [2nCCF ]→ Xnj for each j ∈ [N ],
• a decoder g : Yn → [2nR].

The message M is assumed to be uniformly drawn from
[2nR]. Encoded message Xn = f(M) is transmitted by the
encoder into the broadcast channel, which outputs Y nj at relay
j, j ∈ [N ]. The CF observes all the outputs of the broadcast
channel, and encodes K = fCF (Y

n
1 , . . . , Y

n
N ), which is sent

to each relay. Relay j encodes Xn
j = fj(Y

n
j ,K) and transmits

it into the MAC. Finally, the output signal Y n is received and
decoded to M̂ = g(Y n). The overall probability of error is
given by P (n)

e = P (M 6= M̂). We say a rate R is achievable
if there exists a sequence of (n,R) codes with P (n)

e → 0. The
capacity C(CCF ) is the supremum of all achievable rates for
a given CF capacity CCF . This function is non-decreasing in
CCF , and so its derivative C ′(CCF ) is non-negative.

We are interested in characterizing C(CCF ), but more
specifically, we are focused on the following question:

Main question: For a given network, is C ′(0) =∞?

III. RELAY CHANNEL WITH
ORTHOGONAL RECEIVER COMPONENTS

Consider a diamond relay network in which the relay nodes
communicate to the receiver through independent channels.

This example specializes the general model described above
in several ways. First, we assume there are only N = 2 relay
nodes, and further we assume that the received signal at the
decoder is made up of orthogonal components, one from each
relay. That is, Y = (Ya, Yb), and the MAC model factors as

p(ya, yb|x1, x2) = p(ya|x1)p(yb|x2). (1)

Given this factorization, the capacity of the overall network
depends on the channels from X1 to Ya and from X2 to Yb
only through their capacities [5]. Thus, we can simplify the
problem by replacing these noisy channels with rate-limited
bit-pipes of capacities C1 and C0 from each relay to the
decoder. Finally, we assume that C1 = ∞; i.e., we assume
that Relay 1 can transmit all of its information (consisting of
Y n1 as well as the CF signal K) directly to the decoder. These
simplifications yield the network model shown in Fig. 2. Note
that this network only has one relay node, so it makes sense to
call it a relay channel model rather than a diamond network
model. We have also relabelled Y2 as Yr to emphasize that
it is the relay’s received signal; this also makes the notation
consistent with [6], [7].

A. Main Achievability Result

Theorem 1: Consider a relay channel with orthogonal
receiver components with broadcast channel distribution
p(yr, y1|x), capacity C0 from relay to destination, and CF
capacity CCF . Rate R is achievable if

R ≤ I(U ;Yr) + min{I(X;Y1, Yr|U), I(X;Y1, V |U)},
(2)

R ≤ min{I(U ;Y1), I(U, Yr)}+ I(X;Y1|U)

+ I(V ;X,Y1|U)− I(Yr;V |U) + C0, (3)
CCF ≥ I(X,Y1;V |U, Yr), (4)

for some distribution p(u, x)p(yr, y1|x)p(v|x, y1, yr, u).
Proof: We describe the codebook generation and encod-

ing/decoding steps but leave the error analysis to the full
version [1]. We use T (n)

ε for the robustly typical set (see [8]
for definition). Fix rates Ra, Rb, S to be determined, where
Ra +Rb = R.

Codebook generation:
• For each ma ∈ [2nRa ], generate cloud center

un(ma) ∼
∏n
i=1 pU (ui). (5)
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• For each ma ∈ [2nRa ] and mb ∈ [2nRb ], generate
transmit sequence

xn(ma,mb) ∼
∏n
i=1 pX|U (xi|ui(ma)). (6)

• For each ma ∈ [2nRa ], ` ∈ [2nS ], and k ∈ [2nCCF ],
generate rate-distortion codeword

vn(ma, `, k) ∼ Unif
[
T

(n)
ε (V |un(ma))

]
. (7)

and the corresponding source coding bins

m0(ma, `, k) ∼ Unif[2nC0 ]. (8)

• For each ma ∈ [2nRa ], ynr ∈ Ynr and k ∈ [2nCCF ], let
`(ma, y

n
r , k) be the smallest ` ∈ [2nS ] such that

(un(ma), y
n
r , v

n(ma, `, k)) ∈ T (n)
ε (U, Yr, V ). (9)

If there is no such `, we say `(ma, y
n
r , k) is undefined.

Encoding: At the transmitter, given message m =
(ma,mb), send xn(ma,mb).

CF coding: At the CF, given yn1 and ynr , first find the unique
pair m̂a, m̂b such that

(un(m̂a), x
n(m̂a, m̂b), y

n
1 , y

n
r ) ∈ T (n)

ε (U,X, Y1, Yr). (10)

Next, find the smallest k ∈ [2nCCF ] such that `(ma, y
n
r , k) is

defined, and

(un(m̂a), x
n(m̂a, m̂b), y

n
r , y

n
1 , v

n(m̂a, `(m̂a, y
n
r , k), k))

∈ T (n)
ε (U,X, Yr, Y1, V ). (11)

Send this k. If there is no such k, declare an error.
Relay coding: At the relay, given ynr and k, first find m̂a

such that
(un(m̂a), y

n
r ) ∈ T (n)

ε (U, Yr). (12)

Then let ` = `(m̂a, y
n
r , k), and send m0(m̂a, `, k). If

`(m̂a, y
n
r , k) is undefined, declare an error.

Decoding: At the decoder, given yn1 , m0, and k, find
m̂a, m̂b, ˆ̀ such that

(un(m̂a), x
n(m̂a, m̂b), y

n
1 , v

n(m̂a, ˆ̀, k)) ∈ T (n)
ε (U,X, Y1, V ),

(13)

m0(m̂a, ˆ̀, k) = m0. (14)

Remark 1: Thm. 1 reduces to the well-known combined
partial-decode-forward/compress-forward lower bound for the
standard problem (without a CF), which originated in [9]. For
the relay channel with orthogonal receiver components, [6]
showed that this classical bound can be written as follows:
rate R is achievable if

R ≤ I(U ;Yr) + I(X;Y1, V |U), (15)
R ≤ min{I(U ;Y1), I(U ;Yr)}+ I(X;Y1|U) + C0

− I(Yr;V |U,X, Y1) (16)

for some distribution

p(u, x)p(yr, y1|x)p(v|yr, u). (17)

In Thm. 1, removing the CF is equivalent to setting CCF =
0. Thus, (4) implies the Markov chain (X,Y1)− (U, Yr)−V ,

which implies that the joint distribution factors as in (17).
Thus, by the data processing inequality, I(X;Y1, V |U) ≤
I(X;Y1, Yr|U), so (2) becomes (15). In addition,

I(V ;X,Y1|U)− I(Yr;V |U) (18)
= −H(V |U,X, Y1) +H(V |U, Yr) (19)
= −H(V |U,X, Y1) +H(V |U, Yr, X, Y1) (20)
= −I(Yr;V |U,X, Y1), (21)

so (3) becomes (16).

B. Sufficient Conditions for Infinite Slope

The following theorem provides a sufficient condition for
which, given a starting achievable point for the partial-decode-
forward/compress-forward bound without cooperation (i.e.,
the bound in (15)–(16)), the achievable rate from Thm. 1
with cooperation improves over the starting point and this
improvement has infinite slope as a function of CCF .

Theorem 2: Fix a distribution p(u, x)p(v|yr, u). Let R be
a rate satisfying the no-cooperation achievability conditions
in (15)–(16) for this distribution. Suppose I(X;Y1, V |U) <
I(X;Y1, Yr|U), and there does not exist λ ∈ [0, 1] and
γ(u, x, y1, yr) ∈ R for each x, y1, yr, u such that

p(v|u, x, y1) =
p(v|u, y1)λp(v|u, yr)1−λ

γ(u, x, y1, yr)
(22)

for all u, x, y1, yr, v where p(u, x, y1, yr) > 0, p(v|yr, u) > 0.
Then

lim
CCF→0

C(CCF )−R
CCF

=∞. (23)

Proof: Under the starting distribution

p(u, x)p(y1, yr|x)p(v|u, yr), (24)

I(X,Y1;V |U, Yr) = 0. To show (23), we modify this distri-
bution slightly, in a way that I(X,Y1;V |U, Yr) > 0, which
corresponds to positive CCF , while increasing the achieved
rate. In particular, we leave p(u, x) fixed, but change the
conditional distribution for v to

q(v|u, x, y1, yr) = p(v|u, yr) + α r(v|u, x, y1, yr) (25)

where α ≈ 0. For a variable A ⊂ {U,X, Y1, Yr}, we further
define r(v|a), for example by

r(v|u, yr) =
∑
x,y1

p(x, y1|u, yr)r(v|u, x, y1, yr). (26)

Thus q(v|a) = p(v|a) + α r(v|a). In order for q to be a valid
distribution, we need∑

v

r(v|u, x, y1, yr) = 0 for all u, x, y1, yr. (27)

Thus, these r functions are not really distributions; instead
they satisfy

∑
v r(v|a) = 0 for any variable A. Moreover,

we assume r(v|u, x, y1, yr) = 0 for any u, yr, v where
p(v|u, yr) = 0.

We are only changing the distribution of V , not U , so many
terms in Thm. 1 do not change with α. The only terms that
do change with α are given by the following functions:

f1(α) = Iq(X;V |U, Y1),
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f2(α) = Iq(V ;X,Y1|U)− Iq(Yr;V |U),

CCF (α) = Iq(X,Y1;V |U, Yr).

To prove (23), it is enough for

C ′CF (0) = 0, f ′1(0) > 0, f ′2(0) > 0. (28)

In fact, the assumption that r(v|u, x, y1, yr) = 0 whenever
p(v|u, yr) = 0 implies that C ′CF (0) = 0 (see [1] for details).
Moreover, one can evaluate the other derivatives as

f ′1(0) =
∑

u,x,y1,yr,v:
p(u,x,y1,yr,v)>0

p(u, x, y1, yr)r(v|u, x, y1, yr)

· log p(v|u, x, y1)
p(v|u, y1)

, (29)

f ′2(0) =
∑

u,x,y1,yr,v:
p(u,x,y1,yr,v)>0

p(u, x, y1, yr)r(v|u, x, y1, yr)

· log p(v|u, x, y1)
p(v|u, yr)

. (30)

Recall that we are interested in showing that f ′1(0), f
′
2(0) >

0. Since each of these is a linear function of r, we consider a
generic linear set up. In particular, we are interested in whether
there exists a vector z such that aT z > 0, bT z > 0, and
Az = 0. That is, we are interested in

max
z:Az=0

min{aT z, bT z} (31)

= max
z:Az=0

min
λ∈[0,1]

λaT z + (1− λ)bT z (32)

= max
z

min
λ∈[0,1],γ

λaT z + (1− λ)bT z + γTAz (33)

= min
λ∈[0,1],γ

max
z

(λa+ (1− λ)b+AT γ)T z (34)

= min
λ∈[0,1],γ

{
0 λa+ (1− λ)b+AT γ = 0

∞ otherwise.
(35)

That is, there exists no z of interest if and only if there exists
λ ∈ [0, 1] and γ where λa + (1 − λ)b + AT γ = 0. Applying
this principle to our situation, there does not exist such an r
function if and only if there exists λ ∈ [0, 1], γ(u, x, y1, yr)
where

p(u, x, y1, yr)

[
λ log

p(v|u, x, y1)
p(v|y1)

+ (1− λ) log p(v|u, x, y1)
p(v|u, yr)

]
+ γ(u, x, y1, yr) = 0,

for all x, y1, yr, v : p(u, x, y1, yr, v) > 0. (36)

Dividing by p(u, x, y1, yr) and rearranging gives (22).
Remark 2: We note that there are two ways for (23) to hold:

(1) C(0) > R; that is, the rate R, while achievable without
cooperation, is smaller than the no-cooperation capacity of the
relay channel; (2) C(0) = R, and C ′(0) =∞. Here, the rate
R is the no-cooperation capacity, so (23) indicates that the
CF really can improve the capacity of the relay network in an
infinite-slope manner. Thus, this latter case is the one we are
particularly interested in, as it gives an affirmative answer to
the Main Question. Unfortunately, for any problem instance
for which a matching converse for the no-cooperation setting

is unavailable, even if (23) holds, there is no way to know
which situation we are in. Still, if R represents the best-known
achievable rate for a given network, (23) has a non-trivial
consequence, showing that the state-of-the-art can be improved
disproportionately by a small amount of cooperation.

While the condition in Thm. 2 is sometimes hard to verify,
the following corollary (with proof in [1]) provides a simpler
sufficient condition for the same conclusion.

Corollary 3: Assume that p(y1, yr|x) > 0 for all letters
x, y1, yr. Consider any distribution p(u, x)p(v|u, yr). Let R
be a rate satisfying (15)–(16) for this distribution. Then at
least one of the following possibilities hold:

1) there exists a function g : U × Yr → V where rate R
satisfies (15)–(16) with V = g(U, Yr).

2) (23) holds.

C. Example Relay Channels

For some relay channels, [10] shows that the compress-
forward bound achieves capacity. Thus, it is possible to
definitively answer the Main Question for these channels. The
following example illustrates one such channel.

Example 1: Let X ∈ {0, 1}, Y1 = X ⊕ Z, Yr =
Z ⊕W , where ⊕ indicates modulo-2 addition, Z ∼ Ber(p),
W ∼ Ber(δ), and X,Z,W are mutually independent. For this
channel, the capacity without cooperation is shown in [10] to
be given by

C(0) = max
p(v|yr):I(Yr;V )≤C0

1−H(Z|V ). (37)

Moreover, this rate is achieved by compress-forward by choos-
ing X ∼ Ber(1/2) and setting p(v|yr) to be the distribution
achieving the maximum in (37). Corollary 3 applies to this
channel, since p(y1, yr|x) > 0 for all (x, y1, yr) as long as
p, δ ∈ (0, 1). Moreover, the only deterministic distributions
from Yr to V are where either V is a constant, or V = Yr
(or equivalent). It is easy to see that as long as 0 < C0 <
H(Yr) = H(p⊕ δ), neither of these choices for V is optimal.
Therefore, in all non-trivial cases, C ′(0) =∞ for this channel.

The following relay channel example is one for which the
no-cooperation capacity is not known. However, we can verify
the sufficient condition from Thm. 2, thus showing that an
infinite-slope improvement is possible through cooperation.

Example 2: Let X ∈ {0, 1}, and let p(y1, yr|x) =
p(y1|x)p(yr|x), where each of the two component channels
is a binary erasure channel (BEC) with erasure probability
p. An achievable rate for the no-cooperation case from (15)–
(16) is given by taking U = ∅, X to be uniform on {0, 1}, and
p(v|yr) to be a channel that further erases any un-erased bit
with probability q. That is, if yr ∈ {0, 1}, then p(v|yr) = 1−q
for v = yr and p(v|yr) = q for v = e; if yr = e then
p(v|yr) = 1 if v = e. This leads to the achievable rate

R = max
q∈[0,1]

min{(1− p)(1 + p(1− q)),

1− p−H((1− p)(1− q)) + (1− p)H(q) + C0} (38)

where H(·) is the binary entropy function.
Note that this channel does not satisfy the conditions of

Corollary 3, since p(y1, yr|x) is not always positive. Instead,
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we verify the sufficient condition of Thm. 2 directly. Suppose
that there exists a λ and γ satisfying (22). Note that Y1 −
X − Yr − V is a Markov chain, so p(v|x, y1) = p(v|x). For
x ∈ {0, 1} and any y1 ∈ {x, e}

pV |X(x|x)
pV |X(e|x)

=
(1− p)(1− q)

1− (1− p)(1− q)
(39)

=
pV |Y1

(x|y1)λ(1− q)1−λ

γ′(x, y1, x)
· γ′(x, y1, x)

pV |Y1
(e|y1)λq1−λ

(40)

=

(
1− q
q

)1−λ(pV |Y1
(x|y1)

pV |Y1
(e|y1)

)λ
(41)

=

(
1− q
q

)1−λ

(

(1−p)(1−q)
1−(1−p)(1−q)

)λ
, y1 = x(

1
2 (1−p)(1−q)
1−(1−p)(1−q)

)λ
, y1 = e.

(42)

This cannot hold with equality for both y1 = x and y1 = e
unless p = 0, p = 1, or q = 1. Therefore, except in these
trivial cases, infinite slope improvement occurs.

IV. 3-RELAY NETWORK EXAMPLE

In the analysis of Theorem 1 and C ′(0) for the orthogonal-
receiver setting given in Sections III-A and III-B, relay-
cooperation is governed by the statistics of the broadcast
channel p(y1, yr|x) and, roughly speaking, is designed to
“remove” from Y nr message information that can be obtained
at the receiver from Y n1 . In this aspect, we say that the design
of cooperation information looks backwards and is governed
by the broadcast channel of the diamond network.

In this section, we study a forward form of cooperation, that
takes into account the MAC appearing in the second stage of
the diamond network. For forward-looking cooperation, it is
tempting to treat the MAC “in isolation,” rather than as part of
a larger network, and to design cooperation solely based on the
MAC noise statistics, as done in [2], [4]. In general, designing
cooperation by treating the MAC as an isolated component
may not suffice to improve communication of the diamond
network. This is because MAC encoders in the diamond
network potentially hold dependent information resulting from
the broadcast stage of communication. Nevertheless, in what
follows, we present a family of 3-relay diamond networks
for which cooperation-gain in the network as a whole is
derived directly from the MAC cooperation-gain when studied
in isolation; the latter is well understood and given in [2]. Our
network family is described below and depicted in Figure 3.

Consider the diamond network defined by broadcast
channel (X , p(y0, y1, y2|x),Y0,Y1,Y2), and MAC
(X0,X1,X2, q(y|x0, x1, x2),Y). As depicted in Figure 3, con-
sider the case in which X = Y0 = Y1 = X0 = X1 = {0, 1};
Y2 = X2 = {0, 1}2; Y = YW × X2 for a given memoryless
2-user binary MAC W: (X0,X1, pW(yW|x0, x1),YW); for
any x, p(Y0, Y1, Y2|x) induces (Y0, Y1, Y2) where Y0,
Y1, Z are independent Bernoulli(0.5) random variables
and Y2 = (x ⊕ YZ , Z); Xn

0 = f0(Y
n
0 ), Xn

1 = f1(Y
n
1 ),

Xn
2 = f2(Y

n
2 ) for relay encoders f0, f1, and f2; and

q(Y |x0, x1, x2) for which Y = (YW, x2). As Y n holds
the value of Xn

2 ∈ {0, 1}n, which in turn depends on

X Y1

Y0

Y2 = X2=(X⊕YZ,Z)

X1

X0

Y=(YW,X2)

f0

f1

Y0 ,Y1 , Z ~ Ber(0.5)iid

W

Fig. 3. The 3-relay diamond network of Claim 4.

Y n2 ∈ {0, 1}n through f2, we assume without loss of
generality that Xn

2 = Y n2 .
Using the independent nature of relays Y0 and Y1, in

Claim 4 below we tie the cooperation gain of the 2-transmitter
MAC W with the cooperation gain of the diamond network.

Claim 4: Let Csum(CCF ) be the sum-capacity of the 2-
transmitter MAC W with user cooperation of rate CCF .
Then the capacity C(CCF ) of the diamond network satisfies
C ′(0) =∞ if C ′sum(0) =∞.

Claim 4 is proven in detail in the full version of this work
[1]. We here present a rough outline. To prove the assertion,
it suffices to show that C(0) ≤ Csum(0)/2 for CCF = 0 and
C(CCF ) ≥ Csum(CCF )/2 for any CCF > 0. The lower bound
of C(CCF ) ≥ Csum(CCF )/2 is obtained using the encoders
for W that achieve sum-rate Csum(CCF ) as the relay encoders
f0 and f1 of the diamond network applied to (a subset of) the
independent bits Y n0 and Y n1 . The decoded information from
Y nW combined with the knowledge of Zn can then be used
to distill parts of Xn which in turn (using a variant of rate-
(1/2) erasure encoding for Xn) suffice to reveal the message
m of rate Csum(CCF )/2. For the upper bound of C(0) ≤
Csum(0)/2 we argue that any decoder for the diamond network
achieving rate C(0) must be able to recover at least C(0)n
entries of Y nZn , which in turn, using the nature of Zn, implies
that Csum(0) ≥ 2C(0).

V. CONCLUSION

This paper has explored whether it is possible for a small
amount of cooperation between nodes in a relay network
to have a disproportionate impact on capacity. The 3-relay
network example of Fig. 3 illustrates that it is possible for
cooperation to have a disproportionate effect in essentially the
same manner as the MAC on its own. Example 1 also illus-
trates this phenomenon, but for a different reason: the proof
is based on relay-channel coding rather than MAC-coding. In
Example 1, the two channel outputs of the broadcast channel
are independent. Thus, we have not definitively demonstrated
whether the disproportionate benefit phenomenon can occur
when the information available at the relays is dependent.
We do show that there can be disproportionate benefit for
dependent relays compared to the best-known achievability
bound without cooperation, but we have only been able to
show this (e.g., in Example 2) for channels with no matching
converse bound.
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