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Urban Tree Generator:

Spatio-Temporal and Generative Deep Learning

for Urban Tree Localization and Modeling

Adnan Firoze - Bedrich Benes : Daniel Aliaga

Abstract We present a vision-based algorithm that
uses spatio-temporal satellite imagery, pattern recog-
nition, procedural modeling, and deep learning to per-
form tree localization in urban settings. Our method
resolves two primary challenges. First, automated city-
scale tree localization at high accuracy typically re-
quires significant acquisition/user intervention. Second,
vegetation-index segmentation methods from satellites
require manual thresholding, which varies across geo-
graphic areas, and is not robust across cities with vary-
ing terrain, geometry, altitude, and canopy. In our work,
we compensate for the lack of visual detail by using
satellite snapshots across twelve months and segment
cities into various vegetation clusters. Then, we use
multiple GAN-based networks to plant trees by rec-
ognizing placement patterns inside segmented regions
procedurally. We present comprehensive experiments
over four cities (Chicago, Austin, Indianapolis, Lagos),
achieving tree count accuracies of 87-97%. Finally, we
show that the knowledge accumulated from each model
(trained on a particular city) can be transferred to a
different city.

Keywords Tree Location - Procedural Generation -
Shape and Surface Modeling - Shape Analysis and
Image Retrieval - Urban Tree

1 Introduction

At present, urban greening has emerged to be one of the
most critical objectives as a means to human sustain-
ability. It has been reported that while efforts are being
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taken, there is a dire need of accurate data for proper
management of such endeavours - that have shown to
have saved over trillions of dollars in air pollution and
carbon removal [58]. However, the spending has also
been an average of over $10 billion in the United States
(per city) [39]. In this work, we aim to bolster such ef-
forts through localizing urban tree locations, even ones
that are not government-owned through deep learning
and computer vision approaches.

Recently, 3D urban modeling has received signifi-
cant attention. One included task is determining the
location of trees in urban environments. Tree modeling
and localization has been pursued in various ways. Tree
and vegetation modeling (e.g., [5,14,31]) renders/creates
3D models. Segmentation algorithms have been devel-
oped to isolate broad tree/canopy areas in captured
overhead imagery (e.g., LIDAR, satellite, or aerial) [32].
USDA’s i-Tree software toolkit [53] is a crowd-sourced
method to report on trees. While precise, this approach
does not scale, cannot be readily updated, and depends
on the reliable participation of human workers. The re-
cent proliferation of deep learning has introduced promis-
ing new methods (e.g., [4,47]). But due to occlusions
and limited resolution, these methods cannot distin-
guish individual trees, do not estimate tree counts, and
have accuracies only in the 60-80% range.

Our tree modeling and localization work exploits
two key observations. First, satellite imagery’s frequent
capture rate (e.g., weekly or daily) enables capturing
the spatio-temporal vegetation footprint during a sea-
son or year, thus providing richer information than a
single image. Second, vegetation in cities succumbs to
urban management rules that regulate their develop-
ment. Since individual trees cannot be readily discerned
from a satellite due to occlusion and resolution limita-
tions, we instead exploit our observations to enable a
self-supervised generative (or procedural) approach to
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Fig. 1 Urban tree localization automatically infers tree counts and positions from spatio-temporal satellite images and pro-

cedural urban vegetation rule-sets using a generative algorithm.

tree inventory modeling and cover estimation. To ver-
ify the correctness and robustness of our approach, we
have used multiple ground truth datasets including hu-
man and government surveyed/vetted data [9,41], IN-
RIA [33] datasets, and Google Earth [21] data.

Our approach exploits the multiple image-based and
procedural-based rules for planting. It consists of pre-
processing and runtime steps. The preprocessing trains
an initial deep segmentation network on 12-month im-
ages. Then, using a three-tier set of urban vegetation
management rules and our procedural modeling system,
it trains generative networks for four different urban
space configurations (residential, industrial, roadside,
and park). Given 12 monthly satellite snapshots (i.e.,
Planetscope Daily Imagery at three meters per pixel,
or 3mpp [42]), the runtime first performs an initial seg-
mentation and clustering into the four mentioned types.
Then, the generative modeling engine produces a tree
distribution map for each cluster. Finally, from the map
tree coverage, locations, and counts are obtained.

We evaluated our method on four diverse cities:
Chicago, Austin, Indianapolis - USA, and Lagos - Nige-
ria (spanning 84-225 km? and containing 17,652-144,788
trees). Our tree coverage and count calculations oc-
cur in seconds. We compare to ground truth (GT) tree
counts and obtain an accuracy of 87-97%. We also com-

pare our coverage estimation to other more costly method-

ologies, including ground-based crowd-sourced individ-
ual tree data and deep learning-based approaches, ob-
taining similar or better results but in only a fraction of
the time and cost. We claim the following contributions:
(1) segmentation of urban spatio-temporal satellite im-
agery into tree coverage, grass, and other areas; (2)
clustering vegetation canopy into urban configurations
(e.g., residential, industrial, roadside, parks/forestry);
(3) estimation of tree locations to simulate proper tree

count and placement; (4) creation of ground-truth datasets

of approximately 10-20% of each city that identifies tree
cover, counts, and placements that are released to oth-
ers for further studies (see Sec. 3.1).

2 Related Work

Procedural Urban Tree Generation: Urban proce-
dural modeling has had much success in modeling and
reconstruction [34,36]. Procedural modeling of vegeta-
tion has a long history [45]. While realistic modeling of
vegetation is important in weather simulations and ur-
ban ecology modeling (e.g., [3,5]), most simulated city
models use vegetation for aesthetic purposes and inter-
active simulations [25]. Recent works attempt to pro-
cedurally reconstruct trees by using deep learning [28,
31], but do not focus on tree localization. Several works
focus on using point-cloud data (e.g., [18,50]) and they
focus primarily on ground level data and small regions.
In contrast, in our work, we use procedural modeling to
assist with determining tree localization (e.g., coverage
and count) in real-world settings that scales to large
areas or entire cities.

Our work most closely relates to [1] and [37]. Niese
et al. [37] used high-resolution aerial and satellite im-
agery to generate tree coverage maps and used proce-
dural rules to plant trees in urban configurations, using
NYC Open Data [11] at 0.3 mpp. This work focused on
photorealism from various viewing angles in NYC; tree
count and land cover correctness were not addressed.
Yao et al. [1] used high-resolution satellite imagery and
several deep networks (AlexNet [26], U-Net [46], and
VGG-Net [49]) to output tree counts using density re-
gression, but they do not output tree locations. More-
over, [1] uses 0.8mpp data on several provinces in China.
Our method outperforms their average count accuracies
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Fig. 2 Workflow. Rectangles are processes, clear ovals are data, and shaded ovals are deep learning networks.

of 62-83%. Moreover, we also pursue outputting tree lo-
cations, which is not performed by prior work.
Vegetation Segmentation: Segmenting land cover
into classes has received significant traction [32]. Deep
learning has introduced many new approaches using a
variety of networks. For example, Arief et al. [4] com-
pared different deep learning networks to classify land
into eight classes with a validation accuracy of 66.67%
using high-resolution LiDAR or aerial data. Lee et al.
defined SegNet [27] as a method for segmentation of
land using an encoder-decoder method, achieving ac-
curacies of 85% from unmanned aerial vehicle (UAV)
captured images (i.e., 0.5 mpp). Field obtained data ac-
quisition as discussed in [16] is done manually in dense
forests, which is both costly and time consuming. How-
ever, the data collection (e.g., Field, LIDAR or UAV)
is difficult to scale to an entire city or region, and ob-
taining repeated acquisitions is costly. Moreover, the
methods have not focused on the urban tree localiza-
tion task.

Global-scale acquisition efforts such as ICESat-2 [12],
GEDI dataset [43], or the JAXA dataset [22] do not ob-
tain data at sufficient resolution. For example, ICESat-
2 captures height along sparse, thin bands, and GEDI’s
and JAXA’s resolution is about 30 mpp. These resolu-
tions are too coarse for us. We focus on urban extents
that are not well captured by these acquisition efforts.

Geographic information systems (GIS) have also used
vegetation indices (e.g., NDVI [19,56]). These indices
give a vegetation probability value. However, one ma-
jor drawback of NDVI is finding a parameter set that
works universally. Thus, traditional NDVI lacks robust-
ness and needs experimentally determined inter and
intra-city customization. Jiang et al. [23] analyzed this
technique and its drawbacks in detail.

3 Spatio-Temporal Segmentation

The first phase of our pipeline (Fig. 2) includes a spatio-
temporal vegetation cover classification of satellite im-
ages which partitions a city into tree, grass and back-
ground classes; followed by a cluster creation process.

3.1 Spatio-Temporal Data

One of the novel features of our work is using spatio-
temporal satellite data for segmentation and localiza-
tion. As also shown in Shen et al. [48], NDVI maps
of cities change in shape, color, and surface reflectance
over time (Fig. 3). Thus, instead of having only one
snapshot, we use a monthly snapshot of a city over 12
months to capture the spatial and temporally varying
features. In particular, our approach uses Planetscope’s
3 mpp and four-channel data (Red, Green, Blue, Near-
infrared) with cloud coverage filter set to under 5% [42].
The per-city satellite images are vertically stacked to
create 48-dimensional tensors (4 channels x12 snap-
shots). Moreover, we join relevant tiles to capture the
extent of four test cities (Chicago: 10x 10km or 72.4% of
total extent, Austin: 15x15km or 91.2%, Indianapolis:
12x7km or 94.05%, and Lagos: 7.7x5.9km or 82.41%).
For experimental comparisons, we used 12-months data
from 2020 aligning with the canopy data from Google
Earth [21] of the same period (for Lagos and Indi-
anapolis), alongside ground-based manually collected
and well-vetted government released tree locations from
Austin, TX [9]. We assume based on [8,9,41] that the
number and location of trees remain approximately the
same in the span of 12 months of a given year. Thus, us-
ing this GT data can accurately gauge the performance
of our approach. Our annotated dataset and code are
available at https://github.com/adnan0819/Urban-Tree-
Generator/.
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Fig. 3 NDVI Fluctuations. Mean NDVTI over 12 months
for our four test cities.
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3.2 Classification

Our vegetation classifier is based on a U-Net [46], and
it classifies any city into tree, grass, and background.
Our output provides the same dimensions in width and
height but with n channels where n is the number of
classes in the segmentation (in our case, n = 3). The
size of the tiles is 2562 pixels. The input dimension of
our data (per tile) is 2562 x 48 and the output 2562 x
3. The tiles are stitched to curate the full maps. We
developed a novel data generator for U-Net and per-
formed data augmentation specific to our 48 channel
data. Fig. 4 shows that using 12 months data outper-
forms a single month data for all our test cities.

Indianapolis

12-mo.

F1=0.54 F1=0.61 | §
Sep Dec

Fig. 4 Single- vs 12-Month Segmentation. Segmenta-
tion of four cities into trees (green), grass (red), and back-
ground (black) using single month vs. 12-months data. F1-
scores are shown, indicating a clear superior accuracy of our
12-months solution.

Jun

3.3 Cluster Creation

After the spatio-temporal classification, the input data
is clustered into various urban configurations that are
representative of different tree placement strategies. We
created a clustering engine using k-means feature clus-
tering, varied the values of k from 2 to 8, and com-
puted the sum of squared errors (SSE). Using the elbow
method, we found the optimal value for k, across our
multiple test cities, to be k = 4. Heuristics and sub-
jective observation were used to label the clusters as
residential, roadside, industrial, and park areas. The
output of the four types can be seen in color-coded
Fig. 8. The optimal cluster number, kK = 4, was cho-
sen using the elbow method upon plotting number of
clusters versus SSF in Fig. 5.

(a) Chicago (b) Austin (c) Indianapolis (d) Lagos
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Fig. 5 Selection of k in k-means clustering. Calibration
of the optimal number of k in k-means clustering.

3.4 Training

We trained our spatio-temporal segmentation approach
with two variants: pre-tuned and fine-tuned. The pre-
tuned variant uses the data accumulation from various
cities to create one system so that deployment to a new
city requires only the 12-snapshots of satellite imagery
at 3mpp. The fine-tuned variant requires additional lo-
cal data. Our analysis finds that the pre-tuned system
has slightly lower performance but fewer data require-
ments.
Our system needs two additional city-specific datasets

to perform fine-tuning for a city. First, about 10-20%
of the city should be labeled into three classes (trees,
grass, and background) to train a local segmentation
engine. It took one person approximately 8-16 hours
to perform this labeling for each test city (that we
will make available for everyone for further research).
Second, the fine-tuned clustering engine needs build-
ing footprints and road networks sourced, for exam-
ple, from OpenStreetMap [40], and is used to improve
the accuracy of clustering into various urban configu-
rations. Since the GT and resolution of the building,
and street locations were known, we could accurately
extract the distances between reference locations and
annotated trees. Sec. 5 discusses the additional, though
not very large, accuracy gains from fine-tuning.

4 Tree Localization

We perform tree localization using deep networks trained
with parameterized urban procedural rules in the sec-
ond runtime phase. We train one conditional GAN-
based network for each of residential, roadside, indus-
trial, and park cluster types. For training, we generate
a large number of synthetic 80m x 80m tiles mimicking
the typical spatial patterns of each of the four types.
The output from the segmentation phase is used as in-
put to the aforementioned localization GANs. The out-
puts of the GANSs are then discretized, yielding individ-
ual tree locations.

4.1 Procedural Rules

To train the cGANs, we generate tiles of a synthetic city
that exhibit procedurally-defined parameterized tree plant-
ing rules. We define a set of four parameterized rules U;:
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U1 No overlap: tree center points should not overlap
with buildings, roads, and other trees.

Us Minimum tree-to-tree distance: is a minimum dis-
tance between tree center points. It is heuristically
determined to be half of the field of the neighbor-
hood (FON) [44] of trees.

Us Minimum tree-to-building distance: is a minimum dis-

tance between a tree center point and a building.
U, Minimum tree-to-road distance: is a minimum dis-
tance between a tree center point and a road surface.

Subsequently, by varying the parameter values and
their spatial coverage, multiple instances of the rules are
defined and placed into three groups: universal, cluster-
specific, and city-specificc. When we lack the ground
truth data for estimating cluster or city-specific pa-
rameter values, we use the average parameter values
of clusters in other cities, as shown for Lagos.

We introduce some notations for clarity and brevity
throughout the remainder of the paper. We abbrevi-
ate Chicago, Austin, Indianapolis, Lagos, and pre-tuned
variant as C, A, I, L, P, respectively. Then we use rs,
rd, pr, and ind to represent residential, roadside, park,
and industrial, respectively. The minimum distances of
a tree from the nearest building and street are denoted
by dyiag and dsireer, respectively. A fixed-sized tile on
the map (80m x 80m) is denoted by T; where j is an
index. B(T}) is the percentage of tree area (blob) in T},
and n; is the number of trees in the same tile. Among
n; trees, Wyoundary iS the percentage of trees along one
FON distance around B(Tj), and Winner refers to the
remainder percentage of the trees inside the same tile
(Fig. 6). Finally, we use U, V., and W,_, to represent
universal, cluster-type (in cluster c), and city-specific
rules (in cluster ¢ and city x), respectively.

Whoundary = 0.6
Winner = 0.4

Residential ) Roadsid o Industrial

Fig. 6 Example tree distribution for Chicago rule-
sets. Illustrating different distributions in rule-sets S,s_c,
Sra_c, Spr_c, and Sinq_c inside a 80m x 80m tile (T;) rep-
resented as rectangles. The colored blobs are B(T}) inside the
tile and black circles are tree locations.

Universal and Cluster-type Rules: The univer-
sal rules U are described at the beginning of this sec-
tion. Cluster-type V. rules are derived from city plan-
ning/municipal documents such as [8,10,52] for Chicago,
Austin, and Indianapolis respectively. All such codes

stem from ANST A300 Standards for tree management [51]

for all municipal codes in the USA. Thus, the values
for dyag and dgsireer Were extracted from those stan-

dards. To verify their validity, we used a hand-labeled
subset of tree locations for the three cities. The mean
error of the values from the labeled data was < 1%
from the city-planning standards. Since we have no such
documentation for Lagos, we verified that the labeled
Lagos data were within 3% from the values used for
the other cities. Therefore, we adopted dyiay and dsireet
from municipal standards as cluster-specific.

We note that wyoundary and Winner Were chosen heuris-
tically by overlaying precisely labeled tree locations on
top of the output tree segments from our spatio-temporal
segmentation phase. Upon deriving the statistics over
all labeled data, the values of Wyoundary a0nd Winner Were
set for each cluster type. Further, we observed the av-
erage FON to be 4+0.37m in all test cities from anno-
tation. Thus, we chose FON = 4 m that is in line with
urban forestry literature [44].

City-specific Rules: For city-specific distribution
rules W, _,, a similar approach to deriving wyoundary
and Wipner was used with labeled ground truth data
overlaid on tree coverage segments. We statistically de-
rived the values based on the density and counts of the
tree locations inside the segments.

Finally, for the complete system, the goal is to gen-
erate tree locations following the conjunction of all the
procedural rules for a given city z € { C,A,I,L, P }.
Thus, we optimize and calibrate for rule sets for all val-
ues of ¢ € {rs,rd, pr,ind}:

Sc,m = Uﬁ‘/cmwc,x- (1)

4.2 Synthetic Data Generation

We use synthetic data to train one cGAN for each clus-
ter type (residential, roadside, industrial, and park).
Based on preliminary experiments, we found using at
least 100,000 training images per GAN resulted in good
learning results (Fig. 7).

Cluster Creation: We first define an initial tem-
porary set of potential tree locations and then group
the trees into clusters of different types. First, trees
are placed by using a Poisson distribution which has
been shown to be a good distribution model for trees in
prior work (Keren [24]). Second, we use DBScan clus-
tering [15] to generate a set of clusters spanning the
temporary trees (Fig. 7 b). The members of a cluster M
are trees x and y:

M(z,y) : d(z,y) < e, (2)

where recall ¢ € {rs, rd, pr,ind} and d(z, y) is the straight-
line distance between = and y, and €. is the distance
threshold for each cluster type.

Tree Placement: To produce a set of trees in each
cluster that follow the rules and desired density, we per-
form the following four steps that over-seed a cluster



Adnan Firoze et al.

s e st

(a) Initial tree placement using only
universal rules

(b) Clusters creation (blue blobs are
roadside, green blobs are residential) rules

(c¢) Clusters which inherits the universal

(@essns

(d) Synthetically placed trees using all
procedural rules (discriminative)

(e) Training sample of isolated tree
segments as input to cGANs

(f) Training sample of Gaussian tree
heatmaps as target of cGANs (generative)

Fig. 7 Synthetic tree generation workflow. Synthetic data generation to train planting and localization networks. The
rationale for choosing a generative model over a disccriminative approach is given in Sec.4.4.

and iteratively calibrate the cluster to behave as de-
sired i.e., follow the characteristics determined by the
procedural rules.

1) Randomized placement: First, we place trees in-
side the clusters in a random fashion enforcing only the
universal rules. Contrary to the Poisson disc sampling,
we do not enforce any distance such that we naturally
get an overestimation of trees inside clusters of every
configuration.

2) Rule enforcement: For each iteration, until we
find density and count close to GT, we remove trees
that violate our procedural rules. We incorporate our
procedural rules, i.e., the cluster-type rules and city-
specific rules (numeric parameters of both are reported
in Tabs. 1 and 2 of the supplementary materials), to
place trees only inside the clusters as derived in the
rules by Eqn. 1.

3) Density calibration: We check the density B(T})
and n; for each cluster. If it is suboptimal (z.e., it has
a significant difference from ground truth), we adjust
€. which affects the size of clusters in a fixed size tile
- B(Tj) and the number of trees in that cluster nj,
go back to step “1) Randomized placement”, and re-
peat. We continue until we cannot improve upon our
tree segment percentage per tile B(T;) and the corre-
sponding tree count n; relative to ground truth. Once
we reach peak accuracy for every cluster, we proceed
to the next step. We observed that there is not a one-
to-one relationship in the input and output densities
of the translation networks. Therefore, we calibrated
the tree segment (blob) percentages in fixed tiles B(T})
and their associated tree counts n;. We tested numer-
ous generative cGAN models with different values in
realistic ranges of B(Tj) and n; to find the densities
and coverage percentages that resulted in the highest
tree location and count accuracy. Fig. 1 in the sup-
plementary materials shows the calibration plots that

visualize the decision of tree densities in synthetic data
for Chicago.

h) Infen

Fig. 8 Qualitative Results. Real world ground truth
(from 0.3 mpp INRIA dataset for GT visualization) in (a,
c, e, g) vs. trees located by our system (b, d, f, h). Here,
purple, blue, green, brown and red blobs refer to residential,
roadside, park, industrial, and grass coverage. Yellow filled
circles are inferred tree locations.

4) Heatmap creation: When the rules and densities
have been calibrated for locally-optimal output, we ras-
terize our tree points to 2D Gaussian discs forming a
heatmap which facilitates evaluation of similarity. At
this point, it is feasible to generate our training and
target data for our cGAN networks. As such, we use
the class-encoded tree coverage segments (Fig. 7 e) as
our training images and generate the aforementioned
heatmaps from the tree locations (Fig. 7 f). We re-
peat this process 10x for each city, resulting in approx-
imately 100,000 tiles per urban configuration cluster
type per city. In the heatmaps, the center of a Gaussian
represents the highest probability of the presence of a
tree which decays exponentially away from the center
of tree location: f;(x) = e, where z is the distance
from a point on the map where a tree i was seeded using
the synthetic data generator, and A is the decay rate.
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Treatment of pre-tuned vs. fine-tuned engines: Al-
though the fundamental approaches for the generation
of the synthetic data remain the same for both our pre-
tuned P and fine-tuned engines {C, A, I, L}, we note
that for the pre-tuned engine, we only have ground
truth count information n; for the four cities that we
have tested: Chicago, Austin, Indianapolis, and Lagos.
Therefore, in the calibration phase, we accommodate
the calibration of those cities to achieve the highest ac-
curacy in terms of densities. However, we use the mean
optimal B(T;) and mean optimal n; of the known cities
for an unknown city with no labeled data. Owing to the
standardization of the city planning rules described pre-
viously, we showed that this generalization affects the
performance marginally compared to the fine-tuned en-
gines in Sec. 5. When performing fine-tuning in k-means
clustering, additional features are included to account
for building area and road network area, both sourced
from OpenStreetMap [40].

4.3 Calibration and parameters of training data

We calibrated blob percentages in fixed tiles B(7}) and
their associated tree counts n;. We tested numerous
generative models with different values in realistic ranges
of B(T;) and n; to find the densities and coverage per-
centages that resulted in the highest accuracy of tree lo-
cation and count and selected the ones producing peak
performance. The calibration plots that visualizes the
decision of this step in our synthetic data for Chicago
are shown in Fig. 9.

The following section presents the derived values of
all the parameters of cluster-specific and city-specific
rules, as discussed. The sources and derivations are noted
in 4.1 Tab. 1 reports the parameter values pertaining
to the cluster-specific rules, whereas Tab. 2 reports the
city-specific rules’ parameter values.

Table 1 Cluster Rules V. For each cluster type, we show
the rule parameter values.

Parameter | Vis | Vig | Ving | Vpr
dpidg 2m | 2m | 3m 4m
dstreet Im 1m Im 1m
Whoundary 0.5 0.9 0.6 0.7
Winner 0.5 0.1 0.4 0.3

We calibrated blob percentages in fixed tiles B(T})
and their associated tree counts n;. We tested numer-
ous generative models with different values in realistic
ranges of B(T;) and n; to find the densities and cov-
erage percentages that resulted in the highest accuracy
of tree location and count and selected the ones pro-
ducing peak performance. The calibration plots that

Chicago_roadside

Chicago_residential

cdgp,” o Mireqgy, © 5
0me 780m2 1

(©) (d)
Fig. 9 Synthetic Data Calibration. Calibration of the
optimal number of trees inside coverage percentage in fixed
size of 80m x 80m tile to achieve highest count accuracy with
respect to ground truth. Surface plots are shown for rule-sets
in Chicago.

Table 2 City-Specific Rules W. For each city (C, A, I, L)
and for the pre-tuned variant (P), we show the parameter
values for the distribution rules: mean percentage of tree cov-
erage in a tile, and mean number of trees inside the same tile.

Parameter Wrs_c Wra_c Wopr_c Wind_c
Mean B(T;) 14.91% 20.08% 34.18% 7.52%
Mean n; 9 12 14 7

Rule id Wis_1 Wra_r Wpr_1 Wind_1
Mean B(T;) 26.46% 32.86% 55.57% 5.73%
Mean n; 18 11 18 4

Rule id Wis_a Wira_a Wpr_a Wind_a
Mean B(T;) 39.02% 34.53% 61.17% 12.44%
Mean n; 15 14 25 4

Rule id Wis_L Wra_L Wpr_L Wind_r
Mean B(T;) | 16.82% | 22.37% | 44.17% | 6.48%
Mean n; 10 15 17 5

Rule id Wes_p Wia_p Wpr,P Wind_p
Mean B(T;) | 24.30% | 27.46% | 48.77% | 8.04%
Mean n; 13 13 19 5

visualizes the decision of this step in our synthetic data
for Chicago are shown in Fig. 9.

A proper loss function selection was imperative for
the success of the networks. As noted in the 4) Heatmap
Generation step, we used A = 0.25 as the Gaussian de-
cay rate, and the rationale and experiment are detailed
in Sec. 3 of the supplementary materials. The selec-
tion of Multi-scale SSIM based loss function to be used
as our generator’s loss function is also discussed and
quantified with experiments presented in Sec 3 of the
supplementary materials.

4.4 Training, Loss Function and Evaluation Metric

The objective of the training phase for tree location
estimation is to use synthetically generated coverage
segments as inputs to the networks and output realistic
(spatially and count-wise) trees as Gaussian heatmaps
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that are later discretized to points. The tree location
estimation is achieved by using multiple cGAN mod-
els [20] for translating tree coverage segments gener-
ated by our segmentation phase and further classified
into classes, to Gaussian heatmaps of tree locations
(Fig. 7f). Several illustrations of our final tree location
extractions (beside corresponding ground truth) are de-
picted in Fig. 8 (visualization of planting in Chicago
and Austin - since 0.3 mpp data was available for those
two cities only to qualitatively compare clearly).

We implement the cGANs (illustrative inputs and
outputs are Figs. 7Te and 7f respectively) to perform
the tree localization tasks instead of a discriminative
approach because, like real-world, we simulated the ex-
istence of a tree in a generative manner. To be more
precise, the input segments/blobs to the networks are
of non-uniform shapes (see Fig. 8), and our generative
approach is robust to such variations. Secondly, this
makes every point of a map to be a likely candidate of
being a tree/non-tree entity, and the cGANs attribute
probabilities (shown as heatmaps in Figs. 7 and 10).

Now. we discuss three intertwined concepts used in
our approach. First, we discuss the process of deter-
mining the optimal decay rate A of the Gaussian discs
in the heatmaps; i.e, the spread of the Gaussian dis-
tribution of each tree in our approach. Then, we show
why we selected Multi-Scale SSIM as the loss function
for the generator in our cGAN tree location approxi-
mator. Lastly, we show an experiment using multiple
metrics in order to determine the best one to evaluate
tree locations.

Recall that in the heatmaps the center of a Gaussian
represents the highest probability of the presence of a
tree which decays exponentially away from the center
of tree location: fi(x) = e~*'* where z is the distance
from a point on the map where a tree ¢ was seeded using
the synthetic data generator, and A is the decay rate.

Different metrics representing a translation of Gaussian heatmap
translation for A=0.25 up to 7m from ground truth (GT)

Metric Value

) 1 H 3 ] 5 13 7
Translation of Gaussian from GT (m)

Example visualization of tree
location translation from GT

Fig. 10 Loss Functions and Error Metrics. Different
metrics showing effect of translating Gaussian disc with A =
0.25 gradually away from the ground truth position

First, we observed heatmaps by varying the value
of A in the range [0.01,0.3] and plotted the impact

on different similarity metrics. For each A in the range
[0.01,0.3] with increments of 0.01, we plotted five sim-
ilarity metrics: Muti-Scale SSIM [55], Visual Informa-
tion Fidelity (VIF) [6], Feature Similarity Index (FSIM)
[59], root mean squared error (RMSE), and standard
SSIM [54] (as shown for A = 0.25 in Fig. 10). In this
experiment we seek a locally-optimal value of A and
the locally-optimal similarity metric for our tree gener-
ating cGANSs. For the experiment, we placed one tree’s
Gaussian heatmap in a chosen position in a fixed tile
as ground truth. Then we placed another tree initially
at the same position (d = 0) and gradually moved it
away from ground truth in 0.25m increments until a
distance of 7m. We computed all the similarity met-
rics at each position and plotted them as shown in Fig.
10. A well calibrated multiscale SSIM (MSSIM) came
out to be the best choice (see Fig. 10) where as the
experimental tree moved away from the ground truth
position, we observed a rapid decay (but not exceed-
ingly fast) as it was erroneously positioned until it was
approximately less than two FONs which is approxi-
mately (2 x FON) — 1 = 7m apart. At A = 0.25, the
loss function’s penalty showed the desired sensitively.
Thus, we chose A = 0.25 and incorporated MSSIM into
the loss function of our generator in our planting GANs.

A similar approach as above was employed to find
the appropriate evaluation metric to employ in evalu-
ating the performance of tree location approximation.
While keeping A\ = 0.25 fixed and plotting different sim-
ilarity metrics as shown in Fig. 10, we choose SSIM be-
cause it exhibit a more linear behavior and it was also
used in related prior works (see Sec. 5).

5 Results and Evaluation
Table 3 Tree Counts. The raw tree counts from different

sources and our output along with accuracy. We note that
Indianapolis and Austin had two sources — we report both.

C A I L A
x10% | x10° | x10% | x10® | (Subsst)
%103
Hand-labeled 15.9 19.7 26.83 13.15 -
Austin
Tree Inv. [9] - - - - 7.31
Indiana
MFRA [41] - - 57.32 - -
: 30.33/
Ours 16.74 21.30 53.99 13.52 6.84
Our acc. [%] 95.53 91.88 8962'9948/ 97.19 93.82

Our framework was implemented in Python using
Tensorflow on a machine equipped with four NVIDIA
RTX-3090 GPUs. The training time for the segmen-
tation model took less than 2 hours per city, and for
the tree generation, the GANs took approximately 5
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hours to train per cluster (each with over 100,000 syn-
thetic tiles) with batch size of 16. We use F1-score/Dice-
coefficient, which is equivalent to IoU in our context, as
the metric for segmentation performance and compar-
ative published literature and governmental databases
along with human surveyed data (where available) to
evaluate the accuracy of our tree counts and positions.
We experimented with several metrics to numerically
evaluate tree localization. We tested pixel-based L2-
norm, Structured Similarity Index Measure (SSIM) [54],
Visual Fidelity (ViF) [6], and Feature-based similar-
ity index [59]. We found SSIM to yield a good cor-
respondence between quantitative and qualitative out-
puts. The experiment and resultant plots for this choice
are given in Sec. 4.4. We further reinforce this selection
by noting that SSIM was used in literature (e.g., [2]
and [57]) with heatmaps and object counting.

5.1 Parameter Values For Procedural Rules

We derive parameter values for cluster-type rules and
city-specific rules using the sources listed in Sec. 4.2.
The exact values are reported in 4.4 and calibration is
shown in Fig. 9.

5.2 Spatio-Temporal Segmentation

Fig. 4 shows qualitatively and quantitatively the seg-
mentation performance of using single vs. 12-month
snapshots. Further, Fig. 8 shows the visual performance
of segmentation over several areas in two of our test
cities. For comparison, we also show higher-resolution
aerial imagery next to the automatic output produced
by our system using 3 mpp satellite imagery. We ob-
served that labeling approximately only 10%-20% of a
city extent achieved good accuracy in segmentation F1-
score and tree localization. Using less than 10% of la-
beled data overfits models and further labeling (> 20%)
was not beneficial.

5.3 Tree Localization

We present our tree localization performance using two
metrics. First, we present a qualitative demonstration
using figures to show the placement of trees in different
urban configurations. Second, we quantitatively show
through an ablation analysis that tree counts and place-
ment accuracy show the best performance with all our
rules activated by comparing the system to disabling
each rule-set defined in Eqn. 1. We also show that the
pre-tuned model only marginally loses accuracy com-
pared to the fine-tuned engine, thus exhibiting our ap-
proach to be robust. Tree location ground truth was de-
rived by hand-labeling over 70,000 trees on 0.3 mpp IN-
RIA dataset [33] and Google Earth [21] for evaluation.

Further, we selected areas such that we keep the count
of the trees as uniform as possible across all four config-
urations (residential, roadside, industrial, and park) to
illustrate the most representative results. Fig. 8 shows
inferred tree locations, spatio-temporal segmentation,
alongside ground truth (as a subjective illustration). It
also shows the difference in image resolution through
the map backdrop. We find it important to note as a
demonstration of the impact of using temporal data to
compensate for lower spatial resolution.

Tab. 3 and Fig. 11 report the tree counts and place-
ment accuracy of our approach demonstrating the im-
pact of each rule-set of our system. It also shows that
we achieve high accuracy in tree count and placement
across all test cities. Tab. 5 reports the raw counts of
the ablation analysis. We illustrate the effect on tree lo-
calization as rules are progressively omitted. Fig. 11 re-
inforces the fact that in different cities, certain rule-sets
dominate more than others. For instance, it can be seen
that in Lagos, the park configuration dominates (i.e.,
the omission of park rules has the biggest adverse im-
pact). In contrast, for Chicago, roadside configurations
make the largest impact.

5.4 Knowledge Transfer and Robustness

We experimented with training on data of one city and
subsequently simulating tree coverage of every other
city (including the training city itself, although only
10%-20% of that city was labeled) — see Tab. 6. We
also evaluated and reported the performances on the
test cities with cross-validation for the pre-tuned vari-
ant by leaving the tested city out of the training sam-
ples. The tables show that our approach is capable of
being city-agnostic with competitive accuracy.

5.5 Tree Coverage and Localization Evaluation

We evaluate the accuracy by using governmental re-
ports that encompass the same cities in terms of tree
counts and cover. For segmentation/tree cover, we com-
pare our findings to iTree (NLCD data) [53], NDVI
based literature that reported on same areas (as avail-
able), and governmental published data (as available) [38,
41,53] in Tab. 7.

Next, we compare the performance of our approach
to state-of-the-art approaches. We took inspiration from [1]
where they adapted recent segmentation networks (e.g.,
AlexNet [26], VGG-Net [49], and U-Net [46]) to produce
tree counts. Contrary to [1], who used 0.8 mpp satel-
lite imagery, we use coarser 3 mpp. We also compare to
DeepLabV3+ [7], MobilenetV3 [17], and PSPNet [60].
Further, we compare to one of the most recent crowd
counting networks, namely CSRNet backbone [29] using



10

Adnan Firoze et al.

Table 4 Comparison of location accuracy. Comparison to state-of-the-art (MSE and SSIM)

Chicago Austin Indianapolis Lagos Combined
MSE | SSIM | MSE | SSIM | MSE | SSIM | MSE | ssim | MAE [ MSE 7 Median SSIM
4-cities 4-cities 4-cities

GT 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00 1.00
Ours 1.14 0.92 1.47 0.93 1.55 0.94 1.24 0.85 0.48 1.39 0.91
CSRNet[29]+
TADM][30] 5.94 0.71 3.87 0.76 4.00 0.74 4.01 0.74 2.04 4.44 0.74
PSPNet[60] 6.02 0.68 4.01 0.70 5.14 0.68 5.41 0.70 2.41 4.99 0.69
U-Net[46] 4.90 0.61 5.17 0.66 5.87 0.70 5.96 0.61 2.47 5.39 0.65
based on[1]
DeepLabV3+([7] 6.18 0.72 5.08 0.72 5.91 0.70 4.90 0.70 2.58 5.59 0.71
VGG-Net[49] 5.97 0.62 5.36 0.69 7.19 0.64 6.89 0.63 2.97 6.21 0.65
based on[1]
Alex-Net[26] 9.06 | 056 | 803 | 0.59 | 9.33 | 0.62 | 891 | 0.69 | 4.33 8.76 0.62
based on(1]
MobileNetV3[17] 7.22 0.60 9.15 0.65 9.79 0.59 9.18 0.60 4.68 8.86 0.61

Table 5 Comparison of counts. Comparison to state of the art works (raw counts and MAE)

Chicago Austin Indianapolis Lagos
Raw Raw Raw Raw

MAE Count MAE Count MAE Count MAE Count
GT 0.00 15912 0.00 19702 0.00 23727 0.00 12790
Ours 0.30 16624 | 0.64 21301 | 0.52 26826 | 0.25 13150
CSRNet[29]+
TADM|[30] 2.03 20984 1.68 23906 2.49 28924 1.94 15539
PSPNet[60] 3.07 23593 1.74 24059 2.67 29070 2.32 16082
U-Net[46] 2.89 23075 2.36 25591 2.19 30829 2.71 16621
based on(1]
DeepLabV3+[7] 2.63 22475 2.07 24875 3.13 29982 2.58 16447
VGG-Net[49] 3.74 25246 2.18 25152 3.26 30255 2.94 16959
based on(1]
AlexNet[26] 4.88 28104 3.74 29047 4.68 34908 3.95 18390
based on([1]
MobileNetV3[17] | 4.76 27816 3.87 29371 5.63 34998 4.43 19066

Austin

Lagos
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Fig. 11 Ablation Plots. Showing SSIM values with respect to ground truth for different rule-sets omissions.

Table 6 Knowledge Transfer and Robustness. Fl-score
and count accuracy (%) by transferring one city (or pretuned)
model to predict another city

Evaluated on
(F1l-score/tree count accuracy (%))

§ [ protumeq | 0907 [ 0.84/ [ 0.89/ [ 091
- 93.44 | 89.02 | 83.79 | 95.81
3 o 091/ [ 0.72/ | 0.85/ [ 0.88
£ 95.52 | 89.75 | 82.16 | 87.47
& A 081/ | 0.86/ | 0.79/ | 0.82
79.06 | 91.88 | 75.89 | 80.62

; 0.84/ 1 0.82/ | 0.02/ [ 0.74

82.72 | 80.19 | 86.94 | 71.29

N 0.86/ | 0.78/ | 0.74/ | 0.92

84.71 | 73.55 | 72.96 | 97.19

; 0.88/ [ 0.83/ | 0.87/ [ 0.90

Allbut itself | o595 | 5087 | 86.03 | 88.91

IADM [30] which is one of the current top benchmarks
for crowd counting for the ShanghaiTech dataset. For

all of these comparisons, we re-train the solution with
our dataset and, where appropriate, adapt the output
to density-based heatmaps where the tree count is the
integral over the full heatmap (same methodology de-
fined in [1]). For [30], we partition every month’s 4D
images and map them to one target (thereby utilizing
48D data) to adapt the problem statement in our paper
to their paper’s original architecture.

Tab. 4 compares all our test cities with results sorted
in order of decreasing average performance over all cities
(in the set). Our method performs best in all cases. We
emphasize that our work produces tree locations, as
well as tree counts, for which a deep learning-based ap-
proach at city-scale has not been published to the best
of our knowledge. Further, our method requires signifi-
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Table 7 Tree Coverage. Evaluation of our system with
respect to other sources of land/tree cover percentage.

C %) [A®) [T %) | L %)
J. McBride[35] 18.54 - - -
Nowak et al.[38] - 30.8 - -
Indiana MFRA[41] - - 20.5 -
GT for US
i[Tree/NLCl])[SZS]) 11.61 | 34.42 | 18.98 -
[GT for Lagos] UNFAO[13] - - - 9.71
Ours 12.98 32.42 20.91 8.67

cantly less effort (i.e., crowd-sourcing based manual tree
count estimation is not needed).

6 Conclusions and Future Work

‘We have shown an approach that exploits spatio-temporal

satellite images and urban procedural vegetation rules
to create a system for high-quality tree localization.
Our method processes entire cities automatically and
quickly, obtaining tree count accuracy in the 87-97%
range and overall performance superior to a wide range
of recent deep segmentation and counting methods.

We foresee potential in identifying species by ex-
tending our method to consider their different year-
long behavior. Further, we surmise our method shows
promise in other domains besides vegetation where any
entity is spatially semi-stationary yet temporally dy-
namic (e.g., crowds, celestial bodies, ant colonies, bee
swarms, etc.). Therefore, our work is the basis for a fu-
ture framework to model temporally varying data pat-
terns with spatial features.
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