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Abstract. We consider planar directed last-passage percolation on the square lattice with general
i.i.d. weights and study the geometry of the full set of semi-infinite geodesics in a typical realization
of the random environment. The structure of the geodesics is studied through the properties of the
Busemann functions viewed as a stochastic process indexed by the asymptotic direction. Our results
are further connected to the ergodic program for and stability properties of random Hamilton—Jacobi
equations. In the exactly solvable exponential model, our results specialize to give the first complete
characterization of the uniqueness and coalescence structure of the entire family of semi-infinite
geodesics for any model of this type. Furthermore, we compute statistics of locations of instability,
where we discover an unexpected connection to simple symmetric random walk.
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1. Introduction

1.1. Random growth models

Irregular or random growth is a ubiquitous phenomenon in nature, from the growth of
tumors, crystals, and bacterial colonies to the propagation of forest fires and the spread of
water through a porous medium. Models of random growth have been a driving force in
probability theory over the last sixty years and a wellspring of important ideas [2].

The mathematical analysis of such models began in the early 1960s with the introduc-
tion of the Eden model by Eden [21] and first-passage percolation (FPP) by Hammersley
and Welsh [31]. About two decades later, early forms of a directed variant of FPP, directed
last-passage percolation (LPP), appeared in a paper by Muth [42] in connection with
series of queues in tandem. Soon after, Rost [47] introduced a random growth model, now
known as the corner growth model (CGM), in connection with the totally asymmetric sim-
ple exclusion process (TASEP), a model of interacting particles. A decade later, the CGM
arose naturally from LPP in queueing theory in the work of Szczotka and Kelly [50] and
Glynn and Whitt [29]. Around the same time, the third author [48] connected the CGM
and LPP to Hamilton—Jacobi equations and Hopf-Lax—Oleinik semigroups.

Much of this early work was primarily concerned with the deterministic asymptotic
shape and large deviations of the randomly growing interface. The breakthrough of Baik,
Deift, and Johansson [3] showed that the fluctuations of the Poissonian LPP model have
the same limit as the fluctuations of the largest eigenvalue of the Gaussian unitary en-
semble derived by Tracy and Widom [51]. This result was extended to the exactly solvable
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versions of the CGM by Johansson [37]. These results marked the CGM and the related
LPP and TASEP models as members of the Kardar—Parisi—-Zhang (KPZ) universality
class. This universality class is conjectured to describe the statistics of a growing interface
observed when a rapidly mixing stable state invades a rapidly mixing metastable state.
This subject has been a major focus of probability theory and statistical physics over the
last three decades. Recent surveys appear in [14, 15,30, 44,45].

1.2. Geodesics

A common feature of many models of random growth is a natural metric-like interpreta-
tion in which there exist paths that can be thought of as geodesics. In these interpretations,
the growing interface can be viewed as a sequence of balls of increasing radius and cen-
tered at the origin. This connection is essentially exact in the case of FPP, which describes
a random pseudo-metric on Z?. Related models like the CGM and stochastic Hamilton—
Jacobi equations have natural extremizers through their Hopf-Lax—Oleinik semigroups,
which share many of the properties of geodesics. For this reason and following the con-
vention in the field, we will call all such paths geodesics.

Considerable effort has been devoted to understanding the geometric structure of
semi-infinite geodesics in models of random growth. In the mathematical literature, this
program was largely pioneered in the seminal work of Newman and co-authors [33, 34,
40,43], beginning with his paper in the 1994 Proceedings of the ICM [43]. Under strong
hypotheses on the curvature of the limit shape, that early work showed that all such
geodesics must be asymptotically directed and that for Lebesgue-almost every fixed direc-
tion, from each site of the lattice, there exists a unique semi-infinite geodesic with that
asymptotic direction and all these geodesics coalesce. In special cases where the curvature
hypotheses are met, Newman’s program was subsequently implemented in LPP models
[11-13,26,52] and certain stochastic Hamilton—Jacobi equations [4,5,7]. In all the results
of the last twenty-five years, the obstruction of needing to work on direction-dependent
events of full probability has been a persistent issue. A description of the overall geomet-
ric structure of semi-infinite geodesics has remained elusive.

It is known that the picture described by these now-classical methods cannot be com-
plete, because uniqueness fails for countably infinitely many random directions [16, 25,
27]. In the CGM, these special directions are the asymptotic directions of competition
interfaces. These are dual lattice paths that separate geodesics rooted at a fixed site. Com-
petition interface directions are distinguished by the existence of (at least) two geodesics
that emanate from the same site, have the same asymptotic direction, but separate imme-
diately in their first step. Once these two geodesics separate they never intersect again. So
in these directions coalescence also fails.

Borrowing ideas from classical metric geometry, Newman [43] introduced the tool
of Busemann functions into the field. In Newman’s work, these Busemann functions are
defined as directional limits of differences of metric distances or passage times. Following
Newman’s work and the subsequent seminal work of Hoffman [32], Busemann functions
have become a principal tool for studying semi-infinite geodesics. The existence of the
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Busemann limits, however, relies on strong hypotheses on the limit shape. Modern work
primarily uses generalized Busemann functions, which exist without assumptions on the
limit shape [1,17,18,27,28].

1.3. Busemann measures

The present paper introduces a new framework that relates geometric properties of
geodesics to analytic properties of a measure-valued stochastic process called the Buse-
mann process or Busemann measures. These Busemann measures are Lebesgue—Stieltjes
measures of generalized Busemann functions on the space of spatial directions, and
the Busemann process is the associated family of distribution functions. This approach
enables a study of the entire family of semi-infinite geodesics on a single event of full
probability.

We describe, in terms of the supports of the Busemann measures, the random excep-
tional directions in which uniqueness or coalescence of geodesics fails. Many of these
results hold without further assumptions on the weight distribution. This work also identi-
fies key hypotheses that are equivalent to desirable coalescence and uniqueness properties
of geodesics. We expect that our methods will apply in related models including FPP and
stochastic Hamilton—Jacobi equations.

In the exactly solvable case with i.i.d. exponential weights, when the new results are
combined with previous work from [16,26,27], this yields a complete characterization of
the uniqueness and coalescence structure of all semi-infinite geodesics on a single event
of full probability. Here is a summary:

(i) Every semi-infinite geodesic has an asymptotic direction.

(i) There exists a random countably infinite dense set of interior directions in which
there are exactly two geodesics from each lattice site, a left geodesic and a right
geodesic. These two families of left and right geodesics can be constructed from the
Busemann process. Each family forms a tree of coalescing geodesics.

(iii) In every other interior direction there is a unique geodesic from each lattice point,
which again can be constructed from the Busemann process. In each such direction
these geodesics coalesce to form a tree.

(iv) The countable set of directions of non-uniqueness is exactly the set of asymptotic
directions of competition interfaces from all lattice points, in addition to being the
set of discontinuity directions of the Busemann process.

(v) In a direction £ of non-uniqueness, finite geodesics out of a site x with endpoints
going in direction ¢ converge to the left (resp. right) semi-infinite geodesic out of x
with asymptotic direction £ if and only if the endpoints eventually stay to the left
(resp. right) of the competition interface rooted at the point where the left and right
semi-infinite geodesics out of x split.

(vi) In a direction ¢ of uniqueness, finite geodesics out of a site x with endpoints going
in direction £ converge to the semi-infinite geodesic out of x with asymptotic direc-
tion &.
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This gives the first complete accounting of semi-infinite geodesics in a model which lies
in the KPZ class.

1.4. Instability points

Passage times in LPP solve a variational problem that is a discrete version of the stochas-
tic Burgers Hopf-Lax—Oleinik semigroup. Through this connection, this paper is also
related to the ergodic program for the stochastic Burgers equation initiated by Sinai [49].
As mentioned in point (iv) above, the exceptional directions in which coalescence fails
correspond to directions at which the Busemann process has jump discontinuities. This
means that the Cauchy problem at time —oo is not well-posed for certain initial condi-
tions that correspond to these exceptional directions. In this case, it is reasonable to expect
that solving the Cauchy problem with the initial condition given at time 7y and letting
to — —oo gives multiple limits at the space-time locations where the Busemann process
has jump discontinuities. Thus we call these locations points of instability. In situations
where the Cauchy problem is well-posed, points of instability correspond to shock loca-
tions. The structure of shocks in connection with the Burgers program has been a major
line of research [4, 10, 20], with a conjectured relationship between shock statistics and
the KPZ universality phenomenon (Bakhtin and Khanin [6]). These conjectures are open.

Past works [4,6, 10,20] considered shocks in fixed deterministic directions, where the
Cauchy problem at time —oo is shown to be well-posed almost surely and these shocks
are the only points of instability. Our model is in a non-compact space setting, where
these problems have been especially difficult to study. In exceptional directions, points
of instability turn out to have a markedly different structure from what has been seen
previously in fixed directions. Among the new phenomena are that points of instability
form bi-infinite paths that both branch and coalesce. Bi-infinite shock paths have previ-
ously been observed only when the space is compact and the asymptotic direction is fixed.
Branching shocks have not been observed.

In the exponential model we compute non-trivial statistics of points of instability.
Among our results is an unexpected connection with simple symmetric random walk:
conditional on a £-directed path of instability points passing through the origin, the dis-
tribution of the locations of £-points of instability on the x-axis has the same law as the
zero set of simple symmetric random walk sampled at even times.

1.5. Organization of the paper

Section 2 defines the model and summarizes the currently known results on Busemann
functions and existence, uniqueness, and coalescence of geodesics. Section 3 contains
our main results on Busemann measures and the geometry of geodesics for general weight
distributions. Section 4 connects our general results to dynamical systems and studies the
web of instability defined by the discontinuities of the Busemann process. Section 5 spe-
cializes to the exponential case to compute non-trivial statistics of the Busemann process.
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Proofs come in Sections 7-9, with some auxiliary results relegated to Appendices B-D.
Appendix A collects the inputs we need from previous work.

1.6. Setting and notation

Throughout this paper, (2, ¥, P) is a Polish probability space equipped with a group
T = {Tx},ez2 of F-measurable P-preserving bijections 7y : 2 — € such that Ty =
identity and Tx7), = Tx4,, and E is expectation relative to IP. A generic point in this
space is denoted by w € Q. We assume that there exists a family {wy(w) : x € Z?} of
real-valued random variables called weights such that

{wy} are i.i.d. with a continuous distribution under P,
Var(wp) > 0,and Ap > 2: E[|we|?] < oo. (1.1)

We require further that w, (Tx®) = wx4y (@) for all x, y € Z2. Moreover, Py denotes
the marginal distribution of {w, : x € Z?} under IP. Continuous distribution means that
Po(X <r)isacontinuous function of € R. X ~ Exp(«) means that the random variable
X satisfies P(X > 1) = e~ for t > 0 (rate a exponential distribution).

The canonical setting is the one where Q2 = RZ? is endowed with the product topol-
ogy, Borel o-algebra ¥, and the natural shifts, w, are the coordinate projections, and
P = Py is a product shift-invariant measure.

The standard basis vectors of R? are e; = ey = (1,0) and e, = e_ = (0, 1). The
e+ notation will conveniently shorten some statements. Additional special vectors are
e =e1+ ey e =e1/2,¢, =e,—eq,and e, = e,/2. In the dynamical view of LPP,
ey is the time coordinate and €, the space coordinate. See Figure 1.1. The spatial level at
time ¢ € Z is denoted by L, = {x € Z? : x - &, = t}. The half-vectors €;* and &, connect
Z? with its dual lattice Z** = &} + Z2.

€2

Fig. 1.1. An illustration of the vectors eq, ez, e+, €1, €2, El* , ?2* , and the set U. The dashed lines
in the middle plot are edges of the dual lattice Z>* = Z2 + &.

A statement with £ and possibly also F is a conjunction of two statements: one for
the top signs, and another one for the bottom signs. We employ [ to represent an arbitrary
element of {—, +}.

Weuse Ry =[0,00),Zy =Z NR; and N = {1,2,3,...}. For x, y € R2, inequal-
ities such as x < y and x < y, and operations such as x A y = min(x, y) and x V y =
max(x, y) are understood coordinatewise. (In particular, x < y means x - ¢; < y - ¢; for
bothi = 1,2.) For x < y in Z2, [x, y] denotes the rectangle {z € Z? : x < z < y}. For
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integers i < j, [i, j] denotes the interval [i, j] N Z. For m < n in Z U {—00, co} we
denote a sequence {a; : m <i <n} by amn.

A path 7, , in Z? with m; 4, — m; € {e1, ez} for all i is called an up-right path.
Throughout, paths are indexed so that 7 - €; = k.

For vectors ¢, 1 € R2, denote open and closed line segments by |¢,n[ = {t¢ + (1 —1)n:
O0<t<l}and [{,n] ={t+ (1 —1)n:0 <t < 1}, with the consistent definitions for
1¢, 1] and [¢, n[. Set U = [ez, e1] with relative interior ri U = ] e,, eq[. See Figure 1.1.
A left-to-right ordering of points ¢, n € R? with ¢ -&; = n-&; is defined by ¢ < 7 if
(-e1 <n-epyand ¢ X nif{-e; < n-e;. This leads to notions of left and right limits: if
{p — Ein U, then ¢, 7 Eif ¢y < &4 for all m, while &, N\ € if £,41 < &, for all n.

The support supp p of a signed Borel measure p is the smallest closed set whose
complement has zero measure under the total variation measure |j|.

2. Preliminaries on last-passage percolation

This section introduces the background required for the main results in Sections 3-5. To
avoid excessive technical detail at this point, precise statements of previous results needed
for the proofs later in the paper are deferred to Appendix A.

2.1. The shape function

Recall the assumption (1.1). For x < y in Z? satisfying x - &, = k and y - &; = m, denote
by I1J the collection of up-right paths 7k,m which satisfy 7y = x and 7, = y. The
last-passage time from x to y is defined by

m—1
Gyy =G(x,y) = max ) Z Wr; . (2.1)

g m €My i—k

A maximizing path is called a (point-to-point or finite) geodesic and denoted by y*-7.
Under the i.i.d. continuous distribution assumption (1.1), y* is almost surely unique.

The shape theorem [41] says there exists a non-random function g : Ri — R such
that with probability 1,

i |Go,x — g(x)] _
im max —_— = =

n—>00 xEZﬁ_:\xll=n n

0. (2.2)

This shape function g is symmetric, concave, and homogeneous of degree one. By homo-
geneity, g is determined by its values on U. Concavity implies the existence of one-sided
derivatives:

g€ £eer) —g(§) g Feex) —g(§)
T, . Vgd) e = lim = :

VgL)-er =1
g(€£) - = lim
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— NN N

; ¢ ;

- - = =
e

Fig. 2.1. In the first three graphs, g is not strictly concave at £ while in the last two it is.

By [35, Lemma 4.7 (c)] differentiability of g at £ € ri U is the same as Vg(§+) =
Vg(&—). Denote the directions of differentiability by

D = {& eri U : g is differentiable at £}. (2.3)

For & € ri U, define the maximal linear segments of g with slopes given by the right
(0 = +) and the left (0 = —) derivatives of g at £ to be

Ugn ={CeriU:g(0)—g) =Veln)- (-8} De{—+}

We say g is strictly concave at £ € 1i U if Ug— = Ug4 = {§}. Geometrically this means
that £ does not lie on a non-degenerate closed linear segment of g. The usual notion of
strict concavity on an open subinterval of U is the same as having this pointwise strict
concavity at all £ in the interval.

For a given £ € 1i U, let § < £ denote the endpoints of the (possibly degenerate)
interval

Up = Ue— U Uy = [£,E].

If § € D then Ug— = Ugy = Ug whileif § ¢ D then Ug— N Ugy = {§}. Set U, = {e;}
fori € {l1,2}.
Additional control over the geometry of geodesics is provided by this regularity con-
dition:
The shape function g is strictly concave at all £ ¢ D, or equivalently
g is differentiable at the endpoints of its linear segments. (2.4)

Condition (2.4) holds obviously if g is either differentiable or strictly concave. Both
of these latter properties are true for exponential weights and are conjectured to be valid
more generally for continuously distributed weights. Under (2.4), if both Ug_ and Ugy
are non-degenerate intervals, then Ug_ = Ug = Ug (leftmost graph in Figure 2.1).

2.2. The Busemann process

Under regularity condition (2.4), it is known that for each fixed £ € O and x, y € Z?,
there is a £-dependent event of full probability on which the limit

B (x,y) = lim (Gx.s, — Gy.v,) (2.5)

exists and agrees for all sequences v,, € Z? such that |v,| — oo and v,/n — £. Similar
limits appear in metric geometry under the name of Busemann functions.
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The goal of this paper is to study the LPP model without a priori hypotheses on
the shape function. Hence the limit in (2.5) cannot serve as a starting point. Instead
we work with a stochastic process of generalized Busemann functions, indexed by
& € ri U, constructed through a weak limit procedure on an extended probability space.
See Remark A.2 for a brief discussion of the construction of this process in [36], which is
based in part on ideas from [17,28]. This process agrees with (2.5) when the limit in (2.5)
exists.

The construction in [36] produces a probability space (€2, ¥, P) with a group of shifts
T = {T, : x € Z?} that satisfies the requirements of Section 1.6 and a stochastic process
{BfO(x,y):x,y € Z% £ eriU, O € {—, +}} on , which we call the Busemann process.
We record here those properties of this process that are needed for Sections 3-5.

In general, there is a T-invariant full probability event on which the following hold.
ForallE eriU, x,y,z € Z?, and O € {—, +},

BEO(x + 2,y + z.0) = B¥9(x, y, Ty w), (2.6)
Bg‘j(x,y,a)) + Bgu(y,z,a)) = BSD(x,Z,a)), 2.7
min {Bgm(x,x + ey, w), BED(x,x + e2,w)} = wy, (2.8)
E[B59(x,x + ¢;)] = Vg(£DO) - ¢;. (2.9)

Properties (2.6)—(2.7) express that each Bf%is a covariant cocycle. The weights recov-
ery property (2.8) is the key that relates these cocycles to the LPP process. (2.9) shows
that the Busemann process is naturally parametrized by the superdifferential of the shape
function g. The following monotonicity is inherited from the path structure: for all x € Z?>
and £, & eri U with & < &/,

B (x,x +er,0) > B (x,x +er,w) > BE (x,x +er,0) > BE T (x,x +e1,0),

B (x,x + ez, 0) < BEF (x,x + e2,0) < BY (x,x + e2,0) < BEF(x,x + 2, 0).
(2.10)

As a consequence of monotonicity and the cocycle property (2.7), left and right limits
exist. The signs in Bé* correspond to left and right continuity: for all x, y € Z2, £ e ri U,
and O € {—, +},

Bg_(x,y,w) =
T

1

lim  B%%(x,y,w), Bif(x,y,w)= 1lim B*%(x,y, ).
dm (x,y @) (x,y @) LI (x,y @)
@2.11)

When BS+(x, V,w) = Bg_(x, v, w) we drop the +/— distinction and write Bg(x, y,w).
Theorem A.1 in Appendix A contains the complete list of the properties of the Buse-
mann process that are used in the proofs in Sections 7-8.

2.3. Semi-infinite geodesics

A path 7y oo With w41 — 7; € {eq, ex} for all i > k is called a semi-infinite geodesic
emanating from, or rooted at, x if mp = x and for any m,n € Z 4 with k < m < n, the



C. Janjigian, F. Rassoul-Agha, T. Seppildinen 2582

restricted path 7, , is a geodesic between 7, and 7. A path 7_o 00 With ;41 — 7; €
{e1, ez} for all i is called a bi-infinite geodesic if wp, , is a geodesic for any m < n in Z.
Due to the fact that the set of admissible steps is {e;, €2}, from each site x, there are
always two trivial semi-infinite geodesics, namely x + Z 4 e, which we denote by y *»¢1,
and x + Z4ep, which we denote by y *°2. There are two trivial bi-infinite geodesics
going through x, namely x + Ze; and x + Ze,, which we do not introduce notation for.

A semi-infinite geodesic g, o, O a bi-infinite geodesic 7T_qo,00, 1S directed into a set
A C U if the limit points of m,, /n as n — oo are all in A. When A = {£} the condition
becomes limy, oo 77, /7 = & and we say 7k o is &-directed.

Using the Busemann process, we construct a semi-infinite path y %42 for each & €

ri U, both signs 0 € {—, +}, and all x € Z2, via these rules: the initial point is y,5*” = x
where m = x - ey, and forn > m,
yatOter i BE(p 0yt er) < BEU 0,y 0 t o),
x,E0 x,&0 . £ny., X560 x,&0 goy,, X.E0  x.EO
Yni1t =\ Vn~ tex ifBO(yy" L ya” te) > B (yaT L ynt t+e2),
y,f’s'j +e, if Bgu(},;,sm’ y’;c,ém +e1) = BED(y,f’SD, y’f,ém + e).
2.12)

As above, we dispense with the & distinction when y *4¥+ = p £~ These geodesics
inherit an ordering from (2.10): for all x € Z%,n>x-e,and ¢ < ninri U,

SRS TR A S A 2.13)

Similarly, the geodesics inherit one-sided continuity from (2.11) in the sense of con-
vergence of finite length segments: forall x € Z2, £ eriU and O € {—, +},ifk = x - &,
and m > k is an integer, then

lim  y"% =yt and i N 2.14
duspngVem = Viem G QB e Yem = Viem @14

An elementary argument given in [27, Lemma 4.1] shows that properties (2.7) and
(2.8) combine to imply that these paths are all semi-infinite geodesics and that moreover
for all choices of x € Z2,n > x-&;,0 € {—, +}, and £ € ri U, we have

G(x,y %) = B (x, p59). (2.15)

Below are the main properties of these Busemann geodesics y *¢7 under assumption
(1.1), from article [27]. (Theorem A.4 provides a more precise accounting.)

(i) Every semi-infinite geodesic is Ug-directed for some & € U.
(i) y &2 is Ug-directed for each x € Z? and each & € U.
(i) If§,§ ,& € D, then there is a £-dependent event of full probability on which y *£~ =
y ¥+ forall x € Z2.
(iv) There is a &-dependent event of full probability on which y *£2 and y ¥¥9 coalesce

for each o € {+, —}. Thatis, foreach x, y € 72, there exists an w-dependent K € N

such that for all k > K, y,f’fot’ = yky’fot’.
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The regularity condition (2.4) guarantees that y *¥~ and y *¢ are extreme among
the Ug-directed geodesics out of x in the sense that for any x € 72, & €ri U, and any
Ug-directed semi-infinite geodesic 7 emanating from x, we have

yEET <, < pEt (2.16)

for alln > x - e;. We record this fact as Theorem A.7.

Under the regularity condition (2.4) and £, £, € € D, part (iii) combined with (2.16)
implies that there is a £-dependent event of full probability on which there is a unique
Ug-directed geodesic from each x € 7Z2. Moreover, by part (iv), all of these geodesics
coalesce. On the other hand, under the same condition, it is known that there are excep-
tional random directions at which both uniqueness and coalescence fail. We discuss these
directions in the next subsection.

2.4. Non-uniqueness of directed semi-infinite geodesics

For a fixed site x € Z2, a natural direction in which non-uniqueness occurs is the compe-
tition interface direction, which we denote by &, (T w). At the origin, £4(w) € ri U is the
unique direction such that

B%E(e1,e5) <0 if¢ < Ex(w),  BE(er.e2) >0 ifC > Ex(w). (2.17)

Theorem A.8 records the main properties of competition interface directions, including
the existence and uniqueness of such a direction.

Under the regularity condition (2.4), we also have the following alternative description
of £x(w). Fix a site x € Z2. The uniqueness of finite geodesics implies that the collection
of geodesics from x to all points y € x + Zi forms a tree 7 rooted at x and spanning
X+ Z%r. The subtree rooted at x + ey is separated from the subtree rooted at x + e, by
apath {¢) : n > x - €} on the dual lattice &;* + Z?, known as the competition interface.
See Figure 2.2.

X+ ey

X x+4e

Fig. 2.2. The geodesic tree T rooted at x. The competition interface (solid line) emanates from
X+ ?1* and separates the subtrees of Tx rooted at x + e7 and at x + e3.
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Fig. 2.3. The competition interface (middle path) separating the two £x-directed geodesics. The
left picture is a small portion of the right one. In the picture on the right the x-axis appears to be
stretched, but the scales of the axes are in fact identical.

Under condition (2.4), the competition interface satisfies ¢;; /n — £« (Tx®), given by
(2.17). Moreover, each of these two trees contains at least one semi-infinite geodesic with
asymptotic direction &, (T w). Indeed, £, (Txw) is the unique direction with the property
that there exist at least two semi-infinite geodesics rooted at x, with asymptotic direction
&+ (Txw), and which differ in their first step. See Figure 2.3. Theorem A.9 records the fact
that when the weights are exponentially distributed, there are no directions £ with three
&-directed geodesics emanating from the same point.

3. Busemann measures, exceptional directions, and coalescence points

The central theme of this paper is the relationship between analytic properties of the
Busemann process and the geometric properties of the geodesics y “£° for £ € ri U and
O € {—, +}. It will be convenient in what follows to have a bookkeeping tool for the loca-
tions at which the Busemann processes are not locally constant. A natural way to record
this information is through the supports of the associated Lebesgue—Stieltjes measures.
As functions of the direction parameter &, Bf:_x +e; and Bit +te; are respectively left-
and right-continuous versions of the same monotone function and satisfy the cocycle
property (2.7). As a consequence, for each x, y € Z2, 0 € {—, +}, £ = Bf7(x, y) has
locally bounded total variation. Hence on each compact subset K of ri U there exists
a signed Lebesgue—Stieltjes measure ,uf, , with the property that whenever { < 7 and

[¢.n] C K,
pSy Q6o = BIL — BEY and pf (60D = BY, - BE,. (3.1

The restriction to compact sets is a technical point: in general, B§+y and Bi_y are
signed sums of monotone functions and thus correspond to formal linear combinations of
positive measures. By the limit in (A.1), each of these positive measures assigns infinite
mass to the interval ri U and if any two of the measures come with different signs, the
formal linear combination will not define a signed measure on all of ri U. We will ignore
this technical point in what follows and write (i, ,(s) for the value of this measure and
|t4x,y|(+) for the value of the total variation measure whenever they are unambiguously
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defined. In that vein, we define the support of the measure (ix y onri U as

supppvy = ) suppuly, (3.2)
¢meri U: ¢<n
where supp uEf;’] is, as usual, the support of the (well-defined) total variation measure

|M¥,’;]] |. Naturally, this definition agrees with the standard notion of the support of a mea-

sure when pix y is a well-defined positive or negative measure on U.

3.1. Coalescence and the Busemann measures

The first result below relates membership in the support to the existence of disjoint Buse-
mann geodesics.

Theorem 3.1. With P-probability 1, for all x # y in Z? and § € ri U statements (i)
and (i) below are equivalent:

(i) § € supp px,y-
(i) Either y*&~ Ny YEt =g@ory it n },yf— = 0.
Under the regularity condition (2.4), (1) and (i) are equivalent to

(iii) There exist Ug-directed semi-infinite geodesics w* and w” out of x and y, respec-
tively, such that 1* N ¥ = @.

The difference between statements (ii) and (iii) is that if £ & supp jix,, then (ii) leaves
open the possibility that even though y *£~ and y ¥ intersect and y *¥+ and y ¥4~
intersect, there may be other Ug-directed geodesics out of x and y that do not intersect.
This is because without the regularity condition (2.4), we currently do not know whether
(2.16) holds, that is, whether y 7 is the rightmost and y ¢~ the leftmost Ug-directed
geodesic out of x.

The subsequent several results relate the support of Busemann measures to the coa-
lescence geometry of geodesics. For x, y € Z2, £ € ri U, and signs O € {—, 4}, define
the coalescence point of the geodesics y 0 and y ¥4 by

{ﬁrst point in yx’ED n yy,ém ifyx,ED a) ),y,ém £ 0,

if},x,ED N },ysED = . (33)

2%(x.y) =
The first point z in y *£2 N p ¥49 is identified uniquely by choosing the common point
z=yp; £0 =y e 0 that minimizes k. In the expression above, oo is the point added in the
one-point compactification of Z2. If the two geodesics y €7 and y €0 ever meet, they

coalesce due to the local rule in (2.12). We write z€ (x, y) when 28~ (x, y) = z£ T (x, y).
As Z2 U {oo}-valued functions, £ — zE+ (x, y) is right-continuous and & — 2~ (x, y)

is left-continuous. Namely, a consequence of (2.14) is that for £ € ri U and O € {—, +},
lim  2"%x, y) = 25 (x, y). 3.4)

LU (x. ) (x. ) (
If 25+ (xx, y) = oo this limit still holds in the sense that then |27 (x, y)| — oo. The anal-
ogous statement holds for convergence from the left to £ (x, y).
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The next theorem states that an interval of directions outside the support of a Buse-
mann measure corresponds to geodesics following common initial segments to a common
coalescence point.

Theorem 3.2. With probability 1, simultaneously for all ¢ < ninti U and all x,y € 72,
statements (1)—(iii) below are equivalent:

(@) |,y (00D = 0.
(ii) Lettingk = x-ey and £ = y - &}, there exist a point z withz - &1 = m > k Vv £ and
path segments 1y n, and Ty, with these properties: T =X, Tg = Y, Ty = Tm = Z,
and for all € € ¢, n[ and O € {—, +} we have y,f,’gm y-£0

m L,m = TT,m-

= Tg,m andy
(iii) Lettingk = x - &1 and £ = y - €1, there exists a point z with z - &, = m > k V £ such

that for all £ € ¢, n[ and O € {—, +}, Z%(x, y) = z.

The next lemma shows that intervals that satisfy statement (i) of Theorem 3.2 almost
surely make up a random dense open subset of ri U.

Lemma 3.3. Let Uy C 1ri U be a fixed countable dense set of points of differentiability
of g. Then with P-probability 1, for every x,y € Z and every £ € Uy, there exist{ <& <n
in1i U such that |ux (¢, n)) = 0.

A natural question is whether the measure is Cantor-like with no isolated points of
support, or if the support consists entirely of isolated points, or if both are possible. These
features also turn out to have counterparts in coalescence properties. For a set A C U,
say that £ is a limit point of A from the right if A intersects &, n[ for each n > &, with a
similar definition for limit points from the left.

Theorem 3.4. With probability 1, forall x,y € Z? and £ € ri U:

(@) & ¢ supppix,y & 25T (x,y) =25 (x, ) € 27

(b) £ is an isolated point of supp x,y < £t (x, y) # 257 (x, y) but both 2% (x, y) are
in 72

(c) & is alimit point of supp iy, from the right < £t (x, y) = oo. Similarly, £ is a limit
point of supp [y, from the left & £ (x,y) = oo

This motivates the following condition on the Busemann process which will be
invoked in some results in the sequel:

There exists a full IP-probability event on which every point of supp jix,y
is isolated, for all x, y € 72, 3.5)

Equivalently, condition (3.5) says that £ — B%(x, y) is a jump process whose jumps do
not accumulate on ri U. For this reason, we refer to (3.5) as the jump process condition. It
is shown in [22, Theorem 3.4] that (3.5) holds when the weights wy are i.i.d. exponential
random variables. In addition to Lemma 3.3, this is a further reason to expect that (3.5)
holds very generally.
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Under condition (3.5) Theorem 3.4 extends to a global coalescence statement.

Theorem 3.5. Statements (i) and (ii) below are equivalent:
(i) The jump process condition (3.5) holds.

(i) With P-probability 1, for all x,y € Z?, all § € ri U, and both signs O € {—, +}, the
geodesics y *9 and y Y9 coalesce.

We introduce the random set of exceptional directions obtained by taking the union of
the supports of the Busemann measures:

Ve = |J supppry Cril. (3.6)

x,y€Z?

It turns out that not all pairs x, y are necessary for the union. It suffices to take pairs
of adjacent points along horizontal or vertical lines, or along any bi-infinite path with
non-positive local slopes.

Lemma 3.6. The following holds for P-almost every w. Let X_oo,00 be any bi-infinite
path in Z? such that for alli € Z, (x;31 — X;) - e1 > 0and (x; 31 — X;) - €2 < 0 and are
not both zero. Then
Yo — U SUPP fx; xi 1 -
ieZ

The remainder of this section addresses (i) characterizations of V¢ and (ii) its signif-
icance for uniqueness and coalescence of geodesics. The first item relates the exceptional
directions to asymptotic directions of competition interfaces.

Theorem 3.7. The following hold for P-almost every w:

(a) For all x € 72, supp fix x+e; N SUPP fhx xte, = 1&x(Txw)}. In particular, V® D
{£(Txw) : x € Z2).
(b) Under the jump process condition (3.5), V® = {£.(Txw) : x € Z2}.

The next issue is the relationship between V® and regularity properties of g. Recall
the definition (2.3) of O as the set of differentiability points of g. Let # be the subset
of ri U that remains after removal of all open linear segments of g and removal of those
endpoints of linear segments that are differentiability points. Equivalently, J# consists of
those & € ri U at which g is either non-differentiable or strictly concave.

Theorem 3.8. (a) Let& eriU. Then& € D ifandonly if P(§ € V®) =0.If € ¢ D then
PEx: &(Thw) =€) =PE € V?) = 1.

(b) For P-almost every w, the set {£.(Txw) : x € Z?} and the set 'V® are dense subsets
of H.

The next theorem identifies V® as the set of directions with multiple semi-infinite
geodesics. As before, the regularity condition (2.4) allows us to talk about general Ug-
directed semi-infinite geodesics, instead of only the Busemann geodesics y *0.
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Theorem 3.9. The following hold for P-almost every w:

(@) € € (riW) \ V? if and only if the following is true: y £+ = y*£~ for all x € 72
and all these geodesics coalesce.

(b) Under the regularity condition (2.4), £ € (ri W) \ V® if and only if the following is
true: there exists a unique Ug-directed semi-infinite geodesic out of every x € 72 and
all these geodesics coalesce.

(¢) Under the jump process condition (3.5) the existence of x € 72 such that y ¢+ =
y 5 implies that y V5T = y ¥4~ for all y € 72, all these geodesics coalesce, and
Ee@mU\Ve.

(d) Assume both the regularity condition (2.4) and the jump process condition (3.5).
Suppose there exists x € Z? such that y £t = y*£=_ Then there is a unique Ue-
directed semi-infinite geodesic out of every x € Z2, all these geodesics coalesce, and

Ee@WU)\Ve.

By the uniqueness of finite geodesics, two geodesics emanating from the same
site x cannot intersect after they separate. Consequently, non-uniqueness of semi-
infinite directed geodesics implies the existence of non-coalescing semi-infinite directed
geodesics. When both conditions (2.4) and (3.5) hold, Theorem 3.9 (d) shows the con-
verse: uniqueness implies coalescence.

We close this section with a theorem that collects those previously established prop-
erties of geodesics which hold when both the regularity condition (2.4) and the jump
process condition (3.5) are in force. Lemma 7.4 justifies that the geodesics in part (d) are
&-directed rather than merely Ug-directed.

Theorem 3.10. Assume the regularity condition (2.4) and the jump process condition
(3.5). The following hold for P-almost every w:

(@) £ € V® ifand only if there exist x,y € Z? with B~ (x, y) # Bt (x, y).

(b) £ € V? ifand only if there exists x € 7.2 such that £ = £,(Txw).

(¢) If £ € (ri W\'V?, then for each x € 72, y*& = y ¥t~ = y &+ and this is the

unique Ug-directed semi-infinite geodesic out of x. For any x,y € 72, y £t and
y V¢ coalesce.

€ , then from each x € there exist at least two &-directed semi-infinite

(d) 1 Ve, th h 72 th ] l di d j-infini
geodesics that separate eventually, namely y *¥~ and y *£%. For each pair x,y € 72,
y X and y Y5 coalesce and y ¥t and y ¥¢F coalesce.

3.2. Exponential case
We specialize to the case where
{wy : x € Z*} are i.i.d. mean-1 exponential random variables. (3.7

Rost’s classical result [47] gives the shape function

g() = (VE-e1 +VE- )’ £eR2. (3.8)
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The regularity condition (2.4) is satisfied as g is strictly concave and differentiable on
ri U. The supports supp iy, are unions of inhomogeneous Poisson processes and hence
the jump process condition (3.5) is satisfied. This comes from [22, Theorem 3.4] and
is described in Section 9.1 below. These two observations imply that the conclusions of
Theorem 3.10 hold. With some additional work, we can go beyond the conclusions of
Theorem 3.10 in this solvable setting.

Let s¢(x) denote the location where the £4- and £— geodesics out of x split:

sg(x) = (3.9)

last point in p 5§~ N p SEF if X8 L g X+

if p¥8- = poE+,

For part (c) in the next theorem, recall the finite geodesic y**” defined below (2.1) and

the competition interface path ¢* introduced in Section 2.4. Convergence of paths means
that any finite segments eventually coincide.

Theorem 3.11. Assume (3.7). Then the conclusions of Theorem 3.10 hold with Ug = {§}
for all & € ri U. Additionally, the following hold P-almost surely:

(@) If £ € V© then from each x € 7? there emanate exactly two semi-infinite &-directed
geodesics that eventually separate, namely y >~ and y *+.

(b) Forany & € 1ri U and any three &-directed semi-infinite geodesics rooted at any three
points, at least two of the geodesics coalesce.

(c) Letx € Z?, € € V®, and let {vy }n>m be any sequence on Z?* such that vy, - €; = n and
vp/n — E If v, < wié(x) for all sufficiently large n, then y*'* — y*£~ asn — oc.
If(p,ig(x) < vy, for all sufficiently large n then y*’n — y*&+ gs n — oo.

(d) Foreach x € 7?2, the entire collection of semi-infinite geodesics emanating from X is
exactly {y*e1, y*e2 pXE0 £ c iU, O € {+, )}

Theorem 3.11 resolves a number of previously open problems on the geometry of
geodesics in the exponential model. It shows that in all but countably many exceptional
directions, the collection of geodesics with that asymptotic direction coalesce and form
a tree. These exceptional directions are identified both with the directions of disconti-
nuity of the Busemann process and the asymptotic directions of competition interfaces.
Moreover, in each exceptional direction § € 'V®, ahead of each lattice site x, there is a
&-directed competition interface at which the §— and £+ geodesics out of x split. These
are the only two &-directed geodesics rooted at x. Strikingly, each of the two families
of £&— and £+ geodesics has the same structure as the collection of geodesics in a typical
direction: each family forms a tree of coalescing semi-infinite paths.

Theorem 3.11 utilizes Theorem A.9, due to Coupier [16], that rules out three geodesics
that have the same direction, emanate from a common vertex, and eventually separate.
It appears that the modification argument of [16] cannot rule out three non-coalescing
geodesics from distinct roots, and so Theorem 3.11 (b) significantly extends Theorem A.9.

Finally, Theorem 3.11 gives a complete description of the coalescence structure of
finite geodesics to semi-infinite geodesics in the exponential model. Part (c) says that if
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we consider a sequence of lattice sites v, with asymptotic direction &, then the geodesic
from x to v, will converge to the §— geodesic out of x if and only if v, eventually stays to
the left of the competition interface emanating from the site s¢(x) where the §— and £+
geodesics out of x separate. Similarly it will converge to the £+ geodesic if and only if
it stays to the right of that path. The competition interface lives on the dual lattice, so for
large n every point v, is either to the left or to the right of the competition interface. The
coalescence structure of semi-infinite geodesics to arbitrary sequences v, with v,/n — &
then follows by passing to subsequences.

The results of Section 3 are proved in Section 7, except Lemma 3.6 which is proved
at the end of Section 8.1.

4. Last-passage percolation as a dynamical system

After the general description of uniqueness and coalescence of Section 3, we take a closer
look at the spatial structure of the set of lattice points where particular values or ranges of
values from the set V of exceptional directions appear. (Recall its definition (3.6).) As
mentioned in the introduction, there is a connection to instability in noise-driven conser-
vation laws. The next section explains this point of view.

4.1. Discrete Hamilton—Jacobi equations

We take a dynamical point of view of LPP. Time proceeds in the negative diagonal direc-
tion —€; = —e; — e; and the spatial axis is €, = e, — e1. For each ¢ € Z, the spatial level
attime ¢z is L; = {x € Z2: x - &, = t}. For x € Z? and A C Z? let [14 denote the set
of up-right paths mx ,, such that 7x = x and w,, € A, where k = x - €; and m is any
integer > k such that A N L, # @. For each £ € ri U and sign O € {—, 4}, the Busemann
function BO satisfies the following equation: for all < ¢y and x € L;,

to—1
BE9(x,0) = max {Z wn, + BE (4, 0) 1 7 € ngro}, @.1)

i=t

The unique maximizing path in (4.1) is the geodesic segment y tx ;(E)D.

Equation (4.1) can be viewed as a discrete Hopf-Lax—Oleinik semigroup. For exam-
ple, equation (4.1) is an obvious discrete analogue of the variational formula (1.3) of [5].
At first blush the two formulas appear different because (1.3) of [5] contains a kinetic
energy term. However, this term is not needed in (4.1) above because all admissible steps
are of size 1 and all paths between levels IL; and IL,, have equal length (number of steps).

Through this analogy with a Hopf-Lax—Oleinik semigroup we can regard B (s, 0) as
a global solution of a discrete stochastic Hamilton—Jacobi equation started in the infinite
past (to — 00) and driven by the noise . The spatial difference BE7(x + e1, x + e3) =
B9 (x 4 e1,0) — BE9(x + e5,0) can then be viewed as a global solution of a discretized
stochastic Burgers equation.



Geodesics in LPP 2591

By Lemma B.1, if g is differentiable on ri U, then BéT and B¢~ both satisfy, for each
x € 72,

Bt (x, x + néy)

lim = Vg(§)-e,.

|n]—o00

Thus, Bf* are two solutions with the same value of the conserved quantity. Under the
jump process condition (3.5), £ € Supp fx+e,,x+e, if and only if Bft(x +e1.x +e3) #
BE~(x + e1, x + e3). This means that the locations x where £ € supp Hxtey,x+e, are
precisely the space-time points at which the two solutions BE* differ. It is reasonable to
expect then that these points are locations of instability in the following sense. The spatial
difference of the solution to the stochastic Hamilton—Jacobi equation started at time
with a linear initial condition dual to &,

max {Gyte,,y —y-VgE) :y-e1 =to} —max{Gxye,,y —y-VgE):y e =to},

has at least two limit points BE*(x 4 e;, x + e2) + (e; — e2) - Vg(£) as tg — oo. This
is supported by simulations and is hinted at by Theorem 3.11 (c).

With these points in mind, we now define what we mean by instability points and then
turn to studying their geometric structure. Proofs of the results of this section appear in
Section 8.

4.2. Webs of instability

For a direction £ € ri U and a sign O € {—, +}, let ¢ be the directed graph whose
vertex set is Z2 and whose edge set includes (x, x + e;) whenever y ,):HS_? = X + e¢;. Here
m = x - &1 and we consider both i € {1,2}. These are the directed graphs of £€0 geodesics
defined by (2.12). By construction, each &, is a disjoint union of trees, i.e. a forest, and
for each x € Z2, the geodesic y *£7 follows the directed edges of G

Recall the vectors e = €1/2 = (e; + ez)/2and &5 = é5/2 = (ex —e1)/2. Let ﬁE*D
be the directed graph whose vertex set is the dual lattice Z?* = & 4+ Z? and whose edge
set is defined by this rule: for each x € Z2, on the dual lattice x + &;* points to x + &;* — ¢;
in ﬁS*D if and only if on the original lattice x points to x + e; in . Pictorially this means
that ﬁS*D contains all the south and west directed nearest-neighbor edges of Z2* that do
not cross an edge of Fg. See Figure 4.1 for an illustration.

For { < ninri U let the graph ﬁj[;’n] be the union of the graphs ﬁg‘m over £ € [{, 7]
and O € {—, +}. That is, the vertex set of gJ[Z,n] is Z2*, and the edge set of ﬁtj[m] is
the union of the edge sets of ﬁs* ", over § € [¢, n]. From each point x* € Z>* a directed
edge of ‘55[;,”] points to x* — e; or x* — e, or both. Due to the monotonicity (2.10)
of the Busemann functions, ﬁj[m] is the union of just the two graphs ﬁg*_ and 97, . In
particular, x* points to x* — ez in 7, ., if and only if x* — e; points to x* 4+ &5 in §;_,
and x* points to x* — e7 in ﬁj[g,n] if and only if x* — é}* points to x* — & in Gy4..

Identify the space-time point x + &;* € Z** on the dual lattice with the diagonal edge
that connects x + e; and x + e; on the primal lattice (see Figure 4.2). Call the dual lattice
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Fig. 4.1. Left plot: An illustration of the duality relation between the edges of ¢ (black/thick)
and those of ﬁg‘m (red/thin). Right plot: An illustration of a (blue/thick) north-east directed geodesic

graph G¢, and its (red/thin) south-west directed dual ﬁg‘u.
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Fig. 4.2. The edge (x + e1,x + e3) is identified with the dual point x* = x 4 &;*.

pointx* = x + e} a ¢, n]-instability point if [£, 0] N SUPD fx+te; xt+e, 7 B. IfE =10 =,
call x* a &-instability point. Denote the set of [, n]-instability points by S [¢.n)> With S; =
S[E ¢)- Then S 1 is the union of S* over £ € [Z, n]. Theorem 3.1 and the ordering (2.13)
of geodesics glve the following characterization in terms of disjoint geodesics, alluded to
in Section 4.1.

Lemma 4.1. The following holds for P-almost every w. Let ¢ < n, including the case
{=n=E¢ Let x € Z? and x* = x + &;*. Then x* € S*§ q1 if and only ify*tezt—n
yx+e1,r]+ = .

Let the instability graph S[’E be the subgraph of ‘55[; 0l with vertex set Sikt and
those directed edges of & Otenl that point from some x* € S (e toa point x* —e; € S[; b
for either i € {1,2}. (The proof of Theorem 4.3 in Section 8.1 shows that every edge of
gu[g that emanates from a point of Sf, . is in fact an edge of S} el J)

In the case { = n = & write S for §* 6] Explicitly, the vertices of § g* are dual points
x + &} such that £ € supp ity e, ,x+e2 and the edges are those of § *_ U ﬁ ", that connect
these points.

The graph S * (&.n] is also the edge union of the graphs S = over £ € [{, n]. To see this, let
x*=x+er If § = & (Tiw) € [¢, 7] then Sg‘ contains both edges from x* to x* — e;
and x* — e,, as does 5[*;,77]' If £ (Txw) ¢ [C, n] then in S* and in S[”; nl’ x* points to the
same vertex x* — e;.
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Remark 4.2. By the continuity (2.14) and the fact that the support of a measure is a closed
set we find that almost surely, for any ¢ < 7 in ri U and for any finite box [—L, L]*> N Z2,
S[*/ n= S[zn] on the entire box, for {’ < ¢ close enough to ¢ and n’ > 5 close enough
to 1. This explains why the two top graphs in Figure 4.4 are identical and are in fact equal
to § g* .

The message of the next theorem is that instability points exist for all exceptional
directions in V¢, and these instability points arrange themselves on bi-infinite directed
paths in the instability graphs.

Theorem 4.3. The following holds for P-almost every w. Pick any ¢ < n in ri U such
that [£,n] N V@ # @, including the case { = 1 = &. Then the instability graph S[Z 7l is
an infinite directed graph. Furthermore, § ’2 . equals the union of the bi-infinite directed
paths of the graph gu[; . In the backward (north and east) orientation, each such path
is [§, 7)-directed.

In particular, if x* € S*C 7l and m = x* - €y, there exists a bi-infinite sequence {x, } ez
C S[; ;) such that x; = x™ and for each n, x -e; = n and x; points to x,;_, in the
graph S[C,n]‘ As n — oo, the limit points of n~!x}¥ lie in (. ml-

Next we describe the branching and coalescing of the bi-infinite directed paths that
make up the graph S * If there is a directed path in the graph S * . from y* to x*, then
y* is an ancestor of x and equivalently x* is a descendant of y Let A[g (x*) denote
the set of ancestors of x* in the graph S[m]. Abbreviate again A; (x*) = t ](x*).

A point x* € S’[km] is a branch point in the graph S[?n] if x* is an ancestor of both
x* — ey and x* — e,. Branch points are dual to those where {— and n—i— geodesics separate.
Slmllarly, x* e S* ¢l is a coalescence point if both x* + e; and x* + e, are ancestors
of x*. Figures 4.3 and 4.4 display simulations that illustrate the branching and coalescing.

For the sharpest branching and coalescing properties in the next theorem, we invoke
again the regularity condition (2.4) and the jump process condition (3.5), and additionally
the non-existence of non-trivial bi-infinite geodesics:

There exists a full P-probability event on which the only bi-infinite
geodesics are the trivial ones: x + Ze; for x € Z? and i € {1,2}. 4.2)

Condition (4.2) is known to hold in the exponential case [8, 9].

Theorem 4.4. The following hold for P-almost every w and all { < n in 1i U such that
[C,n] N V@ £ @ (the case ¢ = n = & is included unless otherwise stated):

(a) x* is a branch point in S* | if and only if £« (Tx*_g*a)) € [¢, 7).

(b) If¢ < 17, then any x*, y* € S* have a common descendant: there isz* € S*g 7] such

that x*, y* € A n](z ). If we assume the no bi-infinite geodesics condition (4.2),
then the same statement also holds for the case { = n = &.

(c) Assume the jump process condition (3.5). Then any x*, y* € SE} q) have a common
ancestor z* € A[Z n](x*) N A[g n](y*).
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Fig. 4.3. Four nested down-left pointing § [*Z,n] graphs in the square [—100, 100]2. Top to bottom,
left to right, in reading order, [{ - e1, 7 - e1] equals [0.096,0.772], [0.219, 0.595], [0.318, 0.476], and
[0.355, 0.436]. Two further nested subgraphs appear in Figure 4.4. In the simulation the weights
were exponentially distributed and we chose the direction £ to be a jump point of the Busemann
process on the edge (0, e1).

(d) Suppose ¢ < nare such that |, n[ NV # @. Then for any z € Z? there is a coordi-
natewise strictly ordered infinite sequence z < z{ < z3 < --- such that each z,; is a
branch point in S[’Z e There are also infinitely many coalescence points in S[’z e

(e) If the jump process condition (3.5) holds and € € V®, then for any z € 72 there is
a coordinatewise strictly ordered infinite sequence z < z{ < zj < --- such that each
zy s a branch point in § E* . If additionally the no bi-infinite geodesics condition (4.2)
holds, then there are infinitely many coalescence points in SE* .

Remark 4.5. If the regularity condition (2.4) holds, then part (d) holds for ¢ < 1 with
[C,n] NV® # @. The proof of this is given right after that of Theorem 4.4 in Section 8.1.

Given that there are infinitely many instability points when instability points exist, it is
natural to wonder what their density on the lattice is. We identify the following trichotomy.

Proposition 4.6. Assume the regularity condition (2.4). Then for P-almost every w and
all £ € 11 U, exactly one of the following three scenarios happens:

(@) & € V® and hence there are no &-instability points.
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Fig. 4.4. Continuing with the simulation setting of Figure 4.3, the top two pictures are § [*Z 7] graphs

in [—100, 100]? with [¢ - e1, - e1] = [0.374,0.417] (left) and [0.393,0.397] (right). The two graphs
are in fact identical. The pictures on the second row zoom into the framed squares of the top
right picture, the left one into the square [—20, 20]% and the right one into [—10, 10]2. Besides
the down-left pointing red S[* . graphs, the bottom pictures include the up-right pointing graphs

G _ (green/lighter) and 9y 4 (purple/darker). Whenever 9;_ and ;1 separate at x, green points
up and purple points right, and § [’2 7] has a branch point at x + &;". The blue/green trees that occupy
the islands surrounded by red paths are described in Section 4.3.

(b) £ € V® N D and there are infinitely many &-instability points but they have zero
density.

(¢) & & D and the &-instability points have positive density.

We return to this question in Section 5 in the solvable case of exponential weights,
where we can say significantly more.

4.3. Flow of Busemann measure

This section views the instability graph § [’2 SRR description of the south-west directed
flow of Busemann measure on the dual lattice. As discussed in Section 4.1, we can think of
the function B9(x + e, x + e,) as a global solution of a discretized stochastic Burgers
equation. We can assign the value BE7(x + ey, x + e3) to the dual point x* = x + &}
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Fig. 4.5. The flow of Busemann measure follows the arrows. The antidiagonal edge (x + e1,x + €2)
is identified with the dual point x* = x + éf. The Busemann measure jix e ,x+e, ON this edge is
composed of the mass flowing from the north and east, and it in turns divides its mass between the
flows south and west.

that represents the diagonal edge (x + ey, x + e3). Then the cocycle property (2.7) gives
us a flow of Busemann measure along the south and west pointing edges of the dual
lattice Z2*. First decompose the Busemann measure of the edge (x + ey, x + e3) as a
SUM [hx4eq,x+ey = Mxter,x + Mx,x+e, Of two positive measures. This is justified by the
cocycle property (2.7). Then stipulate that the measure jix¢, x flows south from x* to
x* — e and contributes to the Busemann measure ji,_z, , While the measure jiy x e,
flows west from the x* to x* — e; and contributes to the Busemann measure [ty x4,
See Figure 4.5.

The cocycle property also tells us that fixte;,x+es = Hx+tey,x+8, T Hx+8;,x+e,- LhiS
Tepresents [lyte;,x+e, as the sum of the contributions it receives from the next level up:
Mxte, x+2, comes from the east from the dual vertex x + ey + &7, while iy 15, x+te,
comes from the north from the dual vertex x + e, + e;".

Now pick a pair of directions { < 5 in ri U, and consider the graph 58[*;’77] on
the dual lattice Z>* obtained as follows. Include the vertex x* = x + &/ if [{, n] N
SUPP Mx+e;,x+es 7 9. Fori € {1,2}, include the dual edge (x*, x* — ¢;) if [, n] intersects
SUPP [Lx,x+e5_;» OF Somewhat pictorially, if some of the support in [£, n] flows along the
dual edge (x*, x* — ¢;).

The results of this section hold P-almost surely simultaneously for all { < ninri U,
including the case { = n = &.

Theorem 4.7. The graphs “(B[*E,n] and S[*C,n] are the same.

Under the jump condition (3.5), a closed set cannot intersect the support without
actually having non-zero measure. Thus under (3.5), Theorem 4.7 tells us that S[E,n] is
precisely the graph along which positive Busemann measure in the interval [£, n] flows.

Next we describe the “islands” on Z?2 carved out by the paths of the graph S[*E,n]

(islands surrounded by red paths in Figures 4.3 and 4.4). These islands are trees, they are
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the connected components of an intersection of geodesic graphs, and they are the equiv-
alence classes of an equivalence relation defined in terms of the supports of Busemann
measures.

Define the graph §n[¢ ;) = ﬂg ele.n](Fe— N Gg1) on the vertex set 72 by keeping only
those edges that lie in each geodesic graph ¢ as £ varies over [{, 7] and O over {—, +}.
Also, directly from the definitions it follows that an edge of Z? lies in §n[¢ ;) if and only
if the dual edge it crosses does not lie in the graph & &.n] introduced in Section 4.2. Since

each G¢, is a forest, Gn[¢,, is a forest, that is, a union of disjoint trees.

[£,n] (%)

Define an equivalence relation <" on Z? by x y if and only if supp ix,, N [{, 7]

= 0. Itis an equivalence relation because py x is the identically zero measure, and Bﬁi =

B)%Dy + Bﬁuz implies that |px 2| < |fx,y| + |iy,z|. In terms of coalescence, x .l y if

and only if the coalescence points zE2(x, y) remain constant in Z2 as £ varies across [¢, ]

and O over {—, +}. (This follows from Propositions 7.1 and 7.2 proved below.) As usual,

ol . €

replace with ~ when [¢, n] = [£, £].

Proposition 4.8. The equivalence classes of the relation L1 are exactly the connected

components (subtrees) of §n[¢ -

Lemma 8.6 proved below shows that nearest-neighbor points of Z? are in distinct .l

equivalence classes if and only if the edge between them is bisected by an edge of the
instability graph S[*; E Together with Proposition 4.8 this tells us that the paths of S[*t .

are precisely the boundaries that separate distinct connected components of §n[¢ 1 and

the equivalence classes of [;"\7].

The next two lemmas indicate how the structure of the subtrees of §n[¢ ) is con-
strained by the fact that they are intersections of geodesic trees. These properties are
clearly visible in the bottom pictures of Figure 4.4 where these subtrees are the blue/green
trees in the islands separated by red paths.

Lemma 4.9. Let K be a subtree of §n[¢ y) and let x and y be two distinct vertices of K.
Assume that neither strictly dominates the other in the coordinatewise ordering, that is,
both coordinatewise strict inequalities x < y and y < x fail. Then the entire rectangle
[x Ay, x Vv y] is asubset of the vertex set of K.

In particular, if for some integers {¢, k, £}, level-t lattice points (k,t — k) and (£, — {)
are vertices of a subtree K, the entire discrete interval {(i,r —i) : i € [k, {]} is a subset
of the vertex set of K. Similarly, points on horizontal and vertical line segments between
vertices of a subtree K are again vertices of K.

Lemma 4.10. Let K be a subtree of §n¢ ). There is at most one vertex x in K such that
{x —e1,x —ex} N K = 0. Such a point x exists if and only if inf{t € Z : X N L, # 0}
> —o0. In that case K liesin{y : y > x}.

Note that Lemma 4.10 does not say that a subtree has a single leaf. Both x and x —¢;
can be leaves of a subtree when the edge (x — ¢;, x) is not present in Gn[¢ .
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For the remainder of this section assume the jump condition (3.5), in order to give a
sharper description of the subtrees of ¥n¢ ). Let D) = {z € Z? : &(Tz0) € [¢, 7]}
By Theorem 4.4 (a), z € Dy¢ ) if and only if z + &]° is a branch point of the instability
graph S[’z q- 1t follows then that both z & e are also [£, n]-instability points.

Assume for the moment that D¢ ;) # @. By Theorem 3.8, under the jump condition
(3.5) this is equivalent to [£, n] N V¥ #£ @.

The graph 9n[¢,,1 has no outgoing up or right edges from a point z € D¢, because
geodesics split: y 28+ (T=9)~ and {y €+ 1 ¢ < £ < £,(T,w)} take the e,-step at z, while
y D8 T=00+ and {p 28E - £ (T, w) < £ < i} take the e;-step at z. For each z € D¢y, let
the tree K (z) consist of all directed paths in §n[¢ 5] that terminate at z. J(z) can consist
of z alone.

These properties come from previously established facts:

e Each x € 72\ Di¢ ;) lies in a unique K (z) determined by following the common
path of the geodesics {y *7 : £ € [¢, 5], O € {—, +}} until the first point z at which
a split happens. A split must happen eventually because for any u € D¢ 5 the two
geodesics y & (Tu@)* separate immediately at u, while by Theorem 3.5 the geodesic
y S8 Tu@)o coalesces with y %8 Tu®)0 for both 0 € {—, +}.

e If { < 7 then each tree K (2) is finite. Same holds also for the case { = n = & under
the no bi-infinite geodesics condition (4.2). This follows from Theorem 4.4 (b) because
the [¢, n]-instability points z & &5 that flank z have a common descendant u* in the
graph § [’2 q1- The two directed paths of § [’2 ;) that connect z + e} tou™ surround K (z).

The final theorem of this section decomposes §n[¢ 5] into its connected components.

Theorem 4.11. Assume the jump condition (3.5).
(@) Gne,y is a single tree if and only if [{,n] NV = 0.

®) If [&,n] N V@ # @, the connected components of §n¢y are the trees {K(z) :
S D[g-’,,]}.

We finish by reminding the reader that all the hypotheses and hence all the conclusions
hold in the case of i.i.d. exponential weights. The results of Section 4.3 are proved in
Section 8.3.

5. Statistics of instability points in the exponential model

Under condition (3.7), i.e. when the weights are exponentially distributed, we derive
explicit statistics of the instability graphs. For § e ri U, k € Z, and O € {—, +}, abbreviate
BED = Bf9(key, (k + 1)e;) and write Bi when there is no + distinction. For { < 7 in
ri U let

s < E(=1) <0 < 51(0) < 5(1) < -

be the ordered indices such that

B{” > B!" ifandonlyif ke {t5(i):i € Z}. (5.1)
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If B,E_ > BZ + happens for only finitely many indices k, then some 75" (i) are set equal
to —o0 or 0o.
By Theorem 3.11, under condition (3.7), (5.1) is equivalent to

25~ (key, (k + Der) # 2" (key, (k + Der).

It is worth keeping this geometric implication of (5.1) in mind in this section to provide
some context for the results that follow.

It will be convenient in what follows to parametrize directions in ri U through the
increasing bijection

a? (1-a)? ) {-e1
=((x) = , — =)=
=10~ (e ar O e+ ite
(5.2)
between ¢ € ri U and & € (0, 1). Recall the Catalan numbers Cy = 1 (>") for n > 0.

By (C.6) from Appendix C, the conditioning event in the theorem below has probability
]P’(Bg > Bg) = % Since ¢ < n are fixed, with probability 1 no £ distinction
appears in the Busemann functions.

Theorem 5.1. Assume (3.7). Fix { < n inri U. Conditional on Bg > Bg,

(571G + 1) — 57(0), BS B

reny (i eZ}

n
&n(5)

is an i.i.d. sequence with marginal distribution

P{ct(i + 1) — <o) =n, BS,,  — B,  >r|BS>Bl)

ten()
n—1 n
—c,,2© “(’72 — O VieZ neN,reRyi (53)
(@(&) +a(m)?"
Abbreviate 78 (i) = 75€(i). Our next goal is to describe the joint distribution of the
process

n
&0 (4)

{t5), By, — Bi, i € )
of locations and sizes of jumps in direction &, conditional on {Bg > Bg +}. However, for
afixed £, B¥t = B~ almost surely and so this conditioning has to be understood in the
Palm sense. This is natural for conditioning on a jump of a point process at a particular
location.

In the theorem below, Lebesgue measure on U refers to one-dimensional Lebesgue
measure (length of a line segment). The Lebesgue-almost every qualifier is in the theo-
rem because the Palm kernel is defined only up to Lebesgue-null sets of the points £. We
denote Palm conditioning with two vertical lines || to distinguish it from ordinary condi-
tioning. The definition of the Palm conditioning used in (5.4) below appears in (9.5) at
the end of Section 9.1. For references, see [38, 39].
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Theorem 5.2. Assume (3.7). For Lebesgue-almost every & € ri U, under the Palm ker-

nel, conditional on Bg_ > Bg+, {(Z6G + 1) — 75(0), Bf;(i) - Bf;;i) 2l €Z}isaniid.

sequence with marginal distribution

P{c(i + 1) — 75 (i) = n, Bf;(i) - Bf;(l.) >r| B > BEY)
1
= Crt 330 e O vieZ neN,reRi. (54)

Equation (5.4) connects the Palm distribution of the locations of jumps of the Buse-
mann process with the zero set of simple symmetric random walk (SSRW). Let S,, denote
atwo-sided SSRW, that is, So = 0 and S, — Sy, = Y i,y Zi forallm < n in Z where
{Zi}iez areiid. with P(Z; = £1) = 1/2. Set p, = 1;5,,—0y and let P be the distri-
bution of p = {p,}nez on the sequence space {0, 1}%. That is, P is the law of the zero
set of simple symmetric random walk sampled at even times. The classical inter-arrival
distribution of this renewal process is (Feller [23, II1.3(3.7), p. 78])

1
P(pl = O, ooy Pp—1 = 0, Pn = 1) = Cn_l W (55)

Comparison of (5.4) and (5.5) reveals that for Lebesgue-almost every &, the Palm distri-
bution of the locations of £-instability points on a line is the same as the law of the zero
set of SSRW sampled at even times. (We record this fact precisely as Lemma 9.2.) The
next result applies this to show that any translation invariant event which holds with prob-
ability 1 for the zero set of SSRW holds for all of the instability graphs simultaneously
almost surely.

Theorem 5.3. Assume (3.7). Suppose A is a translation-invariant Borel subset of {0,1}%
that satisfies P(A) = 1. Then

P{vEe Ve (LB >BT):leZ)ecd) =1 (5.6)

From (5.6) and known facts about random walk, we can derive corollaries. From
[46, (10.8)], we deduce that

n E— £+
P{vg € V®: lim Lio UB > B} _ 1} =1. (5.7)

n—o00 J/8nloglogn

From [46, Theorem 11.1] we also find that for a non-increasing §,,,

n
P{vg e Ve n V23 1B > B "} = §, for all sufficiently large n} =1 (5.8
i=0

if ", 8,/n < oo, and

n
P{vg e Ve 72y B > BFY) < 6, infinitely often} =1 (59
i=0
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otherwise. Similar statements hold for the sums Z?=in. This implies that for P-almost

every w and any £ € V®, the number of horizontal edges (ke;, (k + 1)e;) with & €
SUPP fhke;,(k+1)e; and —n < k < n is of order n'/2_ 1t suggests that the number of such
horizontal edges (and thus also vertical edges and £-instability points) in an n X n box
should be of order 7/2. The next theorem gives an upper bound. The lower bound is left
for future work.

Theorem 5.4. Assume (3.7) and fixi € {1,2}. Then for any { € ri U,

]P’{Elno :VE e[t ex,Vn > ng: Z 1{& € supp pxxqe; } < 2n3/2\/10gn} =1.

x€fo0,n]2

The same holds when [0, n]? is replaced by any of [—n,0]? [0,n] x [-n, 0], or
[—n, 0] x [0, n].

This completes the presentation of the main results. After a list of open problems, the
remaining sections cover the proofs. The results of Section 5 are proved in Section 9.

6. Open problems

The list below contains some immediate open questions raised by the results of this paper.

1. Find tail estimates for the coalescence points z¢ (x, y).

2. Theorem 3.7 (b) showed that the jump process condition (3.5) implies that V® =
{£4(Txw) : x € Z?}.Ts this implication an equivalence?

3. Prove the jump process condition (3.5) for any model other than the exactly solvable
exponential and geometric cases.

4. Does the web of instability have a scaling limit?

5. Does the web of instability, with branching and coalescing in exceptional directions,
have any analogue in stochastic equations in continuous space and/or continuous time?

6. Extend the statistics of instability points in the exponential model beyond a single line
on the lattice.

7. Busemann measures: proofs

The rest of the paper relies on Appendix A where prior results from the literature are
collected. The reader may wish to look through that appendix before proceeding; in par-
ticular, we will work on the T -invariant full-measure event 2y constructed in (A.7).

Fix a countable dense set Uy C D of points of differentiability of the shape function g
(recall (2.2)). These play a role in the definition of the event 2¢ in (A.7). Recall the
definition (3.3) of the coalescence point zE2(x, y). When zE2(x, y) € Z2, equation (2.15)
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leads to the following identity, which is fundamental to the analysis that follows:

n—1 n—1
BS(x.y) = G, 27(x.9) = G2 (x. 1) = Y0, veo = )0, weon (D)
i=k i=t

wherek =x-e1,{ =y-éj,andn = 29 (x, y) - €1. By Theorem A .4 (b), for all w € Qo,
all £ € Up, and all x, y € Z2, both 25T (x, y) and 25~ (x, y) are in Z2.

We begin with results linking analytic properties of the Busemann process and coa-
lescence points.

Proposition 7.1. For all o € Q, forany ¢ < ninti U, and any x,y € Z?2, the following
statements are equivalent:

@) |px,y1(. 0D = 0.
(i) Bt (x,y) = B" (x,y)and 2"t (x,y),2"" (x,y) € Z2.
(i) 28F (x,y) =27 (x,y) € Z2.
(iv) There exists z € 7% such that the following holds. For any 7w € {y *£0 : &£ € |, 1,
Oe{— 4+ andany ' € {y ¥ el gl.Oe{— +}), nNa' # Gand z is the
first point where w and 7' intersect: z -1 = min{z’-e; : z’ e m N 7'}

Proof. (1)=(ii). Under (i) the functions & chmy match for O € {—, 4} and are constant
on the open interval |, n[. The equality Bt (x, y) = B"~(x, y) follows by taking limits
§Nfand§ 7.

Since on ¢, n[ N Uy, & — BE,y is constant and z€ (x, y) € Z?2 (Theorem A.4 (b)), (7.1)
and condition (A.5) imply that z& (x, y) is constant in Z2 for all £ € ]¢, 5[ N Uy. Since Uo
is dense in ]¢, n[, limits (3.4) as £ \, ¢ and £ / n imply that 25 (x, y), 2" (x, y) € Z2.

(ii)=>(iii). Setk = x -&; and £ = y - &;. With both z5* (x, y) and 2"~ (x, y) in Z2,
we alsosetm = z5+(x, y)-é; andn = 2"~ (x,y) - &;. By (7.1),

m—1 m—1
BEJJF) =G(x. 2" (x,9) - G(y. 2 (x,y)) = Z @, x4+ = Z @), y&+s
i=k i={
n—1 n—1
Bl = G(x.2"(x,3) = G(. 2" (x.y) = Y} oy xn- =) o, 3.
i=k i={
By condition (A.5), the vanishing of BS}, — BI forces m = n, y,f”rff =Yim »and
}’Zy’,flJr = y /)", and hence in particular 2 (x,y) =27 (x,y).

(iii)=(iv). Withm = z8¥(x,y)-é; = z""(x, y) - &1, uniqueness of finite geodesics

implies y,f,’rff = y]f”,:'l_ and yly,;ff = yZ;Z_. Then monotonicity (2.13) gives 7;,ﬁ+ =

> = &+ > SN— :
y,f,,im = y,fn'i and yl;yni = yZ,iD = Veyrz forall £ €]¢,n[and O € {—, +}. The point
zisyntt =yttt =yt =y

(iv)=(i). Letm = z - &;. It follows from uniqueness of finite geodesics that all of the
paths y 1: ’,ii must be the same, for all £ € ], 5[, and similarly all of the paths y ey ;ii must
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be the same. Letting £ \ ¢ and § /' 7, we find that for all £ € ¢, 7], y,fri = y,f,ii =

y]f,:'l and y ;. . §+ yeyrfli = yZ;Z_. Recall that (7.1) applies for any £ € Uy. Thus, the

functions & — B .y * match and are constant when restricted to the dense set Ug N 1¢,1[.
Combining this with the left-continuity of & > BE %,y and the right-continuity of £ — Bﬁ‘;,

we see that the functions £ — BE %.y match and are constant on |, n[. This implies (i). =

Proposition 7.1 has a counterpart in terms of fixed directions lying in the support
of fy,y.

Proposition 7.2. Forall w € Qg and all x,y € 72, the following are equivalent:

(i) & & supp fix,y.
(i) 5~ (x,y) =2t (x,y) € 22
(i) B¥ (x,y) = B¥*(x,y) and 25~ (x, y), 25+ (x, y) € Z2.

Proof. Let x - &, = k and y - e; = £. Take sequences &y, n, € Up with ¢, & and
Nn \d &. Since &y, 7, € U we have 287 (x, y), 2" (x, y) € Z? for all n. Furthermore,
B (x,y) = B (x,y)and B" (x,y) = BfT(x,y)as n — oo.

(i)=>(ii). If £ ¢ supp fix.y, then ¢ > B¥*(x, y) is constant on some neighborhood
of &£. Then (i)=>(iii) from Proposition 7.1 gives (ii).

(ii)=>(iii). Let m = zf~(x, y) - &, = 25T (x, y) - &;. Then uniqueness of finite

geodesics implies that yx"E =i ff and y; ’ri_ =y, ’H . (2.14) implies that for suf-
T 9 n + n n + n
ficiently large n, y,f,i = y,f”i ,y,fri = Vi Vem y(y”i , and yyE =yl
For these large n,
B (x,y) = G(x.2 (x, y)) - G(y 2 (x, )
m—1 m—1 m—1
i=k i=k i={
m—1 m—1
-%o, fH_Zw R Za)
i=k

= G(x,znn(x’ y)) - G(y,zrln(x, y)) = B'ln(x’ y)

Taking n — oo gives Bé*(x, y) = B¥(x, y). Claim (iii) is proved.

(iii)=>(i). The assumption z&~(x, y),zf* (x, y) € Z? allows us to use (7.1). Together
with the convergence of geodesics (2.14), this implies that B (x, y) = B¢ (x,y) =
B&t(x,y) = B™(x, y) for sufficiently large 1. The equivalence between (ii) and (i) in
Proposition 7.1 implies that for such 7, both processes are constant on the interval ], , 7, [
Therefore & ¢ supp fix,y. |

With these results in hand, we next turn to the proofs of our main results.

Proof of Theorem 3.1. Fix w € Qq, x,y € Z?, and £ € i U. Suppose that (i) does not
hold, i.e. £ ¢ supp 1x,y. By Proposition 7.2, we have £ (x,y) =2 (x,y) € Z2, in
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which case both y ©§~ Ny ¥4+ and y ©6* N y ¥¢~ include this common point and thus
(i1) is false. This proves that (ii) implies (i).

Now, suppose that £ € supp (t,,, and that y NNy Yt LGandy *Er Ny i £
Without loss of generality assume that x - &y = k < m = y - €1. Let z; denote the first
point at which y *£~ and y ”>¥* meet and let z, be the first point at which y *£% and
¥ meet. Let £; = z; - & and {5 = z, - &;. We denote by u the leftmost (i.e. with
smallest e; coordinates) of the three points y,),c,’H, y, y,f,’g_ and by v the rightmost of
these three points. Note that if u = v, then 25T (x, y) = 25~ (x, y) = y, which would
imply that £ ¢ supp iy ,. Thus ¥ # v and there are two cases: either y € {u, v} or not.
We show a contradiction in both cases.

First, we work out the case y = v, with the case of y = u being similar. See the left
picture in Figure 7.1 for an illustration. In this case we have, for all n > m, y,)f £ <
y,f"“ =< y,J,”S+ and y,f’g_ =< y,{”g_ =< yny’§+. In words, y ¥¢7 is the rightmost geodesic
and y £~ is the leftmost geodesic among the four geodesics y ¥, y ¢+ By the path
ordering (2.13) and planarity, z; must lie on all four geodesics. Then by the uniqueness of
finite geodesics, y ,f,’ff =y ,ffl_ and y ,ﬁij =y rflil_ It follows that z; = z5 ¥ (x, y) =

z£7(x, y), contradicting £ € supp Mx,y-

z2
Z1

= s

X

Fig. 7.1. Proof of Theorem 3.1; £€4 geodesics are in purple with medium thickness, and £—
geodesics are in green and thin.

If y ¢ {u, v}, thenu = y,f,’s_ <y=<v= y,’f{g+ (right picture in Figure 7.1). The
geodesics y €T and y ¥4~ have already split and so cannot meet again by the unique-
ness of finite geodesics. For all n > m, y,)f’g_ =< y,,y’é_ =< y,,y’g'|r =< y,)f’$+. Due to this
ordering, the meeting of y, 4~ and Vi £ at zy implies that y;/ 4~ and vi £~ coalesce
at or before z;. By the uniqueness of finite geodesics again, y >§~ and y ¥4+ agree from
y to z1. The same reasoning applies to z, and gives that y ¥~ and y ¥4+ agree from y
to z, and that y ¥¥% and y *£% coalesce at z,. Thus now y €~ and y ¥4+ agree from
y through both z; and z,. The coalescence of y ¢~ with y ¥~ and the coalescence of
y V5t with y %+ then force y *¥~ and y £ to meet again, contradicting what was
said above. We have now shown that (i) implies (ii).
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(i1) implies (iii) by the directedness in Theorem A.4 (). It remains to prove the reverse
implication under the regularity condition (2.4). Without loss of generality we can assume
thatx -e; < y-ey = k.If rjf <y, then the extremality of the geodesics y €%+ in Theorem
A.7 and the fact that 7% N 77 = @ imply that y ¥~ N y »¥+ = @. Similarly, if Ty =y,
then we get y ¥t Ny Y- =g, n

Proof of Theorem 3.2. The equivalence (i)<>(iv) of Proposition 7.1, together with the
uniqueness of finite geodesics, gives Theorem 3.2. ]

Proof of Lemma 3.3. For £ € Uy, almost surely zE+ (x, y) = 26~ (x, y) = 28 (x, y) € Z2.
Proposition 7.2 implies that £ lies in the complement of the closed set supp jix . ]

Next, we prove Theorem 3.4 about the relation between the coalescence points and
properties of the support of Busemann measures.

Proof of Theorem 3.4. Take w € y. Equivalence (a) follows from Proposition 7.2.
Equivalence (b) follows from the equivalences in (a) and (c).

The two equivalences of (c) are proved the same way. We prove the first equivalence
in this form: there exists 7 > £ such that |1y, |(&, 7)) = 0 & 25 (x, y) € Z2.

The implication = is contained in (i)=>(ii) of Proposition 7.1.

To prove <=, let k = x - &; and £ = y - &, suppose z£ T (x, y) € Z2, and let m =
£t (x,y) - ;. Take a sequence 7,, € U with 17, \ & as n — oo. For sufficiently large n,

y,f’jf =y, and yZ;iJF = y;™, and hence z™ (x, y) = 25" (x, y). The implication
(iii)=>(i) of Proposition 7.1 gives |ux,,|(1€, na[) = 0. |

When the jump process condition (3.5) holds, call the event in the statement of that
condition Qg. As noted when it was introduced, Theorem 3.5, which gives the equivalence
between (3.5) and coalescence of €00 geodesics, is essentially an immediate consequence
of Theorem 3.4.

Proof of Theorem 3.5. Assume the jump process condition (3.5). Fix w € Q¢ N Qg,
x,y € Z% and § € ri U. If § & supp [y, then Proposition 7.2 says that £ (x,y) =
£t (x, y) € Z2. In particular, y *£% coalesces with y ¥§% and y *¢~ coalesces with
y V£~ If, on the other hand, £ € supp Mx,y, then it is an isolated point and now Theo-
rem 3.4 says that z5% (x, y) € Z?2 (although now the two points are not equal). Again,
y £+ coalesces with y 7% respectively. Statement (ii) is proved.

Now, assume (ii) holds and let Qg be a full measure event on which statement (ii)
holds. Let w € Q0 N QE, x,y € Z2, and £ € supp jx,y. The fact that y *#* and y ¢+
coalesce, respectively, says that zE+ (x, y) € Z2. Since we assumed £ € supp Mx,y, Propo-
sition 7.2 implies that the two coalescence points zE* (x, y) are not equal. Theorem 3.4
implies that £ is isolated. L]

The proof of Lemma 3.6 is delayed to the end of Section 8.1. When the jump process
condition (3.5) holds, define

Q™ — Q0N Q3. (7.2)
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Proof of Theorem 3.7. (a) Take w € Q. Let x - &1 = k and § = £, (Tyw). Take Tyw
in place of w in (2.17), let ¢ — &x(Txw), and use (2.6), (2.7), and (2.11), to get
B (x,x 4+ e3) < B¥ (x,x +e1) and BEt (x,x 4+ e1) < BET(x, x + e5). Then by defi-
nition y]f’$+ = y]f’s_ =x, 71?f1+ =Xx + e, and y]ffl_ = x + e,. Therefore we cannot
have zE* (x, x + ¢;) = 25~ (x, x + ¢;) € Z2 for either i € {I,2} by uniqueness of finite
geodesics. By Proposition 7.2, £ € supp flx,x+e, M SUPP fx,x+es-

For the converse, for ¢ < &x(Txw) < n we see that BS*(x, x + e2) = wx =
B”i(x,x + e1). Thus

supp x,x+e; Clez, Ex(Txw)] and  supp px xte, C [Ex(Txw), eq].

Consequently, supp flx,x+e; M SUPP tx,x+e, C Ex(Txw)}.

(b) It remains to show V® C {£x(Txw) : x € Z*}. Assume the jump process condition
(3.5) holds and @ € Q4. Suppose ¢ € supp jix,,. By Theorem 3.4 (b) the coalescence
points z8* (x, y) are distinct lattice points. Hence the geodesics y 4% and y ¥4~ separate
at some point z where then &, (T, w) = ¢. |

The next results relate V¢ to regularity properties of the shape function g.

Lemma 7.3. The following holds for all € Qq: forall < nintiU, [&,n[N V® £ @
if and only if Vg({+) # Vg(n—).

Proof. 1f Vg({+) # Vg(n—), Theorem A.8 (c) says that |¢, n[ contains some &« (Txw),
which by Theorem 3.7 (a) is a member of V.

If Vg(¢+) = Vg(n—), then by concavity, Vg({+) = Vg(n—) = Vg(én) forall £ €
1¢.n[ and O € {—, +}. By Theorem A.1 (d), B7(x, y, w) is constant over £ € ]¢, n[ and
0 € {—, +}, forany x, y € Z? and w € Q. Consequently, for any given x, the geodesics
¥ ©£0 match. By Theorem A.4 (b), all these geodesics coalesce on the event 2¢. Hence
the coalescence points z57(x, y) also match. By Theorem 3.4 (a), no point £ € ]¢, [ is a
member of V. |

Proof of Theorem 3.8. (a) Let & € . Theorem A.4(b) says that almost surely
£ (x,x + ¢;) € Z* for x € Z? and i € {1, 2}. Theorem A.l (k) says that there
is no + distinction. Hence P(z5 (x, x + ¢;) = 25T (x, x + ¢;) € Z?) = 1 and
therefore IP(§ € supp fix,x+¢;) = 0 by Proposition 7.2. A union bound implies that
P(3x € Z?,i € {1,2} : £ € supp ix,x+e;) = 0. The cocycle property (2.7) then implies
that P(§ € V®) = 0.

Let £ € (ri U) \ D. Theorem A.8 (d) implies that £ is among {£.(Txw) : x € Z?}, and
these lie in V' by Theorem 3.7 (a).

(b) By definition, the complement of J is the union of the (at most countably many)
maximal open intervals |, [ such that Vg({+) = Vg(n—) and their differentiable end-
points. Lemma 7.3 together with part (a) proved above implies that P(V® N H€ # @) = 0.
Hence almost surely, {&.(Txw) : x € Z2} C V® C X.

For the density claim it is enough to prove that {£,(Txw) : x € Z?} is dense in ¥.
Suppose first that £ € H N D. Then £ is not on a closed linear segment of g, and hence for



Geodesics in LPP 2607

any { < £ < n we have Vg({+) # Vg(n—). By Theorem A.8 (c) the open interval |, 5[
contains a value £ (Ty). The other case is £ € H \ D. Then £ € {£.(Tyw) : x € Z?} by
Theorem A.8 (d). [

The next proof, of Theorem 3.9, identifies U\V® in terms of directions in which
(Busemann) geodesic uniqueness holds.

Proof of Theorem 3.9. (a) Fix w € Q¢ and £ € ri U. Suppose first that there exists an
x € Z2 with the property that y *§+ =£ » %€~ These geodesics separate at some point z
where then £ = £,(T,w) € V2. If, on the other hand, y ¥+ = y ¥£~ for all x € Z2, but
there exist x and y for which y *¢ and y ¥ do not coalesce, then Proposition 7.2 implies
that § € supp px,y C V©.

Conversely, suppose £ € V and let x, y be such that £ € supp . Then by Theorem
3.1, possibly after interchanging the roles of x and y, we have y *¥+ Ny ¥4~ = ¢. In
particular, these two geodesics do not coalesce. Part (a) is proved.

(c) Assume the jump process condition (3.5) and let w € Qj(;lmp. Suppose that y *§+ =
y ¥ = p*E& By Theorem 3.5, y 70 coalesces with y *€ for all y € Z2 and both
signs O € {—, +}. By the uniqueness of finite geodesics, y 7§* = y ¥~ Now all these
geodesics coalesce. Part (a) implies £ ¢ V.

Parts (b) and (d) follow from (a) and (c), respectively, because under the regularity
condition (2.4), Theorem A.7 implies that the uniqueness of a Ug-directed geodesic out
of x is equivalent to y ¥£+ = p &=, |

The next lemma completes the proof of Theorem 3.10. Recall the event 2 defined
in (A.7).

Lemma 7.4. Assume the regularity condition (2.4). If v € Qo and § € V?, then Ug = {§}.

Proof. Take w € Qg and suppose Ug # {£}. Recall the dense set of differentiabil-
ity directions U introduced just before (A.7). Because Ug is a line segment in U,
there exists a { € U N Ug. By its definition, Q¢ C Qg’ where Qg was introduced
in Theorem A.4. Theorem A.4(e) then implies that z5~(x, y) = z5+(x, y) € Z?2 for
each pair x, y. Since {,§ € Ug and we assumed (2.4), Theorem A.1(d) implies that
for all x,y € Z2, B*~(x,y) = B**(x,y) = Bf (x,y) = B¥t(x, y). Consequently,
25 (x,y) =25t (x,y) € Z2 forall x, y € Z2 and Theorem 3.4 (a) shows that £ ¢ V. m

Proof of Theorem 3.11. (a) Theorem A.9 implies that for £ € V', y*4~ and y £+ are
the only &-directed geodesics out of x.

(b) Consider any three geodesics with the same asymptotic direction & € ri U. If
£ e(rU)\ V? then by Theorem 3.10(c) all three coalesce. If £ € V then by part
(a) at least two of these three geodesics must have the same sign + or —. By Theorem
3.10(d) these two coalesce.

(c) Consider a sequence v, as in the first part of the statement and set k = x - €.
From an arbitrary subsequence, extract a further subsequence ny so that y **¥¢ converges
to a semi-infinite geodesic my o vertex-by-vertex. Let { < £ < 7. Using the fact that
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vp/n — & and directedness of y 5%+ and y *7~, for all sufficiently large n we must have
y,f’” < v, < y»’"". By uniqueness of finite geodesics, we must then have y,ﬁ’“ =<
't <y forallm > x - & and all such n. It then follows by letting ¢, n — £ that
must be &-directed. Therefore, by part (a), & € {y “¢T, p £~V Letr = sg(x) - € and let
ny be sufficiently large that y ;:j’_‘l = 7y r+1. By definition of the competition interface,

since v,, < (p,s,i(x) we must have 7, 11 = s¢(x) + e, which identifies 7 as y *§= As the

subsequence was arbitrary, the result follows. The second claim is similar.

(d) By Theorem A.4 (d), any semi-infinite geodesic emanating from x is £-directed for
some & € U. Combining part (a) and Theorem 3.10 (c), the only claim which remains to
be shown is that y *¢ is the only e;-directed geodesic. This comes from Lemma A.6. =

8. Webs of instability: proofs

Recall again the event 2 constructed in (A.7) and fix w € ¢ throughout this section.
Unless otherwise indicated, an assumption of the form ¢ < 5 includes the case { = n = £.

8.1. Instability points and graphs

Proof of Lemma 4.1. Suppose x* is a [, n]-instability point. Then there exists a direction
& € [£,n] N SUPP Ux+e;,x+e,, Which by Theorem 3.1 implies yrred-nyxtett —g
Then the ordering of geodesics implies y *te¢1:6— Ny xteznt — g

If x* is not a [, n]-instability point, then combining Propositions 7.1 and 7.2 we have

z :zt_(x +e1,x+e) = z§+(x +e1,x+e)=2"(x +e,x +e3)

=2""(x + e, x 4+ e) € Z2,

x+eq,t+ x+ep,nt

% and y all match until z is reached, and y *+¢2:¢% and y *+e2:7% als0
all match until z is reached. In particular, z € y ¥ Te1:{— n p ¥ Fezn+, n

The following is immediate from the definitions and monotonicity.

Lemma 8.1. Let ¢ < ninri U. A directed path in ﬁj[g j] Can never cross a directed path
in §,4 from right to left (i.e. along a dual edge in the —e, direction) nor a directed path
in G¢_ from above to below (i.e. along a dual edge in the —e, direction).

The next lemma characterizes the ancestors of an instability point in the graph ﬁJR nl"

Lemma 8.2. Let{ < ninri U and x* € SE‘Z o) The following statements (1) and (ii) are

equivalent for any point y* € 7.2*:

*
ulgnl

(il)) y* = x* and y* is between the two geodesics y X438 and v X*=ent embedded
as paths on R2.

(1) There is a directed path from y* to x* in the graph §
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Proof. (1)=>(i1)). By Lemma 8.1 no directed path in ﬁj[é,n] can go from y* to x* unless
y* lies between y X" +85.8~ and y xt—egnt,

(ii)=(i). We prove this by induction on |y* — x*|;. The claim is trivial if y* = x*.
Suppose y* > x* is such that y* # x* and y* is between y* T4~ and p *" &+,
If y* points to both y* —e; and y* — e; in ‘55[ ) then since y* — e; is between the
two geodesics for at least one i € {1, 2}, the induction hypothesis implies that there is a
directed path from y* to x* through this y* — e;.

Suppose next that y* points to y* — e; in ﬁj[m] but y* — e; is not between the
two geodesics. Then, on the one hand, y* — e, must be between the geodesics and the
induction hypothesis implies that there is a path from y* — e, to x*. On the other hand,
y* —e;* must point to y* 4 & in §;_ to prevent y* — e; from falling between the two
geodesics. This implies that y* points to y* — e; in gtj[f,n]‘ Now we have a path from y*
to x* through y* — e;. See the left plot in Figure 8.1. The case when y* points to y* — e;
and the latter is not between the two geodesics is similar. ]

The next lemma characterizes [{, n]-instability points as the endpoints of semi-infinite
directed paths in ﬁj[t a1 Furthermore, such paths consist entirely of instability points.

Lemma 8.3. Let ¢ < ninri U.

(@) Let {x}}k>m be any semi-infinite path on Z** such that Xj 4y points to X[ in it
for each k > m. Then {x} }r=m C SE"(’"] and as k — oo, the limit points of X}/ k lie
in the interval [¢, 7).

(b) Letx* € Z?* andm = x* - &;. Then x* € SFE 0l if and only if there is a path {x} }k>m
on 72* such that X,, = x* and for each k > m, x; -e1 =k and x;H points to x;;

in ﬁj[z e When this happens, the path {x;}x>m satisfies part (a) above.

Proof. () For each k, Lemma 8.1 implies that the geodesics y *¢ +%2 ¢~ and p % —¢2 71+
are disjoint because they remain forever separated by the path {x; }x>. Since the back-
ward path {x/}x>m is sandwiched between the geodesics y Smtet— and prment,
Theorem A.4 (a) implies that as k — oo the limit points of x;//k lie in the interval [, 7.

(b) The “if” claim follows from part (a). To prove the “only if” claim, suppose
x* e SE‘M]. Then the geodesics y* 1 and p X @t are disjoint. At every level
k > x* - &, we can choose a point y; between the geodesics y X" +83.¢~ and Y xt—eynt,
that is, a point y € Z** such that y* - &, = k and y;*ﬂ;’;_ < yE=< y;*_e;’ﬁ. By
Lemma 8.2 there is a directed path in g[’j[;’n] from each y; to x*. Along some subse-
quence these directed paths converge to a semi-infinite directed path to x*. ]

Proof of Theorem 4.3. Step 1. We show that S; # @ forany £ € V®. Since § € supp uz,y
for some z, y € Z?2, the cocycle property (2.7) implies that £ € supp Mx,x+e; fOr some
nearest-neighbor edge (x, x + ¢;). Since Uxte;,x+es = Ux+tey,x + Mx,x+e, iS a sum of
two positive measures there can be no cancellation, and hence § € supp flx4¢;,x+e, and
thereby x + 7" € S7.
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y*_EZ Q//_(/
* %k

x*—ej+e * 4 ook

1t+e, x* +ey

X* — ) omgue x*

* _ ok * o~k
X 6‘1 X 62

Fig. 8.1. The proofs of Lemma 8.2 (left) and Theorem 4.3 (right). {— geodesics are in green and
thin. n+ geodesics are in purple with medium thickness. Directed edges in ﬁ Ule.n] &r€ in red/thick.

White circles are points in 72 while points in Z2* are filled in (red).

Step 2. We show that every edge of ‘55[; 7l that emanates from a point of SEE . is an

edge of 8 . Take x* € Sf; . Then y ¥ 188 and ¥ 81 are disjoint. Suppose
x* points to x* — ey in gu[; q1- Then x* — e} points to x* — e, in §,. The geodesic
yx*_gl*""*' takes first an e; step and then follows yx*_az*’“'. Since yx*_el+g2*3_
must always stay to the left of y * T it s prevented from touching y xr=elnt =
p X €178+ and we see that x* —e; € SE‘M]. See the right plot in Figure 8.1. The case

when x* points to x* — e; in ﬁtj[g p 18 similar.

Step 3. We conclude the proof. Combining Lemma 8.3 (a) with Step 2 implies that every
bi-infinite directed path of the graph gu[; is in fact a directed path of the graph S Sten:

Conversely, let x* € sz, it Lemma 8. 3 together with Step 2 implies that x* is the
endpoint of a semi-infinite directed path in § [’z, 7] which is inherited from ﬁj[t, nl Step 2
implies that by following the edges of ﬁlj[m] from x* creates an infinite down-left
directed path in the graph gu[; nl’ and this path is a directed path also in S[z,n]' In
other words, every instability point x* € S* (&1 lies on a bi-infinite directed path of the
graph S - that was inherited from &’ Ole.nl”

The [Z r)] directedness of these paths comes from Lemma 8.3 (a). ]

Proof of Theorem 4.4. (a) Let x = x* —e. If x* is a branch point in S[g g then

y %%~ goes from x to x + e, and y ©" goes from x to x + ey, which is equivalent
to Bf_(x +e1,x +e) <0< B"(x + ey, x + e,), which in turn is equivalent to
E(Trw) € [E.1].

Conversely, suppose & (Txw) € [¢, n]. Reversing the above equivalences we see that
x* e SFE . and points to both x* — ey and x* — e, in §%;, .. By Step 2 of the proof of

Ul¢,n]
Theorem 4.3 these edges are in S[’Z ]’ and hence x* is a branch point.

(b) Start with the case ¢ < . Let £ € [¢,n] N Up. Then Qg C R and parts (b) and (c)
of Theorem A.4 imply that &; is a tree that does not contain any bi-infinite up-right paths.

(Recall that for £ € Uy there is no =+ distinction.) This implies that gg* is a tree as well,
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i.e. all down-left paths of ﬁ* coalesce. Since ﬁ - gu[; q]> One can follow the edges e.g.
in ‘5* starting from x* and from y* to get to a coalescence point z* that will then be a
descendant of both points in S*Z el The same argument can be repeated if  =n=£ € V?
when condition (4.2) holds, since then both §.* 4 are trees. Claim (b) is proved.

(c) Observe that for any x*, y* € S[Z, Theorem 3.5 says that under the jump pro-

cess condition (3.3), if w € Qj(;’ "™ (defined in (7.2)), then the geodesics y*" 7¢2¢~ and
y Y e 8= coalesce, as do y* 7¢21T and y?" %1t By Lemma 8.2, any point in
SE‘M] that is between the two + and — coalesced geodesics is an ancestor to both x*
and y*. Such a point exists. For example, take a point z on yx*+22* £~ above the
coalescence levels, in other words, such that z - &; > (25~ (x* + &, y* + &) -é1) v
(@' (x* — &}, y* —&J) - &1). Since y #"* coalesces with y* ~¢2 7+ which does not
touch y ¢~ (because this latter is part of y xey oy, y > must separate from y 75~
at some point z’. The dual point z’ + € is then in S{z., @nd is an ancestor to both x*
and y*. Part (c) is proved.

(d) The assumption is that { < n and |, n[ N V® # @. By Lemma 7.3, Vg({+) #
Vg(n—). For any z € Z?, Theorem A.8 (c) gives a strictly increasing sequence z < z; <
zp < --- such that £x(T;, ) € ]¢, n[ for each k. Then by (2.17), Bt (zi +e1,2k +e2) <
0 < B" (zx + e1, zx + e2), which implies that z; = zx + " is a [¢, n]-instability point.
Each such point is a branch point in S[’z . because zx points to zx + e in §¢ 4, and hence
also in §;_, and to zx + ey in §;_, and hence also in G, ;.

The proof of the existence of infinitely many coalescence points in S’E (€] follows from
this and the first claim in part (b) in a way similar to the proof below for the case of S x
(but without the need for any extra conditions) and is therefore omitted.

(e) Fix £ € V® for the duration of the proof. Assume the jump process condition (3.5).
By Theorem 3.1 there exist x, y € Z2 such that y *¥~ Ny ¥¥+ = @ and then Theorem 3.5
says that for any z € Z2, the two geodesics y ¥ must separate at some point z; (in order
to coalesce with y *¥~ and y ¥¥ T, respectively). Uniqueness of finite geodesics implies
that yzlJrei’S + i e {1,2}, cannot touch. Thus, z; + el € Sg‘. Now define inductively

Zn+1 to be the point where the geodesics y *» ten g+

coordinatewise and z,; = z, + €;* is a point in S;.
Next, assume both the jump process condition (3.5) and the no bi-infinite geodesic

separate. Then for each n, z,, 41 > z,

condition (4.2). We prove the second claim of part (e) about infinitely many coalescence
points by mapping branch points injectively to coalescence points as follows.

Given a branch point x*, let 7* and 7* be the two innermost down-left paths out
of x* along the directed graph S, defined by these rules:

(1) 7* starts with edge (x*, x* — e1), follows the arrows of §., and at ver-
tices where both —e; and —e, steps are allowed, it takes the —e; step;
(ii) 7* starts with edge (x*, x* — e,), follows the arrows of SE* , and when-

ever both steps are available takes the —e; step. (8.1)

By part (b), x* — e; and x* — e, have a common descendant (this is where assumption
(4.2) is used). By planarity, the paths 7* and 77* must then meet at some point after x*.
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Let z* be their first common point after x*, that is, the point z* € (7* N 7*) \ {x*} that
maximizes z* - €. This z* is the coalescence point that the branch point x* is mapped to.
We argue that the map x* +— z* thus defined is one-to-one. Two observations that
help:
e There cannot be any Sg‘—points strictly inside the region bounded by 7 * and 77 * between
x* and z*. By Theorem 4.3 such a point would lie on an § g* path, which contradicts the
choice of 7* and 7* as the innermost paths from x* to z*.

e The last step that 7* takes to reach z* is —e, and the last step of 7* is —e;. Otherwise
7* and 7* would have met before z*.

Suppose another branch point y* € S;‘ distinct from x* maps to the same coalescence
point z*. Let the innermost paths from y* to z* be y* and y*, defined by the same rules
(8.1) but with x* replaced by y*. As observed, y* and y* cannot enter the region strictly
between * and 7 *.

QA

z* z*

Fig. 8.2. Illustration of the proof that the map x* +— z* is one-to-one.

Since y* uses the edge (z* + e,, z*), it must coalesce at some point with 7*. The
point x* itself cannot lie on y* because otherwise (8.1) forces y* to take the edge
(x*,x* —ep) and y™* cannot follow 7 * to z*. This scenario is depicted by the left drawing
in Figure 8.2. Thus y* meets 7* after x*, at which point rule (8.1) forces them to coalesce
(right drawing in Figure 8.2).

Similarly, x* cannot lie on *, and 7* meets 7 * after x* at which point these coalesce
(right drawing in Figure 8.2).

Paths from y* cannot meet both 7* and 7* while avoiding x* unless y* > x* holds
coordinatewise. It follows now that x* must lie strictly inside the region bounded by
y* and y* between y* and z*, as illustrated by the right drawing in Figure 8.2. But we
already ruled out such a possibility. These contradictions show that the map is one-to-one.

Since we have already proved that under the jump process condition (3.5) there are
infinitely many branch points in § g‘ , it now follows that there are also infinitely many
coalescence points and part (e) is proved. ]

Proof of the claim in Remark 4.5. Tt suffices to consider the case where |, n[ NV =
but {¢,n} N V® # @. By Theorem 3.8 (a), the differentiable endpoints of the (countably
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many) linear segments of g are all outside V®. By Theorem 3.8 (b) we know ], [ must
be inside a linear segment. Thus, it must be the case that {{,n} N V® \ O # @. Suppose,
without loss of generality, that ¢ is in this intersection. Then Theorem A.8 (d) implies
the existence of infinitely many x € Z? with &,(Txw) = ¢ € V®, and Theorem 4.4 (a)
says that the corresponding dual points x* are all branch points in § Z* cS [’2 nl" The claim
about coalescence points follows from the just proved infinite number of branch points,
combined with the first claim in part (b), similarly to the way the corresponding claim is
proved in Theorem 4.4 (e). [

In words, the next result says that there are no semi-infinite horizontal or vertical paths
in any of the instability graphs SE, nl" The idea behind the proof is that the existence of
such a path would force the existence of a semi-infinite horizontal or vertical path in one
of the geodesic graphs g, for some 0 € {4, —} and £ € ri U. This is ruled out by the law
of large numbers behavior of the Busemann functions.

Lemma 8.4. Forany w € Q, { <1, andi € {1,2}, there does not exist an x* € SE nl such
that x* —ne; € AEE n](x* — (n + 1)e;) for alln € Z 4 ; nor does there exist an x* € SE} 0l
such that x* + (n + 1)e; € AE‘Z n](x* + ne;) foralln € 7.

Proof. We prove the result for i = 1, the case i = 2 being similar. We also only work
with paths of the first type; the other type can be treated similarly.

The existence of a path of the first type, with i = 1, implies that x* —ne; — &;" points
tox* — (n — 1)e; — e} in Gy 4 for all n € Z .. But this implies that

B (x* —ney — e, x* —(n—1)e; — &) = Ox*—pey 27

for all n € Z. Take any sequence 1, € Ug such that n,, \, n. Then (2.10) and (2.7)
imply that
n
ZwX*—kel—El* = B"™(x* —ney — &, x* —&') > B"(x* —ne; —e;, x* —¢}").
k=1

Divide by n and apply the ergodic theorem on the left-hand side and (A.3) on the right-
hand side to get E[wg] > e1 - Vg (1) for all m. Take m — oo to get E[wo] > e1 - Vg(n+).
It follows from Martin’s estimate of the asymptotic behavior of the shape function near
the boundary of U, [41, Theorem 2.4], along with concavity that this cannot happen. =

Proof of Lemma 3.6. A general step of the path can be decomposed as x;+; — x; =
>k Vk+1 — Yk) where yr41 — Yk € {e1, —ez} for each k. Then each jy, y, ., is a nega-
tive measure, and consequently supp ix; x; ., = Uk supp iy, yi +1- Thus we may assume
that the path satisfies x; 1 — x; € {e1, —e,} forall i.

One direction is clear: | J;cz supp ix; x; .y C V.

For the other direction, take £ € V. By Theorem 4.3, there is a bi-infinite up-right
reverse-directed path x*_ ., through x* in Sg‘ with increments in {e1, ¢2}. By Lemma
8.4 this path must cross any down-right lattice path x_,00. This means that there exists
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an i € Z such that either x; 11 — x; = e; and x; + & points to x; — &5 in 87, i.e. x;
points to x; + ez in §z_, or x;41 — X; = —ep and x; — e, points to x; —e;" in §7, i.e.
X; points to x; + e in g1 In the former case, y *i = goes from x; to x; + e, and from
there it never touches y *i+1:f+ = y Xiter+ gince x; + & € S*.. Consequently, in this
case Theorem 3.1 says that § € supp [y, ;- The other case is similar and again gives
& € supp fix; x; 4, - This proves Lemma 3.6. m

8.2. Density of instability points on the lattice

For¢{ <ninriU, x € Z2,and i € {1,2} let

% (&) = L{[L, ] N SUpp fx xte; F B} (8.2)

We write o’ (£) for pi.(£, £). By definition, x + ;" € SE‘; o1 if and only if pl(¢, n) and

02 (¢, 1) are not both 0. By Lemma 8.6 below, p'. (¢, ) = 1 is equivalent to x + &;* pointing
tox + e —e3—; in S 1. Also, pL(€) = p2(€) = 1if and only if & (Txw) = . Let

ki (C.n) = P{p{(L.n) = 1}.

Since supp iy, x+e; is by definition closed, «; is left-continuous in ¢ and right-continuous
in 1. Furthermore, by Theorem 3.8, ; is continuous in each argument at points of differ-
entiability of g. Again, we write k; (§) for «; (€, £). We thus have

ki (§) = é/I%‘i’n'r]l\‘s ki (8. 1).

By Theorem 3.8, £ € D if and only if «; (§) = 0 for some (and hence both) i € {1,2}. Let

k12(8.m) = P{pg(&.n) = pg(&.n) = 1} = P{&x € [C.]}

and write k15 (§) for k12 (&, £). The last equality above follows because if £« ¢ [Z, 1], then
by recovery (2.8) and by the Busemann characterization (2.17) of €., one of the processes
£+ BE%(0,¢;) fori € {1,2} is constant for & € [Z, 7).

The next result essentially follows from the ergodic theorem and gives the density of
horizontal and vertical edges, instability points, branch points, and coalescence points.

Lemma 8.5. Assume the regularity condition (2.4). There exists a T-invariant event
Qp C Qo with P(2) = 1 and such that forall w € Qy, i, j € {1,2}, a,b,a’,b’ €{0,1}
with (b + a)(b' 4+ a’) # 0, and for all £ < n inri U, we have

1 bn )
lim — J ,
o 2 e

1 .
=l e T > PLC ) = k). (83)
el

x€[—an,bn]x[—a’n,b’n]
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bn

1
lim ——— Lke; + & € Sk
n00 [b + aln k;_;m {kei + &1 €Spe )

1
= lim > x +2f €Sfy )
nmee (b + a)(b/ + a/)nz x€[—an,bn]x[—a’n,b’n] !
= «1(¢, n) + k28, n) — k12(8,m), (8.4)
anw+ﬂ| §jﬁ%xszq@m
li !
= lim
n—co |(b +a)(b' + a’)|n?
x > PYCMPAE ) = Kki2(Gm).  (8.5)
x€[—an,bn]x[—a’n,b'n]
and
gm”b+a| §j Phe; (& DO+ 1ye; —es; Co1)
li !
= lim
n—co [(b +a)(b' + a’)|n?
x > Proey G MPe_ey (G0) = K12(L 7). (8.6)

x€[—an,bn]x[—a’n,b'n]
All of the above limits are positive if and only if Vg({+) # Vg(n—).

Proof. As explained in Remark A.3, under the regularity condition (2.4), the Busemann
process is a measurable function of {w, : x € Z?}. Thus, by the ergodic theorem, there
exists a T'-invariant event Q) C Q¢ with P(Q2()) = 1 and such that for w € €, the limits
(8.3)—(8.6) hold for all ¢, n € Up U ((ri U) \ D).

To justify the equality of the limit in (8.6) with the one in (8.5) observe that since
every instability point must have at least one descendant and at least one ancestor, we
have

P{—e/ € SE‘M]}
= P{pl,, (&.m) = 1} +P{p2,, (&) = 1} =P{pL, (&) = p2,, (&) = 1}
and
P{ey € iy ) = Plog(6,m) = 1} + P{og (&, m) = 1} = P{po (&, m) = pg (& m) = 1}

By shift invariance, the first three probabilities in the first display match the corresponding
three probabilities in the second display. Thus,

P{pL,, (&) = p2,, (&) = 1} = k12(&. ).
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We now prove the first limit in (8.3), the rest of the limits in the statement of the
lemma being similar. Take w € Q2 and any ¢ < nin ri U. Suppose first g is differentiable
at both ¢ and 7. Take sequences ¢, < { < m < N < 0 < 1y With &, Comy i, 1y, € Uo
and use monotonicity and the continuity of ; to get

K (Ems m) = nll)rrolo b — a)n Z Pke (&m 1m)
1 bn )
< lim o (b — Z Phe;&.m) < Tim N _X_Em"'jwt' ()
< lim ——— Z pke (Zm’ nm) = Kj (Cm’ nm)

Taking m — oo and using continuity of «; at { and n gives that the above liminf and
limsup are equal to «; (¢, 7). The same proof works if { = 7 is a point of differentiability
of g. In this case, we can use 0 as a lower bound and for the upper bound we have
Ki(¢) = ki (n) = 0.

Next, suppose ¢ is a point of non-differentiability of g, but 5 is still a point of dif-
ferentiability. We can repeat the same argument as above, but this time only using the
sequences 1, and 1, and the intervals [, n,,] and [£, /] for the upper and lower bounds,
because ¢ has been included in the set U U ((ri W) \ D). A similar argument works if ¢
is a point of differentiability but 7 is not. When g is not differentiable at both ¢ and 7, the
claimed limits follow from the choice of €2j,. ]

Proof of Proposition 4.6. The claim follows from Lemma 8.5. ]

8.3. Flow of Busemann measure

Proof of Theorem 4.7. The vertex set of i)’* - is by definition the same as that of S[§ "
That the edges also agree follows from Lemma 8.6 below. ]

Lemma 8.6. For i € {1,2}, [, n] N supp tx,x+e; # 9 if and only if (x + &, x + e}
— e3—;) is a directed edge in the graph S[’Z -

Proof. We prove the case of i = 1. Assume first that [{, n] N supp tx x+e, 7 9. From
Hx+erx+ey = Mx+er,x + MUxxte; a0 flyx—3, x = Ux—),x+e; T Mx+e,x (Sums of pos-
itive measures) we see that both x + &7, x + &[" —ez € S, .

Suppose £ € [£, n] N sUpp fix,x+e, .- By Theorem 3.1, x must point to x + e, in §;_,
which forces the same in §;_. Thus x + " points to x + &;* —e; in %, and hence also
in g* ulgnl®

Conversely, if x + &;" € Sy o then y *+€2:¢= and y *+€1:"1% do not intersect. If fur-
thermore x + €;* points to x+e —ein gJ[E,n]’ then x points to x + e» in §;_ and

hence y *¥~ joins y *+€2:¢~ and does not intersect y ¥ e+,
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Let ¢’ < ¢ and 1 > 1. By geodesic ordering (2.13), y ¢+ and y xtern' = gre disjoint.
In particular, the coalescence points Z§/+(x, X +ep) and z"/_(x, X + e1) cannot coincide
on Z?2. By Proposition 7.1, ¢/, /[ intersects supp fLx x+e,- Since this holds for every
choice of [¢’, [ D [, n], it follows that also [, 1] intersects Supp fbx,x+e; - [

Proof of Proposition 4.8. Suppose x L1 y. Since supp jix,y is a closed subset of ri U and
[¢, n] a compact set, we can find ' < ¢ and 1’ > 7 such that |ux,,|(1¢', 7'[) = 0. Then by
Proposition 7.1, there exists z € Z?2 such that all geodesics y *£2 and y ¥£0 for £ € [¢, 1]
and O € {—, +} meet at z. Thus x and y are in the same subtree of the graph ¢ ).

Conversely, suppose x and y are two distinct points in the same subtree K of the
graph §n[¢ ,. In this tree the following holds.

In X there is a point z and a path 7 from x to z and a path " from y to z

such that z is the first common point of 7 and 7’. For each § € [, 5] and

both signs O € {—, +}, all the geodesics y *¢7 follow 7 from x to z,

and all the geodesics y ¥¢9 follow 7’ from y to z. (8.7)

Consequently, each £ € [¢, 5] satisfies 25~ (x, y) = 26+ (x, y) = z. By Proposition 7.2 each
& € [¢, n] lies outside supp fix,y. L]

X
7T/
n,//

u

y

Fig. 8.3. Proof of Lemma 4.9.

Proof of Lemma 4.9. The hypotheses imply that, by switching x and y around if neces-
sary, x +ey < y-eyand x -e; > y - e,. Let z, w, ©’ be as in (8.7). Let u be any point
of [x A y,x Vv y]. By planarity, each geodesic y *£2 for & € [{,n] and O € {—, 4} must
eventually intersect 7 or 7" and then follow this to z. See Figure 8.3. By uniqueness of
finite geodesics, all these geodesics y “£C follow the same path 7 from u to z. Thus 7"
is part of the graph ¥n¢ ,;, and since it comes together with 7 and 7" at z, it is part of the
same subtree K. |

Proof of Lemma 4.10. Suppose x is such a vertex but X C {y : y > x} fails. We claim that
then there necessarily exists a vertex y € K such that x and y satisfy the hypotheses of
Lemma 4.9 and one of {x — ey, x —e,} liesin [x A y,x Vv y]. This leads to a contradiction.

To verify the claim, pick y € K such that y > x fails. If y < x also fails, there are
two possible cases:

(i) y-e1 <x-ejand y-e; > x-ep,inwhichcase x —e; € [x A y,x Vy] C K;

(i) y-e1 =x-eyand y-e; < x-ep,in whichcase x —ey € [x A y,x vV y] C K.
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If y < x does not fail, follow the geodesics {y *¥% : & € [¢, ]} until they hit the
level L.z, at some point y’. The assumption that neither x — e; nor x — e; lies in X
implies that y’ # x. Thus y’ is a point of K that fails both y’ > x and y’ < x. Replace y
with y” and apply the previous argument.

We have shown that the existence of x € K such that {x —e;,x —e2} N K =0
implies that X C {y : y > x}. That such an x must be unique follows since x lies outside
{y : y = x'} for any x’ # x that satisfies x’ > x.

Assuming that inf {t € Z : KX N 1L; # @} > —oo, pick x € K to minimize the level
x-ey. (]

Proof of Theorem 4.11. (a)If [¢,n] N 'V ® = @ then the interval [, n] is strictly on one side
of £, (Tyw) at every x. Hence the graphs {§ : £ € [{, 5], O € {—, +}} are all identical.
This common graph is a tree by Theorem 3.5.

Conversely, if £ € [, n] N 'V, then there exist x, y such that £ € supp 1x,, and by
Theorem 3.1 there are disjoint geodesics in Gz p1-

(b) It follows from what was already said that {.X () : z € DI} are disjoint subtrees
of n[¢,, and their vertex sets cover Z?2. Suppose (x, x + ¢;) is an edge in §n[¢ ;. Then
all geodesics {y *£° : £ € [£, 7], O € {—, +}} go through this edge. Thus this edge must
be an edge of the tree K (z) that contains both x and x + e;. Hence each edge of §n[¢
is an edge of one of the trees K (z), and no such edge can connect two trees K (z) and
K (z') for distinct z and z’. [

9. Instability points in the exponential model: proofs

We turn to the proofs of the results in Section 5, beginning with a discussion of Palm
kernels, which are needed in order to prove Theorems 5.2 and 5.3.

9.1. Palm kernels

Let Mzx.iu denote the space of locally bounded positive Borel measures on the locally
compact space Z x ri U. Consider Z x ri U as the disjoint union of copies of ri U,
one copy for each horizontal edge (ke;, (k + 1)e;) on the x-axis. Recall that BED =
B9(key, (k + 1)e;). We define two random measures v and n on Z x ri U in terms of
the Busemann functions § Bii attached to these edges.

On each subset {k} x ri U of Z x ri U we (slightly abuse notation and) define the
measure vi by

ve(tky x 18, = v (¢ nl) = BET — BT

for { < ninri U. In terms of definition (3.1), vk = [ (k+1)e, ke, 1S @ positive measure due
to monotonicity (2.10). On Z x ri U, define the measure v = ) _; v. In other words, for
Borel sets Ax C1i U, v({Uplk} x Ak) = Y i vi(Ak).
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Let ng denote the simple point process on {k} x ri U that records the locations of the
jumps of the Busemann function § B,‘Ei: for Borel A C 1i U,

(i} x A) = me(A) = > LB~ > B}
€A

We describe the probability distributions of the component measures v and ng, given
in [22, Theorem 3.4]. Marginally, for each k, ng is a Poisson point process on ri U with
intensity measure

a(n)
2027 = A ) = Efng (2. 1] = / B 10D o

= log .
a) § a(8)
In particular, almost every realization of ny, satisfies ng[{, n] < oo forall £ < ninri U.

Create a marked Poisson process by attaching an independent Exp(«(£))-distributed
weight Yg to each point & in the support of ng. Then the distribution of v is that of the
purely atomic measure defined by

v = > Yelpy@ for¢ <ninriU. (9.2)
Eeri Uing (§)=1

The random variable v (]¢, 7]) has distribution Ber(1 — %) ® Exp(a(¢)) (product of a
Bernoulli and an independent exponential) and expectation

Elpe(n)] = — — —

«@ )’ 63

Note the following technical point. The jumps of B Ei concentrate at e, and Bzz_z 0.

To define v and n as locally finite measures, the standard Euclidean topology of ri U has
to be metrized so that Je;, 1] is an unbounded set for any 1 > e,. This point makes no
difference to our calculations and we already encountered this issue around definition
(3.1) of the Busemann measures. With this convention we can regard n = ) , nj as a
simple point process on Z x ri U with mean measure A= (counting measure on Z) ® A.

For (k,§) € Z x1i U, let Q g) be the Palm kernel of v with respect to n. That is,
O (k¢ is the stochastic kernel from Z x ri U into Mz, y that gives the distribution of v,
conditional on n having a point at (k, £), understood in the Palm sense. Rigorously, the
kernel is defined by disintegrating the Campbell measure of the pair (n, v) with respect
to the mean measure A of n (this is developed in [39, Section 6.1]): for any non-negative
Borel function f : (Z x1i U) X Mzxiu —> R4,

IE|:/ Fk. £ v)n(dk ® dé)}
Zxri U

- / / Fk.Ev) Qo (@v) A(dk ® dE).  (9.4)
Zxri U J My
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Now we consider the indices 7€ (i) = t5(i) of jumps at £, defined in (5.1). In terms
of the random measures introduced above, for (k,§) € Z x 11 U,

v{(k,£)} >0 < n{(k,E)} =1 < B > B" — ke{f(i):iez).

We condition on the event {n(0, &) = 1}, in other words, consider the distribution of
{z8(i)} under 0 (0,£). For this to be well-defined, we define these functions also on the
space Mzx iy in the obvious way: for v € Mgy u, the Z U {£oo}-valued functions
(i) = t¥(i, v) are defined by the order requirement

<t (=1) <0< 50,v) < E(1, V) < -
and the condition
fork € Z, v{(k,£)}>0 ifandonlyif k € {tf@i,v):i € Z).

Since v is P-almost surely a purely atomic measure, it follows from general theory that
O (o,¢) is also supported on such measures. Furthermore, the conditioning itself forces
Quetv: 7€(0,v) = 0} = 1. Thus the random integer points z& (i, v) are not all trivially
+oo under Q (o,¢). Connecting back to the notation of Section 5, foreachk € Z, § eri U,
each finite A C Z and n; € Z4,r; € Ry withi € A, the Palm kernel introduced in that
section is defined by
P{cf(i + 1) — 5(i) = n;. Bf;(i) - Bf:(i) > YieA|B >BiT)

= Qupfv: 5G4+ 1,v) — 5@, v) = ny, v{(z5(i,v), )} > r;i Vi € A}, (9.5)

9.2. Statistics of instability points

We turn to the proofs of the theorems of Section 5. These proofs make use of results from
Appendices C and D.

Proof of Theorem 5.1. By Corollary C.2, the process {B,f — BIZ }kez has the same distri-
bution as {Wk+ }xez defined in (D.6). An application of the appropriate mapping to these

sequences produces the sequence {Bg — By, o + 1) — 573), BEM(i) — B;’M(i) :
i € Z) that appears in Theorem 5.1 and the sequence {W,", o; 41 — 0, Wji' N RWA

that appears in Theorem D.2. Hence these sequences also have identical distribution. (We
have WUJIT = Wy, by (D.9).) The distributions remain equal when these sequences are

conditioned on the positive probability events Bg — B > 0and W;" > 0. m

It will be convenient to have notation for the conditional joint distribution that appears
in (5.3) in Theorem 5.1. For 0 < o < B < 1 define probability distributions g*# on the
product space ZZ x [0, 00)Z as follows. Denote the generic variables on this product
space by ({t;}iez, {Ak}kez) With t; € Z and 0 < A < oo. Given an integer L > 0,
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integers n_y < -+ <n_p <n_j <ng=0<n; <np <---<nyg, and positive reals
r—r,...,rr, abbreviate b; = n;+1 — n;. The measure q""ﬁ is defined by

q“’ﬁ{ri =n;and A,;, >r; fori € [-L,L], Ay =0fork € [n_r,nr]\ {nj}je[[_L,L]]}

L-1 abi—1gbi L o
Cb,'—l m) . ( 1_[ e 1). (96)

:(1—[

i=—L i=—L

To paraphrase the definition, the following holds under ¢®#: 7o = 0, Ay = 0 for k ¢
{Ti}iez, and the variables {r;11 — 7;, Ay, }icz are mutually independent with marginal
distribution

Otn_lﬁ"

—Qar

P lrir —ti=n, Ay >r}=Cpy forieZ,n>1,r>0. (9.7

Abbreviate g% =¢** which has marginal ¢*{ti 41— i =n, Ay, >r}=Cy_1 (3)?" " 1e™".
As B — o, ¢%P converges weakly to g%.
Theorem 5.1 can now be restated by saying that, conditional on Bg > Bg, the variables

({57 iez, (B — B bez)

have joint distribution ¢®®)*)  Consequently, for a measurable set A C Z% x [0, 00)Z,

P[BS > BY, (5 (i)}iez, {Bf — B! }xez) € A]
= P(B§ > BY)P[({""(i)}icz. {By — B]}kez) € A | By > B ]

_ v el a@ram gy (9.8)
a(n)

The first probability on the last line came from (C.6) and the second from Theorem 5.1.

Proof of Theorem 5.2. Define Z U {400}-valued ordered indices - - - < ‘L'Eln <0< rg <

rf ! < ... as measurable functions of a locally finite measure v € Mzx,;y by the rule
VY X [En) >0 = ke{rf":ieZ). (9.9)

If v({k} x [¢, n]) > 0 does not hold for infinitely many k& > O then rf’" = oo for large
enough i, and analogously for k < 0. Definition (9.9) applied to the random measure
v = ), v reproduces (5.1).

Fix integers K,N e Nand {_y <---<{_1 <{yp=0<{; <--- <{p and strictly
positive reals r_g, .. ., rg. Define the event

HS" = H@Em= () i <tyand " > 4}
1<i<N

N () wevdk) xga) <l (9.10)

—K<k<K
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on the space Mzx.i 9. Note the monotonicity
H" c HY" for [¢', 7] C [¢. 7). (9.11)

Abbreviate Hé = H&£. Recall the measures q“’ﬂ defined in (9.6). The analogous event
under the measures ¢®# on the space ZZ x [0, 00)Z is denoted by

Hy = {({titiez . { Dk kez) € ZF x [0,00)% : 7_; <€_jand i; > ¢; fori € [1,N],
Ag <rifork € [-K,K]}. (9.12)

Fix ¢ < ninri U. We prove the theorem by showing that
Q(O,g)(HE) = q“(s)(Hq) for Lebesgue-almost every £ € ¢, ). (9.13)
This equality comes from separate arguments for upper and lower bounds.

Upper bound proof. Define a sequence of nested partitions { = {§ < ¢} <--- < {7 =1.
For each n and § € |¢, 7], let ]{" (§), n" (§)] denote the unique interval |, {7, ;] that con-
tains . Assume that, as n " 0o, the mesh size max; |7', | — ¢7'| tends to 0. Consequently,
for each £ € ]¢, n], the intervals ]¢" (§), 0 (§)] decrease to the singleton {£}.

The key step of this upper bound proof is that for all m and i and Lebesgue-a.e.

£ et
Qoo (H 1) = lim P{v € HE 5 (8" @ " @D = 1) (9.14)

This limit is a special case of Theorem 6.32 (iii) in Kallenberg [39], for the simple point
process n and the sets B, = {0} x (¢"(£), n*(£)] \4 {(0, &)}. The proof of [38, Theorem
12.8] can also be used to establish this limit; the result of [38] by itself is not quite suitable
because we use the Palm kernel for the measure v which is not the same as n.

If we take § €]67". &7, . then for n > m, 1" (§). 1" (§)] CJ¢™ (€). 7 (€)] =17 &% ).
Considering all £ in the union ]¢, n] = J; 1§, ¢, 1], for any fixed m and Lebesgue-a.e.
& €]¢,n] we have

QupH"OME) = lim P{v e HOME ng(2"(€). 1" §)]) = 1}

< lim P{v € H¥" OO | ng(1z" &), " (©)]) = 1.

n—oo

The inequality is due to (9.11).
Interpreting (9.8) in terms of the random measures v and n and referring to (9.10) and
(9.12) gives the identity

Piv e HEOTO Ing(27 (@) 0" ©)) = 1} = ¢ O« O y),

As (C"(&), 1" (§)] \\ {&}, the parameters converge: «(¢"(£)), a(n™(§)) — «a(£). Conse-
quently, the distribution g®¢" ). ) converges to ¢g*€ . Hence

lim P{v € H*"©1"® | ng(1¢" (), 0" ()] > 1} = ¢*©(H,).

n—00
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In summary, for all m and Lebesgue-a.e. £ € |¢, 5] we have
Qoo (HE"OM"O) < g=® (11,),
Letm /' oo sothat H&" &€ 7 HE (o obtain the upper bound

Q.o (H®) = ¢*©(Hy) 9.15)
for Lebesgue-a.e. £ € |, n].

Lower bound proof. Let { = o < {1 < --- < {y = n be a partition of the interval [, n]
and set oj = a(¢;).

In order to get an estimate below, let m = (m;);<jij<ny be a 2N -vector of integers
such that m; < £; for —N <i < —1andm; > £; for 1 <i < N. Define the subset H(;“
of H, from (9.12) by truncating the coordinates t;:

H = {({ti}iez. {Ditkez) € 28 x[0,00)% im_; <1 <l jandl; <7 <my
fori € [I,N]. Ag <rgfork € [-K,K]}.  (9.16)

On the last line in the following computation, c; is a constant that depends on the
parameters «(¢) and () and on the quantities in (9.16):

&5+l

-1
| QeotHn@n =Y [ OwsH i)
12.1] =

-1 £-1
= / Q0.0 (HY51) 20 (dE) = Y Emo(;. §j41]) - Lyye; 2510 ()]
j=0"18:8i+1]

j=0
-1
> Y P{no(1. §j1]) = 1 v e HY 541}
j=0
e-r -1
=ZO{]+1 o q(xj,aj+1(Hq) > ZO(]+1 o C]aj’aj+1(H;n)
im0 %t =0 W+t
-1, o
=
=Y L g (D) - (1= 1 (@1 — ).
j=0 aj+1

The steps above come as follows. The second equality uses the characterization (9.4) of
the kernel Qo). The third equality is from (9.8). The second last inequality is from
HZ" C Hy. The last inequality is from Lemma 9.1 below, which is valid once the mesh
size max(«;+1 — «;) is small enough relative to the numbers {m;, ¢; }.

The function @ — g% (H, ) is continuous in the Riemann sum approximation on the
last line of the calculation above. Let max(a; 41 — o;) — 0 to obtain the inequality

a(mn) da
[ 0.6y (HE) Ao(dE) > [ g (HM L = / O (HM 10(d).
1¢,1] a(f) o 12,11
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Letm; \y —oo for =N <i < —landm; /" coforl <i < N. The above turns into

/ Q0.6)(H®) Ao(d§) 2/ q*® (Hy) Ao(d§). 9.17)
1,11 12,11
The upper bound (9.15) and the lower bound (9.17) together imply (9.13). [

The proof of Theorem 5.2 is complete once we verify the auxiliary lemma used in the
calculation above.

Lemma 9.1. Let the event qu be as defined in (9.16). Fix 0 < a < @ < 1. Then there
exist constants g, cy € (0, 00) such that

g*P(HM = ¢P(HP) - (1—c1(B— )

foralla, B € o, @] such thata < B < a + €. The constants ¢, c1 € (0, 00) depend on «,
o, and the parameters £;, m; and ry in (9.16).

Proof. Let

A=1{p=(pi)-n<zi=n €Z*N T py =0, p; < p; fori < j,
m_; < p_i < {_;and {; < pi <m; Vi € [l,Nﬂ}

be the relevant finite set of integer-valued (2N + 1)-vectors for the decomposition below.
For each p € A let X(p) = {p; :i € [-N, N], pi € [-K, K]} be the set of coordi-
nates of p in [—K, KJ]. Abbreviate b; = p;+1 — p;. Recall that, under q""ﬂ, 70 = 0 and
Ak < ri holds with probability 1 if k ¢ {z;}; recall also the independence in (9.7). The
factors dy > 0 below that satisfy 1 — e~ > (1 —eA"%)(1 — di (B — «)) can be chosen
uniformly for ¢ < § in [&, @], as functions of &, &, and {rg }. Now compute:

B

q*" (Hy")
= q“"g{mi <71 <{l_;and¥{; <1, <m;fori e [[I,Nﬂ, A <rifork € [[—K, K]]}
= Zq“’ﬁ{n = p;j fori € [-N,N], Ar < ri fork € [-K, K]}

pEA
=Y ¢*Plrp—n =bifori e [-N.N—1]}- [[ (1—e7*%)
pEA keX(p)
S (T G B ) - T - e - duts -
z i1 |- —e P11 - —a
peA Ni=—N P ( + p)2bi keX (p) ‘
N-1 1 2b;—1
E Z( [1 Cb,»—l(g) )( I <1—e—ﬂ’k>)-(1—c1<ﬁ—a>)
peA Ni=—N keX ()
= Zqﬂ{r,-H —1; = b; fori € [-N,N — 1], Ay < ry fork € [-K, K]}
pEA
(I=c1(B—a))

=P (H™) - (1-c1(B — ).
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To get the inequality above, (i) apply Lemma B.2 to the first factor in parentheses with ¢

chosen so that 0 < ¢ < a/b; for all p € A, and (ii) set ¢; = Zf: & k. [ ]

In the proofs that follow, we denote the indicators of the locations of the positive atoms
of ameasure v € Mgy by ug (v, &) = ug(§) = 1v{(k, &)} > 0] for (k,£) € Z x1i U.
Applied to the random measure v, this gives ug (v, £) = ng(§).

Lemma 9.2. For Lebesgue-almost every £ € i U and allm € Z,
Qme)v : {umsk (v, §)}kez € A] = P(A) (9.18)
for all Borel sets A C {0, 1}Z.

Proof. For m = 0, (9.18) comes from a comparison of (5.4) and (5.5). For general m it
then follows from the shift-invariance of the weights . ]

Proof of Theorem 5.3. Take A C {0, 1}% as in the statement of Theorem 5.3. Fix { < 7
inti U and let N € N. We restrict the integrals below to the compact set [-N, N] x [, 1]
with the indicator

gk, &,v) = LN Nxie.m (k. £)

and then define on Z X ri U X Mzxsiu,

Sk, & v) =gk, &E.v) - Liu,iey:tezyeay (€. v).

By the definition (9.4) of the Palm kernel,

IE|:/ Fk. £ v)n(dk & dé)}
Zxri U

= / Qo) {(uele} : L € Z) € A} A(dk & d¥)
[~N.NIX[£.]

/ Qo) UrrelE) i L € Z) € Ay A(dk ® df)
[-N,N1x[¢,n]

/ A(dk ® de) = E[ / (k. E.v)n(dk ® dé)]
[-N,N1x[¢,n] Zxri U

The second equality uses shift-invariance of A and the third equality uses (9.18) and
P(A) = 1. The left-hand side and the right-hand side are both finite because the integrals
are restricted to the compact set [—N, N] x [¢, n]. Since n is a positive random measure,
it follows that

IP’(/ f(k,é,v)n(dk@dé)z/ g(k,é,v)n(dk@dé)) =1.
Zxri U Zxri U

As ¢, n, and N were arbitrary, we conclude that P-almost surely (ng{¢} : £ € Z) € A for
all (k, &) € Z x ri U such that n{(k, £)} = 1. Lemma 3.6 applied to the x-axis (x; = ie;)
then shows that £ € V¢ if and only if n{(k, £)} = 1 for some k. |
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Lemma 9.3. Assume (3.7). Then for any § € (0,1), n € N, and ¢ € ri U we have

(1—68/2)*7

T ) loga ()™t

P{3¢ € [¢. e[ n([0,n] x {&}) > 26n + 1} <2(n + 1)(
Proof. Let {Aj};en be ii.d. random variables with probability mass function p(n) =
Cn_12'72" forn € N. For k € [0,n] and & € ri U use a union bound, translation, and
(5.4) to write

n k+n
Quo (D ui®) > 2 +1} < Qo X wi() > 250 +1)
i=0 i=k—n

- Qm,a{ij i §) > 260 + 1}

-1 [6n]

< Qe { Y u® > o} + Qup| 3w > inh <2P(Y" 8 <),
j=1

i=1 i=—n

Using the generating function f(s) =3, .o Cus” = %(1 — +/1 — 4s) of Catalan numbers
we obtain, for 0 < s < 1,

[6n] [ sn
P{Z A; < n} <sT"E[s*)" = s_”(ZZ Cr—1 (s/4)”)
j=1 n=1

o] én
= s_"(g I;ck (s/4)k) =571 —1—19).

Take s = ‘(‘Z(I_E;gz) < 1 in the upper bound above to get

Z (1-8/2)>7%\"

i=0

Apply (9.4) to write

E[/u 1{€ € [g.eal} - 1{n([0. n] x {£}) > 26n + 1}nk(dé)]

i

1

= [ e ctal Qun (D u® > 20n-+ 1) 2(a0
! i=0

IA

_§/2)2-8\"
2(%) iU 1{E € [§. e[} Ak (dE)
(CAN 2(%

=5 ) loga(¢)™".
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To complete the proof, sum over k € [0, n] and observe that

[ 1 e eabando.n] x (€ > 200+ 1} Y- me(ag)

i k=0

>3 et e[ :n([0,n] x{E}) >28n+1}. =

Proof of Theorem 5.4. The result follows from Theorem 9.4 below and the observation
that for any ¢ > 0, 8, = 2+/n~1!logn satisfies the summability condition in that theorem.
L]

Theorem 9.4. Assume (3.7) and fix i € {1,2}. Consider a sequence &, € (0, 1) with
ane_"‘g’% < 00. Then for any ¢ € 1i U,

IP’{EInO :VE e[t e, Vn>ng: Z 1{& € supp px x4e; } < n28n} =1. (9.19

xe[0,n]?

The same result holds when [0, n]|? is replaced by any one of [—n,0]?, [0,n] x [-n,0],
or [-n, 0] x [0, n].

Proof. Apply Lemma 9.3 and a union bound to deduce that for any j € {1,2}, 6§ € (0, 1),
neN,and ¢ €1 U,

PlIeeltal: Y ol =@+ Do+ 1)
x€[0,n]?

(1—68/2)*7

1 — 8 ) loga(¢)™'.

<2(n+ 1)2(
A Taylor expansion gives

-8
log(%) = —5§2/4 4+ O(8).

(1—=8)1-3
Thus, we see that for any ¢ € ri U, and any sequence §, € (0, 1) such that ane_”sr% < 00,
IED{3”0 eN:Veelt e[ Vnzno: Y pl)< n28,,} = 1.
x€[0,n]2
The result for the other three sums comes similarly. ]

Appendix A. The geometry of geodesics: previously known results

This appendix states the properties of Busemann functions, geodesics, and competition
interfaces which were discussed informally in Section 2.2. Theorem A.l introduces the
Busemann process with its main properties. It combines results that follow from [36,
Theorems 4.4 and 4.7, Lemmas 4.5 (¢) and 4.6 (¢), and Remark 4.11] and [27, Lemmas
4.7 and 5.1].
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Theorem A.1 ([27,36]). Let Py be a probability measure on RZ® under which the coor-
dinate projections are i.i.d., have positive variance, and have p > 2 finite moments. There
exists a Polish probability space (2, ¥, P) with

(1) agroup T = {Tx} cz2 of F-measurable P-preserving bijections Ty : 2 — 2,

(2) a family {wx (@) : x € Z?} of real-valued random variables w, : @ — R such that
0y (Txw) = wxty(w) forall x, y € 72,

(3) real-valued measurable functions B¢t (x, y, w) = B§+y(a)) and B¥ (x,y,w) =
B,%;,(a)) of (x,y,w,§) € Z> x 7> x Q x1i U,

(4) and T-invariant events Q} C Q and Qg C Q) for each & € 1i U, with P(Q}) =
P(Q g) =1,

such that properties (a)—(k) listed below hold:

(@) {wy : x € Z?) has distribution Py under P.

(b) Forany I C Z?, the variables

{(wx, BEP(x,y,0))ixel, y>x,0€{— 4}, E iU}

are independent of {wy : x € =Y where = ={x € Z?:x #zVz eI}

(c) Foreach &€ eriU, x,y € Z?, and 0 € {—, +}, BE9(x, y) are integrable and (2.9)
holds.

(d) Foreachw € Q, x,y € Z2, and 0 € {—, +), if ¢, n € ri U are such that Vg({O) =
Vg(no), then B*9(x, y, w) = B"(x, y, w).

(e) Foreachw € Q(l), X,y,Z € A £ eriU, and O € {—, +} properties (2.6)—(2.8) hold.
(f) Foreachw € Q(l), monotonicity (2.10) holds.

(g) For each w € Q), one-sided limits (2.11) hold.

(h) Foreach w € Q(l) and each x € 7.2,

Bf9(x,x +e;) > 00 as € — es_;, for i €{1,2}. (A.1)
(1) If P(wo <r)is continuous in r, then forall ¢ eriU, w € Ql xeZ? andoe{—, +),
BED(x, X +ep) # BED(x,x + e3). (A2)

(G) Forallé eriU, we QL ando e {—, +)},

lim max n '|B59(0,x) —x-Vg(EO)| = 0. (A3)

"%ooxen‘llﬂZ%'_
(k) Forall§ € D, w € QL and x,y € 72,
BH(x,y,a)) = Bé_(x,y,w) = Bg(x,y,a)). (A.4)

M 1f§,§,§ € D then forall w € Qé, the Busemann limit (2.5) holds.
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Remark A.2 (Weak limit construction of the Busemann process). Both articles [27, 36]
on which we rely for Theorem A.l construct the process B as a weak limit point of
Cesaro averages of probability distributions of pre-limit objects. This gives existence of
the process on a probability space €2 that is larger than the product space RZ? of the i.i.d.
weights {wy}. Article [27] takes the outcome of the weak limit from existing literature
in the form of a queueing fixed point, while [36] builds the weak limit from scratch by
considering the distribution of increments of point-to-line passage times, following the
approach introduced in [17].

To appeal to queueing literature, [27] assumes that P(wg > ¢) = 1 for some real c.
A payoff is that each process {Bf2(x, y) : x, y € Z?} is ergodic under either shift T,
[27, Theorem 5.2 (i)]. The construction in [36] does not need the lower bound assumption
but gives only the T -invariance stated above in Theorem A.1 (a).

Theorem A.4 below quotes results from [27] that were proved with the help of ergod-
icity. Remark A.5 explains how the required properties can be obtained without ergodicity.

Remark A.3 (Strong existence and ergodicity of the Busemann process). The regular-
ity condition (2.4) is equivalent to the existence of a countable dense set Dy C D such
that g,z € P for each ¢ € Dy. When (2.4) holds, [28, Theorem 3.1] shows that for ¢
in Dy, B%(x,y) = B5*(x, y) can be realized as an almost sure limit of Gy, — Gy,
when v, /n — £. The remaining values B52(x, y) can be obtained as left and right lim-
its from {B%(x, ¥)}tepn, as { — &. This way the entire process {B83(x,y): x,y € Z?,
€ €riU, 0 € {—, +}} becomes a measurable function of the i.i.d. weights {w, : x € Z?}.
We can take 2 = RZ” and the Busemann process is ergodic under any shift 7' for x # 0.

We record a simple observation here, valid under the continuous i.i.d. weights assump-
tion (1.1): there exists an event S’Z% with ]P’(Q%) = 1 such that for all w € Q2,

for every non-empty finite subset / C Z? and non-zero
integer coefficients {ax}xer, we have ) . axwy # 0. (A.5)

This condition implies the uniqueness of point-to-point geodesics mentioned under (2.1).

The following theorem summarizes previous knowledge of the structure of semi-
infinite geodesics under assumption (1.1). These results were partly summarized in Sec-
tion 2.3.

Theorem A.4 ([27, Theorems 2.1, 4.3, 4.5, and 4.6]). There exist T -invariant events Q?)

and Qg C Q} foreach & € riU, with ]P’(Qg) =1, P(Qg) = 1, and such that the following

hold:

(a) Foreveryw € 9(3) andallx € 72, 0 € {—, +), and £ eri U, y"’gD is Ugg-directed,
and every semi-infinite geodesic is Ug-directed for some § € U.

(b) Forevery £ eriU and all w € Q3, x,y € Z2, and 0 € {—, +}, y *° and y £

coalesce, i.e. there exists an integer k > x - €1 V' y - €1 such that y;fou = yky’fou.

(c) Forallé eriU, w € Q3 xeZ? ando € {—, +}, there exist at most finitely many
z € 72 such that y *° goes through x.
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(d) If g is strictly concave, then for any w € Qg every semi-infinite geodesic is &-directed
for some & € U.

(e) If & €riU is such that Ug = [g,?] satisfies &, £.& €D, then for any w € Qg and
x € Z2 we have y *¢ T = y ¥4~ This is the unique Ug-directed semi-infinite geodesic

out of x and, by part (b), all these geodesics coalesce. By part (c), there are no bi-
infinite Ug-directed geodesics.

Remark A.5 (Ergodicity in the proof of Theorem A.4). As mentioned in Remark A.2,
[27] uses ergodicity of cocycles. But the results quoted above in Theorem A.4 can be
obtained with stationarity, which comes from [36] without the restrictive assumption
wyx = C.

The proof of directedness (Theorem A.4 (a) above) given in [27, Theorem 4.3] uses the
shape theorem of ergodic cocycles stated in [27, Theorem A.1]. This shape theorem also
holds in the stationary setting, as stated above in (A.3). This result comes from [36, Theo-
rem 4.4] and it is proved in detail in [35, Appendix B]. Now the proof of [27, Theorem 4.3]
goes through line-by-line after switching its references and applying [36, Lemma 4.5 (c)]
to identify the correct centering for the cocycle.

Similarly, the non-existence of directed bi-infinite geodesics (Theorem A.4 (c) above)
proved in [27, Theorem 4.6] needs only stationarity after minor changes. Essentially the
same argument is given in [36, Lemma 6.1] in positive temperature, assuming only sta-
tionarity.

We next record an easy consequence of the previous results, ruling out the existence
of non-trivial semi-infinite geodesics which are either e1- or e>-directed.

Lemma A.6. For w € Q(l) N Q% N Qg, if y* is a semi-infinite geodesic emanating from
x withy; /n — e; forsomei € {1,2}, then y* = y .

Proof. We consider the case of i = 1, with the case of i = 2 being similar. Set x - & = k
and fix a sequence ¢, € ri U with ¢, — e; as n — co. By Theorem A.4 (a), y ¥ is
Ug,-directed. [41, Theorem 2.4] implies that e; ¢ Ue, . Then, by (A.5), if y* is as in the
statement, we must have y;’c” 2y 2x+(k—=0er = yZ’el foralln € N and £ > k.
But Theorem A.1 (h) implies that for each fixed £ > k, yex’z" =x+(k—40)e = y;’e‘
holds for all large enough 7. The result follows. |

Under the assumption that g is differentiable on ri U, Theorem A.4 (e) holds for all
& e ri U. An application of the Fubini—Tonelli theorem gives that the claims in Theorem
A.4(b,c) in fact hold on a single full P-measure event simultaneously for Lebesgue-
almost all directions £ € ri U. It is conjectured that the claim in part (c) holds in fact on a
single full-measure event, simultaneously, for all £ € ri U.

The next result is a small extension of [27, Lemma 4.4], achieved by an application of
the monotonicity in (2.13).

Theorem A.7. Assume the regularity condition (2.4). Then for any w € Q(l) N Q%, condi-
tion (2.16) holds.
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The next theorem says that there are multiple geodesics that are directed in the same
asymptotic direction &, as the competition interface, which itself can be characterized
using the Busemann process. See Figure 2.3.

Theorem A.8 ([27, (5.2) and Theorems 2.6, 2.8, and 5.3]). There exists a T -invariant
event Qg such that P(Qg) = 1 and the following hold for all w € Qg:

(a) There exists a unique point £x(w) € ri U such that (2.17) holds.

(b) Forany§ eriU, P(éx = &) > O0ifandonly if £ € (i U) \ D.

(c) Forany( < ninti U with Vg(t+) # Vg(n—), and any x € Z?, there exists y > x

such that (T, w) € 1¢, n[. Consequently, any open interval outside the closed linear
segments of g contains &, with positive probability.

(d) Foranyé& € (riU) \ D and for any x € 72, there exists y > x such that &x(Tyw) = &.
If the regularity condition (2.4) holds then the following also hold:

(e) We have the limit
fx(w) = lim n™'g)(w). (A.6)

(f) &«(Txw) is the unique direction § such that there are at least two Ug-directed semi-
infinite geodesics from x, namely y *£*
after.

, that separate at x and never intersect there-

Remark A.5 applies here as well. Ergodicity is invoked in the proofs of parts (b),
(c) and (d) in [27, Theorem 5.3 (iii)—(iv)] to apply the cocycle shape theorem. In our
stationary setting this can be replaced with the combination of [36, Theorem 4.4 and
Lemma 4.5 (¢)].

The following result for exponential weights, due to Coupier, states that there are no
directions £ with three £-directed geodesics emanating from the same site.

Theorem A.9 ([16, Theorem 1 (2)]). Assume that under P, the weights {w, : x € Z?} are
exponentially distributed i.i.d. random variables. Then there exists a T -invariant event
52303ge° with P(9303ge°) = 1 and such that for any o € ng3geo’ any £ € 1i U, and any
x € 72, there exist at most two &-directed semi-infinite geodesics out of x.

Fix a countable dense set Uy C D. The following event of full P-probability is the
basic setting for the proofs in Sections 7—8:

QO=Q})m93ngm(ﬂ[sz;ng])n( N Qg). (A7)
£cUo £e(ri U)\D

When additional assumptions are needed, $2¢ will be further restricted.

Appendix B. Auxiliary lemmas

The next lemma follows from the shape theorem for cocycles (A.3).
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Lemma B.1. Suppose g is differentiable on 1ri U. For any w € Qo, £ € ri U, and any
v e R2, n~ 1 BE%(0, |nv]) both converge to v - Vg(£) as n — oo.

Proof. The claim is obvious for v = 0. Suppose that v € Rﬁ_ \ {0}, the other cases being
similar. Take w € Q¢ and {,n € U with ¢ -e; < &-e1 <n-e1. Let x, = |nv| =
mye1 + £,e5. Then
BE(0.xn) = BEH(0.muer) + BEY (mper, xn)
< B"(0.myer) + B (mper. xn)
< B"(0,mper) + B5(0. x,) — BS (0, myey).

Divide by 7, take it to co, and apply (A.3) to B¢ and B” to get
Jim =t BEE0, %) < (- en)er - V() + v V() = (v-eer - Vg (©).
Take ¢ and 7 to £ to get

lim n~'BE4(0,x,) <v-Vg(£).
n—oo

The lower bound on the liminf holds similarly and so we have proved the claim for B+,
The same argument works for B~ ]

The lemma below is proved by calculus.

Lemma B.2. Fixc > 0. Then foralln > 1 and all a, b suchthatc <a <b <a + %
a=1pn 1 2n—1
— > = . B.1
(a +b)2n—1 — (2) .1
Appendix C. M/M/1 queues and Busemann functions

This appendix summarizes results from [22] that are needed for the proofs of the results
of Section 5. Fix parameters 0 < o < 8. We formulate a stationary M/M/1 queue in a
particular way. The inputs are two independent i.i.d. sequences: an inter-arrival process
I = (I;)iez with marginal distribution /; ~ Exp(«) and a service process Y = (Y;)iez
with marginal distribution ¥; ~ Exp(8). Out of these inputs are produced two outputs:
an inter-departure process I = (fk)kez and a sojourn process J = (Ji)kez, through
the following formulas. Let G = (Gg)kez be any function on Z with Iz = Gx — Gg41.
Define the function G = (@k)keZ by

m—1

m
Gi= swp {Gn+ D Vil =Ge+ Y+ swp Y (i —1). (€D
i=k

m:m=>k m:m>k i—k



Geodesics in LPP 2633

The convention for the empty sum is Zf:,i = 0. Under the assumption on [/ and Y, the
supremum in (C.1) is almost surely assumed at some finite 7. Then define the outputs by

Iy = G — G, (C.2)
m—1

Je=Gi—Ge=Yi+ sup > (Yie1 — 1), (C.3)

m:m>k i—k
The outputs satisfy the useful iterative equations
Ie =Y+ Uk = Jew)t and  Ji = Vi + (k1 — T ™. (C.4)

In particular, this implies the inequality I > Y.

It is a basic fact about M/M/1 queues that T and J arei.id. sequences with marginals
I ~ Exp(«) and Jx ~ Exp(B — «). Furthermore, the three variables (Yx, I, Jx+1) on the
right-hand sides of equations (C.4) are independent. (See for example [22, Appendix A].)
But / and J are not independent of each other.

The queueing interpretation goes as follows. A service station processes a bi-infinite
sequence of customers. Queueing time runs backwards on the lattice Z. Further, /; is the
time between the arrivals of customers i + 1 and i (i 4+ 1 arrived before i) and Y; is the
service time required by customer i; Ty, is the time between the departures of customers
k + 1 and k, with k + 1 departing before k; and J is the sojourn time of customer k,
that is, the total time customer k spent in the system from arrival to departure. Then J
is the sum of the service time Yj and the waiting time of customer k, represented by the
last member of (C.3). Because of our unusual convention with backward indexing, even
if Gy is the arrival time of customer £, C~}k is not the time of departure. The definition
of G in (C.1) is natural in the present setting because it immediately ties in with LPP.
The convention in [22] is different because in [22] geodesics go south and west instead of
north and east.

The joint distribution of successive nearest-neighbor increments of two Busemann
functions on a horizontal or vertical line can now be described as follows. This is a special
case of [22, Theorem 3.2].

Theorem C.1. Let ¢ < ninti U with parameters a = «({) < a(n) = B given by (5.2). Let
I = (Ii)iez and Y = (Y;)ieg be two independent i.i.d. sequences and define I = (I )xez
as above through (C.1)—(C.2).

a et i ~EBEXp(X) an i~ EBX . en the sequence
(@) Let I; ~Exp(e) and Y; ~Exp(B). Then the sequence (B} B

n
key,(k+1)e;’ kel,(k+1)e1)k€Z

has the same joint distribution as the pair (i ,Y).

(b) Let I; ~ Exp(1 — B) and Y; ~ Exp(1 — ). Then (Bf, i 1yess Bres esiyes ez
has the same joint distribution as (Y, T ).

¢ _

kep,(k+1)e

Bzel,(k ey }xez of (non-negative) differences. By Theorem C.1 this sequence is equal

Next we derive a random walk representation for the sequence {B
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in distribution to {f ¥ — Yi }kez. Define a two-sided randon walk S with positive drift
Ellisi—Y;]=a "' =gl by

_Z?=n+1(1i—l —-Y;), n<Q0,
Sn - 0, n = O’ (CS)
Yioilici = Y)), n> 0.

Then from (C.4) and (C.3),

~ + ) " + ) +
Iy =Y = (g — Jk41)" = { inf Z (Ii-1 — Yi)} = { inf (Sp —Sk)} :
n:n>k n:n>k
i=k+1
From the above we can record that for r > 0,
-«
P(Bg,el > Bg,el) = P(Ik > Jk+1) = ﬂ ﬂ . (C.6)

Corollary C.2. Let ¢ < ninri U with parameters o = a({) < a(n) = B given by (5.2).
Let S be the random walk in (C.5) with step distribution Exp(a) — Exp(B). Then the
sequence {B,fel (k+De; — Bgel (k+1)e; tkez has the same distribution as the sequence

{(inf. psk S — Sk)+}keZo

Appendix D. Random walk

Let 0 <« < B and let { X; };cz be a doubly infinite sequence of i.i.d. random variables with
marginal distribution X; ~ Exp(«) — Exp(8) (difference of two independent exponential
random variables). Let 6 denote the shift on the underlying canonical sequence space so
that X; = X o 677K Let {S,}nez be the two-sided random walk such that Sy = 0 and
Sy — Sy = Z?=m+1 X; forall m < nin Z. Let (4;);>1 be the strict ascending ladder
epochs of the forward walk. That is, begin with Ay = 0, and fori > 1 let

/11' = inf{n > Ai—l . Sn > Skifl}‘

The positive drift of S,, ensures that these variables are finite almost surely. For i > 1
define the increments L; = A; — A;—1 and H; = S}, — S,,_,. The variables {L;, H;};>1
are mutually independent with marginal distribution

an—lan

P(Ly=n,H >r)=Cn—1W

e, neN,r>0. (D.1)
Above C,, = ﬁ (Zn") for n > 0 are the Catalan numbers. A small extension of the proof
of [22, Lemma B.3] yields (D.1).
Let
Wo = inf S,,. (D.2)
m>0



Geodesics in LPP 2635

Note that Wy 0 6" > 0 if and only if S,, < infy,~, Sy, thatis, n is a last exit time for the
random walk. Define successive last exit times (in the language of Doney [19]) by

oo =inf{n >0:8, < inf S},
m>n

(D.3)
o; =inf{n > 0;_1 : S, < inf Sy} fori > 1.
m>n

Proposition D.1. Conditionally on Wy > 0 (equivalently, on oy = 0), the pairs {(o; —
0i—1,So; — So;_, ) }i=1 are i.i.d. with marginal distribution

oy
Poi—oi_1=n,8s; —Sg;_, >1 | Wp>0) = Cn_lme or (D.4)

foralli e N,n e N,andr > 0.

Proof. Let0 =ng <ny <---<ngandrq,...,r; > 0. The dual random walk

St =8n, — Spy—k for0<k <ny

(Feller [24, p. 394]) satisfies (S;")o<k<n, 4 (Sk)o<k<n, and is independent of Wy o 0"¢.
We have

P(Vi e[1,4] :0;i —0i—1 =n; —nj—yand Sg; — Sq;_, > 1i, Wo > 0)
=P(Vie[l,{]:0; =n; and S5; —Ss;_, >1i, Wo>0)

=P(\Vi€[[1,£]: Sk > Sp, > Sp,_, +ri fork € [nj_i,n;[, Wyo6"¢ >0)
=P(Vie[1.4]:S; <Sy,_p; <Syyn,_,—1i for j €ng—ni,ng—ni_i[, Woo8"¢ >0)
=P\Vke[1,£]: Ap =ng—ng—y and Hy > rp_g 1) P(Wo > 0)

=P(\Vke[1,4]: Ly =ng—g+1—n¢— and Hg > rg_g41) P(Wp > 0).

The claim follows from the independence of {Lj, Hy} and (D.1). [ ]

From o¢ as defined in (D.3), extend o; to negative indices by defining, for i =
-1,-2,-3,...,

0; = max{k < 0ojy1: Sk < So; ) (D.5)
For each k € 7 set
Wk = inf Sn — Sk. (D.6)
n:n>k

Then one can check that o1 < 0 < 0¢g, and forall i,k € Z,

Se; = inf Sy, (D.7)
n:n>o0;_1

Wo, = inf S, —So;, = So;, — So; (D.8)
n:n>ao;

and
Wie >0 < ke{o;:i €Z}. (D.9)
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Theorem D.2. Conditionally on oo = 0, equivalently, on Wy >0, {041 —0; , Wy, i € Z}
is an i.i.d. sequence with marginal distribution

n—1pn
"B

P(0it1 —0; =n, We; >r1 | Wo > 0) = Cp—y (B +a)2n—le

—ar (D.10)

foralli e N,n e N, andr > 0.

Proof. Define the processes Wy = {0; 11 —0;, Wy, :i >0} and V_ = {0; 41 —0;, Wy, :
i < —1}. Then ¥ and the conditioning event Wy > 0 depend only on (Sy),>1, while
Wo > 0 implies for n < 0 that infy,;. y>pn S = infin: n<m<o Sm. Thus W4 and W_ have
been decoupled.

Define another forward walk with the same step distribution by S = —S_y fork > 0.
Let Ao =0, (A;);>1 be the successive ladder epochs and H; = :S‘VAI. — §li—1 the successive
ladder height increments for the S walk.

We claim that on the event oy = 0,

Ai=-0; and W, =H_; fori <-1. (D.11)
First by definition, A = 0 = —0y. By the definitions and by induction, fori < —1,

Ay =min{k > A1 : 8>S, ) =min{k > —0141: S_k < So;,,}

=-—max{n <oi+1: Sy < So;,} = —0i
where the last equality came from (D.5). Then from (D.8),

Woi = Soi41 = So; = _§_0i+1 + §_Ui = _§K—i—1 + 83, = Hoi.

1

Claim (D.11) has been verified.

Let W ={A_; — A_j_1, H; :i < —1}, afunction of (S;)n<—1. By (D.11), ¥_ = ¥’
on the event g9 = 0.

Let A and B be suitable measurable sets of infinite sequences.

1
PW,iec A, V_e€B|Wy>0)=————PWyicA, VeB W>0
(W4 | Wo > 0) Po=0) (W4 o >0)

_ P(‘I’+€A, W0>0)
N P(Wy > 0)

P(V € B)= P(Vy € A| Wy > 0)P(V € B).

The conclusion follows. By Proposition D.1, conditional on W, > 0, W4 has the i.i.d.
distribution (D.10), which is the same as the i.i.d. distribution (D.1) of W', ]
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