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ABSTRACT
Automatically �nding contradictions from text is a fundamental
yet under-studied problem in natural language understanding and
information retrieval. Recently, topology, a branch of mathematics
concerned with the properties of geometric shapes, has been shown
useful to understand semantics of text. This study presents a topo-
logical approach to enhancing deep learning models in detecting
contradictions in text. In addition, in order to better understand
contradictions, we propose a classi�cation with six types of con-
tradictions. Following that, the topologically enhanced models are
evaluated with di�erent contradictions types, as well as di�erent
text genres. Overall we have demonstrated the usefulness of topo-
logical features in �nding contradictions, especially the more latent
and more complex contradictions in text.

CCS CONCEPTS
• Information systems ! Information retrieval; • Computing
methodologies ! Natural language processing.

KEYWORDS
topological data analysis; deep learning; contradiction; text repre-
sentation
ACM Reference Format:
Xiangcheng Wu, Xi Niu, and Ruhani Rahman. 2022. Topological Analysis of
Contradictions in Text. In Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR
’22), July 11–15, 2022, Madrid, Spain. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3477495.3531881

1 INTRODUCTION
Text data play an essential role in our lives. Since we communicate
using natural languages, we produce and consume a large amount
of text data every day. The explosive growth of text data makes it
impossible for people to digest relevant text data in a timely man-
ner. Typically text data contains two types of information: facts
and opinions. With the �ushing of fake news and misinformation,
di�erent or even con�icting versions of "facts" confuse people con-
stantly. As to opinions, people by nature have di�erent opinions
and disagreements. Therefore, we believe �nding contradictions
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in text is a fundamental problem in text understanding, for both
facts and opinions, and its further applications such as fake news
identi�cation, computational surprise [1, 14–16], and argument re-
trieval [7, 20, 23, 24], etc. Automatically identifying contradictions
is a potential solution to help sense-making and decision-making
process in information seeking. However, the problem of contra-
diction is an under-studied problem in natural language processing
and information retrieval [12].

Topology is a classic branch of mathematics that concerns with
the properties of shape that are preserved under continuous defor-
mations, such as stretching, twisting, crumpling, and bending, but
not tearing or gluing. Topology has recently been shown useful to
understand semantics of text [26]. Although in recent years deep
learning techniques have achieved huge success in understanding
natural language due to their strong capacity of representating text,
such high dimensional representations are usually not isotropic:
they occupy a narrow cone in the vector space and are not uni-
formly distributed with respect to direction [21]. Meanwhile, high-
dimensional data usually contains plenty of noises and therefore it is
essential to ensure the feature representations are not "washed out"
by these noises. Informally speaking, Topological Data Analysis
(TDA) can be viewed as a process of data compression and represen-
tation [13]. However, TDA focuses more on the representation of
data as a whole than deep learning approaches. This new perspec-
tive from topology may help us uncover a deeper and more holistic
nature of data. In addition, these underlying shapes basically re-
main the same even if the data is slightly deformed. This means
that topological features can re�ect the essential characteristics of
data to a certain extent and reduce the impacts of noises.

In this study, we present a topological approach to enhancing the
deep learning models in detecting contradictions in text. In addition,
we propose a classi�cation with six types of contradictions from
a perspective of language phenomena. Under the classi�cation
system, we manually labeled the types of contradictions to make a
ground truth testing dataset and further evaluated our proposed
models’ performances for di�erent types of contradictions.

Themain contributions of this paper are two-fold: 1) we designed
an approach to incorporating the topological representation of
text into the deep learning representations. With the enhanced
representation of text, we obtained improved model performance
in contradiction detection; and 2) we proposed a classi�cation with
six types of contradictions from the language perspective, and
manually labeled a dataset as the ground truth testing data.

2 RELATEDWORK
In this section we will introduce preliminaries of Topological Data
Analysis (TDA). Then we will review a few studies that used TDA
in text understanding research.
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2.1 Preliminaries of TDA
Topological features are the “holes” in an entity. Because the “holes”
cannot be created by continuous deformations, they show how
entities are consistent or di�erent with others in topology. The
formation of "holes" relies on simplicial complexes, which is a set
of simplexes in di�erent dimensions [8]. An 8-simplex should be
a �gure with a minimum number of 8 � 1-simplexes as faces. For
example, A 0-simplex, 1-simplex, 2-simplex and 3-simplex refers
to a point (0-dimension), a line segment (1-dimension), a triangle
(2-dimension), and a tetrahedron (3-dimension) respectively. Thus,
the "holes" are de�ned as the empty space enclosed by the simplexes
in the corresponding dimensions within an entity.

There are many di�erent approaches to simplicial complex con-
structions. TDA utilizes the Vietoris-Rips (VR) �ltration approach
[19], which is easy for a point in a high-dimensional space to be
tracked and de�ned in matrices.

In deep learning, a piece of text is represented in a high-dimensional
space, which can be considered as an entity. Speci�cally, the piece
of text could be represented as a series of points (each point repre-
senting a word), called a point cloud in a high-dimensional space.
However, in the point cloud, there is no “hole”. We need a technique
to connect these points to form “holes”. This technique in TDA is
called Persistent Homology (PH) [2, 9].

Figure 1: Persistence Diagram [11]. Once we start expanding
the data points into balls of increased radii n, planar �gures
emerge. The bars in V0 and V1 capture relevant features of
this process, and therefore information about the original
data. This is how persistence homology (the main aspect of
TDA) works. This �gure is cited from [11].

Figure 1, cited from the study of [11], shows the PH of text.
Initially a unit of text (sentence, paragraph, document, etc) is rep-
resented as a cloud of points (each point represents a word), and
later its subsequent approximation by balls of increased radius n .
The overlaps produce a change in shape which can be measured
using the number of i-dimensional "holes", represented as V8 [9].
V0’s de�nition is a bit di�erent from other V8s, as it refers to the
number of connected components of the entity. As in the V0 and
V1 lines in Figure 1, the number of V0 lines intersecting the vertical
bar at n represents the number of connected components of when
the points are extended with balls of that radius. Therefore as n

increases, the number of components decreases. The V1 lines show
the birth and death of the one dimensional "holes" at given values
of n . In this process the exact positions of the data points are ig-
nored, but the shape the cloud is preserved. That is, two clouds of
similar shapes but di�erent positions will have similar persistence
diagrams. Collectively, V0 and V1 (and higher V8s , not discussed
here) compress and represent information about the shape of the
point cloud. This diagram only shows planar structures, but per-
sistence patterns work in higher dimensions as well, in principle
allowing machines to “see” shapes in dimensions higher than 3, a
task di�cult for humans.

2.2 Previous Studies on TDA for Understanding
Text

A decade ago, TDA was introduced in text mining based on the
observation that data points may have implicit shapes (e.g., [26]).
A natural question to ask is whether texts have shapes that can be
measured using tools of topology. Zhu in 2013 [26] was the �rst to
investigate this question. Zhu used a collection of nursery rhymes
to illustrate how topology can be used to �nd certain patterns of
repetition. More recently, Doshi et al. [6] applied Zhu’s method in
a larger setting showing its classi�cation superiority on the task
of assigning movie genres to user generated plot summaries for
the IMDB dataset. In another study, Savle et al. [18] showed the
topological information, extracted from the relationships between
sentences can be used in inference, can be applied to predict the
very di�cult legal entailment. Gholizadeh et al. [10] applied a dif-
ferent method for computing homological persistence to the task
of authorship attribution, which is also a classi�cation task.

These studies have demonstrated the usefulness of TDA in text
understanding. However, none of them was for the task of contra-
diction detection, a fundamental but under-studied problem. Also
importantly, none of them used TDA as an enhanced representation
approach on top of deep learning representations.

3 METHOD
We adopted three widely used deep learning models as the base
models: the continuous bag of words (CBOW), the Enhanced Se-
quential Inference Model (ESIM) from Chen et al.’s [3], which has
the best documented accuracy in predicting contradicting pairs of
sentences so far, and BERT (Bidirectional Encoder Representations
from Transformers) [5], which has been proved as having the best
performance in many text understanding and information retrieval
tasks in recent three years. As for the implementation of TDA, we
utilized Ripser.py [22], a convenient PH package for Python.

The topological feature we are concerned is a series of V8s, each
representing the number of i-th dimensional "holes". Each hole at
any dimension has the characteristics of birth time, death time, and
persistence duration. Di�erent sentence pairs may have di�erent
number of "holes" at each dimension, and therefore di�erent series
of V8 values. However, we need to specify a �xed dimension size
for the topological feature representation because the size of input
for a deep learning model is �xed. According to Pereira et al. [17],
topological features with longer persistence duration are more
important re�ections on the characteristics of the data. Therefore
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Figure 2: The Framework of Incorporating the TDA Representations into (a) CBOW, (b) ESIM, and (c) BERT

we selected the top :8 "holes" with the longest persistence duration
for the i-th dimension as our feature input.

In addition, the number of "holes" decays quickly as the dimen-
sion increases. We only use the 0-dimensional and 1-dimensional
topological features in our study, because according to our experi-
ments, higher dimensional topological features do not exist in most
sentence pairs. Therefore, we selected the top :0 0-dimensional
and the top :1 1-dimensional topological features with longest
persistence duration as the input of the model.

As for the incorporation of the TDA representation to deep
learning models, we concatenated the TDA representation with the
output of the �nal representation layer of each of the three base
models, as shown in Figure 2. The concatenated representation
was then the input for the classi�cation layer to get the predic-
tion. For the CBOW base model, such concatenation was with the
pre-trained sentence embedding since the CBOW model does not
have a representation layer. For ESIM, the concatenation was with
the pooling representation of the output of the second BiLSTM,
the last representation layer in the ESIM structure. For the BERT
base model, we added a BiLSTM representation layer before the
pooling of the word representations, which has demonstrated in
our experiments to have a better model prediction performance
than the vanilla BERT. Therefore, the concatenation was with the
pooling representation of the output of this BiLSTM layer.

4 PROPOSED TYPES OF CONTRADICTIONS
AND GROUND TRUTH DATA COLLECTION

We re-purposed the MultiNLI dataset [25], which contains approx-
imately 433,000 pairs of sentences in 10 genres, such as govern-
ment reports, �ctions, telephone transcriptions, etc. The original

MultiNLI dataset has three possible labels for each record: entail-
ment, neutral, and contradiction. We kept the original contradiction
label and grouped the entailment and neutral labels into a new
label non-contradiction. There are two labels in our new dataset:
contradiction and non-contradiction.

After scanning a large amount of contradiction sentence pairs
from the dataset, we observed that some contradictions were ex-
pressed in an explicit way using obvious indicator words, such as
antonyms, negation, or numeric inconsistency, while others were
more implicit. We hold meetings to examine the patterns and reg-
ularities of contradictions in sentence pairs, and independently
suggested contradiction types. The process was iterative, reinforc-
ing our existing understanding of contradiction types, while at the
same time having maximum �exibility to be open to new types
emerging from the data. As the result six types were proposed:
Negation, using negative words (no, not, never, nobody, nothing,
etc.) or phrases (neither...nor..., etc.) in a sentence to directly re-
fute the meaning of the other; Antonym, using antonyms of the
words or phrases in a sentence to refute the meaning of the other;
Replacement, replacing a concept or an entity in a sentence to
make it inconsistent with the other; Switch, changing or switching
the place of some elements in a sentence; Scope, narrowing down
or broadening up the scope expressed in a sentence; and Latent,
refuting one sentence meaning without obvious indicator words,
phrases, or structures. Table 1 shows the sentence pair examples
for each of the types.

We invited three people �uent in English to label a randomly
selected 1,000 contradictory sentence pairs from the 10 genres of
MultiNLI according to our classi�cation system. First, two people
provided their initial labels independently. If there was agreement,
the contradiction type label was assigned to that sentence pair.
Otherwise, the third person was involved to break the tie. Each of
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Table 1: Examples for Six Contradiction Types and Their Number of Cases in the 1,000 Contradiction Samples

Contradiction Type Sentence 1 Sentence 2 Number of Cases

Negation Amy and I both fought him and he nearly took us. Neither Amy nor myself have ever fought him. 448

Antonym Hills and mountains are sancti�ed in the cult of this religion. The cult of that religion hates nature. 242

Replacement The union has about 4,000 members in Canada. There are 100 members in the union that live in Canada. 174

Switch In the late 1990s, these extremist groups su�ered major
defeats by Kurdish forces.

Kurdish forces su�ered devastating losses to these
extremist groups.

10

Scope Fun for adults and children. Fun for only children. 12

Latent Oh, Czarek, but will happen to us? Czarek was not asked any questions on that day. 132

the three people was open-mined to new types if needed. As the
result, 18 of the 1,000 sentence pairs have more than one type labels
and the rest have one each. The type label distribution over the
1,000 sentence pairs is also presented in Table 1.

5 EXPERIMENTS
We have conducted experiments to evaluate the helpfulness of TDA
representations in identifying contradictions.

(a) 1,000 contradictory pairs (b) 1,000 non-contradictory pairs

Figure 3: Visualizaiton of Birth and Death Time for "Holes"

5.1 Experimental Setup

Table 2: Performance Comparisons of CBOW with Di�erent
Combinations of TDA Vectors

Matched Test Set Mismatched Test Set
Accuracy Precision Recall Accuracy Precision Recall

:0=260, :1=30 0.753 0.723 0.399 0.761 0.756 0.409
:0=260, :1=40 0.753 0.723 0.404 0.761 0.753 0.395
:0=260, :1=50 0.753 0.733 0.389 0.762 0.764 0.403
:0=260, :1=60 0.753 0.722 0.405 0.761 0.758 0.412
:0=200, :1=50 0.753 0.724 0.401 0.761 0.759 0.410
:0=300, :1=50 0.753 0.730 0.382 0.761 0.764 0.397

Notes: All numbers are the average of �ve-fold cross validation results.

For the CBOWmodel, we followed the the structure in [25]. The
concatenated representation was passed to a multilayer perceptron
(MLP) with 3 layers, 300 nodes in each layer, and a 0.1 dropout rate
in the last layer. The pre-trained embedding vectors were initialized
with 300 dimensions. The out-of-vocabulary (OOV) words were

Table 3: Performance Comparisons of Di�erent Models

Model Matched Test Set Mismatched Test Set
Accuracy Precision Recall Accuracy Precision Recall

CBOW 0.753 0.718 0.404 0.761 0.752 0.414
CBOW+TDA 0.753 0.733 0.389 0.762 0.764 0.403

ESIM 0.822 0.777 0.641 0.828 0.806 0.630
ESIM+TDA 0.826 0.791 0.637 0.833 0.817 0.637

BERT 0.851 0.803 0.725 0.859 0.820 0.733
BERT+TDA 0.854 0.821 0.710 0.859 0.838 0.711

Notes: All numbers are the average of �ve-fold cross validation results.

Table 4: Model Accuracy on Di�erent Contradiction Types

Model Contradiction Type
Negation Antonym Replacement Switch Scope Latent

CBOW 0.622 0.297 0.086 0.100 0.333 0.333
CBOW+TDA 0.612 0.285 0.086 0.100 0.167 0.364
ESIM 0.850 0.632 0.218 0.200 0.583 0.598
ESIM+TDA 0.877 0.628 0.253 0.200 0.583 0.621
BERT 0.897 0.686 0.448 0.100 0.667 0.644
BERT+TDA 0.891 0.719 0.460 0.200 0.750 0.682

Notes: All numbers are the average of �ve-fold cross validation results.

all set to 0. We truncated both sentences at the length of 25. For
ESIM, each BiLSTM layer contained 300 LSTM blocks. The sentence
input was the pre-trained embedding representation with the same
parameters as the input of the CBOW base model. The setup of the
MLP layer was also the same with the CBOW base model. For BERT,
we used the BERT-base model. The added BiLSTM layer contained
64 LSTM blocks. Sentence length was set to 128.

The new dataset was separate into the training and test datasets
in the same way with the original MultiNLI dataset. The data in the
training set belonged to the �rst �ve out of the ten genres. The test
set is further divided into two subsets: one is called the Matched
Test Set whose genres are the same as the training set, and the other
is called Mismatched Test Set whose genres are the last �ve genres
outside the training data genres.

5.2 Model Results on Contradiction Detection
For the 1,000 selected contradictory sentence pairs and another
1,000 randomly selected non-contradictory sentence pairs, we have
visualized their PH - birth time and death time of the V0 and V1
"holes" in a two-dimensional coordinate. As in Figure 3, di�erent
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Table 5: Performance Comparisons of Di�erent Models on Di�erent Genres

Model
Genre

slate government telephone travel �ction
Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

CBOW 0.720 0.623 0.348 0.767 0.738 0.433 0.761 0.754 0.416 0.740 0.701 0.417 0.763 0.778 0.398
CBOW+TDA 0.728 0.640 0.336 0.767 0.745 0.420 0.761 0.770 0.398 0.750 0.728 0.397 0.761 0.778 0.388
ESIM 0.794 0.713 0.590 0.843 0.825 0.653 0.835 0.807 0.662 0.809 0.756 0.630 0.829 0.785 0.667
ESIM+TDA 0.799 0.730 0.588 0.850 0.837 0.665 0.835 0.805 0.663 0.813 0.781 0.610 0.832 0.799 0.658
BERT 0.827 0.750 0.686 0.873 0.846 0.744 0.856 0.815 0.732 0.846 0.797 0.722 0.856 0.809 0.739
BERT+TDA 0.831 0.774 0.662 0.877 0.860 0.742 0.859 0.830 0.721 0.850 0.822 0.700 0.854 0.816 0.722

Model letters verbatim facetoface oup nineeleven
Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

CBOW 0.793 0.797 0.501 0.741 0.701 0.384 0.762 0.777 0.400 0.763 0.784 0.37 0.749 0.705 0.416
CBOW+TDA 0.780 0.774 0.456 0.748 0.720 0.386 0.762 0.786 0.388 0.759 0.778 0.363 0.755 0.733 0.409
ESIM 0.855 0.836 0.694 0.807 0.770 0.593 0.828 0.805 0.639 0.820 0.810 0.59 0.818 0.781 0.627
ESIM+TDA 0.863 0.853 0.701 0.814 0.789 0.598 0.832 0.815 0.642 0.828 0.819 0.609 0.821 0.786 0.630
BERT 0.892 0.868 0.793 0.837 0.788 0.696 0.855 0.807 0.744 0.858 0.830 0.705 0.850 0.805 0.723
BERT+TDA 0.889 0.876 0.772 0.838 0.817 0.658 0.856 0.821 0.724 0.860 0.846 0.695 0.854 0.827 0.706

Notes: The genre descriptions are available in [25]. All numbers are the average of �ve-fold cross validation results.

topological patterns could be observed for the 1,000 contradictory
pairs and the 1,000 non-contradictory pairs. For example, the dis-
tribution di�erence of the V1 points for Sentence1 and Sentence2
looks larger and more disperse for Figure 3(a) (the contradictory
pairs) than Figure 3(b) (the non-contradictory pairs).

Since the embedding vector of each sentence has the dimension-
ality of 300, we set the size of TDA vectors (:0 + :1) to around 300
to prevent TDA from having too much or too little e�ect on the
model. We started with :0 = 260 and :1 = 40 as the number of V0
is usually an order of magnitude larger than that of V1. We exper-
imented with di�erent combinations of values of :0 and :1. The
model performance is shown in Table 2. We found that :0 = 260
and :1 = 50 were the best.

The performance of the three models on the Matched and Mis-
matched test sets is summarized in Table 3. Overall speaking, the
help of incorporating the TDA representations for ESIM and BERT
is larger than that for CBOW according to the pairwise compari-
son of the same model with and without TDA. This suggests that
TDA representations are more useful when the base model has a
representation layer. The concatenated representation is able to
improve the performance of contradiction detection. We do not
observe any clear model performance di�erence between matched
and mismatched testing datasets, suggesting that all the trained
models are able to make predictions beyond the text genres seen in
the training datasets. From the model perspective, the BERT model,
especially with the TDA representations, has the best performance
in terms of accuracy and recall at a little cost of recall, meaning it
is more precise but a little less sensitive. According to De Marn-
e�e et al. [4], since contradiction is relatively rare compared to
non-contradiction in real-world text, precision is more valuable
than recall in the task of contradiction detection. We have seen the
improvement of precision with the help of TDA for all of the three
models.

Table 4 shows the model accuracy for each of the six contradic-
tion types. Overall, the BERT model with the TDA representations
achieved the highest accuracy for all the contradiction types except
Negation, demonstrating the helpfulness of topological features in
�nding contradictions, especially the Latent contradictions, and

those complicated types, such as Replacement and Switch, which
do not rely on changing words but a sentence structure to express
contradictions. Generally speaking, Negation and Antonym are
the least challenging contradictions to detect whereas the other
four types, Replacement, Switch, Scope, and Latent are the chal-
lenging ones with relatively lower accuracy for all the models.

We are also interested in seeing if the performance of the three
models (CBOW, ESIM, and BERT), with or without the TDA rep-
resentations, varies on di�erent text genres. Table 5 shows the
results. We have seen the improvement for each model with the
TDA representation in almost all the genres in terms of accuracy
and precision, with a little sacri�ce of recall, a similar trend with the
results in Table 3. The performance among di�erent genres do not
have di�erences, meaning the models were appropriately trained
to have a good understanding of the general language regardless
of written or oral English, �ction or non �ction, etc.

6 CONCLUSION
In this paper, we proposed a framework of incorporating TDA
representations into three widely used deep learning models to
identify contradictions in sentence pairs. In addition, six types of
contradictions were proposed and a testing dataset with human
labeled contradiction types was collected. We evaluated the perfor-
mance of the deep learning models with the TDA representations,
as well as their variations on di�erent contradiction types and text
genres. Positive and promising results have been obtained for the
usefulness of the TDA representations on top of deep learning
representations.

ACKNOWLEDGMENTS
This research is supported by National Science Foundation (NSF)
(Award #1910696).Wewould like to thankNSF tomake this research
possible.

REFERENCES
[1] Fakhri Abbas and Xi Niu. 2019. One size does not �t all: Modeling users’ personal

curiosity in recommender systems. ArXivorg (2019).

Short Research Paper SIGIR ’22, July 11–15, 2022, Madrid, Spain

2482



[2] Gunnar Carlsson. 2009. Topology and data. Bull. Amer. Math. Soc. 46, 2 (2009),
255–308.

[3] Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, Hui Jiang, and Diana Inkpen.
2016. Enhanced LSTM for natural language inference. arXiv preprint
arXiv:1609.06038 (2016).

[4] Marie-Catherine De Marne�e, Anna N Ra�erty, and Christopher D Manning.
2008. Finding contradictions in text. In Proceedings of ACL-08: HLT. 1039–1047.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[6] Pratik Doshi andWlodek Zadrozny. 2018. Movie genre detection using topological
data analysis. In International Conference on Statistical Language and Speech
Processing. Springer, 117–128.

[7] Lorik Dumani, Patrick J Neumann, and Ralf Schenkel. 2020. A framework for
argument retrieval. In European Conference on Information Retrieval. Springer,
431–445.

[8] Herbert Edelsbrunner and John Harer. 2010. Computational topology: an intro-
duction. American Mathematical Soc.

[9] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. 2000. Topolog-
ical persistence and simpli�cation. In Proceedings 41st annual symposium on
foundations of computer science. IEEE, 454–463.

[10] Sha�e Gholizadeh, Armin Seyeditabari, and Wlodek Zadrozny. 2018. Topological
signature of 19th century novelists: Persistent homology in text mining. Big Data
and Cognitive Computing 2, 4 (2018), 33.

[11] He-Liang Huang, Xi-Lin Wang, Peter P Rohde, Yi-Han Luo, You-Wei Zhao, Chang
Liu, Li Li, Nai-Le Liu, Chao-Yang Lu, and Jian-Wei Pan. 2018. Demonstration of
topological data analysis on a quantum processor. Optica 5, 2 (2018), 193–198.

[12] Chuqin Li, Xi Niu, Ahmad Al-Doulat, and Noseong Park. 2018. A computational
approach to �nding contradictions in user opinionated text. In 2018 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
(ASONAM). IEEE, 351–356.

[13] Pek Y Lum, Gurjeet Singh, Alan Lehman, Tigran Ishkanov, Mikael Vejdemo-
Johansson, Muthu Alagappan, John Carlsson, and Gunnar Carlsson. 2013. Ex-
tracting insights from the shape of complex data using topology. Scienti�c reports
3, 1 (2013), 1–8.

[14] Xi Niu and Fakhri Abbas. 2019. Computational surprise, perceptual surprise, and
personal background in text understanding. In Proceedings of the 2019 Conference
on Human Information Interaction and Retrieval. 343–347.

[15] Xi Niu, Fakhri Abbas, Mary Lou Maher, and Kazjon Grace. 2018. Surprise me
if you can: Serendipity in health information. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems. 1–12.

[16] Xi Niu, Wlodek Zadrozny, Kazjon Grace, and Weimao Ke. 2018. Computational
surprise in information retrieval. In The 41st International ACM SIGIR Conference
on Research & Development in Information Retrieval. 1427–1429.

[17] Cássio MM Pereira and Rodrigo F de Mello. 2015. Persistent homology for time
series and spatial data clustering. Expert Systems with Applications 42, 15-16
(2015), 6026–6038.

[18] Ketki Savle, Wlodek Zadrozny, and Minwoo Lee. 2019. Topological data analysis
for discourse semantics?. In Proceedings of the 13th International Conference on
Computational Semantics-Student Papers. 34–43.

[19] Donald R Sheehy. 2013. Linear-size approximations to the Vietoris–Rips �ltration.
Discrete & Computational Geometry 49, 4 (2013), 778–796.

[20] Christian Stab, Johannes Daxenberger, Chris Stahlhut, Tristan Miller, Benjamin
Schiller, Christopher Tauchmann, Ste�en Eger, and Iryna Gurevych. 2018. Argu-
mentext: Searching for arguments in heterogeneous sources. In Proceedings of the
2018 conference of the North American chapter of the association for computational
linguistics: demonstrations. 21–25.

[21] Jianlin Su, Jiarun Cao, Weijie Liu, and Yangyiwen Ou. 2021. Whitening sen-
tence representations for better semantics and faster retrieval. arXiv preprint
arXiv:2103.15316 (2021).

[22] Christopher Tralie, Nathaniel Saul, and Rann Bar-On. 2018. Ripser. py: A lean
persistent homology library for python. Journal of Open Source Software 3, 29
(2018), 925.

[23] Henning Wachsmuth, Martin Potthast, Khalid Al Khatib, Yamen Ajjour, Jana
Puschmann, Jiani Qu, Jonas Dorsch, Viorel Morari, Janek Bevendor�, and Benno
Stein. 2017. Building an argument search engine for the web. In Proceedings of
the 4th Workshop on Argument Mining. 49–59.

[24] Henning Wachsmuth, Shahbaz Syed, and Benno Stein. 2018. Retrieval of the
best counterargument without prior topic knowledge. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). 241–251.

[25] Adina Williams, Nikita Nangia, and Samuel R Bowman. 2017. A broad-coverage
challenge corpus for sentence understanding through inference. arXiv preprint
arXiv:1704.05426 (2017).

[26] Xiaojin Zhu. 2013. Persistent Homology: An Introduction and a New Text
Representation for Natural Language Processing.. In IJCAI. 1953–1959.

Short Research Paper SIGIR ’22, July 11–15, 2022, Madrid, Spain

2483


	Abstract
	1 Introduction
	2 Related Work
	2.1 Preliminaries of TDA
	2.2 Previous Studies on TDA for Understanding Text

	3 Method
	4 Proposed Types of Contradictions and Ground Truth Data Collection
	5 Experiments
	5.1 Experimental Setup
	5.2 Model Results on Contradiction Detection

	6 Conclusion
	Acknowledgments
	References

