LONG TIME DYNAMICS FOR COMBUSTION IN RANDOM MEDIA
YUMING PAUL ZHANG AND ANDREJ ZLATOS

ABSTRACT. We study long time dynamics of combustive processes in random media, mod-
eled by reaction-diffusion equations with random ignition reactions. One expects that under
reasonable hypotheses on the randomness, large space-time scale dynamics of solutions to
these equations is almost surely governed by a different effective PDE, which should be a
homogeneous Hamilton-Jacobi equation. While this was previously proved in one dimen-
sion as well as for isotropic reactions in several dimensions (i.e., with radially symmetric
laws), we provide here the first proof of this phenomenon in the general non-isotropic mul-
tidimensional setting. Our results hold for reactions that have finite ranges of dependence
(i.e., their values are independent at sufficiently distant points in space) as well as for some
with infinite ranges of dependence, and are based on proving existence of deterministic front
(propagation) speeds in all directions for these reactions.

1. INTRODUCTION

The reaction-diffusion equation
u = Au+ f(x,u,w), (1.1)

with (t,7) € (0,00) x R? and w an element of some probability space (2, F,P), models
a host of physical phenomena occurring in random media. These phenomena all exhibit
diffusion, modeled by the Laplacian, as well as some reactive process, modeled by the non-
linear reaction function f. The nature of the latter process determines the behavior of f
in the variable u, which models the property under study and will take values between its
minimum and maximum, customarily normalized to be 0 and 1.

When v = 0 is an unstable equilibrium for the (x,w)-dependent ODE @ = f(z,u,w) and
u = 1 a stable one (e.g., when f > 0 for u € (0, 1)), the reaction is of the monostable type.
A special case of this are the Kolmogorov-Petrovskii-Piskunov (KPP) or Fisher-KPP type
reactions [9,13], for which the growth rate u=! f(x, u,w) of the reactive process is largest near
u = 0 for each (z,w) (e.g., in the case of logistic growth functions f(z, u,w) = g(x,w)u(l—u)).
These reactions are used in, for instance, population dynamics models, with u being the
normalized population density and u™! f(x, u,w) the sum of the birth and death rates. When
both u = 0 and v = 1 are asymptotically stable equilibria for @ = f(z,u,w) (e.g., when
flz,u,w) = g(z,w)u(l —u)(u — h(z,w)) with h(z,w) € (0,1)), the reaction is of the bistable
type, used in modeling phase transition processes.

In this paper we will consider the third main type of reactions, modeling various combustive
processes, including forest fires. Here u is the normalized temperature and f vanishes for all
u below some possibly (z,w)-dependent ignition temperature (so v = 0 is typically a stable

but not asymptotically stable equilibrium), which is why these reactions are of the ignition
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type. Our interest is in the long term dynamics of solutions to (1.1). The PDE typically
exhibits ballistic propagation of solutions, which means that the state u ~ 1 invades the
region where initially u ~ 0 at a linear-in-time rate. If the medium is sufficiently random,
one expects this invasion to acquire a deterministic asymptotic speed as ¢t — oo, which may
depend on the invading direction but not on the position (or w), due to averaging of the
variations in the medium over long distances.

This phenomenon is called homogenization, because over large space-time scales, solutions
behave as if the medium were possibly non-isotropic but homogeneous (i.e., direction- but
not position-dependent). One can study solutions on these scales by rescaling them via the
transformation

us(t, r,w) :=u (5_175, 8_1m,w) , (1.2)
with € > 0 small, which turns (1.1) into
(ue); = eAu, + e f (5’133, ug,w) ) (1.3)

If we now take ¢ — 0, the hope is to recover some (almost surely) w-independent limit u. — @,
in an appropriate sense and for appropriate initial data u.(0,-,w), that should ideally also
satisfy some limiting effective PDE.

However, unlike in typical homogenization scenarios, the limiting PDE for reaction-diffusion
equations cannot be another reaction-diffusion equation, or even another second order para-
bolic PDE. The reason for this is that one expects solutions to exhibit uniformly bounded in
time width of the regions where transition between values u ~ 0 and v ~ 1 happens, which
means that this width becomes zero in the scaling from (1.2) as ¢ — 0, and any limiting
function u takes only values 0 and 1. For instance, in the homogeneous deterministic reac-
tion case f(x,u,w) = f(u), the simplest solutions are traveling fronts, which are of the form
u(t,z) = U(z - e — ct) for some vector e € S¢~1, where the front profile and speed (U, ¢) solve
the ODE U” + cU’ + f(U) = 0 with boundary values U(—o00) = 1 and U(oco) = 0. Clearly,
the region where u(t,-) € [n,1 — n] for any fixed n > 0 is a slab of a constant-in-t width
that shrinks to zero as we take ¢ — 0 in (1.2). But then the limiting solution will be the
(discontinuous) characteristic function of the half-space-time {x - e < ct}, which does not
solve a second order parabolic PDE.

This suggests that any effective equation should be of the first order, with any limiting
function u being its discontinuous solution, taking only values 0 and 1. The expectation of
the effective (asymptotic) propagation speeds being direction- but not position-dependent
then suggests that the effective PDE should be the Hamilton-Jacobi equation

\VaTl

with ¢*(e) being the (x,w)-independent effective propagation speed in direction e € S,
Moreover, the traveling front solutions above suggest that in the deterministic homogeneous
reaction case, the speed c¢*(e) should be precisely the traveling front speed ¢ (which is also
direction-independent in that case). One may therefore hope that in the general random
case, it is also possible to find some front-like solutions in all directions e € S?!, and that
each of these has an associated speed c¢*(e) in some sense.
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Unfortunately, there are some serious obstacles to realizing this hope. The first is that
its basic premise, that the width of the transition region where u(t,-,w) € [n,1 — n] stays
uniformly bounded in time (or at least o(t)) for any fixed n > 0, may not be true in some
media. The second author in fact showed that this need not happen for bistable reactions,
even for periodic ones in one dimension [28], where solutions can develop linearly-in-time
growing intervals on which they are close to periodic functions with values strictly away from
0 and 1. As a result, there may be no analog of a traveling front for such reactions, and
hence no homogenization as described above.

Recalling pictures of forest fires, which are usually actively burning only along the margins
of the already burnt area, one may hope that such issues do not occur for ignition reactions.
The second author showed that this is indeed the case in dimensions d < 3 [29], where the
widths of the transition regions (properly defined, as these regions may have complicated
geometries in heterogeneous media; see (1.7) below) indeed remain uniformly bounded in
time, by constants depending on n above and some bounds on the reaction. However, he also
showed in [29] that this need not be the case in dimensions d > 4, where these widths may
grow linearly in time as in the above bistable example. Nevertheless, the relevant examples
have a special structure and it is not clear to what extent they indicate possible almost sure
behaviors of solutions for various stochastic reactions (in particular, those with finite ranges
of spatial dependence).

All this demonstrates the difficulties associated with even the question whether solutions
to (1.1) have some basic properties required for one to be able to initiate the study of
homogenization for (1.1). This is the reason for relatively little progress in this area, until
recently, particularly in the multi-dimensional case d > 2. In the one-dimensional setting,
there are only two directions of propagation of solutions, and homogenization simply refers to
showing that solutions starting from large enough compactly supported initial data propagate
almost surely with some deterministic asymptotic speeds ¢, (to the right) and ¢_ (to the
left). Moreover, the transition regions (which are intervals) have trivial geometries. This
allowed several authors to obtain such “homogenization” results in this setting for all three
types of stationary ergodic reactions — KPP [10], ignition [19,27], and bistable [19, 22, 28]
— although with some non-trivial limitations in the latter case, due to the counterexamples
from [28] mentioned above. There are also a number of 1D and quasi-1D results concerning
related models and/or periodic reactions, which we do not discuss here.

Once we move to higher dimensions, the geometry of the level sets of solutions becomes
much more complicated, and relatively little is known. One previous result appears in the pa-
per [17] by Lions and Souganidis, which studies homogenization for viscous Hamilton-Jacobi
equations. Their Theorem 9.3 states that homogenization also holds for general stationary
ergodic KPP reactions in any dimension. (While it is indicated in [17] that its proof can
be obtained via methods from [17,18] and two other papers, a proof is not provided there.)
The reason why Hamilton-Jacobi homogenization techniques should be applicable to KPP
reaction-diffusion equations is that the dynamics of solutions for these reactions is deter-
mined, to the leading order, by the linearization of (1.1) (i.e., of f) at u = 0. This linear
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PDE can then be turned into a viscous Hamilton-Jacobi equation with a convex Hamiltonian
via the Hopf-Cole transformation.

This linearization approach can only work for KPP reactions, and is not applicable to other
types, including other monostable ones. In particular, it cannot be used in ignition-reaction-
based models of combustion, where one has to work with the original non-linear PDE. Because
of this complication, so far there has only been a single result proving homogenization for
(non-KPP) stationary ergodic reactions in several dimensions. This is a conditional result
by Lin and the second author [16], who proved homogenization for ignition reactions whose
Wulff shapes exist and have no corners (a Wulff shape for (1.1), if it exists, is an open set
S C R? such that solutions starting from any large enough compactly supported initial data
converge to xs as t — oo, after being scaled down by t in space). They also showed that
these properties hold for isotropic ignition reactions in dimensions d < 3, with the dimen-
sion limitation being used to show that the Wulff shape exists (recall the above-mentioned
examples of solutions with linearly growing widths of transition regions in dimensions d > 4
from [29]) and isotropy then guaranteeing that the Wulff shape is a (corner-less) ball centered
at the origin. We also note that it follows from a result of Caffarelli, Lee, and Mellet [6] that
Waulff shapes can have corners, even for periodic ignition reactions in two dimensions.

In fact, even homogenization for periodic reactions in several dimensions has seen fairly lim-
ited progress until recently, despite many results concerning existence of pulsating fronts and
Wulff shapes for such reactions (see [5,16,23,24] and references therein). While Theorem 9.3
in [17] applies to periodic KPP reactions (and is based in part on methods from [18], appli-
cable to KPP reactions in periodic media), homogenization for periodic non-KPP reactions
in several dimensions has only recently been obtained for ignition reactions as a byproduct
of the method in [16], as well as for monostable reactions by Alfaro and Giletti [1] (for initial
data with smooth convex supports, later extended to general convex supports in [16]).

In this paper we prove for the first time unconditional stochastic homogenization for ig-
nition reactions, without assuming the reaction to be isotropic. Our Theorems 1.3 and 1.4
below are valid for random pure ignition reactions (see Definition 1.2) in dimensions d < 3
that either have a finite range of dependence (see Definition 1.1) or can be uniformly approx-
imated by such reactions. We also extend these results in Theorems 1.7 and 1.8 to ignition
reactions in any dimension, provided some a priori assumptions on the dynamics of certain
special solutions to (1.1) are satisfied.

Our proof uses a result from [16], which shows that to prove homogenization, it suffices
to show that the above-mentioned propagation speeds ¢*(e) (called front speeds) exist for all
directions e € S9!, are almost-surely w-independent, and also exclusive (see Definition 6.1).
This is, however, a difficult problem in general, and [16] was only able to show existence of
a deterministic front speed in direction e when the reaction has a Wulff shape with outer
normal vector e at some point (this is where the absence of corners is needed), because then
the expanding Wulff shape can be used at large times to locally approximate a front-like
solution propagating in direction e.
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To show existence of deterministic front speeds, we apply a method modeled on the one
employed by Armstrong and Cardaliaguet [2] in their proof of homogenization for Hamilton-
Jacobi equations with a-homogeneous (for o > 1) non-convex (in Vu) Hamiltonians with
finite ranges of dependence. This was the first proof of stochastic Hamilton-Jacobi homog-
enization for non-convex Hamiltonians in several dimensions without special structural hy-
potheses (such as H(z, Vu,w) = H(Vu) + V(x,w)). While there are many homogenization
results for convex and level-set-convex Hamiltonians, including in the paper [3] by Arm-
strong, Cardaliaguet, and Souganidis where the method from [2] was first used to study
Hamilton-Jacobi equations (it is based on ideas from the study of first passage percola-
tion [12,25]), non-convexity of the Hamiltonian presents serious issues. In fact, similarly to
our reaction-diffusion setting, there are examples when homogenization does not happen for
Hamilton-Jacobi equations with stationary ergodic non-convex Hamiltonians [8,26], even in
one dimension. The approach in [2] overcomes these problems by leveraging the finite range
of dependence hypothesis (which is akin to an i.i.d. medium setting) and the resulting mixing
properties of the environment to obtain strong quantitative estimates on the solutions where
a soft approach via ergodic theorems does not appear to work. These estimates involve fluc-
tuations of the values of solutions to the so-called metric problem for any compact set S C RY
(which is an appropriate time-independent Hamilton-Jacobi PDE on R¢\ S) with a smooth
enough boundary. These estimates improve at an exponential rate as the distance from S
increases, and were then upgraded to similar estimates for S being any half-space.

Here we apply this strategy to reaction-diffusion equations, with the relevant estimates
involving fluctuations of “arrival times” at any point x € RY for solutions initially ap-
proximating xg (we only need to consider S = By(0) for any k£ € N). We still obtain
an exponentially-in-d(x, S) decaying estimate (see Proposition 3.8 below), albeit at a slower
rate. However, we are also able to extend it to some reactions with infinite ranges of depen-
dence (see Proposition 4.2) by carefully tracking the dependence of this rate on the range of
dependence of f when the latter is finite, something that was described in [2] as completely
open in the Hamilton-Jacobi setting (and appears to remain such at this time)!

After we upgrade this estimate from balls to half-spaces, we are able to prove existence
of deterministic exclusive front speeds in all directions, and thus homogenization after using
results from [16]. We note that while the effective equations in Hamilton-Jacobi homoge-
nization are still Hamilton-Jacobi PDE (although some of their terms can disappear in the
homogenization process), and the limiting functions are their continuous solutions, our limit-
ing functions are discontinuous viscosity solutions to (1.4), which causes extra difficulties in
the analysis. For a more thorough discussion of similarities and differences between Hamilton-
Jacobi homogenization for non-convex Hamiltonians and reaction-diffusion homogenization,
as well as for further references, we refer the reader to the introduction of [16].

1.1. Hypotheses and Main Results. Let us now turn to our main results. Our goal is to
show that as € — 0, solutions to (1.3) with initial data approximating y4 for any open set
A C R? converge to the unique (discontinuous viscosity) solution to (1.4) with initial data
Xa. Here, of course, ¢*(e) are the deterministic front speeds discussed above, and establishing
their existence forms the bulk of our work.
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One can show that if ¢* : S¥! — (0, 00) is Lipschitz (which will be our case), then for any
open A C RY, there is an open set ©4¢" C (0, 00) x R such that the unique solution to (1.4)
with initial data x4 is @ := xga.+. In fact, this set can also be found from the formula

04 == {(t,x) € (0,00) x R? |v(t,z) > 0}, (1.5)

where vy : R? — R is any Lipschitz function satisfying v > 0 on A and vy < 0 on R?\ A,
and v is the unique (continuous) viscosity solution to (1.4) with v(0,-) = vy. The open set
©4¢" is then independent of the choice of vy as above, and 904" has zero measure.

All these claims are contained in Theorem 5.3 in [16], which is a combination of results
by Barles, Soner, and Souganidis [4], Crandall, Ishii, and Lions [7], Souganidis [21], and
Soravia [20]. The reader can also consult Definition 5.1 in [16] for the definition of viscosity
solutions to initial value problems for (1.4).

We also note that it was shown in the proof of Theorem 1.4(iii) in [16] that for any convex
open A C R? we have the explicit formula

04 = ﬂ {(t,x) € (0,00) x R?

e€Sd—1

r-e< supy-e—l—c*(e)t}.
yeoA

In particular, if A = {z € R?|x-e < 0} is the half-space with outer normal e, then we
obviously have ©4¢" = {(t,z) € (0,00) x R?|x - e < c¢*(e)t}. This also shows that if we let
(©4¢7), be the spatial slice of ©4¢" at the time ¢ > 0, then for any open bounded A we have

(@A,a*)t: m {yERd|y-e<C*(e)}

ecSd-1

lim
t—o00

(e.g., in the sense of Hausdorff distances of boundaries of sets). Hence the set on the right-
hand side is the Wulff shape for (1.4), and therefore also for (1.1) if homogenization holds.

We will consider here stationary ignition reactions that either have finite ranges of depen-
dence, or can be uniformly approximated by such reactions (see Example 1.5 below for a
simple example of the latter). These properties are summarized in the following definition
and in hypothesis (H1) below.

Definition 1.1. Consider a probability space (£, F,P) that is endowed with a group of
measure-preserving bijections {1, : © — Q},cgas such that for all y, 2 € R? we have

TyoT,=T,..
A reaction function f : R? x [0,1] x @ — [0,00), uniformly continuous in the first two
arguments and with the random variables X,, := f(z,u,-) being F-measurable for all

(z,u) € R? x [0, 1], is called stationary if for each (x,y,u,w) € R?* x [0,1] x  we have
flr,u, Tyw) = flz+y,uw).
The range of dependence of such f is the infimum of all » € R* U {oo} such that
E(U) and E(V) are P-independent

for any U,V C R? with d(U, V) > r, where £(U) is the o-algebra generated by the family of
random variables {X, ., | (z,u) € U x [0, 1]}.
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Remark. While stationary reactions with finite ranges of dependence are also stationary
ergodic, we will not need to use this property here due to our quantitative approach. We note
that although the main results in [16] apply to stationary ergodic reactions, that assumption
is only needed to prove that all the deterministic (exclusive) front speeds for (1.1) exist and
are strong (see Definition 6.1 below), which we instead prove in Sections 3-6.

We will consider here stationary reaction functions f : R? x [0, 1] x 2 — [0, 00), and extend
them to R? x R x Q by 0 whenever we need to evaluate them with u ¢ [0, 1]. Additionally,
our reactions will be of the ignition type. That is, we will assume the following hypothesis.

(H1) The reaction f is stationary, Lipschitz in both z and u with constant M > 1, and
there are 6; € (0,3), m; > 1, and oy > 0 such that f(-,u,-) =0 for u € [0,6,] U {1},
f(u,-) > a(l —u)™ for u € [1 —6,1), and f is non-increasing in u € [1 — 6y, 1).

It is not difficult to see that one cannot hope for general reactions satisfying (H1) to lead
to homogenization for (1.1), even if f is independent of (z,w) (see, e.g., [28,29]). Indeed, if f
is allowed to vanish at some intermediate value 6" € (01,1 — 1) and is also sufficiently large
for some u € (0,,6'), solutions could easily form “plateaus” with values near ¢ (or another
intermediate value) whose widths grow linearly in time. And if that happens, the widths of
these plateaus will not vanish even after the scaling from (1.2) is applied.

To avoid this scenario, one should assume that as the argument u grows from 0 to 1 (for
any fixed (z,w)), the reaction f cannot become arbitrarily small (except near u = 1) once it
has become large enough. This is expressed in Definition 2.3 below, which was used in [29] to
show that not only solutions to (1.1) do not develop such plateaus, but the transition from
values u ~ 0 to values u ~ 1 in fact occurs over uniformly-in-time bounded distances in space
(see, e.g., Lemma 2.4 below). Our most general results apply in this setting, as well as when
one instead only assumes at most O(t%) growth of the above transition distances, with o < 1
(see hypothesis (H2’) below).

However, for the sake of simplicity, in our first two results we will consider the case where
the reaction does not become arbitrarily small (except near u = 1) after it has become just
positive. That is, once u has exceeded the ignition temperature

01 :=sup{d > 0| f(z,u,w) =0 for all u € [0,0]} (€ [01,1—6)).

Of course, this is the case for any realistic model of combustion, where the reaction rate is
positive at all temperatures above the ignition temperature (its vanishing at u = 1 is due to
fuel exhaustion in systems of equations for temperature and concentration of the reactant,
which in certain regimes simplify to (1.1) with f(-,1,-) =0).

Definition 1.2. A reaction f satisfying (H1) is a stationary pure ignition reaction if for
each n > 0 we have
inf  f(x,0,,+n,w)>0.

(z,w)ERXxQ

9m,w+7]<1—91
Remark. This definition (with the bound for u € [1 — 6, 1) being inf, . f(z,u,w) > 0)
is from [28]. Note that it is trivially satisfied, for instance, when f(z,u,w) = g(z,w)Fy(u),
with g bounded away from 0 and oo, Lipschitz in x, and stationary in w, and with Lipschitz
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Fy :]0,1] — [0, 00) such that Fy = 0 on [0, 0] U{1} and Fy > 0 on (6, 1) for some 6, € (0,1),
and Fy is non-increasing and bounded below by a;(1 — w)™ near 1 (for some my, o).

We will therefore start by assuming the following hypothesis.
(H2) f is a stationary pure ignition reaction and d < 3.

The additional restriction d < 3 is necessitated by the above-mentioned surprising result
from [29], where the second author showed that even for pure ignition reactions, transition
from values u = 7 to values u = 1 —n may only occur over linearly-in-time growing distances
for solutions to (1.1) and all small # > 0 in dimensions d > 4 (while these distances remain
bounded in dimensions d < 3).

We are now ready to state our first main homogenization result. In it and later we use the
notation B,(A) := A+ (B.(0) U{0}) and A? := A\B,(0A) for A C R% and r > 0. For the
sake of generality, we also allow O(1) shifts and o(1) errors in initial data as ¢ — 0 in (1.3).

Theorem 1.3. If f satisfying (H2) has a finite range of dependence, then there is Lipschitz
¢S4t — (0,00) such that the following holds for any open A C R? and ©4¢" from (1.5).
If A >0, and for allw € Q and £ > 0, the function u.(-,-,w) solves (1.3) and satisfies

(1- 91)XA3)(6) < ue(0, -+ ye,w) < XBy(4) T w(e)XRd\Bw(E)(A) (1.6)
for some y. € Bx(0) and some ¢ with lim._,o1(e) = 0 (when y. = 0 and p(e) = 0, this
becomes just (1 —01)xa < u:(0,-,w) < xa), then for almost all w € Q we have

Hm u (-, - + Ye, W) = Xoare
e—0
locally uniformly on ([0,00) x RY) \ 904",
Remark. Our proofs use results from [16] which in fact show that in all our main results,

1 — 6, in (1.6) can be replaced by any @ satisfying inf ,, , .)erixg,1-0,)x0 f (2, u,w) > 0.

We next extend this to the case of reactions with infinite ranges of dependence that are
uniform limits of reactions with finite ranges of dependence. Here we will also require some
uniform decay of f near u = 1. This is the content of the next two hypotheses.

(H3) There are mg > 1 and a3 > 0 such that for all 5 € (0, 361] we have

inf (f(if»U—naw) —f(IE,U,UJ)) Z a377m3'
(z,w)ERIXQ
u€[1-601/2,1]

(H4) There are my, ny, ay > 0 such that for each n > ny, there exists a stationary reaction
fn with range of dependence < n and || f,, — flloo < aqn™"4.

Theorem 1.4. Theorem 1.3 holds for any f satisfying (H2)—(H4).

While this result does not cover all interesting random pure ignition reactions with corre-
lations of f(x,u,-) and f(y,v,-) decreasing as |z —y| — oo (for all u,v € [0,1]), it does apply
to many of them. Here is a simple such example.
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Example 1.5. Let d < 3, Fp : [0,1] — [0,00) be Lipschitz with Fy = 0 on [0,6y] U {1} and
Fy > 0 on (0, 1) for some 6y € (0,1), and Fj(u) < —(1 —u)™ near v = 1 for some m. Also
pick some Lipschitz g : R — [0, 00) with sup,cga |2|™ g(x) < oo for some m’/ > 0, and some
Lebesgue measurable a : [0,1] — [0,1]. Consider the product probability space Q = [0, 1)%",
with the Lebesgue measure on each copy of [0, 1], and for any k € Z¢, denote by w; the k'!
coordinate of w € 2 (note that these are i.i.d. random variables). Let T, : Q — Q for y € Z¢
be given by (T,w)r := wy4y for all k € Z%. Then the random reaction strength model

flz,u,w) = <1 + sup a(wg)g(z — k:)) Fo(u)
kezd

satisfies (H2)—(H4) (see next paragraph for stationarity), with f, defined as f but with g

replaced by g, (z) := g(z) min{1, d(z, R\ B,/2(0))}. Hence Theorem 1.4 applies. Note that

f may have infinite range of dependence when ¢ is not compactly supported.

Note also that while this f is stationary only with respect to integer shifts (i.e., y € Z% in
Definition 1.1), such settings can be easily transformed to the case considered in the present
paper by letting Q := Q x [0,1)? with the product measure, f(z,u, (w,z)) == f(z + 2z, u,w),
and T, (w,2) := (Y |yrzjw, {y + 2}) for y € R% Since inclusion of y. in (1.6) shows that all
our main results continue to hold if we replace the identified full-measure set 9% C Q by
UyeRd TyQ’ , which is of the form €’ x [0,1)¢, they then also apply in integer-shift settings.

In the above example and in Theorem 1.4, reactions f with infinite ranges of dependence
are uniform limits of those with finite ranges of dependence. The next example is a natural
situation when this need not be the case, a reaction-diffusion analog of the setting where
sticks of random unbounded lengths are randomly positioned in R?. While Theorem 1.4 does
not apply here, one can instead use its generalization, Theorem 1.7 below, which allows this.

Example 1.6. Consider the setting from Example 1.5, without the functions g and a. Instead
pick some uniformly bounded and uniformly Lipschitz g; : R? — [0,00) (j € N) that satisfy
SUD;j ey SUD|y> |2|™ g;(x) < oo for some m’ > 0, and some Lebesgue measurable a : [0,1] — N
with |a™(5)] < j~7 for some v > 3d + 2 and all j € N. Then

) i= (14 5 (o = ) Fw)
kezd

satisfies (H3) and (H4’) below (see Example 1.5 for stationarity), with f,, defined as f but

with g; replaced by g;,(z) := g;(z) min{1, 2d(z,R*\ B, 2(0))}. This uses the fact that

St )la ()| = o(n G
i>n/2

for some m/, > 0 (because v > 3d+2), with the left-hand side being (up to a constant factor)
an upper bound on the probability that a(wy) > max{%, |k| —n'*™} for at least one k € Z<.
Hence Theorem 1.7 below applies. Note that f need not be a uniform limit of reactions with
finite ranges of dependence when the functions g; do not decay uniformly to 0 as z — oo.
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1.2. Generalizations. As we indicated above, it is not clear whether the limitation on the
dimension in (H2) is necessary to obtain a sufficiently general result. However, since both
conditions in (H2) are only needed to guarantee certain estimates for some special solutions
to (1.1) (see Lemma 2.4 below), including that the transition from values u ~ 0 to values
u ~ 1 occurs over spatial distances that grow only sub-linearly in time, as we mentioned above
(Lemma 2.4 shows that in the case of (H2) these distances are in fact uniformly bounded),
we can extend our results to more general settings as long as these estimates still hold there.
In particular, this might be the case for stationary ignition reactions in dimensions d > 4.

In order to state this alternative to hypothesis (H2), let us define for any 0 < n < 6 < 1
the width of the transition zone from n to 6 for a solution u : [0,00) x R? — [0,1] to (1.1) at
some time ¢ > 0 to be (see [29])

Ly ppo(t) :=inf {L >0 ‘ {z e R*|u(t,z) > n} C By, ({z € R |u(t,z) > 0}) } (1.7)

The special solutions for which we need to assume certain bounds on these quantities will be
essentially those evolving from characteristic functions of the balls By (0) C R?, with k € N.

It will however be more convenient to work with approximations w j of these characteristic
functions that have two useful properties. First, they are close to 1 on By(0) but are strictly
below 1 (which will allow us to treat general initial data from (1.6)), and are supported on
Bii g, (0) for some fixed Ry. Specifically, we will require that

(1= 0")xBi0) < ok < (1= 0°)XBy 5,0 (1.8)

holds with #* > 0 from (2.1) below. We note that we could in fact replace 1 — * in (1.8) by
any ¢ < 1 satisfying inf(, , yeraxo,1-0,)x0 f (2,4, w) > 0, but we make our choice for the sake
of convenience (Lemma 2.1 shows that solutions u : (0, 00) x RY — [0, 1] with u(t,z) > 1—6*
for some (¢,7) € [1,00) x R? converge locally uniformly to 1). The second property is that
the corresponding solutions to (1.1) satisfy u; > 0. For this, it suffices to have

Aug + F(ugg) > 0 (1.9)

with F(u) := inf(, ,)eraxq f(2, u,w), which yields Augy + f(-, uor,w) > 0 for any w € €.
Then u; > 0 follows for the corresponding solution u at all positive times because v := wu,
solves the linear equation v; = Av + f,,(x, u(t, z),w)v with v(0,-) > 0 and v(0,-) Z 0 (due to
(1.8) and F(1 —6*) > 0).

It is easy to construct radial functions satisfying (1.8) and (1.9), since then (1.9) becomes
a simple ordinary differential inequality. (This is in fact possible for any set S C R?, without
radial symmetry but still with a uniform Ry, and we do so in Lemma 2.2 below.) Let us now
pick one such wugy for each k¥ € N (any one can be chosen), and denote by U, the set of all
solutions u to (1.1) obtained by choosing any w € € and initial data u(0,-) = ugy for any
k € N. We can now replace (H2) by the following hypothesis.
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(H2’) f satisfies (H1) and there are as < 1 and msy > 0 such that

Ly 1o (1t
lim sup sup sup M < 00
t—oo  u€ly n>0 taQT/ 2 (110)

liminf inf inf u(t, z) > 0.
t—oo  u€ly u(t,xz)€[0*,1—0%]
Here Uy is as above, with some ugy, satisfying (1.8) and (1.9) for each k € N, and
0* = 0*(M,0;,my,aq) from (2.1) and Ry = Ro(M, 01, m1,aq) are independent of k.

Remarks. 1. The first statement in (1.10) allows L., 1-¢-(t) to grow algebraically in both
n — 0 and t — oo (note that ap < 1 is critical here because the scaling from (1.2) yields
Luy.yi-0-(t) = €Ly y1-¢- (¢7'¢), which will then vanish on any bounded time interval as we
take ¢ — 0). We note that Lemma 2.4 below shows that in the case of (H2), the former
growth is only logarithmic while the latter is non-existent.

2. Lemma 2.4 shows that the second statement in (1.10) holds as well if one assumes
(H2) (recall also that all u € Uy satisfy u; > 0). Nevertheless, we will further weaken this
hypothesis in Theorem 1.8 below.

3. We could also replace Bg(0) and Byig,(0) in (1.8) by B, (0) and B,, g,(0) for any
sequence 1 — 00, without any change to our results.

After replacing (H2) by (H2’), we must also adjust (H4) in the extension of Theorem 1.4,
in order to ensure that the reactions f, will satisfy (HZ2’) with uniform constants. Note that
when (H2) holds, we will show in Corollary 2.7 that f,, from (H4) can be perturbed so that
this is the case, but we do not know whether this remains true when we only assume (H2’).

In addition, we also state this new version of (H4) so that it applies to some f that are
not uniform limits of reactions with finite ranges of dependence (see Example 1.6 above).

(H4’) There are my, mj,ny, 4 > 0 such that for each n > ny, there exists a stationary
reaction f,, with range of dependence < n and

P( sup sup |fulz,u,-) = f(z,u,-)| > amn ™ | <p G,
|x\<n1+mﬁl u€(0,1]

Moreover, (H2’) holds uniformly in n (i.e., reactions f, satisfy (H1) with the same
M,0,,my, oy, and (1.10) with Uy replaced by |J Uy,).

We note that the initial data ugj used in the definition of Uy, are in principle allowed to
be different for distinct n (but 8* and Ry are uniform in n; also ry in Remark 3 above).

Theorem 1.7. Theorem 1.3 holds for any f that either satisfies (H2’) and has a finite range
of dependence, or satisfies (H3) and (H4’).

n>ng

Finally, we show that one can also allow a power decay in time in the second statement in
(1.10), at the expense of either having to extend this assumption to a slightly larger family
of special solutions or obtaining the result for a smaller family of initial data.

For each a € |0, %9*], let Uy, be defined as Uy above, but with (1.8) replaced by
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for initial data denoted wuqy,, instead of ugy (so now wugk, — a is supported in By g, (0)).
Obviously Us s = Uy, and one can find such initial data (for any S C R? and with Ry uniform
in a) via Lemma 2.2 with a; replaced by a;(1 — £6;)™ ! (since a < £6;) and then applying
the scaling ug g4 := (1 — a)ug s + a.

We can now replace (H2’) and (H4’) by the following hypotheses.

(H2”) f satisfies (H1) and there are ap < 1, my > 0, as € [0, 36*], and oy < min{ m1171’ %
such that

Lu a,1-0* t
limsup sup sup SUPM < 00,

t00  acl0,az] u€lpq n>0 L2172 (1.12)
liminf inf inf inf wy(t, ) 1% > 0.
t—00  a€l0,a2] uEUy ¢ u(t,x)€[0*,1—60%]
Here Uy, is as above, with some wuq , satisfying (1.11) and (1.9) for each k£ € N, and

0* = 0*(M,0;,my,aq) from (2.1) and Ry = Ro(M, 01, my,aq) are independent of k.

(H4”) f satisfies (H4’) with (H2”) in place of (H2’), and also o < 4.

3

Of course, these hypotheses coincide with (H2’) and (H4’) when as = 0 = 5. With
them, we can now state our second generalization of Theorems 1.3 and 1.4.

Theorem 1.8. Assume that f either satisfies (H2”) and has a finite range of dependence,
or satisfies (H3) and (H4”).

(i) If ay > 0, then Theorem 1.3 holds for such f.

(11) If ag = 0, then Theorem 1.3 holds for such f with A conver and (1.6) replaced by

(1- 91)XA3<5) < (0, + ye,w) < (1 - A_I)XBw@)(A) ‘

1.3. Organization of the Paper and Acknowledgements. In Section 2 we collect most
important notation and prove several preliminary results. These include Corollary 2.7, which
shows that Theorems 1.3 and 1.4 follow from Theorem 1.7. It will therefore suffice to prove
Theorems 1.7 and 1.8. We prove the first one in Section 6, after obtaining crucial quan-
titative estimates on long-time dynamics of solutions to (1.1) in Sections 3-5 (specifically,
Propositions 3.8, 4.2, and 5.1, with the first two of these being essentially the same result
but assuming (H2’)+finite range in the first and (H3)+(H4’) in the second). In Section 7
we then show how to extend all these results to the cases considered in Theorem 1.8.

The authors thank Scott Armstrong and Jessica Lin for illuminating discussions. AZ also
acknowledges partial support by NSF grants DMS-1652284 and DMS-1900943.

2. PRELIMINARIES AND NOTATION

In this section we collect some previous results and preliminary lemmas, all of which hold
uniformly in w and without needing to assume stationarity of the reaction. We will therefore
use the following hypothesis.

(H1’) f satisfies (H1) except possibly the stationarity hypothesis.



LONG TIME DYNAMICS FOR COMBUSTION IN RANDOM MEDIA 13

At the end of the section we also collect all the important notations in one place.

Let us start with a basic lower bound (see, e.g., [29, Lemma 3.1]), which shows that general
solutions to (1.1) propagate with speed no less than some ¢y = ¢o(M, 61, m1, 1) > 0. We will
choose this to be the unique front speed for the homogeneous reaction Fj : [0,1] — [0, 00)
defined to be the largest M-Lipschitz function with Fy(u) < aq(1—u)™ xp-6,,1(u) (so clearly
Fy < F). Hence ¢ is the unique number such that the PDE w, = u,, + Fy(u) in one space
dimension has a traveling front solution u(t, z) = U(x —cot) with U(—o0) = 1 and U(o0) = 0.

Lemma 2.1. There exists 03 = Oo(M, 01, mq, 1) < 1 such that for each ¢ < ¢o and 0 < 1,
there is ko = ko(M, 01, m1, a1, c,0) > 1 such that the following holds. If u : (0,00) x R? —
[0,1] is a solution to (1.1) with f satisfying (H1’) and with some w € §, and if u(ty,y) > 0o
for some tg > 1 and y € RY, then for all t >ty + ko,

inf  wu(t,z)>40.
|lz—y|<c(t—to)

If also u; > 0, then this clearly holds with any to > 0 (and ko increased by 1).

Let now

1
0% = Zmin{l — 0y, 01}, (2.1)

where 6y = 65(M, %91,7711,041( - %‘91>m1_1) <L

Remark. Addition of the factors § and (1—46;)™ ! here is due to the scaling u — (1—a)u+a
mentioned before (H2”), as we shall see in Section 7. All arguments before Proposition 7.4
will only require 0y = 05(M, 01, my, ;) here, and also only that 0* < %min{l — 05, 01}. So
we could define #* this way in Theorem 1.7 and its proof.

In the rest of the paper we will primarily use Lemma 2.1 with ¢ = ¢ and § =1 — 0", and
we will therefore define

Ro ‘= Ko <M,91,m1,CY1,050,1—9*>. (22)

Having defined this 6%, let us next construct the initial data ug g from the introduction,
which are perturbations of the functions xg that also satisfy (1.9).

Lemma 2.2. There is Ry = Ro(M, 01, my, 1) > 1 such that for any f satisfying (H1’) and
S CRY, there is a smooth function ug s satisfying (1.9) and

(1=0")xs <wuos < (1 —0%)xBg, ) (2.3)

Remark. Recall that (1.9) implies that the relevant solutions to (1.1) satisfy u; > 0. Moreover,
(2.3) yields the uniform bound L, 1-4+(0) < Rg for all n € (0,1 — 6*) and S C R?, which is
relevant for the next result.

Lemma 2.2 is proved in Appendix A.
Let us now turn to the consequences of (H2) obtained in [29]. In fact, these results hold
for the following more general classes of functions.
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Definition 2.3. For M, 6, my,a; from (H1) (and Fy defined above), and for any ¢,& > 0,
let F(Fo, M,01,(, &) be the class of all f satisfying (H1”) such that
il () >

(z,w)ERIXQ
uehf (x7w§C)»1—91]

where (with the convention inf () = c0)
Ye(x,w; ) == inf{u > 0| f(z,u,w) > Cu}.
Remarks. 1. Although we could instead write F (M, 01, mq, aq, ¢, §), we use notation from [29].
2. Note that pure ignition reactions belong to g F(Fo, M, b1, ¢, ) for any ¢ > 0.
It was shown in [29] that if d < 3 and f is from the class F(Fy, M,01,(, &) for some
Fy, M,0,,¢ and ¢ < c2/4, then transitions from values u ~ 0 to values u ~ 1 for fairly general

solutions to (1.1) occur over uniformly-in-time bounded distances. In view of our interest in
solutions from Uy, with initial data satisfying Lemma 2.2, the following result will be relevant.

Lemma 2.4. Let d < 3, let Iy, M, 0y be as in Definition 2.3 and 0* from (2.1), and consider
any £ > 0 and ¢ < ¢§/4. There is A > 0 and for any n € (0,3) there are p,, K, > 0 such
that if f € F(Fo, M,01,(,&) and u solves (1.1) with some w € Q and initial data satisfying
Lemma 2.2 for some S C R?, then

Lyn1_o+(t
sup  Lenie(®) (2.4)
t>0&ne(0,1—0+) 1+ [1Inn)
and for any n > 0 we have
inf ug(t, ) > py. 2.5
(t,2) € (tiy,00) X RY 1(6:) 2 iy (2:5)
u(t,)€[n,1-n]

Proof. Recall that we have Ly, 1_¢«(0) < Ry for all n € (0,1 — 6*). We then obtain (2.5)
from [29, Theorem 2.5(i)] with (¢/,e) = (1 — 6*,n) (we can choose there gy = 0*, and then
¢’ =1 —¢p), with independence of , on u due to Remark 1 after the theorem.

To obtain (2.4), we instead use (4.14) in [29] with (g9, h, to) = (6%,0,0) (where gy was used
to define the function Z, in (4.14)). Then the bound Z,(to) — Y;(to) < R, for all y € R
follows from L, 1-¢+(0) < Ry for all n € (0,1 — 6*), so (4.14) yields Z,(t) — Y,(t) < X for
all (t,y) € [0,00) x R? and some A\ = \(Fy, M, 01,¢,€). The definition of Y,(¢) shows that
if u(t,y) > n for some (¢, y), then Y;*(t) < wil(%), with ¢"(r) + =214/ (r) = ((r) on (0,00)
and 1$(0) = 1 (hence we have lim,_,, 7(@"D/2e=VE (1) € (0,00)). Therefore ¥(r) > ev<r/2
for all large enough 7, so Z,(t) < A+ %Hn n| for all small enough n. But since Z,(t)
is the distance from y to the nearest point x with u(t,z) > 1 —¢y = 1 — 0*, we obtain
Lypi—o(t) < X+ \/lf| Inn| for all t > 0 and all small enough n > 0. This yields (2.4) with
some A = A(Fy, M, 01,C,§). O

The next result is a counterpart of Lemma 2.1 (see [16, Lemma 2.2]). It shows that the

speed of propagation of perturbations of solutions to (1.1) is bounded above by 2v/Md (in
fact, the bound 2v/ M works as well, but we will not need it here).
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Lemma 2.5. Let r > 0 and y € R, and let u, : [0,00) X B,.(y) — (—00,1] be a subsolution
and ugy : [0,00) X B.(y) — [0,00) a supersolution to (1.1) with some f satisfying (H1’) and
some w € Q. Ifuy(0,-) < wu(0,-) on B.(y), then for all (t,z) € [0,00) X B.(y) we have

ui(t, z) < ug(t,x) +2deV M/d(|jo—y|-r+2VMd t)

Remark. This was stated in [16] with u, us having values in [0, 1] only, but the proof applies
to our case without change.

This yields the following corollary (as above, ¢; in this result could be just 2v/M ).
Corollary 2.6. If u : [0,00) x R? — [0,1] solves (1.1) with some f satisfying (H1’) and

some w € €, then for any t > 0 we have
{z e R*|u(t,z) >1— 601} C Beypor, ({z € R*|u(0,2) > 61}),

where

2d
c1 =2V Md > ¢ and K1 :zl—k\/d/Mln1 TR
— 204
Proof. The claim ¢; > ¢y follows from the well-known estimate ¢y < 2V M for any M-
Lipschitz ignition reaction Fy. If ¢ > 0 and y ¢ Bejtir, ({x | u(0,2) > 6,}), then Lemma 2.5
with u; = u, us = 01, and r = ¢1t + Ky yields

u(t,y) < 0y +2de VMarm <1 ¢,
finishing the proof. O

We can now use these results to show that Theorems 1.3 and 1.4 follow from Theorem
1.7, so it will suffice to prove the latter (and then Theorem 1.8). This also means that we
will assume either (H2’) or (H4’) in the rest of Sections 2-6. Hence, then there will be
s, i > 0 such that for any u € Uy or v € | Uy, , respectively, we have

n>ng

Lu,r],l—ﬂ* (t) < -1

* )

sup <
t>0&n>0 (14 to2)n=m2

inf u(t, ) > [y
(t,@) €[k ,00) xR t( ) =#
u(t,z)€(6*,1-0%]

(2.6)

Notice that while (1.10) only allows us to state the first of these claims for ¢ > k,, one can
extend this to all ¢ > 0 (with a different yu,). This is because Lemma 2.5 with = y shows
that if u(t,y) > n for some u € Uy (or u € U, ~,, Uy, ), (t,y) € [0,x*] x RY, and n > 0, then

n>ny

2d
d(y, Bk(0)) < Ry + vV Md (21'{* + M 'In ?>

(when u(0, -) = uoy), SO Ly 1-6+(t) satisfies the same upper bound because u; > 0. We note
that we could also include ¢ € [0, k,) in the second claim of (2.6), at the expense of some
extra work, but this would not be as useful.

Corollary 2.7. (H2) implies (H2’). Also, (H2) and (H4) imply (H4’) for some sequence

of reactions g, in place of f,, with possibly different M, 0, ny, y and with m) = oo.
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Proof. Remark 2 after Definition 2.3 and Lemma 2.4 show that (H2) implies (H2’) with
as = 0 and any mo > 0.
Let us now assume (H2) and (H4), and with the convention that [a,b] = 0 if a > b, let

fn(x7u,w) = min{ f,,(z,v,w) | v € {u} U[1 — 0, u]}.

These reactions are non-increasing in u € [1 — 6y, 1], and still satisfy ||f, — flloe < aun™"4,
because f is non-increasing in u € [1—#6;,1]. Also, each f,, is obviously stationary with range
of dependence no greater than that of f,,.

Next, let ¢ : R — [0, 00) be a smooth function supported in B;(0) and with integral
over B;(0) equal to 1. Then let ¢, (z, u) := n@ D™ (nmMig p™iy), and consider f, * ¢, (with
the convolution in (z,u); recall that all reactions are extended by 0 to uw ¢ [0,1]). With V
being either V, or d,, we then have

”an * Onlloc S IV * dnlloc + ||(fn = [)*Voulloo < M+ amn™™|[Ven|1 = M + as|| V.
Finally, recall F' from (1.9) and let F(u) := SUD (3 w)erixq J (T, u,w), and

gn(z,u,w) = min{max{(fn * ¢p)(m,u,w), F(u)}, F(u)}.

It is not hard to see that for all large enough n, these functions satisfy (H1) with (M, 6;)
replaced by (M + au|V,o|1, 361). We also have [|g, — [l < (2M + ay)n™™ for all large
enough n because || f, — flloo < ayn ™ and F < f(z,-,w) < F for all (z,w), and the range
of dependence of g, is at most n + 2n="™ < n + 2.

Since f € F(Fy, M, 0,¢,€) for some ¢ < ¢g/4 and € > 0, ||Gn — flloo < (2M + aq)n™™
yields g, € F(Fo, M + a4||Vao|1, 561, £ (4¢ + &), 5€) for all large enough n. Therefore, as
at the start of this proof, we obtain that the g, satisfy (H2’) uniformly in n, for all large
enough n. Hence, the reactions g, := g, o satisfy (H4’) with possibly different M, 0y, ny, ay
and with m/, = oo. d

The next result uses Lemma 2.5 and the bound f(-,u, ) > «a;(1 — u)™ for u near 1 to
essentially obtain an upper bound on ko(M, 60, my, a1, %2, 0) from Lemma 2.1 as 6 — 1 (we
could similarly do this for any ¢ < ¢y in place of %).

Lemma 2.8. Let u : [0,00) x RY — [0,1] solve (1.1) with f satisfying (H1’) and some
w € Q. There is Dy = D1(M, 01, my, ) such that if u(ty,y) > 1 — 0* for some ty > 1 and
y € R, then for any 0 € [1 —0*,1) and t > to + Dy(1 — 0)1=™ we have

inf u(t,z) > 0.
lz—y|<co(t—to)/4

Proof. Lemma 2.1 shows that with xq from (2.2) we have

inf u(t,z) >1—6"
|z—y|<co(t—to)/2

for any t > ty + Ko. Since
U(s) =1 — ((6)7™ 4 (my — Days) Y m=b
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solves the ODE U’ = a4 (1 — U)™ with U(0) = 1 — 6*, it follows from Lemma 2.5 that
U(t + 8,1‘) 2 U(S) . 2d€\/M/d(|$—y|—co(t—t0)/2+2\/Mds)
[(155)1 7™ — (6%)'7"™] makes U(s) > *.
10

for all (s,z) € [0,00) x R?%. Picking s := =
0

The second term on the right will be no more than

(m1 1 Oz1

when |z —y| < %(t+s—tg), provided
t —1 t—1 —

CO( +: 0)_CO<2 0)+2 /Mdsg /d/Mlnﬂ’
which holds as long as t > ty + Dy(1 — 0)'™™ for some D; = Di(M,0;,my,a1) > k.
Replacing Dy by Dy + m%nl*l now yields the claim for ¢ 4+ s in place of ¢ whenever
t+s>to+ Di(1—6)m. O

Finally, we will need two results providing estimates on how much solutions to (1.1) may
change when the reaction f is perturbed. The first one concerns the case when the reaction
can change only where the solution is initially close to 1. In it, we will also use the definition

Tu(x) :=1inf{t > 0|u(t,z) > 1 — 6"}

Lemma 2.9. Let fy satisfy (H2’) and fy satisfy (H1’), and let M, = IJ;—*M, With iy, K+ from

(2.6) for all w € Uy,. Fiz some w € Q and let uy,uy : [0,00) x RY — [0, 1] solve (1.1) with
f1, fo in place of f, respectively. If uy € Uy,, to > 0, and for some n € [0, 3 min{6*, M, '}]
we have

fi(z,u,w) = folx, u,w) whenever uy (ty,x) <1 —mn and u € [0, 1], (2.7)
then
up(t, ) == ur((1+ M)t +to,x) + 1
is a supersolution to (1.1) with fy in place of f on (k.,00) x R%, and
u—(t, ) == ur((1 = M)t + to, ) — 1

is a subsolution to (1.1) with fo in place of f on (2k.,00) X {x € R¥|uy(tg,x) < 1 —n}.
Moreover, there is Dy = Do(M, 601, m1,0q) > 1 such that if also

sup (u2(0,2) —ui(to,z)) <n

zEBR(y)
for some y € R? and R > Do(1 + T,,(y)), then
Toy(y) = (L + M) " (T, (y) — to — 26 — ko). (2.8)

The proof of Lemma 2.9 appears in Appendix B.
Our last preliminary lemma concerns the case when the reaction may be perturbed any-
where, although not by a lot.

Lemma 2.10. Let f; satisfy (H2’) and fs satisfy (H1’), with at least one of them satisfying
(H3) with a3 < 1, and let M., Dy be from Lemma 2.9. Fix some w € Q and let uy,uy :
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[0,00) x R" — [0,1] solve (1.1) with f1, fo in place of f, respectively. If uy € Uy,, for some
y € R, R> Dy(1+T,,(y)), and n € [0, 3 min{6*, M }] we have

fi(z,u,w) > folz,u,w) —agn™  for all (z,u) € Br(y) x [0, 1], (2.9)
and uz(0,x) < uy(to, x) for some ty > 0 and all x € Bg(y), then (2.8) holds.
The proof of Lemma 2.10 appears in Appendix C.

2.1. Notations. Since Sections 36 are just the proof of Theorem 1.7, we will assume either
(H2’) or (H3)+(H4’) in them. Any constants C, Cy, Cs,C(6),... may depend on

/
M; 017 my, G, Mg, Og, N3, O3, Mg, My, Ny, Olg, [y, Rx (210)

(except for mg, ag, mg, my, ng, ay when (H2) is assumed; dependence on d is implicit in the
whole paper). Any other dependence will be explicitly declared, for instance, “for some Cjs”
or “for some C' = C(9)” will mean that this constant depends on ¢ as well as (2.10). These
constants may also vary from line to line. We recall that M, 01, m, oy are from (H1); mo, g
from (H2’); mg3, ag from (H3); my, m), nyg, oy from (H4’); and p,, k. from (2.6).

The constants

92, 0*, Co, Ko, C1, K1, Dl, DQ, Ro, M*

also only depend on subsets of (2.10), with 0, ¢g, ko from Lemma 2.1; 0* from (2.1); Ry from
Lemma 2.2; ¢1, k1 from Corollary 2.6; Dy from Lemma 2.8; and M,, Dy from Lemma 2.9.

For ACR? and r > 0 we let B,(A) := A+ (B,(0) U {0}) and A% := A\B,(0A) (so A} is
the interior of A). For sets U,V C R%, we let d(U, V) := inf,ey g yev |2 — y| and

dg (U, V) := max {Sup d(z, V), supd(y, U)}
zeU yev

be their standard and Hausdorff distances.

Widths L, , ¢(t) of transition zones of solutions are defined in (1.7), and the special sets Uy
of solutions evolving from approximate characteristic functions of balls are defined in (H2’).

Finally, we recall that £(U) is the o-algebra generated by the family of random variables
{f(z,u,") | (x,u) € U x [0,1]}. Further important notation related to the dependence of
reactions and solutions on w appears below, particularly early in Sections 3 and 5.

3. FLUCTUATIONS FOR REACTIONS WITH FINITE RANGES OF DEPENDENCE

The proof of Theorem 1.7 will be based on the analysis of the dynamics of special solu-
tions, starting from the approximate characteristic functions ug g of sets S C R? satisfying
Lemma 2.2. For each S and w € (), we therefore let u(-,-,w;S) be the solution to

ur = Au+ f(z,u,w) on (0,00) x R%, (3.1)

u(0,-,w; S) =ups on R%. '

Recall that (-, -,w; ) > 0 because ug g satisfies (1.9). Let us also define for any z € R%,
T(z,w;S) :=1inf{t > 0|u(t,z,w;S) >1—-0"} >0, (3.2)

with 6* from (2.1), which can be thought of as the time when this solution reaches .
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Our goal is now to estimate the stochastic fluctuations of T'(z,w; S). In this section we will
consider the first case in Theorem 1.7, when the reaction satisfies (H2’) and has a finite range
of dependence. We will only need to treat the cases when S is either a ball or a half-space.
We start with S being a ball, when the solution in (3.1) will be precisely the one from Uy
corresponding to (S,w). Hence, below always u(-,-,w;S) € Uy and (2.6) holds for it.

Remark. We note that if we enlarge Uy (or each Uy, ) to include solutions with initial data
up,s from Lemma 2.2 for all S from some family S of bounded subsets of R%, and (2.6) still
continues to hold with some g, k. > 0, then everything in this section and the next holds
without change (and with uniform constants) for either all S € S (the results involving balls
only) or for all local limits in Hausdorff distance of translations of sets from S (the results
involving half-spaces). In particular, Remark 2 after Definition 2.3 and Lemma 2.4 show that
if we assume (H2), then we can let S be the family of all bounded subsets of R<.

Proposition 3.1. Let f satisfy (H2’) and let

m1—1 mo + Qi

my | me+1

B = max{ } (€ (0,1)). (3.3)

There is Cy > 1 such that if f has range of dependence at most p € [1,00) and S = By(0)
for some k € N, then for all z € R? and X\ > 0 we have

]P’(‘T(x,.;S) —E[T(@-;S)H > ) < 2exp (Co(l —i—d(x,S;))Ep—i—d(:E, S)Bl)) . (3.4)

Remarks. 1. The point here is that by choosing A ~ d(z,S)? for some v € (Hfl,l), one

obtains a fast-decreasing bound on the probability of O(d(z, S)Y) fluctuations of T'(x,-;S)
from its mean (the latter is of course ~ d(x, S) by Lemma 2.1 and Corollary 2.6).

2. Note that Remark 2 after Definition 2.3 and Lemma 2.4 show that (H2) implies
(H2’) with @ = 0 and any ms > 0, so then [ = m#f If there is also 8 < 1 such

that inf, , o)erixo1)x(l — w) 7' f(2,u,w) > 0, then this means that §; > 0 can be made
arbitrarily small.

The rest of this section is devoted to proving Proposition 3.1 (and then extending it from
balls to half-spaces in Proposition 3.8). We will therefore assume (H2’) and the range of
dependence of f being at most p € [1,00). We will also fix S = B(0) and drop it from the
notation (so the functions from (3.1) and (3.2) are u(t,z,w) and T'(z,w), respectively) but
all estimates will be independent of S (i.e., of k). Recall that all constants with C' in them
depend on (2.10), with any other dependence explicitly stated, and may vary from line to
line.

3.1. Construction of a martingale. Let K be the set of all non-empty compact subsets
of R and endow it with Hausdorff distance dy. For each a = (ay, ..., aq) € Z4, let

Co:=la1,a1 + 1) X ... X [ag,aq + 1),
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and for each finite ) # A C Z, let

1
Py =<{KeK|Kn—=C, # 0 if and onl ifaeA}.
Let us label all such A as Ag, Ay,..., and denote P, := P4,. Then {P,;};cn, is a (pairwise
disjoint) partition of the metric space (K, dy), and diamgy(P;) = 1 for each i € Ny.

For each i, let .
K= ﬁca = JK

aGAi Kep;
i ] ; i
(note that K is not compact), so that for each K € P, we have

K C K; € By(K).
Notice also that for each 7,5 € Ny we have
if P,5 K C K' € P, then K; C K. (3.5)
Next, for any (t,w) € [0,00) x Q and 6 € (0, 1), we let
Tuo(t,w) = {z € R*|u(t,z,w) > 0}
Since S is bounded, Lemma 2.5 shows that all these sets are compact. Then for all i € Ny
and ¢ > 0 we let
Ei(t) :={w e QT (t,w) € P} CQ,
with 6* from (2.1). Then {E;(t)}ien, is a pairwise disjoint partition of Q for each ¢ > 0
because 'y, g+ (t,w) # 0 (due to 6* < 1—6*). Also note that ap < 1 allows us to only track the
evolution of one of the sets I', g (see the remark after (H2’)), and in this section we choose
it to be I', p«. Finally, for (t,w) € [0,00) x €2, let
Lt,w) =1 when w € E;(t),
and for each (¢,7) € [0,00) x R? let
Ft,x = {w e | T e Kb(t,w)}'

The latter is a slightly different version of the set of w for which the solution u has reached
x by time ¢ (we have Fi, D {w € Q|T(z,w) < t} D F,_¢, for some C' > 0 and all large
enough ¢, due to (2.6)). Let us also pick Ay so that ¢(0,w) = 0 for each w € Q (note that
t(0,w) does not depend on w).

Since u; > 0 and f(-,u,-) = 0 for u € [0,0*], the solution u(-,-,w) only depends on the
reaction inside K, ., up to time ¢. Hence, we have the following lemma.

Lemma 3.2. For any (t,z) € [0,00) x R? and s € [0,t], the set E;(t) and the function
u(s,x,-)Xp,)(-) are E(K;)-measurable for each i € Ny.

Proof. Fix any i € Ny, and let g be any reaction satisfying (H1’) and
flz u,w) = g(z,u,w) for all (z,u,w) € K; x [0, 1] x Q.
Then for each w € €2, let v be the solution to
v = Av+ g(z,v,w)
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with the same initial data v(0,-,w) = up g as u, and fix any ¢ > 0. Since uz, vy > 0 and
f(,u,+) =0 for u € [0, 6], it follows that v(s,-,w) = u(s,-,w) whenever w € F;(t) and s < ¢.
Similarly, we have v(s, -,w) = u(s, -,w) whenever I', g« (t,w) € P, and s <t (with I, y defined
analogously to I', ¢). In particular, w € E;(t) if and only if I'; ¢+ (t,w) € P;.

Since this holds for each g as above, it follows that E;(t) € £(K;), and then also that
u(s, x,-)Xg,u () is E(K;)-measurable for any (s, ) € [0,t] x R% O

For each t > 0, let G; be the g-algebra on 2 generated by

U &
1€Np & s€(0,1]
That is, G; is generated by all events F' N E;(s) with i € No, F' € E(K;),s € [0,t]. Then
{G: }i>0 is a filtration on (€, F), and Gy = E(K,) because Ey(0) = Q and E;(0) = 0 for ¢ > 0.
Lemma 3.2 then shows that u(s, z,-) is G;-measurable for any (¢,7) € [0,00) x R? and s < ¢.
Since E;(s) € E(K;) for all i € NO and s > 0 (so also F'N E;(s) € E(K;) above), (s,-) and
F, . are also G;-measurable for all (t,z) € [0,00) x R? and s < t.
We note that G, is actually simpler than its definition suggests, and for each ¢ > 0 and
j € Ny we in fact have

i(s)-

Gl ) = E(K;)| ;0 (3.6)
(recall also that {E;(t)};en, is a partition of Q for each ¢ > 0, and note that only finitely

many of these sets are non-empty due to Lemma 2.5). Indeed, let us consider any i € Ny and
s € [0,t] such that E;(s) N E;(t) # 0. Then there is w € Q such that

Lt,w) =7j and L(s,w) = 1.
From (3.5) and
oo (r,w) C Ty (s,w)
for any such w, we obtain K; C K;. But then E;(s) € £(K;) C £(K;) and

E(K)|gs)ne; ) € EK))|Eis)ne; @) S ) g0

Since this clearly also holds when E;(s) N E;(t) = 0, the definition of G; proves (3.6).

Similarly to [2, 3], we will prove Proposition 3.1 by studying the Gi-adapted martingale
{X;:=E[T(z,-)] G }i0 for any x € R? and estimating its increments, which will then allow
us to apply Azuma’s inequality to bound the fluctuations of T'(z, -).

Lemma 3.3 (Azuma’s inequality). Let { X}, oy, be a martingale on (2, F,IP). If for each
k € N there is ¢y > 0 such that | Xy — Xi_1| < ¢ almost surely, then for all A > 0 andn € N,

/\2
P[| X — Xo| = A] < 2exp (_n—) -
2> 1 G
We first show that for any w € F;, the difference E[T(z,-) | G](w) — T'(z,w) is uniformly
bounded, and 0 if w € F;, when ¢t — s is large enough (note that F,, C Fi, if s <t

because u; > 0). This is due to F;, € G; and the above-mentioned relationship of F;, and
{weQ|T(z,w) <t}
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Lemma 3.4. There is C' > 0 such that for each (t,z) € [0,00) x R? we have
E[T(2, )xF.. |G = T2, )xp.| < C on 1,
and if also s € [0,t — C|, then
E[T(z, )xr,. 1G] =T(z,)xr,. on §2. (3.7)
Proof. For any (z,w) € R? x Q, let
T(x,w) :=1inf{t > 0|z € By(['yp-(t,w))} <T(z,w).

If we Fy, for some t > 0, then 7(z,w) < t due to K,y € Bi(I'ue-(t,w)). And since
u(s,,-) is Gi-measurable for all s < t, we see that 7(x,)xr.,(-) is Gi-measurable.
For each (7,w) € R? x 0, there is y € By (x) with u(7(z,w),y,w) > 0*, so (2.6) shows that

u(r(z,w) + ko 4t y,w) > 1= 6%, (3.8)

and then Lemma 2.1 yields
u(T(2,w) + Ky + Ko+ 2ct mw) > 1 — 6%

Therefore there is C' such that T'(z,w) < 7(z,w) + C, and hence |T(z,w) — 7(z,w)| < C.
Hence for any (¢, ) € [0,00) x R? we obtain using G,-measurability of 7(z, )X, ,

E[T(2, )Xp. |G] = T(@, )xp.| < |Elr(z, XA, |G = 7(2, )XE. | +2C =2C,
yielding the first claim. If also s <t — C, then for all w € F§, we have
T(r,w) <7(r,w)+C<s+C <t
Since u(t, ,-) is Gi-measurable, this shows that so is T'(z,-)xr,,, and (3.7) follows. d

When w € Q\ F,, (that is, essentially, when the solution u has not yet reached x by the
time t), we will obtain a different kind of estimate.
Let p > 1 be from Proposition 3.1, and for each i € Ny let

gi(w,u,w) = Yi(@)E[f (2, u, )] + (1 = ¢s(2)) f (2, v, w),

where 0 < ¢); < 1 is Lipschitz with a uniform-in-i constant, with ¢, = 1 on B,(kK;) and
Y; = 0 on R*\ B,.1(K;). Then g; is Lipschitz in (z,u) (with a uniform M-dependent
constant > M, which we will call M from now on), and g;(z,u,-) is independent of E(K;)
for all (x,u) € R? x [0,1] because f has range of dependence at most p. Of course,

gi=f on (R B, (K;)) x[0,1] x Q. (3.9)
For each w € 2, let now v; be the solution to
(v;)e = Av; + gi(z, v, w) on (0,00) x RY,
0;(0, -, w) = g K, on RY,
with ug g, from Lemma 2.2. Then v;(¢, x,-) is independent of £(K;) for each (¢,z), and so is

Ti(z, ) :==inf{t > 0|v;(t,x,) > 1 —6"}.
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Proposition 3.5. There is C' > 1 such that for each (t,x) € [0,00) x R? and w € Q\ F;,
we have
|T(2,w) =t — Typu)(z,w)| < Clp+ d(x, 5)™).

Remark. This shows that the difference of the time it takes to reach x from S and the
sum of any smaller time ¢ and the time it takes to reach = from K,y (which approximates
Iy 0+ (t,w)) is sublinear in d(z,S). Hence, this result yields a certain additive structure (up
to lower order errors) for the arrival times of solutions with initial data from Lemma 2.2.

Proof. We will use (g, x¢) in place of (¢,x) in the proof. Fix any w € Q\ F}, ., and let
i := t(ty,w). Note that since w € F;(ty), we have
Lo+ (to,w) C K; C By(Ty - (to,w)). (3.10)

Moreover, since xy ¢ K;, Lemma 2.1 shows that ty < kg + %d(wo, S).
Let us first show that

T(z0,w) — to — Ti(xo,w) < C(p + d(x0, S)™).
From (2.6) we know that with Ly := p; (1 4 £52)(0*)™™2 + 1 we have
Ly (to,w) € Br,—1(Tu,1-0- (to, w)).
Hence we obtain
K; C B, (Tu1-¢(to,w)).
This and Lemma 2.1 now show
Bpr,(K;) CTyi—g(to + t1,w) (3.11)
for
ty = ko + 2¢5 ' (Ro + L),
hence
u(t, -, w) > ug i, = v;(0,-,w) (3.12)
for any t > to + t;. Since ty < Ko + %d(:vo, S), there is C' > 0 such that
t1 < C(1 + d(xg,S)*).
Now take

. for 1 _
n:i= mm{;, AL d(xg, S) 7} > 0, (3.13)

v = min{i, S } € (0,1).

mi; me +1

where

Note that (3.3) shows that
max{y(m; —1),a0 +yma, 1 — v} =1 < L. (3.14)
It follows from (3.11) and Lemma 2.8 that for ¢, := %(p + 1) + Dyn'~™ we have
u(to+t1 +tg,,w) >1—n  on B,(K;). (3.15)
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Moreover, from (3.13) and (3.14) we see that there is C' > 0 such that
tg =t +ty < C(p+ d(wo, S)* + d(, 5)"™ V) < C(p+ d(xo, 5)). (3.16)

We now apply Lemma 2.9 with (f, g;, u, v;, to + t3,00) in place of (fi, fo, ui, ug, to, R). Its
hypotheses are satisfied due to (3.9), (3.12) and (3.15), and it yields

T(zo,w) —tg —t3 < (1 + M.n)Ti(x0,w) + 2k. + Ko.

This, (3.16), and T;(zg,w) < C(1 + d(zo, K;)) < C(1 + d(z,S)) (which follows from
Lemma 2.1, with some C' > 0) show that there is indeed some C' > 0 such that

T(zg,w) — to — Ty(zo,w) < MnTi(zo,w) 4 2k, + Ko + ts < Cp + d(xo, S)™). (3.17)
Let us now turn to
to + Ti(wo,w) — T(wo,w) < C(p + d(xo,5)™),

and let n be again from (3.13). We will now need to estimate u from above in terms of some
time-shift of v;. It follows from Lemma 2.9 that

u_(t,z,w) == u((1 — M)t +to, z,w) — 7 (<1-n)

is a subsolution to (1.1) with reaction f on (2ky,00) x (R4 \ I'y1_y(to,w)). We also know
that v; is a solution of the same equation on (0,00) x (R?\ B,,(K;)). In order to be able to

compare them, we need some more estimates involving these sets.
Since #* < 6,, Corollary 2.6 and (3.10) yield

Lo+ (to + 264, w) € Bocyytry (Do (Lo, w)) € Bocyrytny (Ki)-
This and (2.6) show that with Ly := p; (1 + (to + 2k.)*2)n~™2 and
Ly := max{Ls + 2¢1Kky + K1, p + 1},
we have
Ly 02k, w) C Ty p(to + 264, w) C B, (Fy1—g«(to + 264, w)) C By (K;). (3.18)
We note that this also implies
Luiy(to,w) C Typlto + 264, w) C Br, (K;). (3.19)
Moreover, Lemma 2.8 shows that
Br,(K:) C Ty1on(ts,w), (3.20)

with t4 := %Lg + Dynp'~™ . Then (3.13), (3.14), and ¢y < kg + %d(mo, S) show that there is
C > 0 such that

by < Clp+ 18207 +1i=™) < Clp+ d(zo, S)). (3.21)
Using (3.20) and (3.18), we find that
Ui(tél + ) '7(*}) Z 11— n Z U_(QK* + ) ',(U) on (07 OO) X BL3<Ki)7

3.22
Vi(tg, -, w) > 0> u_ (264, w) on R*\ By, (K;). (3.22)
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From (3.9), (3.19), and Lemma 2.9 we also see that v; and u_ are, respectively, a solution
and a subsolution to (1.1) with reaction f on (2., 00) x (R¢\ Bz, (K;)). So the second claim
in (3.22) and the comparison principle yield

U— (264 + -,y w) < vty + -, -, w) on [0,00) x (R*\ By,(K;)).
If xg ¢ Br,(K;), then this shows that
T(xg,w) > (1 — M) (Ti(xo,w) — ts + 2k4) + to.

Using again T;(zo,w) < C(1 + d(xg, S)) (as we did above) and (3.21), we obtain

Ty(wo,w) + to — T(x0,w) <ty + MnTi(20,w) < C(p + d(xg,S)™) (3.23)
for some C' > 0. If instead = € By, (K;), the first claim in (3.22) and (3.21) again yield

Ti(20, w) + to — T(zo,w) < Tj(20,w) <ty < Clp+ d(zg,S)™)

because xy ¢ K; (and hence T'(xg,w) > to). d

The last ingredient in the proof of Proposition 3.1 is an estimate on the difference of
T,tw) (2, w) for two different times .

Lemma 3.6. There is C > 0 such that for all (z,w) € R x Q and to,t; > 0 we have
T 41,0) (7, 0) = Tygo) (,0)| < C (p+ [t1 — to| + d(z, S)™).

Proof. Let ig := 1(tp,w) and iy := 1(t;,w), and then w € E; (o) N E;, (t1). Without loss of
generality, let us assume t; > to. Then u; > 0 and (3.5) show that K;, C Kj,.
If z ¢ K;,, Proposition 3.5 yields

|Ti1(x7w> - Tio(‘r7w)| < |t1 - t0| + C(p—l—d(x,S)Bl).

If x € Ky, then T}, (z,w) = T}, (z,w) = 0. The result follows in either case.
Let us now assume that z € K; \K;,. Then 7T}, (x,w) = 0, while Lemma 2.1 shows that

T, (z,w) < ko + 2¢cytd(z, Kiy)) < C(1+dy (K, Ki,)) (3.24)

for some C' > 0. From t; > t, and (2.6) we also have

L+ (to, w) C Tupe (1, w) C Bot(gey-ma14402) (Du1—0+ (1, W),
and Corollary 2.6 yields

Lua—o+(t1,w) € Bey(t1—to)4r1 Do+ (to, w)).
Hence there is C' > 0 such that
du(Lue (to,w), Tup(t1,w)) < C(L 4172 4+t — to).
Since also dg (K, tw), g+ (t,w)) < 1forall t > 0 (because I'y g (t,w) € Pyyy), this implies
di(Kiy, Kiy) < dp(Kiy, Tugr (to, w)) + dg(Tu g (to, w), Tug (t1,w)) + du(Ty e (t1,w), Kiy)

< C(1+t52 4+t —to).

This and (3.24) yields the claim. O
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3.2. Proof of Proposition 3.1. If d(z,S) < p, then (3.4) holds for all A > 0 as long as
Co > 2(ko + %)Q(In 2)~!. This is because T'(z,) < ko + %d(m, S) by Lemma 2.1, so one only
needs to consider A < (kg + %)(1 +d(z,5)), for which the right-hand side of (3.4) with this
Cy is at least 1 due to p > 1(1 + d(z, 9)).

It therefore suffices to consider the case d(x,S) > p. In particular, we have z ¢ K due to
p > 1. Let us fix any such = and consider the G;-adapted martingale {X;};>¢ defined by

Xi = Xy(w) = E[T(z, ) [ Ge](w).

We want to apply Azuma’s inequality to it, which means that we need to obtain a suitable
w-independent bound on |X; — X;| for any ¢t > s > 0 (which we fix). Using

Xy =E[T(z, )xr,. |G + E[T(z, )xre, | G,
Xs =E[T(z, - )xp.. |Gs] + E[T (2, )xre, | Gsl,
we find from Lemma 3.4 (recall that F,, C F;,) that there is C' > 0 such that
| Xo = Xo| < |E[T(x, - )xre, |G = E[T(z, - )xrg, [ G| + C
= [Sogi [T (2, )XE(s) | Gt) — Sagr BT (2, )XEis) | Gsl| + C.

Here we used that w ¢ Fj , precisely when x ¢ K, (5.), and the sums are over all i € Ny such
that « ¢ K;. From Proposition 3.5 with s in place of ¢ we have

|Ex¢K¢E[T(5Ea ‘ )XEi(s) | Gi] — EzﬂQE[T(l’a : )XEi(s) | gs”

< |Segr E[Ti(2, )X | G) — Bogw BT (2, )xmi9) | 96| + C (p + d(x, 5)™)

= [Sieno BT (%, )X Ei(s) | Gt) — Sieno E[T3(2, - )X By | Gsl| + C (p + d(z, S)y.
The last equality holds because T;(x,w) = 0 when z € K;. Since

E[Ti(z, - )XEi5) | 9] = Sjeno BTz, - )X By5)nE5 ) | G1]
(recall that E;(s), E;(t) € G;) and Lemma 3.6 yields
’ZijE[Ti(x ')XEv (s)NE;(t) |gt] - Zi 'E[T'(ﬂf» : )XEi(s)ﬁEj(t) ’gt” < O(P+ ’t - $| + d(%s)ﬁl),

it follows that with some C' > 0 and C?, , := C(p + |t — 8| +d(x,8)"), we have

(3.25)

t,s,x
= ’EjE[Tj 7') XE;(t) | gt] - [TZ( ")XEi(S) | QSH + Cgs,x'
We now claim that for any i € Ny we have
E[Ti(z, - )xE(s) | 9s] = E[Ti(z, - )IXEi(s)- (3.27)
Since E;(s) € G, to prove this, we only need to show that
E[Ti(z, - )xa] = E[Ti(=,-)[P(A) (3.28)

for each A € G such that A C E;(s). But then A € E£(K;) by (3.6), so (3.28) follows from
T;(z,-) being independent of £(K;).
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Similarly to (3.27), we also have
E[Tj(x, ) )XEj(t) |Gi| = E[Tj(% ) )]XEj(t)
for any j € Ny. Then (3.26) becomes
< % [E[Ti(x, )] = E[Ti(z, )]l XE;()nEi(s) + Clisa-
Lemma 3.6 now shows that there is C' > 0 such that for all w € {2 we have

1 Xi(w) — Xo(w)] < Clp+ |t —s| +d(z,5)™). (3.29)
By Lemma 2.1, we have F;, , = Q when 7, := ko + %d(m, S). So with C from Lemma 3.4,
Xy =T(z,") forallt > 7, +C. (3.30)

Let 7 := p+d(z,S5)"” and let N be the smallest integer such that N7 > 7, + C. Then there
is C; > 0 such that N < Cyd(z,S)(p + d(x, S)?)~! (recall that d(x,S) > p > 1). It follows
from (3.29) that for k = 0,..., N — 1 we have (uniformly in w € Q)

[ Xk 11yr = Xir| < Clp+d(z, 5)™). (3.31)

Now Azuma’s inequality (Lemma 3.3), Xy = E[T(z,- )| Gol, and (3.30) with ¢t = N7 yield
for any A > 0 (with C' changing from line to line),

P[|T(z,-) = E[T(z,)[Go]| > A] < 2exp <2CN(p Jizx 5)61)2)

(3.32)

—)\2
S Zexp (Od(:p S)(p+ d(z )
Since Fy, = 0 (because = ¢ Kj), Proposition 3.5 with ¢ = 0 (and L( ) = 0) yields
1T(z,w) — To(z,w)| < C'(p+ d(zg, S))
for some C” > 0 and all w € 2. This and Ty(z, -) being independent of E(Ky) = Gy yield
[E[T(2,)|Go] = E[T(x, )] < [E[To(x, )| Go] — E[To(,)]| + C'(p+ d(x, $)™)
=C'(p+d(z,S)™).
Hence, from (3.32) we obtain for any A > 0,

P[|T(z,-) —E[T(z,)]| > A+ C"(p+d(x,5)")] < 2exp (Cd(x S)(;i d(z S)m)) '

So for all A > C'(p + d(z, 5)"") we have
—)\2
P[|T(z, ) —E[T(z,-)]] > 2\] <2exp (Od(m’s)<p+d($’s)ﬁl)),

which yields (3.4) for all A > 2C"(p + d(x, S)?) as long as Cy > 4C. But (3.4) also holds for
all A < 2C"(p + d(z,5)") as long as Cy > 8(C")*(In2)~! because d(x,S) > p > 1> 3 (and
so the right-hand side of (3.4) is > 1). This finishes the proof.
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3.3. Extension to half-spaces. We now extend Proposition 3.1 to half-spaces, denoting
H, = {z €R|z-e <0}

for e € S"!. This means that we need to enlarge U; to include solutions initially approxi-
mating characteristic functions of half-spaces, with (H2’) extending as well.

Lemma 3.7. (H2’) implies (H2’) with U} in place of Uy, with unchanged values of all the
SUP,ey, and infuey, in (1.10), and withU} defined asUy but including the initial functions uo
from Uy as well as all locally uniform limits of their translations. (These are then functions
uop.s satisfying Lemma 2.2 for all balls S = By(y) and all half-spaces S = H_ + le, due to
well-known elliptic reqularity estimates.)

In particular, Lemmas 2.9 and 2.10 hold with Uy, replaced by L{}l.

Proof. Stationarity of f again shows that adding translations of the ug  to Uy does not change
any of the sup or inf. Well known parabolic regularity estimates now show that the sup and
inf also remain unchanged when we add locally uniform limits of these translations to Uy.
The proofs of Lemmas 2.9 and 2.10 then extend to U} in place of Uy, without change.

We note that the elliptic and parabolic regularity (Krylov-Safonov and Schauder) estimates
used here can be found in [11, Theorem 4.6}, [15, Theorem 4.1], and [14, Theorem 8.6.1]. O

Proposition 3.8. Proposition 3.1 holds for S being either any ball By (y) with (k,y) € Nx R4
or any half-space H; + le with (e,l) € S™" x R (with the functions u(-,-,-;S) from Uy).

Proof. The claim for balls is immediate from stationarity. For the same reason, in the half-
space case we only need to consider [ = 0. Hence let S = H_ for some e € S¢1.

For each k € N, let Sy, := By(—ke). Then limy_, d(z, Sy) = d(z,S) for each x € R?, so
by Proposition 3.1 (with Cj independent of S), it suffices to show

limsup sup |T'(z,w; S) — T(z,w; Sk)| < C
k—oo wef

for some C' > 0 (depending only on (2.10), as always) and any z € R%.

Let ug, = u(-, -, w;S) and u, := u(-, -,w; Sy) for each (k,w) € N x Q, and C' := ko + %.
We then have u,(C,-) > uy,(0,-) by Lemma 2.1 and (2.3), so T'(-,w; S) < T'(-,w; Sk) + C.

Similarly, we have ug,(C + 1,-) > u,(0,-) in Bj1/2(0). Then from the last claim in
Lemma 2.9 with (1, R) = (0, k"2 — |z|) we obtain T'(z,w; S;) < T(z,w; S) +C + 1+ 2k, + Ko
whenever k'/2 > || + Dy(1 + ko + 2(d(x, S) + 1)), because then d(z, S) < d(x,S) + 1 due
to |z| < kY2, so k¥/? — |z| > Dy(1 + T(z,w; S,)) by Lemma 2.1. O

4. FLUCTUATIONS FOR GENERAL REACTIONS
First, we show that (H4’) implies (H2”).

Lemma 4.1. (H}’) implies that f also satisfies (H2’) (possibly after removing from Q a
measure-zero set that is invariant with respect to the group {Y,},era, which we then do).
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Proof. For each k € N, let ug, be the initial datum for Bj(0) that enters in the definition
of Uy, (these might in principle be different for distinct n, as we do not assume them to be
those from the proof of Lemma 2.2). By (1.9), (1.8), and elliptic regularity estimates, there
is a subsequence {n,} ey such that Ug k,n; CONVETEE uniformly to some wg satisfying (1.9)
and (1.8) as j — oo. Since also (H2’) holds uniformly for f,,, and the Borel-Cantelli Lemma
shows that some subsequence of f,. converges to f locally uniformly on R? for almost every
w € Q (and if this holds for some w, then it obviously also holds for T,w with any y € R%),
it follows that (H2’) also holds for f, with the above ugy for each k € N and after removal
of a {7, }-invariant measure-zero set from (2. O

We now extend Proposition 3.8 to reactions f satisfying (H3) and (H4’). Recall (3.2)
and that constants with C' in them only depend on (2.10) unless explicitly stated otherwise.

Proposition 4.2. Let f satisfy (H3) and (H4’), and with y from (3.3) let
m 2d + 2
By := max {61, ; }

1 4.1
77’L3—|—277”L472d—|—2_|_7n21 (€ (0,1)) (4.1)

and
V((l) = sup P sup sup ’fn(Z,U, ) - f(Z, u, )‘ > agn” ™ (42)
n>max{[a],n4} \z|<n1+m21 u€(0,1]
for alla >0 (then v(a) < max{[a],ns}~ G414 by (H4’)). There is C) > 1 such that for
any S (and u) from Proposition 3.8, x € RY, and X\ > 0 we have
—)\2
. — . B

Remark. Having this and Lemma 4.1, we will not need to use (H3) and (H4’) again.

Proof. Let us assume without loss that az < 11in (H3). Lemma 4.1 shows that f also satisfies
(H2’), and then Lemma 3.7 shows that (H2’) holds with U} UJ,,,,, U}, in place of Uj.

For each w € 2 and S either a ball or a half-space, let u(:, -,w, S) be the solution from U}
corresponding to (w,.S), and for each n > ny, let u,(-,-,w, S) be the analogous solution from
Uj, . (Note that we do not require the initial data for u and u, to be the same, although they
may be.) Also let

To(z,w;S) :=inf{t > 0| u,(t,z,w;S) >1—0"}.
Then (H4’) and Proposition 3.8 show for all n > ny,

P (|T,(z, ;S) — E[T,(z,-;5)]| > \) < 2exp (—Cde(x’ S)/;(n+d(x,5)ﬂ1))' (4.3)

Let Cy > ny4 be such that (%)1/m301—m4/m3 < L min{6*, M '}
Stationarity of f, f,, shows that the definition of v(a) above is unchanged when in it we

replace |z| by |z — x|, for any z € R?. So for each z and n > ny, there is ,,, C Q such that
P(Q,,) > 1 —v(n) and

|f(z,u,w) — fulz,u,w)| < agmn ™ for all (z,u,w) € B 11w, () X [0,1] X €y, ;.
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Since f satisfies (H3), and u(-,-,w;S) € Uy and u,(-,-,w;S) € Uy, for each w € €, ,,
Lemma 2.10 (see Lemma 3.7) applied twice with n = (g—gn_m‘*)l/m, y = x, R = n'tm,
t() = Ko + 2061R0, and (fl; fg,ul, UQ) being

(f,fn,u(-,-,w;S),un(-,-,w;S)) and (f’rwfaun('v'>W;S)au('7'7w;s))a
respectively, yields for some C' > 0 and all n > max{Cy, [Dy(1 + ro + Zd(x, S))]// )},
T (z, 5 S) — Tz, S)| < Cn~ms (1 +d(z, S)) + C. (4.4)

Here we also used Lemma 2.1 to show that T),(z,-;S) and T'(z, -; S) are at most /{ﬁ—%d(ﬂc, S).
Let now n be the smallest integer such that

n > max {C’l, d(z,8)%, [Dy(1 4 Ko + 2c5d(, S))]l/(“rmﬁl)} : (4.5)
Since 5 > ﬁ, there is Cy > 0 such that with C' from (4.4) we have (uniformly in z, 5)
(1 +d(z,9)(n+d(z,5)™) < Cy(1 + d(z, S) ),
400" ™3 (1+ d(z, S)) + 4C < Co(1 + d(x, S) 7% ms) < Co(1 + d(z, S) =
If now A > Co(1 + d(z, S)1+5)/2) then (4.3) and (4.4) imply

).

P(T (o, 8) ~ ET(w. )] 2 ) < P (T 55) ~ BT (o1 S)| 2 5 ) + P2\ O

_/\2
= Bs
=2 (40002(1 + d(z, s)wg)) +v (d(z, 5)™)

Hence the result holds with C} := max{4C,Cy,2C3(In2)~'}, because then it obviously also
holds for any A < Cy(1 + d(z, S)1+52)/2), O

5. CONVERGENCE OF THE MEAN PROPAGATION SPEEDS
We now consider (3.1) with S = H_ + le for any e € S*! and [ € R, that is,

u = Au+ f(z,u,w) on (0,00) x RY, -

u(0, -, w;Hy +le) = uga- e on R%. 5-1)
Here g 4, . is the initial data used in the definition of ¢/} in Lemma 3.7 (note that f satisfies
(H2’) in both cases under consideration, due to Lemma 4.1). Hence, u(-,-,w; H, +le) € U}
for all (e,l,w) € S“1 x R x Q and (2.6) holds for it.

We will now prove that 1E [T'(le, - ; H_ )] converges as | — oo, with T'(le,-; H_ ) from (3.2)
(stationarity shows that the expectation is the same if le is replaced by any y; with y;-e = 1).
Note that the reciprocal of this limit can then be considered the asymptotic mean speed of
propagation of the solutions w in direction e (this mean is technically harmonic).

We also note that all constants in this section will be uniform in e, and recall that all
constants with C' in them depend on (2.10), with any other dependence explicitly indicated,
and may vary from line to line.
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Proposition 5.1. For each e € S¢1 there is T(e) € [é, %] (depending also on f) and for
each 0 > 0 there is Cs > 1 such that the following hold. If f satisfies (H2’) and has range
of dependence at most p € [1,00), then with 51 from (3.3) we have for alll > 1,

’]E[T(le,l« H)] T(e)| < Cé\/ﬁl—1+§(1+ﬁl)+5.
If instead [ satisfies (H3) and (H4’), then with B3 < 1 from (4.1) we have for all 1 > 1,
’E[T(Zejl. Hell T(e)| < Cs [ 1+3(14Bs)+0

We will fix e in the rest of this section and, for the sake of convenience, we will sometimes
(but not always) drop H_ from the notation in (3.1) and (3.2) when S = #H_ . Hence we let

T(x,w) :=T(z,w;H,) and u(t,z,w) == u(t,z,w; H,). (5.2)
We will also prove both claims in Proposition 5.1 at the same time, with the notation
1+ 5

B = 5 and C,:=Cyp and o) =0 (5.3)
if f satisfies (H2’) and has range of dependence at most p € [1,00), and
1 _
B = 253 and c,=C and o(1) := v(1%) (5.4)

if f satisfies (H3) and (H4’), with v from (4.2). Here again, C' > 1 will be a constant
depending only on (2.10), which may vary from line to line. In particular, Propositions 3.8
and 4.2 show that in both cases we have for all e € S“"1, A > 0, z € R? with 2 - e > 1 (and
some C' > 0 defining C,),

P(|T(x, ;H,) —E[T(x,-;H,)]| > A) < 2exp (—=C, 2N (x- e) %) + ¢(x - e). (5.5)
We start with the following simple result.
Lemma 5.2. If v-e <1 for some (e,l,z) € S x R x R?, then
E[T(z,-;H,)] <E[T(le,-;H.)] + ko + 2¢5 "' Ro.

Proof. Since u(0,-,w;H,) < u(m,-,w;H, + le — x) for 79 := Ko + % by Lemma 2.1 and
x-e <, we have

T(le,-;H,) >T(le, s H, +le—z)— .
Therefore,
E[T(le,-;H,)] > E[T(le,-; H, +le—z)] — 10 =E[T(x,-;H.)] — 70
because f is stationary (if we assume (H4’), this follows from Lemma 4.1) O

The next result is an immediate consequence of Lemma 2.1 and Corollary 2.6.
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Lemma 5.3. There is tg > 1, depending only on (2.10), such that for allt >ty and w € €2,
Cot

u(t,z,wyHy) > 1—6" whenx-eﬁ;,

u(t,z,wyH,) < 1—0° when x - e > 2¢;t.
In particular, for all x € R? with x - e > ly := 2c1ty and w €  we have
r-e 2x- e}

T'(x,w;H,) € | =,
(IEW ) |:201 Co

(5.6)

In order to prove Proposition 5.1, it will be necessary to simultaneously prove it for
T(x,-;H_) with other points z satisfying « - e = [. The Infinite Monkey “Theorem” shows
that in dimensions d > 2, this cannot involve all the points in the unbounded set {z -e = [},
but we will be able to include all such points with |z| < O(l) (i.e., within a ball centered at
le and with linearly-in-time growing radius due to (5.6)). This will be sufficient thanks to
the speed of propagation of perturbations of solutions being finite (see Lemma 2.5).

This and Lemma 5.3 motivate the definitions of the cylinders

C.,(R)):= {:U c R¢

Tr-ee€ [&l,ll and |z — (x - e)e] SR},
461

CH(R,I) = {x c R?

4
Tr-ee€ [l,ﬂl] and ]x—(x~e)e|§R}
Co

and of the corresponding times
T, (R, l,w):=inf{t > 0|u(t,,w;H,) >1—-6" onC.(R,1)}
=sup {T(z,w;H, )|z €C.(R,1)},
THR, L, w):=sup{t > 0|u(t,-,w;H,) <1—0" onCl(R,I)}
=inf {T(z,w; H.) |z € CS(R,])}.
Obviously TF(R,1,-) < T, (R,l,-) because u(t,-,;H,) > 0 for all ¢ > 0.

Our next result shows that means of these times are sufficiently close to E [T'(le, - ; H_)].

Lemma 5.4. There is C' > 0, and for each 6 > 0 there is Cs > 1, such that with ly > 1 from
Lemma 5.8 we have for alll > Iy and R > 0 (with C, from (5.3) resp. (5.4)),

E [Tei(R> L, )]

461

<E([T(le, - H,)] + Col(Cs + max{ R, 1}°17) + Cmax{R, 1} 1% ¢ (&l) ,
E [T} (R,L,-)] > E[T(le,-;H.)] — Cp(Cs + max{R,1}°I”) — Cmax{R, 1}* "> (1).

(5.7)

Proof. The definition of T (R, [, w) shows that it suffices to consider the case R > 1 > Io.
For any A > 0 we have

P [T, (R,l,w) —E[T(le,-)] > \] =P [sup {T(z,w) —E[T(le,-)] |z € C_ (R, 1)} > )] .
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Since Lemma 2.1 yields

2| —
[7(a,) ~ T(y,)| < o+ 222
0

for any A > 4kg + 4(@—(?%) =: ('] we obtain

P [T, (R,l,w)—E[T(le,-)] > A <P {sup {T(z,w) —E[T(le,-)] |z €C (R,1)NZ*} > %}
< Z P{T(m,w)—E[T(le,-)]2%%—/4:0—1—2—]%0].

Co
z€Ce (R,1)NZA

Since x € C; (R,1) N Z% implies - e < [ and f is stationary, Lemma 5.2 now yields

P [T, (R,l,w) —E[T(le,-)] > \] < Z P [T(:v,w) ~E[T(z,-)] > %] :
z€Ce (R,1)NZE

The number of terms in this sum is bounded by CyR !l for some Cy > 0. Since each
x € C; (R, 1) satisfies d(z,H. ) > 721, by (5.5) we have for each A > C1,

P [T (R,1,w) —E[T(le,-)] > \] < CoR* Uexp (—C; 2 N2 172) 4+ CoRT 1 ¢ (40—01> .
C1
Moreover, this probability is clearly 0 when A > ko + %l . Thus, for each 6 > 0 we obtain

E [T, (R.1,-) = E[T(le,-)]] = /OOOIP [T7(R,l,w) — E[T(le,-)] > ] dA

< max{CY, C_'pR‘Sl’B} + C’ng_ll/

C,R318

exp (—C2A\2%) dA + Cy R (40—0(’1;)
< max{Cy, C,R°1°} + C,C,R*1*P /

RS

e ds + CyRV12 ¢ (40—01) ,

1

with some C3 > 0. Since

o0 2 2 > 2 2
/ e ¥ ds=¢e"" / e T ds < Ce™,
T 0

it follows from R > [ that there is C5 > 1 such that

o0
Rd_llH’B/ e ds < R+B R < (.

RS
This proves the first inequality in (5.7). The proof of the second is analogous. O

We can now show that E [T'(le, -;H_. )] is close to being linear in [.

Proposition 5.5. There is C' > 0, and for each 6 > 0 there is Cs > 1, such that for all
[,m >0 we have (with C, from (5.3) resp. (5.4))

E [T((L+m)e,-;H,)] —E[T(le, s H,)] —E[T(me, ;H,)] | < C,o(Cs + (1 +m)**0).

e
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Remark. We will in fact only need the weaker upper bound C,Cs(I + m)?*°,

Proof. Without loss of generality, we can assume that [ > m > 0, and we also let [, be from
Lemma 5.3. By Lemma 2.1, for all m < %lo we have T'(me, s H. ) < ko + 8cily and

U(To,SE, : ;H; - me) > U(O,Jj, : ;Hg)a
with 79 := Ko + 8c1lo + 2¢; 'Ry. This and stationarity of f yield
E[T((l+m)e,-;H,)] =E[T(le,-;H, —me)] <70+ E[T(le,-;H.)].
All this and Lemma 5.2 with (I 4 m, le) in place of (I, x) yield the claim for all m < %lo and
[ > m, with any Cs > 271y.
Now assume that [ > m > %lo, and let us first prove the direction
E[T((l+m)e,-)] = E[T(le,-)] = E[T(me,-)] < Cp(Cs +17*).

Pick R,, := Do(1 + 20—?), with Dy from Lemma 2.9, and denote T3 (w) := T, (R, l,w). Then

Lemma 5.3 shows that for each w € Q we have T3 (w) € [2171, f—é] and hence also

w (T (w),") >1-6" on H, + (4c;1) tegle
holds with uy := u(-,-,w; H_ ). Therefore,
u (Ty(w), ") >1—6* on C; (R, 1) U (Ko + (4c1)'cole) .

2R

Hence Lemma 2.1 shows that with uy := u(-,-,w; H_ + le) and 79 := ko + -

, we have
uy (Th(w) + 70,+) > (1 — 9*)X’H§+(Z+Ro)e > us(0, ) on {x e R? } |z — (- e)e] < Rm}
Since the set above contains Bpg,, ((I +m)e) and we also have T'((I + m)e,w; H_ + le) < 20—7(:‘

by Lemma 5.3, we can apply Lemma 2.9 (see Lemma 3.7) with f; = fo = f and
(uy,uz,m, 9, to, R) = (u1,us,0,(l +m)e, Ty (w) + 70, Rn)
to obtain
T((I4+m)e,w; H) <T((I+m)e,w; H, +1e) + Th(w) + 70 + 264 + Ko- (5.8)

Taking expectations on both sides of this inequality and using stationarity of f yields

E[T((l+m)e,-;H,)] <E[T((I+m)e,-;H, +le)|] + E[T1(-)] + o + 2k + Ko

=E [T(me,;H,)] + E[T1(-)] + 70 + 2K+ + Ko.

Since R,, < Cl and ld“gb(%l) < C for some C' > 0 due to (H4’) and 83 > 2d+dl;+1mﬁl’ it now
follows from Lemma 5.4 that for any 6 > 0 we indeed have

E[T((l+m)e,-;H,)] <E[T(me,-;H,)] +E[T(le,-;H.)] + C,(Cs + 1°1),

with some C, Cs (and C, from (5.3) resp. (5.4)).
Let us now turn to the other direction (again assuming [ > m > %lo)

E[T(le,;H,)] +E[T(me,-;H,) —E[T((l+me,-;H,)]] < C,(Cs+1°F),
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the proof of which is a little more involved. With f; from (3.3), let

1
n —mm{e2 0L _}>O, (5.9)

and then (see Subsection 2.1 for the other constants)

1 20\ * 2
R, = (1 + (—l> ) and R, .= D, (1 + _m) )
[ Co co

For any w € Q, denote T (w) := Tt (R, + Ry, l,w) and
uy(t, ) == u(t + 1Y (w), z, wy H,),
uy(t, @) == u(t, z,w; H, + le).

Lemma 5.3 yields T} (w) € [L 2—1} and hence also

2c1? ¢o

u)(0,) <1 -0 on H +deicylle,
where H} := R?\ H_ . Therefore,
i (0,) <1 -0 onCHR + Ry, 1)U (H + 4eicytle).
From (2.6) and T (w) < f—é we have Ry > Ly 1-¢+(T](w)), and so
uy(0,+) <n on {z eR|z-e>1+R and |z — (z-e)e| < Ry, }. (5.10)
As for u}, Lemma 2.1 shows that
uy(ko +2Rico ™, ) > 1 -0 onH, + (I + Rye,

and Lemma 2.8 then shows that for 7§ := ko + 2Rjcot + Din'~™™ we have

ub(1h, ) >1—n  onH, + (I + Rye. (5.11)
Note also that there is C > 0 such that
T < O™ 4 '™y < O (5.12)

because (3.3) shows that
max{(l — f1)(m1 —1),0 + (1 — B1)ma} = fi.
From (5.10) and (5.11) we now have that
UQ(TO, ) >uy(0,)) — 7 on {xERde—(aj-e)e] §Rm}.
Since the set above contains By, ((I +m)e), we can apply Lemma 2.9 (see Lemma 3.7) with
Ji=J2= [ and
(w1, uz, .y, to, R) = (uy, uy,m, (I +m)e, 7o, Ryn)
to obtain
T((L+m)e,w; H, +1le) < (1+ Mmn)[T((L+m)e,w;H,) — T} (w)] + 74 + 2K, + Ko, (5.13)

provided we also have
T((l+m)e,w;H,) — T (w) < 2mey ™ (5.14)
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(notice that T'((I +m)e,w;H_ ) > T;(w) because | +m < 2] < %Z). But since Lemma 2.1
yields T((I + m)e,w; H, +le) < Ko + 20—’;‘, (5.13) obviously holds even if (5.14) fails. Since
T((m+De,w;H, ) < 2(’?—51) < j—é by Lemma 5.3, we get from (5.9) and (5.12),

T((l4+m)e,w; H, +le) (I +m)e,w; H) — T (w) + dlcy Moy + C1#%

<T
<T((14+m)e,w; Hy) — Tl (w) + C1*,

for some C' > 0. Taking expectations, using stationarity of f, 81 < (3, as well as Rj+ R,,, < Cl
and 1971 ¢(l) < C for some C > 0 (due to (H4’), (3.3), and 3 > ﬁ), and applying

Lemma 5.4 shows that for any 6 > 0 we indeed have

E[T((l+m)e,-;H,)] = E[T((l+m)e,-;H, +le)] + E[T{()] — CI*

>
> E [T(me,sH,)] +E[T(le, ;1. )] — C,(Cs +1°),

€

with some C, Cs (and C, from (5.3) resp. (5.4)). O

Now we are ready to prove the main result of this section.

5.1. Proof of Proposition 5.1. Let G(I) := 1E[T'(le,-)] > 0 and v := g+ 4. It follows
from Lemma 2.1 and Corollary 2.6 that

1 <liminf G(I) <limsup G(I) < l

Cq l—o0 l—o0 Co

It therefore suffices to show that there is Cs > 0 such that with either C’M = Cs./p (when f
satisfies (H2’)) or Cj, := Cs (when f satisfies (H3) and (H4’)), we have for all [ > m > 2,

G(1) — G(m)| < Cs,m". (5.15)

Since § < 1, we only need to consider § > 0 such that v < 1.
By Lemma 2.1, G(I) is no more than

1 /21 2
! (_ ; ) <2k (5.16)
{ Co Co

for all [ > 1, and we also have |T'(le,-) — T'(me,-)| < = —{— ko when |l —m| < 2. Therefore,
there exists Cy > 0 such that for all [,m satlsfylng m —|— 2>1>m > 2 we have

IG(l) — G(m)| < ’ G(l)' + %EHT(Z@, ) = T(me,-)|] < Com™". (5.17)
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Using Proposition 5.5, we also see that there is Cs > 1 such that for any [ > m > 2 (and
with C5, > 1 given above),

6(0) = Gl =  [BIT (e, )] - ElT(me, )] — = E{T (e, )
< J|ET e, 1 - BT me, ) - BT (@ — me. )
. X (5.18)
L Bl e, )] = BT - me, )

< Cs 7+ Z_Tm|G(m) —G(l—m)|.

Now assume that for some p € {2, 3,4, ...}, there is N, > 2} such that for all m € [2, 2]
and { > m we have
|G() — G(m)| < Ny;m™™'. (5.19)
This is in fact true for p = 2, because (5.16) shows that (5.19) holds for all m € [2,4] and
[ > m with Ny = max{4( + Kg),2Co}. We will then extend (5.19) to all m € [2,2P"] and
[ > m, with a relevant new constant Npi1 > N,.
First, note that for any m € [2,2°"] and [ € [m, 3m] we have

|G(l) — G(m)| < (Cs, + 3N, L. (5.20)

Indeed, this holds for [ € [m,m + 2] due to (5.17) and £ < = p < 37YN,(m +2)""t. And

if instead I € [m + 2, 3m], then | —m € [2, min{2”, ], SO 1t follows from (5.18) and the
induction hypothesis (5.19) that

G(1) — G(m)| < Cs, 0" + Z_Tmzvpa —m)t < (G5, + 3N,

Let us now consider m € (2°,2?* and [ > 3 sm. Let [}, = 27k for k = 0,1,...,§, with j

chosen so that I; € (3m, $m]. Since I, =l — lk, from (5.18) we obtain
J J J

G() = Gyl < Z Glir) = G < Y Capliy < Co, 1D (F7HH)77 < Gy,
k=1 k=1

k=1

where Cj , := C5,(3)" “’122711 < 0o (recall that v < 1),

Ifl; € [m 2m], then (5.20) yields
IG(1;) = G(m)| < (Cs,, + 37N < (Cs+ 377N, )m" "
If instead I; € (3m,m), then I; € [2,2°"!] and m € [l;, 31;]. Hence (5.20) again yields
G(m) = G(l;)] < (Cs,p + 37N )m™ 1.

In either case we obtain

GI) — Gm)| < 1G() - G1,)| + |G(L) — Gm)| < (G, + G, +37N,) m?
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This, (5.19), and (5.20) now prove (5.19) with p + 1 in place of p (so it holds for all
m € [2,2°71] and [ > m) and with
o

— — 3 ~ S
Nypr = Gy, + C(ls,p + 377N, < max {Np, ﬁ(ca,p + C'(/s,p)} .

Since (5.19) holds for p = 2 with N, = max{él(% + Ko), 2Cy}, it follows that it holds for any
p=2,3,... with N, = max {4(% + ko), 2Co, 725 (Cs,p + C_'(’;,p)} =: C_'(’;ip. This proves (5.15).

6. DETERMINISTIC FRONT SPEEDS AND PROOF OF THEOREM 1.7

We are now ready to prove Theorem 1.7. This is because it was shown in [16] that
such homogenization results for reaction-diffusion equations and related models follow from
appropriate estimates on the dynamics of the solutions to (5.1) for all vectors e € S¥~1. We
will be able to obtain these estimates using the main results from Sections 3-5.

Specifically, we will use Proposition 5.1, and either Proposition 3.8 (when we assume
(H2’)) or Proposition 4.2 (when we assume (H3) and (H4’)) in the proof. We will handle
both cases at once, using that either of the latter two propositions yields (5.5) above, with
the notation from either (5.3) in the first case or (5.4) in the second.

For us, the key result from [16] will be Theorem 5.4, which applies when for almost all
w € Q, the reaction f(-,-,w) has deterministic strong exclusive front speeds in all directions
e € S% 1. We will first define these, following Definitions 1.3, 1.6, and Remark 3 after
Hypothesis H’ in [16], and then prove their existence.

Definition 6.1. Let f satisfy (H1) and let e € S*1. If there is ¢*(e) € R and Q. C Q with
P(Q.) = 1 such that for each w € Q. and compact K C H} = {x € R?|x-e > 0},
lim inf u(t,z,w;Hy) =1,
t—00 ze(c*(e)e—K)t
lim sup  u(t,z,w;H,)=0
t—oc0 z€(c*(e)e+K)t
holds for the solution to (5.1) with [ = 0 and some v, ;- satisfying (1.9) and (2.3) with
S = H_, then we say that ¢*(e) is a deterministic front speed in direction e for (1.1).
This speed is strong if for each such w and K, and each A > 0, we have
lim inf inf u(t,z, Tyw; H, ) =1,
t—00 |y|<At z€(c*(e)e—K)t 6 1)
lim sup sup  u(t,z, T,w;H, ) =0. (6.
£=00 |y |<At ze(c*(e)e+K)t
And if, in addition, for each such w and K there is Ag,. : (0,1] — (0,1] satisfying
lim, 0 Agwe(a) = 0 such that for each A > 0 and a € (0, 1] we have

lim sup sup sup  Weo(t, 2, Tyw) < Agwel(a), (6.2)
t—oo  |y|<At ze(c*(e)e+K)t

where we 4(+, -, w) solves (1.1) with initial data

We,a(0, ;W) = Xp= + AXqy
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then c¢*(e) is a deterministic strong exclusive front speed in direction e for (1.1).

Remarks. 1. Lemma 2.1 and the comparison principle show that all these definitions are
independent of the choice of w ;- satisfying (1.9) and (2.3). We could equivalently choose
Ug gy = (1—6%) X here, but having solutions with u; > 0 will be more convenient.

2. We will show that in Theorem 1.7, Mg, (a) = a for all (K,w,e) as above and all small
enough a > 0 (depending on M, 0y, my, ay, i, K).

Let us first show that the reactions we consider here have deterministic strong front speeds,
and then we will show that all these speeds are also exclusive.

Proposition 6.2. Assume that f either satisfies (H2’) and has a finite range of dependence,
or satisfies (H3) and (H4’). For each e € S, let T(e) be from Proposition 5.1. Then
c*(e) :==T(e)™" € [cy,c1] is the deterministic strong front speed in direction e for (1.1).

Proof. Fix any e € ST}, A > 0, and compact K’ C H. Let K C H} be compact and such
that K’ C K° let dx := d(K,H_.) > 0, and let Ax := 1 + diam(K)? < co. Let us also use
the notation (5.2), and for any n € (0,60*] and ¢t > 0, let

L'(K,A) = {w €

inf inf u(t,z, T, w) <1— .
Y| <A(t+1) we(c* (e)e—K)t ( ) n}

Assume that u(t,z, T,w) > 1 — 0* for some (t,7,y,w) € [0,00) x R* x Q. Since for all

/

y € R we have u(-,-, Tyw) = u(-,- +v,w;Ho + (v - €)e), Lemma 2.1 and comparison
principle yield for all ' € B ;(y),

u(-+ 70, — ¢, Tyw) > ul(-, - —y, Tyw),
with 79 := ko + 25 (Ro + V/d). Applying Lemma 2.1 again, we obtain for all y/ € B (y),
u(t + 279, 2, Tyw) > ult + 10,2 + 4y —y, Tyw) > 1 — 0"
Then Lemma 2.8 shows that if n € (0,60*] and 7, := 279 + 4cy '/ d + Dy =™, then
u(t + 7y, Tyw) > (1= 0)XB @) (6.3)
for all 4 € B ;(y). This shows that we can only have w € I/'(K, A) for some t > 7, if

inf  ult—7,z,Tw)<1l-—0%
(z.Y)€ZK At ( K Y )

where Zg 5, = ((¢*(€)e — K)t N Z%) x (Bag+1)(0) N Z%). From this we obtain
PN < Y Plu(t -7z, Tyw) < 1—06°]

(,y)€EZK At

= > PT(z,Tw) >t—T).

(z,y)€EZK At
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Ift > 2(7},—1—/@0—1—%), then from Lemma 2.1 we have T'(z, Tyw) < t—7, whenever z-e < 14 <%,
Hence, with Zj , , := {(2,y) € Zxas|2z-e> 14 9t} we obtain

PN < ) P[T(x,Tyw) >t—7). (6.4)
(xvy)EZ}(,A’t

Note also that there is C' > 0 such that this sum has at most C(1 + A%) Axt*? terms.
Consider any (v,y) € Zg s, where t > 2(7, + ko + %) With the notation from (5.3)
resp. (5.4), and ' := % € (0, 1), Proposition 5.1 and stationarity of f yield
‘E[T(% DI

<C(z-e) L
x-e c*(e) < Cyla-e)

Since z - e < (¢*(e) — di)t and ¢*(e) = T(e) ' < ¢;, we obtain

T-e _ , d t — / d t
LoV < O (o) _ By OKC
+Cy(x-e)” <t o) + C,((c"(e) —dg)t)” <t 2er

whenever
148 -1\ -1 1
t > max{(ZCpcl dp )77, 2(1) + Ko+ 2¢o ), derdy Tn}.

Hence for such ¢, (5.5) yields C > 0 (defining C, via (5.3) resp. (5.4)) such that

PIT(o, Ty) > ¢ =) < B[ 170, Ty) ~ EITGo, )] 2 50—,
< 2exp (—C_‘;Q (Cé—[;t - ’7'77) (z- e)_zﬁ) + ¢z - €)

< 2exp (—C‘;?d%ﬂ—%’) 4 O Pa2d+14m)

when (z,y) € Zj ,,, where we also used that 9 < z-e < ¢t and 7, < j%t (recall that C
can change from line to line). This and (6.4) show that for all large enough ¢ we have

P[IJ(K,\)] < C(1+ A% Agt* <exp (—C2d%t2720) + fﬁs@dﬂmp) .

Then ) -, P[I/(K, A)] < oo since 33 > Qd-ﬁ—il’%’ so the Borel-Cantelli Lemma shows that

for a.e. w € €, there is N, such that w ¢ [~y 1/(K,A). But since K’ € K° means there
is 7 such that -

(c*(e)e — K')t C (c*(e)e — K)|t]
for all ¢ > 7, from w; > 0 and the definition of I}'( K, A) we obtain

inf inf tr, Tw)>1—

e aeerern T T 2 L
for all such w and all ¢ > max{N,,7}. Applying this argument with n = %, A = n, and
K ={z € R'|z-e € [Ln]and |z — (z-e)e| < n} for each n € N yields ; C Q with
P(©2,) = 1 for which the first statement in (6.1) holds.
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It remains to prove the the second statement for some €2y with P(€2;) = 1, as we can then
take €, := Q; Uy. The proof is similar to that of the first statement. With the setup from
the start of its proof, let now

L'(K,A) = {w €N

sup sup  u(t,z, Tyw) > 77}-
[y|<At ze(c*(e)e+K)t

Assume that u(t, z, T,w) > n for some (¢,7,y,w) € [0,00) x R** x Q. Then (2.6) shows
that with Ly, := p; (14 ¢*2)n~™2, there is ' € By, (x) such that

u(t, o', Tyw) >1—0"
Lemma 2.1 now shows that
u(t + ko + QCale], z, Tyw)>1—6"

In the same way as we obtained (6.3) (but using Lemma 2.1 instead of Lemma 2.8), we now
get for all y' € B /;(y) and with 7, := 3k + %(Ltm + Ry + 2Vd),

u(t — Tty *s Ty/w) > (1 — 0*))(3\/&(3,).
So similarly to (6.4), with Zx s, := ((¢*(e)e + K)t N Z?) x (Bx(0) N Z%) we get for all ¢ > 0,
PN < ) P[T(2, Tyw) <t+ 7). (6.5)

(x)y)EZK,A,t

And again, there is C' > 0 such that this sum has at most C'(1 + A%) Axt*? terms.
Let dy := dy(K,H;) and consider any t > L+ and (z,y) € Zx .+ Then c¢*(e)t > 1 and
(&) [kt

z-e € [(c'(e) + dg)t, (c*(e) + dy)t]. (6.6)
So Proposition 5.1 and ¢*(e) = T(e)~" imply as above (with 8 = £2),
xI-e = ’ th = ’ th
I > _ ) > Bt * " )P > it
E[T(z,-)] > o) Colx-e)’ >t+ = (e) Co((c*(e) +d)t)” >t + 2
whenever

t > max {(2Cp(c1 )T et CKW} ,

where Ck, is such that 7, < ‘i—fgf for all t > C,, (this exists because ay < 1, and will be
used next). Hence for such ¢, (5.5) yields C' > 0 (defining C, via (5.3) resp. (5.4)) such that

PIT(o. Ty) < t 4+ 0p] < P [T 1) - BTG, 2 55 = 7,
1
<2exp | —C) | —— =Ty | (x-¢) + oz -e)
201

< 2exp (—C2d% (1 + dj ) "P127%) 4 O~ Pa2deiaml
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when (z,9) € Zx A+, where we also used (6.6) and 7,,, < %L in the last inequality. This and

= ey
(6.5) show that for all large enough ¢ we have
PUY(K. A)) < O(1+ A Axt (exp (=0, 2 (1 -+ di) 0727) 40 em )

We can now conclude the proof of the second statement in (6.1) as we did the proof of the
first statement, this time using that

(c*(e)e+ K')t C (c*(e)e + K)[t]
for all large enough t¢. U
Remark. This proof shows that (6.1) holds with At replaced by exp(t?) for any v < 2 — 20.

Proposition 6.3. Under the hypotheses of Proposition 6.2, for each e € S¥1, the speed c*(e)
is also a deterministic strong exclusive front speed in direction e for (1.1).

Proof. Having Proposition 6.2, this proof is now similar to the one of [16, Theorem 1.7(i)].

For any (e, a,w) € St x (0,1) x Q, let u(-,-,w; H, ) and we 4(+, -, w) be from Definition 6.1,
and let 7, := 14+ Dya' ™™ . Lemma 2.9 (see Lemma 3.7) shows that if a € (0, 3 min{6*, M '}],
then

up(t, ) == u((1+ Mea)t + 15,2, w; H, ) +a

is a supersolution to (1.1) on (k,,00) x RY. Moreover, u; > 0 and Lemma 2.8 show that
Up (K, *) 2> u(Tg, -, wi Hy ) + 0 > we q(0, -, w).
The comparison principle now yields for all ¢ > 0,
Up (t 4 Ku + Ty *) > Wea(t, - w).

It now follows from Proposition 6.2 that (6.2) holds with Ak .(a) = a for all A > 0 and
all compact K € HS + M,ac*(e)e. This is true for all a € (0, 3 min{6*, M '}], so the result
follows after letting Ak (a) :=1 for all @ € (3 min{6*, M '}, 1]. O

6.1. Proof of Theorem 1.7. For any e € S let Q. C Q with P(€.) = 1 be the set from
Definition 6.1 and let ¢*(e) be the corresponding deterministic strong exclusive front speed
for (1.1) from Proposition 6.3. Let A C S%! be a dense countable set and let Qg := .4 Qe.
Then P(Q) = 1, and for each w € €, (1.1) with this fixed w has a strong exclusive front
speed ¢*(e) in each direction e € A (i.e., (6.1) and (6.2) hold for this fixed w and each e € A,
A >0, and compact K C H}).

Then [16, Theorem 4.4(i)] shows that (1.1) with this fixed w has a strong exclusive front
speed ¢ (e) in each direction e € S¥!, and ¢ is Lipschitz with Lipschitz constant only
depending on M. But then ¢’ (e) must be independent of w € Qy for each e € S¥! (instead
of just all e € A), and hence equals ¢*(e) from Proposition 6.3 because P(2) = 1.

Theorem 1.7 now follows directly from [16, Theorem 5.4] applied separately to each w € Qg
(see also the remarks after Hypothesis H' in [16]).
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7. PROOF OF THEOREM 1.8

In this section we will show how to extend the above analysis to the cases considered in
Theorem 1.8. We can obviously assume o, > 0 without loss, and all constants with C' in
them may depend on (2.10) as well as on a4.

Since we now replace (H2”) by (H2”), the estimates (2.6) instead become
Lu,77+a71—9* (t) -1

— * )

sup
t>0& >0 (1 +t92)n—m2

inf w(t, I)tO/Q > [y
(t,x) E[kx,00) xRE
u(t,x)e(0*,1—0%]

(7.1)

for all a € [0, as] and either all u € Uy, (when assuming (H2”)) or all u € |
assuming (H3) and (H4”)), again with some ., k. > 0.

We will first assume without loss that a; = 0. Then of course also a = 0 and Uy, = Uy
above, so (7.1) is just (2.6) with the extra factor of t*2 in the second estimate. We will now
show how the results in Sections 2—-6 and their proofs change due to this.

Of the results in Section 2, clearly only Lemmas 2.9 and 2.10 are affected by this change.
They will instead become the following two results.

Lemma 7.1. Let f, satisfy (H2”) and f, satisfy (H1’), and let M, := 2°23FM ith i, k.,

s
from (7.1) for all w € Uy,. Fiz some w € Q and let ui,us : [0,00) x RT — [0,1] solve
1
(1.1) with f1, fo in place of f, respectively. If uy € Uy, to > 0, T > 2k,, and for some

n € [0, 3 min{6*, M (T + to)~°2}] we have

filz,u,w) = folz,u,w) whenever uy(ty,x) <1 —mn and u € [0, 1],

Uy, o (when

n>ng

then
up(t, @) == ur (1 + M (T + to)*n)t + to, ) + 1
is a supersolution to (1.1) with fy in place of f on (ky,T) x R?, and
u_(t,2) := ug (1 = M (T +to)*n)t + to,x) — 7

is a subsolution to (1.1) with fa in place of f on (2k.,T) x {x € R¥|uy(ty,z) <1 —n}.
Moreover, there is Dy = Do(M, 01, my, 1) > 1 such that if also T,,(y) < T, and

sup (u2(0,2) —u1(to, ) <1
r€BR(y)

for some y € R and R > Dy(1+ Ty, (y)), then
2
Lo\l
Tua(y) 2 (14 MAT +10)"n) (T () — to = 20, — o).

Proof. The proof is the same as that of Lemma 2.9, replacing (2.6) by (7.1) and using
74 (t) :== (1 &£ M (T + to)*2n)t + to. In particular, we use in it that for ¢ < T we have

M (T + to)* i (1 + M (T + to)*>n)t + to) ™2 > M, (T + to)*npu (2T + to) > > (1+ M)n.
We also have Dy := 2v/MdlIn ;%l as before. O
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Lemma 7.2. Let f satisfy (H2”) and fy satisfy (H1’), with at least one satisfying (H3)
with a3 < 1, and let M, Dy be from Lemma 7.1. Fix somew € Q and let uy, uy : [0, 00)xR4 —
[0,1] solve (1.1) with f1, fo in place of f, respectively. If uy € Uy, for some y € RY,
R > Dy(1+T,,(y)), and n € [0, 2 min{0*, M (max{T,, (y), 2.} + to) "*2}] we have

filz,u,w) > folx,u,w) — agn™? for all (x,u) € Br(y) x [0,1],
and uy(0, ) < uy(to,-) for some ty > 0 and all x € Br(y), then

TU2 (y> 2 (1 + M*(maX{Tuz (y)7 QK*} + tO)O/Qn>_1 (Tul (y) - tO - 253* - RO) :

Proof. The proof is the same as that of Lemma 2.10, replacing (2.6) and Lemma 2.9 by (7.1)
and Lemma 7.1 with T := max{T,,(y), 2.}, and using 7, (t) := (1+ M, (T +to)*2n)t+t,. O

We can now extend all of Sections 3-5 to (H2”) in place of (H2’), and obtain the following
analog of Proposition 6.2.

Proposition 7.3. Assume that [ either satisfies (H2”) and has a finite range of dependence,
or satisfies (H3) and (H4”). Then for each e € S, (1.1) has a deterministic strong front
speed c*(e) € [co, c1] in direction e.

Proof. In the whole proof, we assume without loss that a; = 0 (and so a = 0 as well).
When extending results from Section 3, we assume that f satisfies (H2”) and has range of
dependence at most p € [1,00); in Section 4 we instead assume (H3) and (H4”); and in
Sections 5 and 6 we assume either of these two cases, as before.

Most of Section 3 is unchanged, with (3.3) replaced by

L4+ ah)(my —1) (14 ab)mg + o }

(7.2)

mq ' me + 1

= o

which is still in (0,1) thanks to af < min{-—2=, =221 The first adjustment is required

mi1—17 mso
in Lemma 3.4, where we used the second claim in (2.6) to obtain (3.8). We have here

u(7(z,w),y,w) > 0* for some y € By(z), and can instead use Lemma 2.1 to get

u(T(z,w) + Ko + 2¢5 H(Lygr 1o+ (T(2,w0)) + 1), 2,w) > 1 — 6%
Since the first claim in (7.1) (with a = 0 and n = 6*) yields C' > 0 such that
Ko + 265 H(Lyge 1o+ (T(2,w)) + 1) < C(1 + 7(x,w)*?)

(recall that v € Uy) and Lemma 2.1 also implies 7(z,w) < C(1 4 t) whenever w € F,,, we
have T'(z,-) < 7(x,) + C(1 4+ t*?) on F;,. Hence the first claim of Lemma 3.4 becomes

[E[T(z, )xr.. |G = Tw, )xm,| < CA+t)  onQ,

while the second holds only for s € [0,¢ — C'(1 + t*?)].
As for Proposition 3.5, instead of (3.13) we let

0= Cr ' (p+ d(wo, 8)) 7,
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where C7 > 0 will be chosen shortly and

1 ! ! _
—mind L2 TEa e 73
v

mq ’ mo + 1

Note that then, similarly to (3.14), we have

max{y(mi — 1),az +yma, 1 +ap =7} = 1 < 1 (7.4)
(in particular, v > o), and (3.15) and (3.16) continue to hold. Now we pick C; so that with
with T := max{T (z¢,w), T;(x¢,w), 2k, } we have

. o* (T —+ t() + tg)ify
< -
n < mln{ 5 2L :

which is possible due to max{7T (zg,w), Ti(zo,w),to} < C(1 + d(xg,S)) and (3.16). Then we
can use Lemma 7.1 with this 7" and 7 (instead of Lemma 2.9) to see that (3.17) becomes

T(zo,w) — to — Ti(zo,w) < Mun(T +to + t3)a,2Tz‘($0,W) + 2k + Ko + t3 < Cp + d(z0, 5)™)

because 51 > 1+ai, —~. This ends the first half of the proof. Using again Lemma 7.1 instead
of Lemma 2.9 in the second half of it, with n as above, shows that

u_(t,z) == u((1 — Mun(T + to)*2)t + to, ) — 7

is a subsolution to (1.1) on (2k.,T) x (RN\I, 1, (to,w)). The rest of the proof does not
use the second claim in (2.6) and is unchanged (using this u_ and also (7.4)), with (3.23)
becoming

T;(x0,w) + to — T(w0,w) < ta + Muy(T + to)*2Ti(wo, w) < C(p + d(xo, 5)™).

This finishes the proof.

The proof of Lemma 3.6 remains the same. In the proof of Proposition 3.1, the change in
Lemma 3.4 turns the C'in (3.25) and (3.30) into C'(14¢*?) (recall that s < ¢ in the argument),
which is then added to the right-hand sides of (3.26) and (3.29). Then (3.30) shows that
there is C' > 0 such that X; = T'(z,-) for all ¢ > C(1 + d(z, S)), and we now pick N to be
the smallest integer with N7 > C(1+d(z,S)). The estimate N < Cyd(z, S)(p+d(z,S)P)!
now still holds (recall that d(x,S) > p > 1 here), and (3.31) remains unchanged because the
term added to (3.29) is estimated by C(1 + (N7)%2) < C(1 + d(x, S)?1) because ay < f3;.
The rest of the proof of Proposition 3.1 remains the same.

Lemmas 3.7 and 4.1 are unchanged except for replacement of (H2), (H4’), Uy, Uf,
Lemma 2.9, and Lemma 2.10 in their statements and proofs by (H2”), (H4”), Uy, Uj ,,
Lemma 7.1, and Lemma 7.2, respectively (here we can even allow any fixed as € |0, %6’*] in
(H2”), although ay = 0 is sufficient). The proof of Proposition 3.8 also remains the same,
using Lemma 7.1 (with 7" = oo because 1 = 0) instead of Lemma 2.9.

In Proposition 4.2, we replace (4.1) by

(14 2a4)ms  2d+2
ms+2my 2d+2+ml |’

— -
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which is still in (0,1) thanks to a; < 24. Then when we use Lemma 2.10 in the proof, we

replace it by Lemma 7.2 with the same n := (%n*m‘l)l/m?’, but now we need to pick n so that

ai/m3oz3 Vms =g < —min{#*, M7 YT + ko + 2¢5  Ry) ™2},

N[ —

with T := max{T(x w; S) w(z,w;S),2r,}. Since T' < C(1 + d(z,S)) due to Lemma 2.1,
and B374 > af due to ay < e and .5), there is again C7 > 0 such that it suffices to let

(7
n be the smallest integer for which (4.5) holds. Then a double application of Lemma 7.2
replaces (4.4) by

To(x,;S) = Tz, ;)| < Cn~ s (L+T)F% +C < Cn”m (14d(z,5)) ™ + C.

Since there is again C; > 0 such that
ACn ™™ (14 d(z, S)) % +4C < Cy(1 + d(z, S) T Pms) < Cyp(1 + d(z, S) "2 °)
because 1+ af — 63% < %, the rest of the proof of Proposition 4.2 is unchanged.

Most of Section 5 is also unchanged, with the only two adjustments needed in the proof
of Proposition 5.5. We used Lemma 2.9 when proving (5.8), and we can just replace it by
Lemma 7.1 without any other change because there we had n = 0. We also used Lemma 2.9
when proving (5.13), and the change to Lemma 7.1 now requires us to replace (5.9) by

n:=Cy mln{Q* M7 7}
with v from (7.3) (recall that (7.4) shows v > 1+ah — 31 > 1 -, son < P71 as
well; in fact, we could have chosen this 7] in (5.9) as Well) and C; > 2 such that with

T = max{/@ + (l”;m 2k, } we have n < 3 (T + 78)7%. This is possible because of (5.12)
and v > «5. Then replacing Lemma 2.9 by Lemma 7.1 with this T yields

T((I4+m)e,w; M, +le) < (14 Mn(T + 71)°2) [T((L+m)e,w; H,) — Ty (w)] + 7 + 26, + Ko
instead of (5.13). But the addition of (T'+74)*2 here does not require further changes because
M(T + 79T ((1 + m)e, w; H,) < ClMFe27 < 1A

by (7.4) (recall that we assume here | > m > %lo).
The proofs of Propositions 5.1 and 6.2 then remain unchanged, finishing the proof. O

We are only able to obtain an (H2”)-version of Proposition 6.3 when ay > 0, and we do
so below. But even without that, we can already prove Theorem 1.8(ii).

Proof of Theorem 1.8(ii). This is identical to the proof of Theorem 1.7 above, with the word
“exclusive” and (6.2) dropped, and using Proposition 7.3 and [16, Theorem 1.4(iii)] instead of
Proposition 6.3 and [16, Theorem 5.4], respectively. Note that f is also stationary ergodic in
[16, Theorem 1.4(iii)], but this is only used in the first paragraph of its proof to show existence
of deterministic strong front speeds for all e € S¥~! (which we proved in Proposition 7.3), so
that result extends to the case at hand. U
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To prove Theorem 1.8(i), we need to show that the deterministic strong front speeds from

Proposition 7.3 are exclusive. For this, we will need some uniform estimates on the reactions

flz,(1—a)u+a,w)
1—a

falz,u,w) ==

for (z,u,w) € R x [0,1] x . Note that the transformation u — %=% turns solutions u to

(1.1) for which a < u <1 into solutions to (1.1) with f, in place of f for which 0 < u < 1.

Proposition 7.4. Assume that f either satisfies (H2”) with ay > 0 and has a finite range of
dependence, or satisfies (H8) and (H4”) with ay > 0. Then for each (a,e) € (0,as] x ST,
(1.1) with f, in place of f has a deterministic strong front speed ci(e) € [co, 1] in direction
e, and lim, o ci(e) = c*(e) holds uniformly in e € S¥=1 (with ¢*(e) from Proposition 7.3).

Proof. Clearly f, satisfies (H1) with the same M and m;, and #; and oy replaced by %91
and a1 (1 — %01)’"1_1, respectively (recall that a < ay < %61).

If we now assume (H2”) and finite range of dependence of f, and let u® := =2 for some

u € Uy, with initial datum wug 4, then uf = Au®+ f,(z,u® w) on (0,00) x R? (with the same
w) and its initial datum = (ug k. — a) satisfies (1.8) and (1.9) (with F now defined via f,).
Moreover, (1.12) and as < % show that we also have

Lyan1_99+(t
limsup sup sup SUPM < 00,

t—00  acl0,an] u€ly o n>0  tX2NTM2

liminf inf inf inf uff(t,x)to‘l2 > 0.
t—00  a€l0,a2] uEUs o ua(t,z)€[0*,1—20%]

Hence for each such f, we have (H2”) with as = 0, 6* replaced by 26*, the above constants
in (H1), and Uy, := {u®|u € Us,} (and the same mo, oo, o). Moreover, there are fi., K, > 0
such that (7.1) holds for all a € [0,as] and u € Uy,, with §* replaced by 26*. This and the
remark after (2.1) (which shows that replacing 6* by 20* in (7.1) does not change any of
the above proofs) now show that Proposition 7.3 holds for all the f,, and all constants in
its proof are uniform in a € [0, as]. In particular, (7.1) holds with the same fi, k. > 0 (and
0* replaced by 20*) for all a € [0,as] and u € U}, (see Lemma 3.7), and the first claim in
Proposition 5.1 holds for f, with 8; from (7.2) and Cs uniform in a € [0, ag].

The same argument applies when we assume (H3)+(H4”), where the passage to f, and
fn.a also replaces ag by az(1 — %)™~ in (H3) and ay by ay(1 —%)~" in (H4”). Again we
obtain Proposition 7.3 for all the f,, as well as that (7.1) holds with some fi, £, > 0 (and with
0" replaced by 260*) for all a € [0,ay] and u € U}, , and the second claim in Proposition 5.1
holds for f, with 85 from (7.5) and Cs uniform in a € [0, a].

It therefore remains to prove the last claim, with the above deterministic strong front
speeds denoted c(e) (where clearly c(e) = ¢*(e)). To achieve this, we will use uniformity
of the estimates in Proposition 5.1 in a € [0,as]. We therefore denote by ve,(-,-,w) the
solution to (5.1) with f replaced by f,, some (e,w) € S*! x Q, and [ = 0 (then of course
Vea(s, s w) €U, ). We also let

Uealsw) = (1 = a)vea(-,-,w) +a €U, (7.6)
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with U} , obtained from Uy, as in Lemma 3.7, and for any x € RY,
Teo(z,w) :=1nf{t > 0] veo(t,z,w) > 1 =60} =inf{t > 0| uco(t,z,w) >1— (1 —a)d*},
Téja(:c,w) = 1inf{t > 0| ueq(t,z,w) >1—0"}.
These definitions, Lemma 2.1, and ay < %8* show that there is C' such that
T, <T.<T,,+C. (7.7)

We will treat both cases (H2”)+finite range and (H3)+(H4”) at once, using the notation
from elther (5 3) in the first case or (5.4) in the second. Then the claims from Proposition 5.1,

with § := =2 and ¢! := C—p)2C, independent of (e, a,w) become
Ellealle,w)] 1 | _ om0 (7.8)
[ cie)| — 7

for all (e,a,w) € ST x [0,as] x Q and all [ > 1.
Lemma 2.1 shows that e 4(70, -, ) > ue0(0, -, ) with 75 := ko + 2R° , hence the comparison
principle yields ue (70 + ¢, -, ) > ueo(t, -, ) for all t > 0. This and (7 6) immediately imply

Telya S Te,O + 70,

so ci(e) > c*(e) for all (e,a) € S¥! x [0, as] by (7.7) (this also shows that c’(e) > ¢p).
Since T} ,(le,-) < Cl for all [ > 1 by Lemma 2.1, Lemma 7.1 with f; = f, = f and

(u1,uz,m,to, T, R) = (te,0, Ue,a, @, To, max{T, ,(le,-), 2k, },o0)
yields
Teo(le,) < T, (le,-) + C(L+1"°%a).
as long as [ € [1, (C'a)~/*2] (for some C,C" > 0). It follows by (7.7) that for such I we have
T.o(le,-) < Toalle,) + C(1+1"*°%a).

Picking | := a~'/?*2 and using (7.8) now yield for all small enough a (depending only on
(2.10) and ay),
c*(@)—l < 62(6)—1 + Cal’? + C_’; q(1=8) /40

Since 5 < 1, o, > 0, and ¢! (e) > c¢*(e), the uniform convergence claim follows. O

We can now extend Proposition 6.3 to the case as > 0.

Proposition 7.5. Under the hypotheses of Proposition 7.4, for each e € S¥1, the speed c*(e)
is a deterministic strong exclusive front speed in direction e for (1.1).

Proof. Fix any e € S*!, and let u,, be from (7.6) and c(e) from Proposition 7.4. From that
proposition and f(-,a,-) =0 for all a € [0, as] we know that for almost all w € Q we have

lim sup sup  Ueq(t,z, Tyw) =a (7.9)
t=00 |y |<At ze(ct(e)e+K)t
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for each a € [0,a2) NQ, A > 0, and compact K C H} = {z € R¢|z - e > 0}. Fix any such
w, and then any compact K C H}. Let K’ C H} be compact and such that K C (K')°.
Proposition 7.4 then yields § € (0, as] such that for all a € [0, §] we have

c*(e)e+ K C (ci(e)e+ K')(1 + 20). (7.10)

Since af < min{ml_l, 1oy }, there exists Ty > k., such that for all ' > T}, we have
1 m2

0* /
nr < 5} and max {M*(T + Ky + 1) 207, (71 + QK*)T*} <4, (7.11)
where np := T~ with v := %(0/2 + m11—1>’ and 7 := 1+ Dm%_ml with D; from Lemma 2.8.

Now fix any A > 0. We see from (7.9) that for each a € [0,as] N Q, there is a function
©q 1 [0,00) = [0, 00) such that lim; . p.(t) = 0 and

sup sup sup Ueo(t, z, Tyw) < a+ @q(T). (7.12)
t>T |y|<At z(ck(e)e+K)t

Pick any 7" > Tj and a € [0,] N Q, and let w,, be from Definition 6.1. Then Lemma 2.8
yields e q(7r, -, ) > 1 —nr on H_, so from u., > a and (ueq): > 0 we see that

Uea(t + 71, ) + 11 > We a0, -, ) (7.13)
for all ¢ > 0. Since Lemma 7.1 and (7.11) show that

Uy (t, 2, ) = U o (1 + Mo(T + Ky + 70)°207)t + T, 2, -) + 11
is a supersolution to (1.1) on (., T + k.) x R% the comparison principle and (7.13) yield
Uy (t 4 K, T, ) > We ot x,+)

for all (t,x) € [0,T] x RY. This, (7.11), (7.10), (7.12), and (ucq); > 0 now show that

sup sup We T, x, Tyw)
ly|<AT ze(c*(e)e+K)T

< sup sup ue,a((l +M*<T+/€* +TT)al277T)(T+/£*) +TT,IB,Tyw) + nr
ly|<AT z€(c*(e)e+K)T

Sup Sup Ue o (L4 0)T + 71 + 26, 2, Tyw) + nr
ly|<AT z€(c*(e)e+K)T

sup sup ue,a((l + 2(5)T, z, Ty(,d> + nr
ly|<AT xz€(c*(e)e+K)T
SuP Sup u€,a<<1 + 25)T7 .17, Tyw) + nT
ly| <A(1+28)T ze(ck(e)e+K')(1426)T

< a+@a((1+28)T) + T

A

IN

IN

Hence

lim sup SUp  Weq(t, 2, Tyw) < a

1200 |y | <At ze(c* (e) e+ K)t
for all @ € [0,6] N Q (and the previously fixed (w, K,A)). Since w,, is non-decreasing in
a, this extends to all a € [0,4]. And since ¢ does not depend on A, we obtain (6.2) with
Aiwe(a) =a+ (1 —a)xa(a), so the result follows. O
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Proof of Theorem 1.8(1). This is now identical to the proof of Theorem 1.7 in Section 6, using
Proposition 7.5 in place of Proposition 6.3. U

APPENDIX A. PROOF OF LEMMA 2.2
If F} is the function defined before Lemma 2.1, then we have

d=0(M,01,my1,0q) = min Fo(u) > 0. (A.1)

u€[1—261 /3,1—06%

We now claim that for each L > 1, there is Ry, := Ry (M, 61, mq, ;) and a smooth function
uz : R* — R such that

(L=0%)xs <ur < (1—6")XBg, (5): (A.2)
g + Vg < (A3)

hold on R?, and for each z € R? with uz(z) < 5% we have
Aurp(z) > 0. (A.4)

Note that if we also had 1 — 26; < =% (which is not the case), then (A.1) and (A.3) would
show that for such wy, (with L > 1) we have

Fo(up(x)) > 6 > —Aug(z)
whenever uz(z) € [55,1 — 6*], so this and (A.4) would yield
Aug, + Fo(ur) >0

on R?. Hence the result would follow with up,s 1= u; and Ry := Ry because Iy < F'.
Let us now prove the claim. For any a € (0, 1), let 0 # & : R* — R be a smooth, radially
symmetric, non-negative function supported in B,(0), and define

i Crl
A

(et =27, ifd >3,
(o) = { In_(2]z]) ifd=2

Notice that ¢ is sub-harmonic on R?\{0}, and it is supported and integrable in Bj2(0).
Therefore it is not hard to see that

where

lim wa(z)dr = 0. (A.5)

a—r 00 Ba (0)

And since &, is supported in B,(0), we also have

Beulo) = [ A= i)y 20
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for all z € R4\ B,(0). Thus, for any R > 1, the function
var(r) = R, (R 'x)

satisfies
Agpa,R Z 0 (A6)

on R?\ B,r(0).
Next, for some N > 1 (to be determined later), take

U =UqrN,s = (1 = 0)XByr(s) * a,R-

Direct computations then yield

V@) < [ [Veurtldy =R [ [Feulw)ldy
Rd B1(0)

Au(z)] < / Apar(y)ldy = R / Aga(y)] dy
Rd B1(0)

because ¢, is supported in B;(0). Hence (A.3) will hold with uy, := w provided R = R(a,d, L)
is chosen large enough. And then N > 1 shows that (A.2) will also hold as long as we pick

Ry > (N + 1)R (given this R, as well as some yet to be determined a and N).
It remains to show (A.4) when u(z) < 5. If d(z,S) > (N + a)R, then (A.6) yields

Au(£) = (1 - 9*> (XBNR(S) * A@G,R) (33') >0,

so (A.4) holds. If d(z,S) < (N +a)R, let 2 € SN B(nta)r(z). Then

(Xa(s) * Por) (@) > / ol — y)dy = / o)y,
BnRr(z) By (#)

, 80 |Z'| < N 4 a. From (A.5) and radial symmetry of ¢,, we get

1
lim lim ea(y)dy = =,
N=ooa=0 Jp o ((N+a)(1,0,...,0)) 2

Z—T

4 /.
with 2’ = =

so there are universal a € (0, %) and N > 1 such that the last integral is at least % Then
. 1-0"
u(e) = (1= 0) (pyn(s) * o) (@) = —
1=9" and the claim is proved.

holds when d(z,S) > (N +a)R, so (A.4) holds when u(r) < -5
Next, to prove the lemma, recall that 1 — %91 € (%, 1 — 6*) and take ug g := ¢ (ur), for

some L > 1 and some ¥ : [0,1 — 6*] — [0,1 — 6*] satisfying the following:
(i) v is smooth and non-decreasing on [0, 1 — 6*];
1_6*) =1- %917

(ii) ¥(0) =0, ¥(1 —¢*) =1 — 0" and ¥(—

(i) ¢” =0 on [0, :55].
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From (i,ii) and (A.2) we clearly have
(1 —0")xs <uos < (1 —0")xBg, (5):

so it suffices to take Ry := Ry and verify (1.9).
When uy(z) < 155, (A.4) and (i,iii) yield

Azb(uL(l“)) + Fo(v(ur (@) =¥ (ur(2)Aug (@) + 4" (ur ()| Vur (2)* > 0.
When uy(z) > 155, (A.1) and (i) yield Fy(¢(ur(x))) > 6. Hence with
L= L(M7 617m17a1) = max{”wl”om ||¢”Hoo};

we get
At (ur(z)) + Fo(i(ur(2))) = ¢'(ur (@) Aug (@) + 4" (ur(2)[Vur (2)[* + 0
> 0 — L(|Aug ()] + [Vur (2)]?).
So (1.9) follows from (A.3) and Fy < F, concluding the proof.

APPENDIX B. PROOF OF LEMMA 2.9

Let us drop w from the notation. Also recall that we extend the reactions by 0 to u ¢ [0, 1].
Let us start with four estimates involving the reactions where u, (¢, z) ¢ (6*,1 — 6*). From
(2.1) and n < % we get 6% + 1 < ;. Hence (H1) shows that for u < §* we have

fithu) = fol,utn) =0 (B.1)
on R?, while for u > 1 — n we have
filhu) 2 0= falutn) (B2)

on R If uy(t,z) € [1 — 0,1 —n) for some (¢,7) € [ty,00) x R then (u;); > 0 shows that
uy(to, ) <1 —mn, so (H1) and (2.7) yield
fl(xaul(th)) = f2($7 ul(ta l’)) > fg(l', u1<t7 l’) + 77) (BB)
Finally, if u;(t, z) € [1 — 6%, 1] for some (¢, ) € [ty,00) X R? and u; (g, ) < 1 —n, then (H1)
and (2.7) again yield
filz,ua(t,2)) < fi(e,ua(t, 2) —n) = folz, wlt, ) —n). (B4)
Denote 74 (t) := (1 & M.n) t + tg, so that uy(t,z) = uy(7(t),x) £ 1. If now uy (74 (t),z) ¢
(6*,1 — 6*) for some (t,z) € (0,00) x R? then (B.1), ( 2), and (B.3) yield
[(ur)i=Auy — fol,uy)] (¢, 2)
> (14 M) (ua)e(r.(t), 2) — Dua (74 (1), ) — fr(, ua(74(2), )
()74 (2), )
> 0.
Similarly, if uy (7_(¢),x) ¢ (0*,1—0%) and u (to, z) < 1 —mn, then (B.1), (B.2), and (B.4) yield

[(u-)e = Aus — fo(,u)](E,2) < 0.
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Let us now consider those (t,z) € (k., 00) x R? for which u, (7, (t),z) € (8*,1 — 0*). Then
(un)e(74 (1), 2) = pa by (2.6), 50 | fa(2, uy (t, 7)) — fo(w, ua (74 (1), )| < Mn yields
[<u+)t_Au+ - f2('7 U+)](t, SL’)

> (14 Man) (ua)e(74(t), ) = Aua(14.(), ) = fol, ua (74 (1), ) — M7

> (un)i(r4- (1), ) = A (74 (1), ) — fr(@, un (74 (2), ) + Manjpue — M)

>0,
where we again used (2.7) due to uy(tg,z) < 1 —60* < 1 —n. Similarly if uy(7_(t),z) €
(0*,1 — 67) for some (t,z) € (2k,,00) x R? (so 7_(t) > k. because M,n < 1), we obtain

[(u-)e = Au = fo(,u)](t,2) < 0.

This proves the claims about u, and u_.

If now uy(0,-) < uy(tg,-) +n on Bgr(y), from (uy); > 0 we also obtain uy(0,-) < uy(ky,-)
there. Since u, is a supersolution to (1.1) with f, in place of f on (k., 00) x Bg(y), Lemma 2.5
yields

u2(t7y) S u+<t+/§j*’y) +2d62Mt7 M/dR
for all t > 0. Hence,

*

0
us(t,y) < up(t+ Ky, y) + 5

for all t € [0,T,,(y)] as long as
4
R > 2V MdT,(y) + /d/M In H—f,

which will be guaranteed by taking D, := 2v/MdIn 3—‘5.
It follows from 1 < % and the definition of T, (y) that,
6*

Ui (T4 (Tuy (y) + Fi),y) > ua(Touy (y),y) — 1 — 5 2 1-2"

By Lemma 2.1, we have
ur (74 (Tuy (y) + Ks) + Ko, y) > 1 — 0%
Therefore

T, (y) < 7 (Toy(y) + ki) + 60 < (1 + Mun)Toy (y) + 264 + Ko + to. (B.5)

APPENDIX C. PROOF OF LEMMA 2.10

We again have (B.1) and (B.2). For (z,u) € Bg(y) x [1 —6*,1 —n], (H3) and (2.9) yield
either

filz,u) 2 fi(z,u+n) + o™ = fo(z,u+n)
(if f1 satisfies (H3)) or
fi(z,u) > fox,u) — asn™ > folx,u+n)
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(if fo does), replacing (B.3). Hence, as in the proof of Lemma 2.9 and with 7, u, from it,
we have that if uy(7,(¢),z) € (6*,1 — 6*) for some (¢, x) € (0,00) X Br(y), then

[(us)e — Auy — fol,uyg)](t,z) > 0.

Let us now consider those (t,x) € (k«,00) X Bgr(y) for which wu;(74(t),z) € (6*,1 — 0%).
Then (uy)(74(t),2) > p. by (2.6), so

fg(x,u+(t,x)) - fl(x7u1(7_+(t)vx)) < 04377m3 + MT] < (1 + M)U
yields

[(up)i=Auy — fo,uy)](t, 2)
> (1 + M) (u1)e(74 (), 2) — (Aw)(74(8), ) — fi(z, ui(m4(8), ) — (L + M)n
> Mnps, — (14+ M)n
=0.

Hence uy is a supersolution to (1.1) with f5 in place of f on (k.,00) x Br(y). Since we
also have us(0,-) < uy(ky,-) on Bgr(y) due to (uy); > 0, (B.5) follows via Lemmas 2.5 and
2.1 as at the end of the proof of Lemma 2.9.
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