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a b s t r a c t

Multiple autonomous agents interact over a random communication network to maximize their
individual utility functions which depend on the actions of other agents. We consider decentralized
best-response with inertia type algorithms in which agents form beliefs about the future actions of
other players based on local information, and take actions that maximize their expected utilities
computed with respect to these beliefs or continue to take their previous actions. We show con-
vergence of these types of algorithms to a Nash equilibrium in weakly acyclic games. The result
depends on the condition that the belief update and information exchange protocols successfully learn
the actions of other players with positive probability in finite time given a static environment, i.e.,
when other agents’ actions do not change. We design a decentralized fictitious play algorithm with
voluntary and limited communication (DFP-VL) protocols that satisfy this condition. In the voluntary
communication protocol, each agent decides whom to exchange information with by assessing the
novelty of its information and the potential effect of its information on others’ beliefs. The limited
communication protocol entails agents sending only their most frequent action to agents that they
decide to communicate with. Numerical experiments on a target assignment game demonstrate that
the voluntary and limited communication protocol can more than halve the number of communication
attempts while retaining the same convergence rate as DFP in which agents constantly attempt to
communicate.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-agent systems comprise of interlinked decision-makers
(agents) aiming to maximize objectives that depend on the ac-
tions of other agents in the system. In epidemics, the preemptive
measures taken by individuals affect the risks associated with so-
cialization (Bauch & Earn, 2004; Eksin, Shamma, & Weitz, 2017).
In a smart grid, multiple devices determine generation and con-
sumption levels to reach a balance while minimizing costs (Kar,
Hug, Mohammadi, & Moura, 2014; Zhang, Gatsis, & Giannakis,
2012). In autonomous teams of mobile robots, each robot decides
its direction of movement and position to maximize a team
objective that depends on the movements and positions of other
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robots (Aydın & Eksin, 2020a; Kantaros, Guo, & Zavlanos, 2019;
Kantaros & Zavlanos, 2016). In all of these settings, agents have to
reason about the motives of other agents based on local informa-
tion. Game theoretic equilibrium concepts, i.e., Nash equilibrium
(NE), provide a benchmark for rational reasoning where agents
assume other agents are also trying to achieve their individual ob-
jectives. However, computation of NE is not feasible given limited
computation capabilities and local information. Here, we develop
decentralized game-theoretic learning algorithms for settings in
which agents do not know the incentives of other agents, and
need to communicate over a random network that is subject to
failures in order to reason about other agents’ actions.

Success of a communication attempt is often subject to ran-
dom failures in social and technological settings. Moreover, in
social settings communication is often voluntary, i.e., agents at-
tempt to communicate upon the need for information exchange.
In technological settings, communication is costly to the agents.
Because of this, persistent communication attempts are neither
realistic in social settings, nor practical in technological settings.
Here, we propose decentralized learning algorithms in which
agents consider the effect of their information on a potentially
receiving agent’s beliefs before attempting to communicate.

In the decentralized algorithms considered in this paper,
agents use best-response with inertia to determine their next

https://doi.org/10.1016/j.automatica.2022.110566
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actions. In best-response with inertia, each agent forms beliefs
about the actions of other agents, and takes an action that either
maximizes its expected utility computed with respect to its be-
liefs (best-responds) or continues to take its former action (shows
inertia). Whether an agent best-responds or shows inertia in a
given step is random. Agents form beliefs about other agents’ be-
havior via information exchanges over a random communication
network. The randomness of communication means that agents
cannot receive information from every other agent at each step.
Given this setting and learning updates, we show convergence
of the best-response with inertia behavior to a NE of any weakly
acyclic game in finite time almost surely. This result holds as long
as the information exchange and belief update protocols ensure
that agents learn another agent’s action if that agent repeats the
same action long enough (Theorem 1).

We call this sufficient condition for convergence (Condition 1)
as prediction under static actions. Based on this condition, we de-
sign voluntary communication protocols in which agents attempt
to send information to an agent if they see the need to commu-
nicate (Section 4). Agents determine the need to communicate
based upon the novelty of their information to the potential re-
ceiving agent. For such an assessment, agents form second order
beliefs, i.e., reason about the beliefs that other agents have about
their behavior. In this voluntary communication protocol, agents
assume other agents act according to a stationary distribution
determined by the past empirical frequencies of their actions
similar to standard fictitious play (FP) (Brown, 1951; Marden,
Arslan, & Shamma, 2009b; Young, 2004). Unlike FP, agents cannot
keep track of the empirical frequencies of all the agents when
the communication is random and voluntary. We show that the
voluntary communication protocol satisfies the prediction under
static actions condition. (Theorem 2). Via numerical experiments
in a target assignment problem, we show that the proposed
DFP algorithm with voluntary communication and limited in-
formation exchange (DFP-VL) more than halves the number of
communication attempts per link (Section 5). In addition DFP-VL
retains a convergence rate comparable to the standard DFP with
constant communication attempts.

1.1. Related literature

FP converges to rational behavior in various games including
potential (Monderer & Shapley, 1996), weakly acyclic (Marden,
Arslan, & Shamma, 2009a; Young, 2004), zero-sum (Robinson,
1951), and stochastic games (Sayin, Parise, & Ozdaglar, 2020).
Applications of best-response type algorithms and FP include, but
are not limited to, traffic routing (Garcia, Reaume, & Smith, 2000),
target assignment (Arslan, Marden, & Shamma, 2007), scheduling
problems (Al Sheikh, Brun, Hladik, & Prabhu, 2011; Bell, 1996),
target tracking (Williams, Goldfain, Drews, Rehg, & Theodorou,
2018) and network formation (Chen & Zhu, 2019) for autonomous
teams. In FP, each agent takes an action that maximizes its ex-
pected utility (best responds) assuming other agents select their
actions randomly from a stationary distribution. Agents assume
this stationary distribution is equal to the empirical frequency
of past actions. FP is not a decentralized algorithm, since agents
need to observe past actions of everyone to be able to keep
track of empirical frequencies. Recent works (Arefizadeh & Eksin,
2019; Eksin & Ribeiro, 2017; Swenson, Eksin, Kar, & Ribeiro, 2018;
Swenson, Kar, & Xavier, 2015) consider a decentralized form of
the fictitious play, in which agents form estimates on empirical
frequencies of other agents’ actions by averaging the estimates
received from their neighbors in a communication network. These
algorithms are shown to converge to a NE in weakly acyclic
games, i.e., games that admit finite best-response improvement
paths. However, they rely on communication with neighbors after

every decision-making step. This assumption ignores the random-
ness of communication attempts, e.g., in wireless communication
settings, and the energy costs of communication. Preliminary
versions of this paper either consider a specific setting for the
voluntary communication protocol design, namely the target as-
signment game in Aydın and Eksin (2020a), or focus on the
convergence of a specific communication protocol for DFP in Ay-
din and Eksin (2020b). Theorem 1 generalizes prior convergence
results in DFP by showing that a generic inertial best-response
type behavior will converge to a rational action profile as long as
there exists a belief update and information exchange protocol
in which agents are able to learn the actions of other agents
when the environment is static. We then leverage this result to
design an intuitive and novel class of communication efficient
belief update and information exchange protocols.

In the voluntary information exchange protocols, the assess-
ment of the novelty of information is based on two metrics:
(i) novelty of local information and (ii) its potential effect on
the belief of the receiving agent. Such metrics that are based
on second order beliefs (estimating the estimates of the re-
ceiving agents) has the potential to improve communication
efficiency in other decentralized game-theoretic learning algo-
rithms based on, e.g., gradient descent (Alpcan & Ba≥ar, 2005;
De Persis & Grammatico, 2019; Koshal, Nedi¢, & Shanbhag, 2016;
Shamma & Arslan, 2005), best-response (Scutari & Pang, 2013),
ADMM (Salehisadaghiani, Shi, & Pavel, 2019), and other adaptive
strategies (Ye & Hu, 2021). Indeed, communication-censoring
protocols that rely on some form of novelty of information met-
rics proved viable in reducing communication attempts in dis-
tributed stochastic gradient descent (Chen, Giannakis, Sun and
Yin, 2018; Chen, Sadler and Blum, 2018) and ADMM (Li, Liu,
Tian, & Ling, 2019) in the context of optimization. In the class
of information exchange protocols considered here, while the
novelty of information metric is sender specific, the metric on
potential effect of information on other’s assessment is receiving
agent specific. Thus, agents manage their local information by
deciding whom to communicate with. This is a novel commu-
nication protocol that relies on agents keeping track of second
order beliefs, i.e., forming beliefs on beliefs, in order to estimate
the novelty of their information to the candidate receiving agent.

2. Learning Nash equilibria in time-varying random networks

2.1. Notation

We use k.k to denote Euclidean norm. We use |.| to denote
both the absolute value of a scalar and the cardinality of a set.
The notation �(.) defines the space of probability distributions
over a given set. 1(.) is an indicator function. We denote the set
of N agents with N = {1, 2, . . . ,N}. We implement the standard
index notation (i, �i) to differentiate agent i 2 N from all of the
other agents �i := {j 2 N : j 6= i}. For any set or an element of a
set X , if an index subscript is used, e.g., Xi, Xj, or X�i, it indicates
the ownership of the set by the given agent(s).

2.2. Problem statement

We consider a non-cooperative game � among a set of N
agents. Each agent i chooses an action ai from a common action
set A with finitely many actions, i.e., |A| = K . We represent each
action with an unit vector ek 2 RK so that A := {e1, e2, . . . , eK }.
Agent i obtains a bounded payoff Ui(a) 2 R from the joint action
profile a 2 AN .

A mixed action (strategy) �i is a probability distribution over
the action space A. We define the space of probability distri-
butions over the action space as �(A). A strategy profile � =

2
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(�i, ��i) is a joint mixed action profile belonging to the set of
independent probability distributions over the space of action
profiles, i.e., �N (A) :=

Q
i2N �(A). Each agent has an utility

function ui : �N (A) ! R. Given a strategy profile � 2 �N (A)
and payoff values Ui(a) for a 2 AN , the (expected) utility of agent
i is given as,

ui(� ) :=

X

a2AN

Ui(a)� (a) (1)

where � (a) is the probability of action profile a 2 AN . Note
that a pure action ai = ek can be interpreted as a degenerate
probability distribution that selects action k with probability 1.
In the rest of the paper, we will use ui(a) = Ui(a) to indicate
the (expected) payoff value obtained from the degenerate distri-
bution a 2 �N (A). Then, the game can be defined by the tuple
� := (N ,AN , {ui}i2N ).

We assume point-to-point communication between each pair
of agents, but communication is subject to random failures. The
probability of the existence of a communication link between
agent i 2 N and agent j 2 N \ {i} at time t 2 N+ is distributed
with a Bernoulli random variable,

cij(t) ⇠ Bernoulli(pij(t)), (2)

where the probability of success is 0  pij(t)  1. We denote the
random communication network at time t with G(t) = (N , E(t))
where E(t) := {(i, j) 2 N ⇥ N : cij(t) = 1} is the set of edges
realized according to (2). The random communication network
G(t) belongs to the space of all possible networks G given the set
of nodes N .

Given the scenario above, agents need to determine their
actions given locally available information. In addition to the
randomness of communication, the communication resources can
be limited or costly further deterring agents from transmitting
their information continuously. The objective of this paper to
develop a decentralized algorithm that is aware of the potential
limits and costs of communication attempts, and that reaches
an optimal action profile, defined as a pure NE, given a random
communication channel.

Next, we describe the standard FP and then introduce a gen-
eralization of FP for random communication networks.

2.3. Fictitious play with inertia

FP is a distributed game-theoretic learning algorithm in which
agents repeatedly take actions in discrete time steps that max-
imize their expected utilities. Agents form estimates of other
agents’ strategies assuming that other agents are taking actions
drawn from a stationary probability distribution determined by
the empirical frequency of past actions. The empirical frequency
fi 2 �(A) of agent i is computed as follows,

fi(t) = (1 � ⇢)fi(t � 1) + ⇢ai(t), (3)

where ai(t) 2 A is the action of agent i at time t 2 N+ and
⇢ 2 (0, 1) is a fading memory constant.

Given the empirical frequencies of other agents f�i(t) =

{fj(t) 2 �(A)}j2N\i, agent i’s expected utility from taking action
ai is given as,

ui(ai, f�i(t)) =

X

a�i2AN�1

ui(ai, a�i)f�i(t)(a�i), (4)

f�i(t)(a�i) represents the probability of action profile a�i occur-
ring.

In FP with inertia, each agent best-responds with inertia,
i.e., either takes an action that maximizes its expected utility, or
follows its previous action with a small probability ✏ 2 (0, 1).
Agent i needs to observe the past actions of all agents in order
to compute the empirical frequencies as per (3) so that it can
compute the best response action.

2.4. Decentralized fictitious play (DFP) in random networks

When communication between agents is subject to failures,
agents do not have immediate and permanent access to others’
actions. One way to address this problem is by agents keeping
local estimates of empirical frequencies of past actions. We de-
note the estimate of agent i on agent j’s empirical frequency in
(3) with f ij (t) 2 �(A). As in standard FP with inertia, agents
best-respond with inertia, i.e., maximize their expected utility or
continue taking the previous action with probability ✏,

ai(t) =

⇢
argmaxai2A ui(ai, f i�i(t � 1)) w.pr. 1 � ✏,

ai(t � 1) w.pr. ✏.
(5)

Note that we replaced the empirical frequencies f�i(t) in (4) with
the estimates f i

�i(t) := {f ij (t)}j2N\{i} to get the expected utility of
agent i from taking action ai 2 A (ui(ai, f i�i(t))) in (5).

In DFP, agents update their local estimates based on infor-
mation they receive from their neighbors in the network. We
denote the information available to agent i at time t with Hi(t).
The information exchange protocol of agent i, denoted with ⌦i :

Hi(t) ! �i⇥ I i
�i(t), determines the information I i

�i agent i shares
with other agents (�i) using its local information Hi(t). If I ij (t) 6=

;, this implies that agent i would like to communicate with agent
j. We define the set of agents that agent i is willing to commu-
nicate with as N out

i (t) := {j 2 N : I ij (t) 6= ;} ✓ �i. Upon receiving
information from its neighbors, N in

i (t) := {j 2 �i : i 2 N out
j (t) \

{cji(t) = 1}}, agent i updates its estimates {f ij (t)}j2N according to
a function �i,j : Hi(t) ! �(A). Given the exchange protocol of all
the agents {⌦j}j2N , we define the information available to agent i
at time t as Hi(t) := {{ai(s)}t�1

s=1,
Qt�1

s=1
Q

j2N in
i (s) I

j
i (s)}. Equivalently,

the information available to agent i at time t+1 is a concatenation
of the information available at time t with the new information
revealed at time t , i.e., Hi(t + 1) = {Hi(t), ai(t),

Q
j2N in

i (t) I
j
i (t)}.

For the convergence analysis, we will be agnostic to the
specifics of the estimate updates (�i := {�i,j, j 2 �i}) and
the information exchange process (⌦i), as long as they ensure
that agents are able to learn others’ actions under a static action
profile. We state the condition formally next.

Condition 1 (Prediction Under Static Actions). There exists a positive
probability ✏̂ > 0 and a finite time T̂ such that if an agent j 2 N
repeats the same action for at least T > T̂ times starting from
time t > 0, i.e., conditioned on the event Êj(t) = {aj(s) = ek for
s = t, t+1, . . . , t + T � 1} and ek 2 A, agent i 2 N learns agent j’s
action with positive probability ✏̂ > 0, i.e., P(kaj(t+T )�f ij (t+T )k 

⇠ |H(t), Êj(t)) � ✏̂ for any ⇠ > 0.

Any estimate update and information exchange process that
satisfies Condition 1 makes sure that agent i’s estimate of agent j’s
action (f ij (t)) gets close to agent j’s action (aj(t)) whenever agent
j repeats its action long enough.

We summarize the key steps of the generic DFP in Algorithm
1.
Algorithm 1 Generic DFP for Agent i
1: Input: Inertia probability ✏ and fading constant ⇢.
2: Given: f i

�i(0) and a(0) for all i 2 N .
3: for t = 1, 2, · · · do
4: Best-respond: Use f i(t � 1) := {f ij (t � 1)}j2�i in (5)
5: Share information: Use ⌦i to determine N out

i (t) and the
information to be exchanged

6: Observe: Receive information from N in
i (t)

7: Update estimates: f ij (t + 1) = �i,j(Hi(t + 1)) for j 2 �i.
8: end for

3
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3. DFP convergence for weakly acyclic games

We consider convergence of the DFP in the class of weakly
acyclic games. A weakly acyclic game has finite best-response
paths, i.e., starting from any action profile there exists a (finite)
sequence of best-response updates that reach a pure NE (Milch-
taich, 1996; Young, 1993). A best-response path is a sequence
of action profiles obtained by a single agent best-responding to
the current action profile at each step of the sequence. Next we
provide formal definitions for a NE strategy and weakly acyclic
games.

Definition 1 (Nash Equilibrium). A strategy profile � ⇤ =

(� ⇤

i , � ⇤

�i) 2 �N (A) is a Nash equilibrium of the game � if and
only if

ui(� ⇤

i , � ⇤

�i) � ui(�i, �
⇤

�i), for all �i 2 �(A), i 2 N . (6)

A pure NE strategy profile � ⇤ is a NE that selects an action profile
a⇤ = (a⇤

i , a
⇤

�i) 2 AN with probability 1.

A NE strategy is an (mixed) action profile in which no individ-
ual agent can benefit by unilaterally switching to another action.

Definition 2 (Weakly Acyclic Game). A game � is weakly acyclic
if from any joint action profile a = (ai, a�i) 2 AN , there exists a
best-response path ending at a pure NE a⇤ = (a⇤

i , a
⇤

�i).

The existence of a finite best-response path ensures that no
agent can improve its utility after some finite number of iter-
ations. Weakly acyclic games are a broad class of games that
include potential games and its several variants such as best-
response potential and pseudo-potential games.

We consider weakly acyclic games in which optimal action is
unique when other agents take NE actions. Specifically, we make
the following assumption.

Assumption 1. For any pure NE action profile a⇤ 2 AN of the
game � , it holds that,

{a⇤

i } = argmax
ai2A

ui(ai, a⇤

�i). (7)

This assumption makes sure that agents are not indifferent
between multiple actions at a pure NE.

3.1. Convergence to a pure Nash equilibrium

We show almost sure convergence of joint action profile a(t)
to a pure NE a⇤ (Theorem 1). The convergence result relies on the
fact that the DFP dynamics stays at a pure NE once it reaches that
NE (Lemma 2), and there is a positive probability to reach a pure
NE from any action profile (Lemma 3). Before showing these lem-
mas, we show that the best response action of an agent computed
with respect to the estimated empirical frequencies {f ij (t)}j2N
belongs to the best response action set computed with respect
to the actual actions of others a�i(t), whenever the estimates are
close enough to a�i(t)–see Appendix A.1 for the proof.

Lemma 1. There exists a small enough ⇠ > 0 such that if kaj(t)�
f ij (t)k  ⇠ for agents j 2 �i at time step t, then argmaxai2A ui

(ai, f i�i(t)) ✓ argmaxai2A ui(ai, a�i) for all i 2 N and a�i 2 AN�1.

Next, we prove that when agents play a pure NE and are
aware of others’ actions, agents are going to stay in this pure NE
indefinitely.

Lemma 2 (Absorption Property). Suppose Assumption 1 holds. As-
sume kaj(t +T )� f ij (t +T )k  ⇠ where ⇠ > 0 satisfies Lemma 1 for
all pairs of agents (i, j) 2 N ⇥N \ {i} at time step t + T . Further, let
a⇤ 2 AN be a pure NE action profile and a(t+T ) = a⇤. Then, pure NE
are the absorbing states such that a(s) = a⇤ holds for all s � t + T .

Proof. By Assumption 1, the set of optimal actions given others’
actions a�i(t + T ) = a⇤

�i is a singleton given by argmaxai2A ui
(ai, f i�i(t + T )) = argmaxai2A ui(ai, a⇤

�i) = {a⇤

i }. Otherwise, by
inertia agent i takes the same action a⇤

i . Thus, the joint action
profile remains at the pure NE, i.e., a(s) = a⇤, for all s � t+T . ⇤

In the above proof, we use the fact that a NE is a fixed point of
a best-response mapping. By the fixed point definition of NE, and
the fact that agents best respond as in (5), only Nash equilibria
can be the absorbing joint action profiles.

The next lemma states that there is a positive probability that
agents can reach a NE action profile given Condition 1.

Lemma 3 (Positive Probability of Absorption). Suppose Assumption 1
and Condition 1 hold. Let a(t) 2 AN be the joint action profile at time
t. We define the following event starting from time t,

E(t) ={a(s) = a⇤, kaj(s̄ + T ) � f ij (s̄ + T )k  ⇠

for all (i, j) 2 N ⇥ N \ {i}
for all s 2 {s̄, s̄ + 1, . . . , s̄ + T � 1}
for some s̄ 2 {t, t + 1, . . . , t + KNT }}

where a⇤ 2 AN is a pure NE and ⇠ > 0 is small enough such that
the condition in Lemma 1 is satisfied. Then the transition probability
P(E(t)|H(t)), is bounded below by some positive constant ✏̄(T ) > 0
for all t 2 N+.

Proof. To show the result, we are going to use the fact that in
weakly acyclic games, there exists a finite path from any action
profile to a pure NE. The action set of each agent has cardinality
K . There exists KN different joint action profiles in total. Hence,
KN is an upper bound on the length of any finite path to a pure
NE.

If a(t) = a⇤, the pure NE is reached, and there is no im-
provement step, and E(t) is realized by the fact that beliefs are
close enough to the actual actions so that they satisfy Lemma 1.
If a(t) 6= a⇤, we can exploit the fact that there is a finite best-
response path to a pure NE. In each improvement step, only one
agent improves its utility by changing its action. First, we define
the set of best-response actions for agent i against the current
action profile of other agents using local empirical frequencies,

Âi(t) = {ai 2 A| argmax
ai2A

ui(ai, f i�i(t + T + 1))

✓ argmax
ai2A

ui(ai, a�i(t + T + 1))}.

Then, the following event can be defined accordingly,

E1(t) = {ai(t + T + 1) 2 Âi(t)}.

We aim to find a lower-bound for the probability of the event
E1(T ). For this purpose, we define the following events below,

E2(t) = {kaj(t + T ) � f ij (t + T )k  ⇠ for all j 2 �i}

E3(t) = {ai(t + T + 1) 2 argmax
ai2A

ui(ai, f i�i(t + T + 1))}

E4(t) = {aj(t + T + 1) = aj(t + T ) for all j 2 �i}

For a small enough selected ⇠ , it holds by Lemma 1,

P(E1(t)|H(t)) � P(E2(t), E3(t), E4(t)|H(t)). (8)

4
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Using the chain rule, RHS of (8) is equal to,

P(E2(t), E3(t), E4(t)|H(t))

= P(E3(t), E4(t)|E2(t),H(t))P(E2(t)|H(t)). (9)

By Condition 1 and inertia probability, the second term in (9) can
again be conditioned, and be lower bounded,

P(E2(t)|H(t)) �P(E2(t)|H(t), Êj(t) for all j 2 �i)

⇥ P(Êj(t) for all j 2 �i|H(t)) (10)

�✏̂N✏NT . (11)

Then, the remaining part of (9) has positive probability under
the condition of prediction under static actions. This probability
is equal to the probability that agent i best-responds, while other
agents take the same action, i.e.,

P(E3(t), E4(t)|E2(t),H(t)) � (1 � ✏)✏(N�1) (12)

Thus, the finite improvement step has positive lower bound,

P(E1(t)|H(t)) � ✏1 := ✏̂N✏NT (1 � ✏)✏(N�1) > 0. (13)

After the completion of an improvement step, the event of
another improvement step until a⇤ is reached has at least the
same positive probability. As stated before, total number of im-
provement paths cannot exceed KN times. Once a(s̄) = a⇤, the
probability of repeating the same action profile by all agents and
learning other’s actions is again ✏̂N✏NT . Using this, the probability
to reach a pure NE is bounded below as P(E(t)|H(t)) � ✏̄ =

✏KN
1 ✏̂N✏NT . ⇤

Lemma 3 relies on showing that the DFP dynamics can follow
a best-response path with positive probability if agents can obtain
accurate enough information on other agents’ actions in finite
time.

Remark 1. We show that a finite improvement path has a
positive probability by considering the worst possible case where
all agents have to repeat the same action NT times so that
Condition 1 is satisfied for a small enough ⇠ such that Lemma 1
holds for agent i. Moreover, we assume the longest possible
improvement path where all KN actions have to be visited. Given
that our derivation relies on the worst case scenario, the positive
probability of absorption does not inform the rate of convergence
as we demonstrate in numerical experiments (Section 5). The
studies (Arslan & Yüksel, 2016; Gao, Ma, Ba≥ar, & Birge, 2021;
Marden et al., 2009b; Marden, Young, Arslan, & Shamma, 2009;
Swenson et al., 2018) on weakly acyclic games indicate similar
lower bounds in terms of the best-response path length on the
value of positive probability to reach NE. The numerical results in
these studies also corroborate our observation that worst-case-
type analysis does not reflect the average convergence rates in
practice for different kinds of games including, but not limited
to, target assignment and congestion games.

Next, we state the main convergence theorem.

Theorem 1. Suppose Assumption 1 and Condition 1 hold. Let
{a(t) = (a1(t), a2(t), . . . , aN (t))}t�1 be a sequence of actions by the
DFP Algorithm (Algorithm 1) and random time-varying communica-
tion networks {G(t)}t�1. The action sequence {a(t)}t�1 converges to
a pure NE a⇤ of the game � , almost surely.

Proof. By Lemma 2, pure Nash equilibria are the absorbing states
of the DFP dynamics among all joint action profiles. By Lemma 3,
there exists a positive probability to reach a pure NE. Further,
Lemmas 2 and 3 together imply that there are no recurrent sets
(infinitely visited) of action profiles other than absorbing states

(pure NE). This is because the sequence of actions at reaches a
pure NE with a positive probability (Lemma 3), which means all
other actions besides the pure Nash equilibria are transient states.
Therefore, in finite time with probability 1, a pure NE is reached
and action profile stays the same once reached. Thus, the action
sequence {a(t)}t�1 converges to a pure NE a⇤ of the game � ,
almost surely. ⇤

The convergence result relies on the idea of absorbing Markov
chains in which pure Nash equilibria are the only absorbing states
among all joint action profiles (states) and there is a positive
probability of reaching a NE action profile starting from any
action.

4. Information exchange and belief update protocols for ran-
dom communication networks

We introduce information exchange ⌦i(·) and belief update
�i(·) protocols that aim to reduce the number of communication
attempts while at the same time guaranteeing that prediction
under static actions condition (Condition 1) holds.

4.1. Voluntary communication protocols

We use two metrics, novelty and belief similarity, to deter-
mine whether agent i attempts to send information to agent j
or not. The novelty metric is the distance between the empir-
ical frequency of agent i and its current action denoted with
hii(t) := kai(t) � fi(t)k. The belief similarity metric, defined as
hij(t) := kfi(t)�f j(i)i (t)k, is the distance between agent i’s empirical
frequency fi(t) and the second order belief of agent i, i.e., agent
i’s belief on agent j’s belief on fi(t) denoted with f j(i)i (t). Based
on these metrics, agent i decides to communicate its empirical
frequency fi(t) to agent j if the following logical condition is
satisfied,

1(⌘1  hii(t)  ⌘2) _ 1(hij(t) � ⌘3) (14)

where ⌘2 > ⌘1 � 0 and ⌘3 � 0, 1(·) is the indicator function, and
_ is the logical OR operator. Condition (14) determines the set of
agents agent that i is willing to communicate with at time step t ,
i.e., N out

i (t).
The intuition for the condition in (14) is as follows. The novelty

metric hii(t) is likely to be small when agent i takes the same
action for several steps indicating that it may have converged on
an action. If hii(t) is large, it means agent i is undecided, taking
a different action from its past set of actions. When hii is neither
too small or too large, agent i attempts to communicate with all
the other agents. Agent i attempts to send its empirical frequency
specifically to agent j, if it believes agent j does not have an
accurate estimate of its empirical frequency, i.e., if hij is large
enough. When neither of these conditions holds, that is if agent
i’s novelty is small or large, and agent j 2 N \ i has an accurate
belief about agent i’s actions, then agent i ceases to communicate.

Given the communication scheme, agent i updates its belief
f ij 2 �(A) about agent j’s empirical frequency fj at each time step
as follows,

f ij (t) =

⇢
fj(t), if cji(t) = 1,
f ij (t � 1), otherwise.

(15)

That is, agent i replaces its estimate on agent j’s empirical fre-
quency with the empirical frequency received from agent j upon
a successful communication attempt. Otherwise, its estimate re-
mains the same.

In computing the belief similarity hij(t), agent i has to form
and update beliefs about agent j’s belief on its own empirical
frequency f ji (t). This can be done via an acknowledgment scheme
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where each time agent i makes a successful communication at-
tempt to agent j, agent j sends back 1-bit acknowledgment signal.
We allow the acknowledgment signal to be subject to failures
with a Bernoulli variable bij(t) ⇠ Bernoulli(�ij(t)) with success
rate 0  �ij(t)  1. We note that the acknowledgment procedure
is executed if and only if agent i receives information from agent
j. Thus, we have P(bij(t) = 0|cji(t) = 0) = 1. Otherwise, we
have P(bij(t) = 1|cji(t) = 1) > �ij(t). Given the acknowledgment
scheme, agent i’s second order belief f j(i)i (t) 2 �(A) is updated as
follows,

f j(i)i (t) =

⇢
fi(t), if bji(t) = 1,
f j(i)i (t � 1), otherwise.

(16)

Upon receiving the acknowledgment, agent i knows that its em-
pirical frequency is transmitted to agent j, and agent j has updated
its belief as per (15). In a scenario where cij(t) = 1 and bji(t) = 1,
empirical frequencies and estimates align, i.e., f ji (t) = f j(i)i (t) =

fi(t).

Remark 2. In the information exchange and belief update pro-
tocols described above, each agent keeps an estimate of the
empirical frequencies of all agents {f ij (t)}j2N , an N⇥K real-valued
matrix, and second order beliefs about other agents’ estimates
about its empirical frequency {f j(i)i (t)}j2N , an N ⇥ K real-valued
matrix. Agent i attempts to send its empirical frequency fi(t),
a real-valued vector of length K , to a subset of agents in N
according to the condition in (14). In prior works that consider
DFP (Swenson et al., 2018), each agent shares their estimates of
all the other agents, {f ij (t)}j2N , an N ⇥K real-valued matrix, to all
of their neighbors at every step.

4.2. Limited information communication

Agents share the maximum value and the index of their em-
pirical frequency, i.e.,

�i(t) = max
k2K

f iik(t), (17)

i(t) = argmax
k2K

f iik(t), (18)

instead of their empirical frequencies, where f iik 2 [0, 1] is the
frequency of action k 2 K in agent i’s past actions. When an
agent j successfully sends the maximum value �j(t) and its index
j(t) (18) to agent i, agent i needs to reconstruct a well-defined
empirical frequency and update its belief f ij (t) accordingly. Upon
successful communication of �j(t) and j(t), the reconstructed
belief f ij (t) has to satisfy
X

k2K

f ijk(t) = 1, f ijk(t) � 0, f iji(t)(t) � �i(t), (19)

where f ijk denotes the kth index. While the first two constraints
above define a proper distribution over the space of actions, the
third constraint makes sure that the receiving agent uses the in-
formation received. There could multiple update rules
�i(j(t), �j(t)) that satisfy the conditions in (19). For instance, one
update rule can assume full support on the most frequent action
of agent j, i.e., f ijj(t)(t) = 1 and f ijk(t) = 0 for k 2 K \ j(t). Another
update rule can assume actions other than the most common are
equally likely, i.e., f iji(t)(t) = �j(t) and f ijk(t) = (1��j(t))/(|K|�1)
for k 2 K \ j(t).

Remark 3. The limited communication protocol described fur-
ther reduces the information sent per communication attempt to
a single real value �i(t) and an integer i(t).

4.3. Convergence of communication and belief update protocols

We describe the specific steps of the DFP with voluntary and
limited communication protocols (DFP-VL) in Algorithm 2. Step 4
corresponds to the best response step in Algorithm 1. Steps 5–7
correspond to the information sharing and observation steps in
Algorithm 1. Steps 8–9 update the empirical frequency estimates
and second order beliefs, respectively.
Algorithm 2 DFP-VL for Agent i
1: Input: The parameters ⇢, ✏, ⌘1, ⌘2, ⌘3.
2: Given: f i

�i(0) = {f ij (0)}j2N\{i}, f
j(i)
i (0) for all j 2 N \ i and a(0)

for all i 2 N .
3: for t = 1, 2, · · · do
4: Agent i takes action ai(t) using (5).
5: Determine N out

i (t) by checking (14) for all j 2 N \ {i}.
6: Transmit �i(t) and i(t) to agent j 2 N out

i .
7: Send an acknowledgment signal to j 2 N in

i (t)
8: Update f ij (t) = �i,j(j(t), ⌫j(t)) for j 2 N in

i (t).
9: Update f j(i)i (t) = fi(t) for agent {j 2 N out

i \ {j : bji(t) = 1}}.
10: end for

Theorem 2. Suppose the communication and acknowledgment
success probabilities are lower bounded by a positive value, i.e.,
pij(t) > ⌫ > 0 and bji(t) > ⌫ > 0 for all t 2 N+ and i 2 N , j 2 N .
Let {a(t) = (a1(t), a2(t), . . . , aN (t))}t�1 be a sequence of actions
generated by the DFP-VL (Algorithm 2). Then, Condition 1 is satisfied
for any ⇠ > 0 given small enough 0  ⌘1 < ⇠/2, large enough
⇠/2 < ⌘2, and small enough 0  ⌘3  ⇠/2 given the repetition of
the same action by agent j 2 N as stated in Condition 1.

Proof. See the Appendix. ⇤

Theorem 2 implies that DFP-VL converges to a pure NE of any
weakly acyclic game via Theorem 1.

5. Numerical experiments

We investigate the performance of different communication
protocols in terms of convergence rate and cost of communication
in the target assignment game.

5.1. Target assignment game

A team of N agents aim to cover N targets with minimum ef-
fort. We can represent the problem as a game with the following
payoff values for agent i,

Ui(ai, a�i) =
aTi 1a�ik=0

aTi di
, (20)

where ai = ek 2 RK is an unit vector and 1a�ik=0 2 {0, 1}K is a
binary vector whose kth index is 1 if none of the other agents
j 2 N \ {i} selects target k, and otherwise the kth index is
equal to 0. The distance vector di = [di1, . . . , dik, . . . , diK ] 2 RK

+

measures the distance between agent i and each target k in the
2-dimensional plane, where dik = k✓i � ✓kk. Agent i obtains a
positive utility that is inversely proportional to the distance of the
agent to the selected target if the target is not selected by another
agent j. Otherwise, agent i receives zero utility. Given the utility
function (20), any joint action that is an one-to-one assignment
between agents and targets is a pure NE.

In the numerical experiments, we consider a target assignment
problem with N = 20 agents and K = 20 targets. Positions of
agents and targets are randomly generated on the plane. Target
positions are generated using polar coordinates with radii and
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Fig. 1. Convergence results over 100 replications for DFP, DFP-V, DFP-L, and DFP-VL. See Table 1 for parameter values. (a) Convergence of empirical frequencies to pure
NE 1

N

P
i2N kfi(t)� a⇤

i k on average. We obtain the nearest pure NE by solving a linear assignment problem. (b) Convergence of beliefs 1
N(N�1)

P
i2N

P
j2N \{i} kfi(t)�

f ji (t)k. (c) Average attempt per communication link over time.

Table 1
Parameter values of algorithms.

Parameters
DFP-VL DFP-V DFP-L DFP

⌘1 0.2 0.2 – –
⌘2 0.6 0.6 – –
⌘3 0.1 0.1 – –
✏ 0.3 0.3 0.3 0.3
⇢ 0.6 0.6 0.6 0.6
1-bit Yes No Yes No

angular coordinates uniformly sampled from 15 to 20, and from
0 to 2⇡ , respectively. Similarly, the positions of agents on the
2-dimensional plane are determined by sampling from a normal
distribution with mean 0 and standard deviation 1 independently
for each dimension. The pairwise distances between agents and
targets are computed based on the positions of agents and targets.

The communication and acknowledgment probability for
each link are given as pij(t) = 0.6 and �ij(t) = 0.9 for all t � 1
and i 2 N , j 2 N \ {i}. Initial empirical frequencies of agents
fi(0) are set to uniform discrete distribution, i.e., fik = 1/K for
k = {1, . . . , K }. We run each simulation for Tf = 120 steps.

5.2. Effects of the communication protocol

We compare the effects of different communication protocols
to the standard DFP in which agents attempt to communicate
with all the agents after each decision with DFP-V, DFP-L, and
DFP-VL (Algorithm 2). DFP-V uses only the voluntary communi-
cation protocol (Section 4.1). In DFP-L, agents attempt to commu-
nicate at every step but use the limited communication protocol
(Section 4.2). The parameter values are given in Table 1.

In all communication protocols, the final action profile aTf is
a pure NE for all 100 realizations. That is, the action profile a
time Tf = 120 is a one-to-one assignment of agents to targets.
The empirical frequencies converge to the pure NE the fastest on
average in DFP followed by the second fastest DFP-V (Fig. 1(a)).
In protocols that use limited communication, the decrease in
distance of empirical frequencies to a NE tends to be slower. The
average time to reach a final pure NE action profile is the fastest
for DFP (t = 21) and slowest for DFP-VL (t = 46).

We observe that constant communication in DFP achieves a
faster convergence of beliefs, while voluntary and limited com-
munication protocols slow down the convergence in beliefs as
shown in Fig. 1(b). Together, Fig. 1(a)–(b) signify that commu-
nication protocols increase belief error but preserve convergence
to an equilibrium. Indeed, for voluntary communication protocols
(DFP-V and DFP-VL), the belief errors stays constant around 10�2

as agents cease communication attempts. In contrast, the belief

error converges to 0 in DFP and DFP-L as communication attempts
continue. For DFP-L, the reduced error in beliefs does not translate
to smaller distance of empirical frequencies to a NE compared
to DFP-V (compare DFP-L and DFP-V in Fig. 1(a)). The possible
reason for this is the difference in actions selected based on the
real empirical frequencies and estimates based on 1-bit signals.
That is, limited communication reduces total cost by O(K ) which
leads to a loss of information valuable to convergence rate of
empirical frequencies.

DFP-V and DFP-VL start at full usage of links and then cease
the communication attempts almost entirely toward the end
of the simulation horizon (Fig. 1(c)). DFP-V and DFP-VL utilize
17% and 22% of the communication links on average. Further,
note that even though DFP-V uses less communication links on
average, the total communication cost for DFP-VL is an O(K ) less
than DFP-V since DFP-VL sends only 1-bit information. This also
implies that DFP-VL has communication cost less than 1 percent
of DFP given the number of actions K = 20. Thus, voluntary
and limited communication protocols effectively reduce commu-
nication cost, while converging to a pure NE in all cases within
Tf = 120 with the given set of parameters.

5.3. Parameter sensitivity

We assess the performance of DFP-VL under different com-
munication thresholds in Fig. 2. Here we consider smaller fading
⇢ = 0.4 and inertia ✏ = 0.1 values compared to Fig. 1. We
select the set of threshold values starting from the tightest case
with (⌘1, ⌘2, ⌘3) = (0.4, 0.5, 0.4), and we relax each threshold
value by 0.1 until (⌘1, ⌘2, ⌘3) = (0.1, 0.8, 0.1). Compared with the
baseline case (DFP-VL shown with black line in Fig. 1), we observe
that DFP-VL converges faster on average with smaller fading and
smaller inertia—observe all the lines in Fig. 2(a) reach below
10�5.

As expected, Fig. 2(a–c) show that as threshold values are
relaxed, the time to reach the final pure NE is faster on an average
game at the expense of increased communication cost. The aver-
age time to reach the final NE action profile is between t = 33
(green line) and t = 41 (black line). Average communication
attempts are between 14% (black line) and 21% (green line). In all
parameter values, communication attempts are reduced at least
by 95% after the half time Tf /2 = 60. As the threshold values are
relaxed, we see smaller belief error in the final time step Tf = 120
(Fig. 2(b)).

We note that the final action profile aTf is a pure NE in all of
the replications for each parameter set. Fig. 3 shows an instance
of the time evolution of the action profile at for each parameter
set. Overall, we do not see abrupt changes in the overall perfor-
mance of DFP-VL with different parameter values. With different
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Fig. 2. Convergence results of DFP-VL with different parameter values over 100 replications. Fading rate ⇢ = 0.8 and inertia probability ✏ = 0.1. (a) Convergence of
empirical frequencies to pure NE 1

N

P
i2N kfi(t)�a⇤

i k on average. (b) Convergence of Beliefs 1
N(N�1)

P
i2N

P
j2N \{i} kfi(t)�f ji (t)k. (c) Average attempt per communication

link over time.

Fig. 3. Instances of joint actions profile at over time generated by DFP-VL with the given parameters. Joint action profiles converges to one-to-one assignments
which are pure NE.

parameter values, agents can still converge to a pure NE in all
cases, albeit smaller fading rate and inertia values appear to be
more preferable in terms of convergence rate.

6. Conclusion

We considered inertial best-response type algorithms given
random communication networks for learning Nash equilibria
in weakly acyclic games. We showed that the actions gener-
ated from inertial best-response type algorithms converge to a
pure Nash equilibrium almost surely under the condition that
agents learn to predict the actions of other agents when those
agents repeat the same action. We then proposed voluntary
and limited communication protocols for DFP. Using this pro-
tocol, agents choose the subset of agents they want to send

information to. We further showed that the proposed communi-
cation protocols satisfy the prediction under static actions condi-
tion, and thus are guaranteed to converge to a pure NE. Compared
to standard DFP with constant communication attempts, nu-
merical experiments showed that the proposed communication
protocols significantly reduce communication attempts while
achieving comparable convergence rates.

Appendix

A.1. Proof of Lemma 1

The expected utility ui : �AN ! R in (1) is a linear
combination of bounded payoff values Ui(a). Thus, there exists a
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Lipschitz constant L > 0 such that the following holds,

|ui(ai, f i�i(t)) � ui(ai, a�i)|  Lka�i � f i
�i(t)k, (A.1)

 L
X

j2N\{i}

kaj � f ij (t)k,

 L(N � 1)⇠ <
µ

2
, (A.2)

for some µ > 0. Next, we define the following mutually exclusive
subsets of action space A for all i 2 N ,

A1(i) = {ek1 2 A |ai = ek1 2 argmax ui(ai, a�i)}, (A.3)

A2(i) = {ek2 2 A |ai = ek2 /2 argmax ui(ai, a�i)}. (A.4)

Since they are mutually exclusive subsets, it holds Ai = A1(i) [

A2(i) and A1(i)\A2(i) = ;. Then, optimal set over a finite feasible
set of utility functions cannot be an empty set A1(i) 6= ;, while it
is possible that A2(i) = ;. Firstly, suppose that A2(i) 6= ;. Hence,
there exist actions a0

i 2 A1(i) and a00

i 2 A2(i) such that,

ui(a0

i, a�i) � ui(a00

i , a�i) > µ (A.5)

for some µ > 0 satisfying (A.2) where we note that µ can be
made small enough by selecting a small enough ⇠ .

Note that (A.2) holds for both actions a0

i 2 A1(i) and a00

i 2 A2(i),

|ui(a0

i, f
i
�i(t)) � ui(a0

i, a�i)| <
µ

2
, (A.6)

|ui(a00

i , f
i
�i(t)) � ui(a00

i , a�i)| <
µ

2
. (A.7)

Next, we add the terms in (A.6) and (A.7) to the left and right
hand sides of (A.5), respectively. Since the difference between the
terms in (A.6) and (A.7) must be no worse than �µ/2, it yields,

ui(a0

i, f
i
�i(t)) � ui(a00

i , f
i
�i(t))

= ui(a0

i, f
i
�i(t)) + ui(a0

i, a�i) � ui(a00

i , a�i)
� ui(a0

i, a�i) + ui(a00

i , a�i) � ui(a00

i , f
i
�i(t))

> µ �
µ

2
�

µ

2
= 0. (A.8)

Further, for any two best-response actions, a0

i 2 A1(i) and ã0

i 2

A1(i), it can be shown that

|ui(a0

i, f
i
�i(t)) � ui(ã0

i, f
i
�i(t))| < µ. (A.9)

As a result, using its estimates f i
�i(t), agent i only chooses an

action from its optimal action set A1(i) for the both cases A2(i) =

; and A2(i) 6= ;. Thus, it holds for all i 2 N ,

argmax
ai2A

ui(ai, f i�i(t)) ✓ argmax
ai2A

ui(ai, a�i). (A.10)

A.2. Proof of Theorem 2

We note that the randomness stems from inertia, and commu-
nication and acknowledgment failures. The probability of given
events in the following part, only depends on these random
variables. Thus, showing that the event {kaj(t + T ) � f ij (t +

T )k  ⇠} has a positive probability follows from the positive
probability of successful communication and acknowledgment,
and the positive probability of agent j repeating the same action
via inertia. Consider the following events:

E5(t) = {kaj(t + T ) � f ij (t + T )k 

kaj(t + T ) � fj(t + T )k + kfj(t + T ) � f i(j)j (t + T )k}
E6(t) = {kaj(t + T ) � fj(t + T )k  ⇠/2}

E7(t) = {kfj(t + T ) � f i(j)j (t + T )k  ⇠/2}

By triangle equality we have,

kaj(t + T ) � f ij (t + T )k 

kaj(t + T ) � fj(t + T )k + kfj(t + T ) � f ij (t + T )k. (A.11)

Then, via triangle inequality, showing that E5(t) happens with
positive probability reduces to showing the positive probability
of the following event,

E8(t) = {k fj(t + T ) � f ij (t + T ) k

kfj(t + T ) � f i(j)j (t + T )k}.

Given the assumptions on ⌘1, ⌘2 and ⌘3, condition in (14) is
satisfied, i.e., agent j attempts to communicate with agent i, until
the events E6 and E7 happen together.

In the event that agent j successfully communicates with agent
i and receives an acknowledgment, we have f ij (t+T ) = f i(j)j (t+T ).
Hence, it follows,

P(E5(t)|H(t), Êj(t)) = P(E8(t)|H(t), Êj(t))

= P(cji(t + T ) = 1, bji(t + T ) = 1) � ⌫2, (A.12)

where the event Êj(t) is as defined in Condition 1, and the in-
equality follows via the lower bound on communication and
acknowledgment success probabilities. Next, the event E6(t) is
certain given the repetition of the same action by agent j, and
by Lemma 4(a) there exists a long enough T such that,

P(E6(t)|H(t), Êj(t)) = 1. (A.13)

Now, let �j(t+T ) be the estimate of empirical frequency of agent
j constructed using limited information �j(t+T ) (17) and j(t+T )
(18) at time t + T . By triangle equality, we have

kfj(t + T ) � f i(j)j (t + T )k  kfj(t + T ) � �j(t + T )k

+ k�j(t + T ) � f ij (t + T )k + kf ij (t + T ) � f i(j)j (t + T )k. (A.14)

Now, consider the following events,

E9(t) = {kfj(t + T ) � �j(t + T )k  ⇠/2}
E10(t) = {k�j(t + T ) � f ij (t + T )k = 0}

E11(t) = {kf ij (t + T ) � f i(j)j (t + T )k = 0}

Given the repetition of the same actions by agents j 2 N \

{i} and Lemma 4(b), there exists a long enough T such that
P(E9(t)|H(t), Ê(t)) = 1 similar to (A.13). Further, see the re-
maining events have also positive probability as a result of the
lower bound on the chance of successful communication and
acknowledgment,

P(E10(t)|H(t), Êj(t)) = P(cji(t + T ) = 1) � ⌫ > 0, (A.15)

P(E11(t)|H(t), Êj(t)) = P(cji(t + T ) = 1, bji(t + T ) = 1)

� ⌫2 > 0. (A.16)

The equality in (A.15) follows by the fact that the estimate based
on limited information from j, i.e., �j(t + T ), can only be con-
structed at node i if there is a successful communication from
node j to i. Similarly, j’s belief about i’s belief is correct only
when both the communication and acknowledgment attempts
are successful. From (A.14) and the bounds above, we have

P(E7(t)|H(t),Êj(t)) �

P(E9(t), E10(t), E11(t)|H(t), Êj(t)) � ⌫2 > 0. (A.17)

Thus, there exists a positive real number ✏̂ > 0 such that,

P(kaj(t + T ) � f ij (t + T )k  ⇠ |H(t), Êj(t)) �

P(E5(t), E6(t), E7(t)|H(t), Êj(t)) � ⌫2
= ✏̂ > 0. (A.18)

9
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A.3. Technical result

Lemma 4. Let {a(t) = (a1(t), a2(t), . . . , aN (t))}t�1 be a sequence of
actions generated by the DFP-VL (Algorithm 2). For a given 0 < ⇠1
and 0 < ⇠2, there exists a long enough T such that if agent j 2

N \ {i} repeats the same action aj(s) = ek at least T > 0 times for
s = t, t + 1, . . . , t + T � 1, then

(a) kaj(t + T ) � fj(t + T )k  ⇠1 for all j 2 N \ {i},
(b) k�j(t + T ) � fj(t + T )k  ⇠2 for all j 2 N \ {i},

where �j(t) is the reconstructed belief of agent j’s empirical fre-
quency using �j(t) and j(t) defined in (17) and (18), respectively.

Proof.

(a) From (3), it holds that if ek is repeated for any ⌧ 2

{0, 1, 2, . . .} starting from time t by a player j 2 N \ {i},

fj(t + ⌧ ) = (1 � ⇢)⌧ fj(t) + (1 � (1 � ⇢)⌧ )ek, (A.19)

Subtracting ek from both sides and taking the norm we
obtain the following,

kfj(t + ⌧ ) � ekk = k(1 � ⇢)⌧ (fj(t) � ek)k,
= O((1 � ⇢)⌧ ). (A.20)

Therefore, if agent j 2 N \ {i} repeat the same action aj(s) =

ek for long enough T > 0 times for s = t, t+1, . . . , t+T�1,
we have the inequality in (a).

(b) We use triangle inequality to get,

k�j(t + T ) � fj(t + T )k  k�j(t + T ) � aj(t + T )k

+ kaj(t + T ) � fj(t + T )k. (A.21)

Then, notice that kaj(t + T ) � fj(t + T )k = O((1 � ⇢)T+1)
implies |�j(t) � 1| = O((1�⇢)T+1). Since �ji(t)(t+T ) � �j(t)
via (19), it also holds k�j(t +T )�aj(t +T )k = O((1�⇢)T+1).
Thus, given the repetition of the same action for T times, we
have

k�j(t + T ) � fj(t + T )k
 k�j(t + T ) � aj(t + T )k + kaj(t + T ) � fj(t + T )k

= O((1 � ⇢)T+1)  ⇠2. ⇤ (A.22)
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