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Abstract

Ambystoma mexicanum (axolotl) embryos and juveniles have been used as

model organisms for developmental and regenerative research for many years.

This neotenic aquatic species maintains the unique capability to regenerate

most, if not all, of its tissues well into adulthood. With large externally devel-

oping embryos, axolotls were one of the original model species for develop-

mental biology. However, increased access to, and use of, organisms with

sequenced and annotated genomes, such as Xenopus laevis and tropicalis and

Danio rerio, reduced the prevalence of axolotls as models in embryogenesis

studies. Recent sequencing of the large axolotl genome opens up new possibili-

ties for defining the recipes that drive the formation and regeneration of tissues

like the limbs and spinal cord. However, to decode the large A. mexicanum

genome will take a herculean effort, community resources, and the develop-

ment of novel techniques. Here, we provide an updated axolotl-staging chart

ranging from one-cell stage to immature adult, paired with a perspective on

both historical and current axolotl research that spans from their use in early

studies of development to the recent cutting-edge research, employment of

transgenesis, high-resolution imaging, and study of mechanisms deployed in

regeneration.
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1 | INTRODUCTION

Ambystoma mexicanum, the Mexican salamander com-
monly known as the axolotl, is an endangered
amphibian with amazing regenerative capabilities.
Although adult animals range in size, axolotls typi-
cally grow up to 20–35 cm in length from head to tail
and live an aquatic lifestyle.1 As natural predators,
axolotls are capable of eating many organisms that
cross their path. However, due to deterioration of
their natural ecosystem, axolotls currently hold a criti-
cally endangered status.2,3

Unlike most other amphibious salamanders, axolotls
are neotenic animals that retain juvenile traits through-
out their lifetime.4 Their close relatives, like the tiger

salamander (Ambystoma tigrinum), undergo metamor-
phosis as they mature, losing the fringed gills and caudal
fin that make axolotls so distinctive.5 Their neoteny is
possible because axolotls lack thyroid-stimulating hor-
mone, a precursor to thyroxine: the necessary component
to kick-start metamorphosis. In fact, an injection of
iodine or thyroxine can be used to stimulate the transi-
tion, but the results are stochastic and regeneration
capacity can be reduced in some cases.6,7 Demircan et al.
identified reductions in some tissues' regenerative capaci-
ties and complete inhibition in others after thyroid hor-
mone treatment.4 In contrast, Monaghan et al. found that
while body size had no effect on regeneration, thyroxine-
induced metamorphosis reduced regeneration rates by
twofold and produced forelimb and digit abnormalities.7
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Further research is needed to pinpoint the regenerative
outcome of induced metamorphosis in axolotl and under-
stand the mechanisms of growth regulation during
regeneration.

A current gap in axolotl research is the application of
new, precise tools for understanding cells at the individ-
ual and collective levels, and studies of gene and protein
expression and function across development and regener-
ation. These experiments are key to support comparative
developmental studies and identify conserved and diver-
gent regulatory modules controlling axolotl developmen-
tal and regenerative programs. So much can be done
with these animals, such as gain and loss of function,8-10

CRISPR-mediated transgenesis,10,11 single-cell characteri-
zation, 12-16 live imaging,17-20 transplants and cell lineage
tracing,20-27 and the use of ex vivo explants28 to compare
the developmental processes of this unique salamander
to the robust body of avian, frog, zebrafish, and mouse
developmental research. For example, axolotl gills can
regenerate, yet they are one of three modes of respiration
at the organism's disposal, and their full role remains
unknown.29

Axolotls have the potential to become more prevalent
developmental models, similar to Xenopus, but the conti-
nuity of tools and resources is lacking. Specifically, there
are few stock resource centers for ease of stocking, hous-
ing, and sharing transgenic animals. However, the NIH-
funded Ambystoma Genetic Stock Center (AGSC) has
created Sal-Site (https://ambystoma.uky.edu/quick-links/
sal-site) to provide information and access to resources
for investigators.30,31 Recent work characterizing mutant
laboratory axolotls identified that all individuals from the
AGSC contain small portions of the tiger salamander
(Ambystoma tigrinum) genome, as there appears to be
genetic cross-contamination.32 These findings provoke
the questions: how similar are laboratory axolotls to
those in the wild, and how might discoveries differ based
on genomic differences? Other tools like cross-species
tools for gain and loss of function, validated antibodies
that recognize axolotl proteins, and interspecies compari-
son of transcriptional networks would greatly improve
knowledge acquisition capabilities.

2 | NATURAL HISTORY OF THE
AXOLOTL

Axolotls have been used as research organisms for over
150 years, and their vast potential stems from a humble
beginning.33 Native axolotls originated in Lake Texcoco,
thriving along the lake's banks, and later, the canals of
the Aztec city-state of Xochimilco. The Spaniards took
notice of the Aztec people's fondness for eating this

aquatic species in the mid-16th century.34 Then, during
the Spanish conquest and colonial rule, Xochimilco
expanded rapidly, to the detriment of axolotls. The 19th
century saw the first scientific interest in this species, and
in 1863, six axolotls were transported from Mexico to the
Jardin Des Plantes in Paris. These original six individuals
propagated the majority of the present-day research axo-
lotl population. As a result, many axolotls used in
research have high genetic similarity, with an inbreeding
coefficient of 35%, which substantially exceeds the
threshold of 12% that indicates breeding between first
cousins and concerns ecologists and geneticists greatly.35

This inbreeding decreases the viability of axolotls as a
genetic model and potentially increases their disease sus-
ceptibility. Despite this challenge, axolotls spread as labo-
ratory animals due to the ease of year-round breeding in
captivity and naturally-occurring developmental muta-
tions.36 However, axolotls are near extinction in their
native Mexico, begetting a lack of genetic diversity in
wild axolotls as well. Therefore, without remediation, sci-
ence may lose secrets hidden in the axolotl's genetic
diversity on both fronts.37 Despite these challenges, the
axolotl makes up for these genetic pitfalls with many
redeeming qualities.

3 | BACK TO THE FUTURE:
AXOLOTLS AS MODELS FOR
EMBRYONIC DEVELOPMENT

Amphibian embryos are an excellent model system for
the study of cell and developmental biology due to their
large sizes, resiliency, and large clutch sizes. As the major
limb and spinal cord regenerative model system, axolotls
are well studied in juvenile and larval stages;10,38 how-
ever, we lack detailed information about the molecular
mechanisms that drive their early developmental pro-
cesses. While axolotls retain their juvenile characteristics
into adulthood, their development proceeds through dis-
tinct stages (Figure 1).39,40 In contrast to many other
aquatic research models, axolotls utilize internal fertiliza-
tion, externally laying single one-cell embryos over the
course of several hours.41 Morphologically, early axolotl
development appears to proceed similarly to other
aquatic amphibians like Xenopus laevis or Xenopus
tropicalis. For example, axolotls develop more rapidly at
warmer temperatures, as noted previously.39,40 At their
preferred cooler temperatures (17-18�C), axolotls progress
through rapid cleavage stages (Figure 1, cleavage-blas-
tula, 0–24 hours post laying, HPL), stereotypical gastrula-
tion (Figure 1, gastrula, 24–54 hours HPL) and
neurulation (Figure 1, neurula, 54–72 hours HPL). Neu-
rulation is followed by tailbud and tadpole stages
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(prehatched and hatched, 72–340 hours + HPL) where
organogenesis and growth occur. After hatching, limb
morphogenesis (characterized in detail by the litera-
ture42) occurs and animals continue to grow and mature
(Figure 1, larva-adult, or juvenile adult, 2-18 months
post-fertilization). However, axolotl development pro-
ceeds at a slower rate during early development than
Xenopus, and the animals are not sexually mature until
they are approximately 1 year of age or older.40,43,44

A current gap exists in axolotl research in the study of
embryogenesis at the cell and tissue levels and the com-
parative understanding of the epigenetic, transcriptomic,
and proteomic changes that occur in early stages and pri-
mary formation compared to regeneration. A regulatory
map of the processes that control primary development
during embryogenesis in axolotl would be informative in

its own right but would also inform regeneration studies
in larvae, juveniles, and adult animals. It is difficult to
ascertain which developmental or regenerative mecha-
nisms are conserved with other vertebrates, including in
“distantly” related fish, avians, and rodents, or even with
more closely related amphibians such as X. laevis and
tropicalis with the current gaps in knowledge. For the
most fruitful research outcomes, it is important to know
where these animals come from (primary development)
in order to understand where they are going
(regeneration).

Quantitative three-dimensional imaging and recon-
struction of axolotl neurula embryos has provided some
detail of the mechanical forces and changes that occur at
the earliest developmental stages.45,46 Additional work
focused on the role of ion transport during

FIGURE 1 Staging series for Ambystoma mexicanum from fertilization through maturation. Stages were grouped into eight different

categories: cleavage-blastula (0–24 hours post laying, HPL), gastrula (24–54 hours HPL), neurula (54–72 hours HPL), early tailbud (72–
83 hours HPL), tailbud (83–122 hours HPL), prehatched (122–342 + HPL), hatched (342 hours to 1–3 months postlaying/fertilization), and

larva-adult. Hatched larva to sexually mature adult can take up to 18 months depending on tank density. At cleavage/blastula stages, both

animal and lateral views are shown. Similar to Xenopus laevis and tropicalis, Ambystoma embryos have pigment differentials on the animal

and vegetal poles, the animal poles being dark and the vegetal poles light colored and filled with yolk even in leucistic animals as shown. At

gastrula stages, we show both dorsal and posterior views. As gastrulation proceeds, the blastopore closes and the animals begin to neurulate.

At neurula stages, we show dorsal and anterior views. After neural tube closure, the embryos begin axis elongation throughout the early

tailbud and tailbud stages. At these stages, we show lateral views. The gill arches become visible during tailbud stages and further develop in

the prehatch tadpoles (lateral view). At these stages, gills become more pronounced and eyes gain pigment and become visible. Prehatch

embryos remain in their thick jelly coats in natural settings. In hatched tadpoles, the dorsal fin becomes more transparent, the gills branch

and grow outward (lateral view). We show a dorsal view of a larva-adult. This animal is approximately 1 year old, but is not yet fully grown

or sexually mature
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neurulation.47,48 However, more work is needed to vali-
date structural and molecular similarities between axolotl
development and other vertebrates. Without validated
antibodies and molecular stains to spatiotemporally mark
specific tissue derivatives in axolotl embryos, characteri-
zation and comparative analyses of cell and tissue specifi-
cation and differentiation timing will be difficult.
Although there is a single study of transcriptomic
changes during embryogenesis in axolotl,49 the work was
published prior to the axolotl genome sequencing and
should be reassessed with this recent knowledge. Further,
scientists are creating additional molecular tools for spa-
tiotemporal profiling of gene and protein expression, but
more research is needed to understand the molecular
mechanisms driving development in these early stages.

Early embryonic fate specification in axolotls is some-
what varied from their closely related frog embryos. Axo-
lotl ectoderm forms neural tissue in the absence of an
organizer signal28 whereas in frog embryos, ectoderm
forms non-neural ectoderm or epidermis in the absence
of an organizer.50 However, neural induction and contin-
ued development requires additional instructive signaling
in both organisms.28,51

The study of neural development is often paired with
analyses of neural crest cell formation and migration, as
the two tissues arise from the same ectodermal germ
layer. Axolotls were a well-used model for the first wave
of neural crest research that lasted roughly from the
1920s to 1950s, in which several scientists observed the
migration and differentiation of this stem-like cell popu-
lation through trunk and cranial neural crest transplanta-
tion experiments. Newth's 1954 study supported the idea
that neural crest cells are specified but not determined at
the neurula stage.52 Delving further into the realm of
understanding these migratory cells, Epperlein and
Löfberg discovered that trunk neural crest-derived mela-
nophores and xanthophores create the pigment pattern
in axolotls.53 Cell tracing studies have also been per-
formed on axolotl trunk neural crest cells and have
shown that axolotl neural crest cells have different poten-
tials depending on where they originate in the anterior–
posterior axis, similar to chicken embryos.22,24,54 In addi-
tion, CRISPR-mediated genome editing and morpholino
knockdowns have been used successfully in axolotl
embryos, suggesting that it is a tractable model for func-
tional studies.10,55-58 Moury and Jacobson identified that
competence to become neural crest cells is not limited to
the neural folds. They also proposed that epidermis-
neural plate signaling and forces generated by local inter-
actions between the two tissues induce neural crest cells,
thus supporting a hypothesis of mixed intrinsic and
extrinsic factors controlling neural crest cell development
in axolotl embryos.58 These experiments established the

nature of neural crest cells and began to answer ques-
tions on the timing of neural crest specification and
migration. Between the 1960s and 2000s, the shift toward
X. laevis as a developmental model and abundance of
research in the avian neural crest contributed to a short-
age of publications in this field.

The brink of the 21st century saw a resurgence in axo-
lotl developmental research, picking up from the surge of
neural crest cell research in urodele amphibians from the
1920s to 1950s.59 This second wave of neural crest cell
research in axolotls resumed in the early 2000s, as new
techniques gave scientists the ability to reconsider classic
questions in neural crest development. This era also
upheld the importance of comparative studies and cen-
tered the axolotl in the field of evolution of development
(“evo-devo”). Epperlein et al. took advantage of lipophilic
dye injections and the novel neural crest cell marker,
AP-2, to define the order of neural crest cell migratory
streams in axolotl and the potential of neural crest cells
to change their migration path when displaced off
course.22 Scanning electron microscopy (SEM) identified
detailed information on neural crest cell migratory
stream routes and stream assembly, as well as cell shape
and orientation across stages.59 Comparing axolotl neural
crest cell migration to other vertebrates identified that
axolotls exhibit earlier neural crest cell migration than
newts, but retain the distinct migratory streams common
to amphibians.59 Epperlein et al. demonstrated the
unique migratory patterns and timing of neural crest cell
development in axolotls.53 Explant experiments showed
intrinsic neural crest cell patterning and segmental
migration, but the support of extrinsic signaling from the
neighboring epidermis was necessary to maintain distinct
streams.60 These two waves of axolotl neural crest cell
research provide a strong basis for future axolotl studies,
and it is clear this model organism still has much
untapped potential.

4 | AXOLOTLS AS MODELS FOR
EVOLUTION OF DEVELOPMENT
(EVO-DEVO)

While lamprey and hydra are renowned model organisms
for studies of evolutionarily conserved and divergent
developmental and regeneration mechanisms, axolotls
carve out their own niche in the field of evo-devo stud-
ies.59 As developmental models, X. laevis and D. rerio are
currently more prominent than the axolotl, but the newly
sequenced axolotl genome paired with epigenetic and
transcriptomic analyses provide traction to re-invigorate
the use of axolotl in both comparative and mechanistic
studies of conserved and divergent evolutionary
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processes.61-63 Rationale for the use of zebrafish and frog
embryos over axolotls in developmental studies may
include the ease of in vitro fertilization and jelly coat
removal in frogs64,65 and genetic tractability in
zebrafish,66 but axolotls provide a unique evolutionary
niche. Frogs and fish develop faster and can be more
resilient to cleavage-stage manipulation than axolotls. As
a result, many laboratory techniques have been created
or adapted for Xenopus, including in situ hybridization,
immunohistochemistry, transgenic methods, and expres-
sion cloning.67-69 However, the axolotl reigns supreme as
a vertebrate regenerative model, and techniques
pioneered in other aquatic models can, and have been,
readily be adapted for use in axolotl studies.

Their large genome, neoteny, ability to regenerate,
and lack of a genome-wide duplication make axolotls the
perfect tetrapod models that fill a unique evolutionary
niche compared to other vertebrate models.62,63,70-72 To
date, multiple studies have used axolotls as a comparative
model of development. Axolotls are unique in their lack
of Pax3, which drives neural crest and mesoderm devel-
opment in multiple vertebrate species.62 Its absence sug-
gests that there are some differences in the molecular
mechanisms driving complex developmental processes
across species. However, multiple studies identified
developmental similarities as well. Analysis of pelvic
development in axolotl and lungfish identified conserved
mechanisms of chondrogenesis and musculogenesis
between the lobe-finned fish and the tetrapod.73 In addi-
tion, studies of axolotl dentition identified a conserved
ecto-endodermal boundary as the potential mediator of
tooth development across multiple species.26 Further, loss
of function studies identified that Bapx1 is necessary for
jaw joint formation in multiple vertebrates, including
axolotls.74 The current body of evo-devo research using
axolotl as a bridge animal have identified similarities and
differences from genomic to morphological scales. Access
to newly developing tools and an annotated genome will
advance these studies tremendously in the future.

5 | THE ULTIMATE
REGENERATOR

Although multiple animals have limited capabilities to
regenerate, the axolotl has devised unique, extensive, and
elegant methods of regenerating multiple tissues
(Table 1).111-113 Here, we will focus on a subset of regen-
eration studies that span both historical and current
work. Neoteny places axolotls at a unique intersection of
developmental and regenerative research potential. They
exhibit scarless wound healing and a lower cancer

incidence,6,87 and they are an experimentally accessible
organism for cell plasticity studies.3,107 They also develop
quite slowly compared to other aquatic organisms such
as zebrafish and frogs, lending them to experimental
embryology studies, including cell fate tracing
methods.21,60,114-119

Most tissues within the axolotl regenerate in some
capacity, making the species highly valuable for such
studies. However, the axolotl does not necessarily employ
the same mode of regeneration across tissues (Table 1).
For example, dentectomy studies show that tooth regen-
eration is a nerve-dependent process while the lower jaw
can regenerate without innervation.103 Also, axolotls can
only regenerate their lens within the first 2 weeks of life,
contrasting with other tissues' extended regenerative
capacity.79 Apoptotic tissue degradation is a precursor to
the regenerative process following axolotl limb injuries,
and an axolotl must remove injured cells and reduce
immune cell counts to a specific balance to avoid
unwanted damage.120 There are multiple in-depth recent
reviews on the subject of axolotl regeneration,
112,113,121,122 but the current body of research suggests
that salamanders respond to injury signals in a way that
is distinct from mammals. One of the secrets to axolotl
limb and tail regeneration lies in its ability to form a blas-
tema after injury. The blastema is a region of
dedifferentiated cells that forms from underlying tissues
at the site of injury.13,21,38,119,123-125 This transient struc-
ture interacts with the wound epidermis in similar ways
to mesodermal–epidermal interactions seen during
embryonic development.55,88 However, dedifferentiation
and blastemal formation are not sufficient to drive the
formation of a fully functional and patterned limb or tail
after amputation. Although not an exhaustive list, signal-
ing from immune cells, nerve cells, the inflammation
response, and whole organism proliferation responses
also occur and are important for regeneration after
injury.14,15,102,126,127

While the body of research on axolotls and other sal-
amanders has uncovered many details of their regenera-
tive potential, the mechanistic basis of neoteny remains
largely unknown. However, there may be developmental
origins linking the neotenic state of axolotls with their
exemplary regeneration capacity.128,129 Recent work has
identified that many tissues maintain populations of
stem-like cells, allowing for growth, wound healing, and
regeneration. Embryonic stem-like cells, including neu-
ral crest cells, may be a key to a subset of axolotl regen-
erative capabilities.130-133 Understanding these
mechanisms is crucial to bridge the gap in knowledge
between axolotl developmental and regenerative
programs.
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6 | FUTURE OF AMBYSTOMA AS A
RESEARCH ORGANISM

New tools broaden the horizons for comparative and
functional research in axolotls even further (Table 2).
Obtaining the sequenced axolotl genome in 2018 and
multiple bulk and single-cell transcriptomic atlases of
developing and regenerating embryos and tissues have
provided a baseline for functional studies, such as the
analysis of genes and proteins that aid in regeneration.
Specifically, single-cell sequencing atlases have been cre-
ated from lineage-specific12,14-16 and unbiased13 samples
during forelimb regeneration. By performing single-cell
characterization of changes in gene expression during
multiple stages of axolotl limb regeneration, previous
studies identified that connective tissue cells revert to
embryonic profiles,12 there are mitochondrial-specific
genes supporting regeneration,16 and that this process is
paired with changes in the immune response in lineage-
specific and unbiased cell populations.13,14 In addition to
transcriptomic analyses, recent characterization of the
chromatin landscape using the assay for transposase-

accessible chromatin using sequencing (ATAC-seq) in
regenerating axolotl limbs has added complexity to the
story by identifying changes during the eight stages of
regeneration.139

A wide topic for future axolotl research is the investi-
gation of the unique programming axolotls hold that
makes their scarless wound healing, lower incidence of
cancer, and regenerative capabilities currently
unattainable in other vertebrates. Current research shows
that regeneration is not as simple as rebooting embryonic
programming; rather, it appears as though wound
healing and regeneration responses are much more com-
plex than simple dedifferentiation and redifferentiation,
and depend on the type of cells, stage of regeneration,
environment, and tissue-type. The process of dedifferenti-
ation is necessary for regeneration of certain tissues, but
it does not provide a complete picture of the process.
Dedifferentiated cells can cross over to new cell lineages,
and single-cell atlases support the dedifferentiation con-
cept in specific tissues.12,138 However, the limits of this
fate-switching are yet to be completely tested, and further
work is needed to confirm this process across

TABLE 1 Summary of tissues and structures that regenerate in axolotls after injury

Tissue Type of injury Regeneration (Y/N) References

Ectoderm derived

Brain Incision to left dorsal pallium Yes, regenerate multiple original
neuron populations, but
connectivity anomalies do occur

75-78

Lens Lensectomy Yes* (lost 2 weeks after hatching) 79,80

Retina Retinectomy Yes 81-83

Spinal cord Amputation and spinal cord
transection

Yes 20,84-86

Skin Full thickness excisional (FTE)
wounding with 4 mm biopsy
punches

Yes 87-90

Sensory hair cells Laser ablation Yes 91-93

Mesoderm derived

Heart Ventricular resection and cryoinjury Yes 94-98

Ovary Partial ovariectomy Yes 99

Skeletal muscle Limb amputation Yes 16,100,101

Endoderm derived

Gills Partial amputation Yes 29

Lung Partial amputation Yes 102

Derived from multiple germ layers

Jaw/tooth Dentectomy Yes, teeth are nerve dependent,
lower jaw is independent

103

Limb Amputation Yes 12,13,15,38,42,104-106

Tail Amputation Yes 10,27,84,91,104,107-110
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species.27,100 A related gap in knowledge is the explora-
tion of the axolotl immune system in the regeneration of
different tissues, although there is strong groundwork
laid for future studies in limb, spinal cord, craniofacial,
and heart tissues, among others.14,15,97,140 A decline in
the immune system is correlated with aging and lack of
regeneration in other vertebrates,141 and axolotls must
maintain their immune systems in a careful balance to
regenerate injured tissues successfully. As most regenera-
tion studies have been performed in immature axolotls, it
will be interesting to see how future studies determine
whether the same reduction in immune response occurs
in mature animals.

Even with the identification of novel genes and cell
types during regeneration, the field still lacks many of the
tools that would allow for fast analysis of functional rele-
vance to define mechanisms, identify gene regulatory net-
works, and link the similarities and differences between
development and regeneration in axolotls. However, with
the founding of the International Society for Regenerative
Biology (https://internationalsocietyforregenerativebiology.
org/), the creation of AxoBase, a new online axolotl
resource (https://www.axobase.org/), the NIH-funded sup-
port for Sal-Site (https://ambystoma.uky.edu/quick-links/
sal-site) and annual Salamander Meetings bringing together
researchers from across the globe, the future of research
using the axolotl as a model organism is promising.

7 | POP CULTURE ICONS

Secondary to their obvious importance in discovering the
secrets of vertebrate regeneration and to the potential

discoveries of new developmental pathways, these anom-
alous salamanders are pop culture icons. Axolotls are
conspicuously adorable and hold a high status in the
modern world. They are incorporated into video games,
cartoons, and social media posts. We would be remiss to
omit the charismatic draw of this animal in society. In
Japan, the axolotl is known as the wooper looper/rooper
(https://www.caudata.org), made popular by a commer-
cial marketing campaign that was then followed by the
creation of an axolotl named Wooper in Pokémon car-
toons and video games. Further, other popular video
games such as Fortnite and Minecraft introduced axolotls
as passive characters in 2021,142 and Build-A-Bear cre-
ated a buildable axolotl plush toy. On social media outlets
like Twitter, axolotls are used for scientific communica-
tion and public engagement (e.g., #ChonkTheAxolotl),
but are also popular in avatars and art. Most recently, the
axolotl has been featured on the 50 peso bill from the
Bank of Mexico as a representative of ancient Mexico.
These animals provide the scientific community with
answers while they provide the world with joy.

8 | EXPERIMENTAL PROCEDURES

8.1 | Animal Husbandry

All use of axolotl adults and embryos was performed in
accordance with the UC Davis approved IACUC protocol
#21448. Axolotls were bred in house and embryos were
collected for fixation at multiple stages in preparation for
imaging. Embryos were fixed in 4% paraformaldehyde
solution in 2% phosphate buffer for 1 hour and then were

TABLE 2 Summary of recent developments in molecular tools in axolotl research

Tool Use References

Sequenced genome Key to study of sequences that regulate development, aid
regeneration, and so on

61-63

Foamy virus Gene transfer method used for regeneration studies 134

Baculo virus Gene transfer and gene overexpression 135

Vesicular stomatitis virus Gene transfer and neural cell labeling 136

Retroviruses Infection in vivo and in vitro to target specific cell types in
regeneration

137

Germline transgenic strains Cell tracing and mutagenesis during development and regeneration 20,23,134,137

Click chemistry Lung injury in axolotl salamanders induces an organ-wide
proliferation response

20,102,110

Single-cell sequencing Single-cell transcriptomic datasets from multiple germ layers and cell
types in regenerating axolotl tissues

12,14-16,138

CRISPR-mediated genomic mutation Implementation of genomic deletion via CRISPR/Cas9-mediated
genome editing in axolotl

10,25,57
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either dehydrated step-wise into 100% methanol for stor-
age or were imaged immediately in 1� TBS (500 mM
Tris-HCl pH 7.4, 1.5 M NaCl, and 10 mM CaCl2) con-
taining 0.1% Triton X-100 (TBST+ Ca2+).

8.2 | Imaging

All whole mount embryos (Figure 1) were imaged using
a Zeiss Microscopy Camera Axiocam 208 color mounted
to a Zeiss Stemi 305 dissecting microscope. Zen Blue soft-
ware was used for processing.
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