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Abstract— We consider linear-quadratic-Gaussian (LQG)
network games in which agents have quadratic payoffs
that depend on their individual and neighbors’ actions,
and an unknown payoff-relevant state. An information de-
signer determines the fidelity of information revealed to
the agents about the payoff state to maximize the social
welfare. Prior results show that full information disclosure
is optimal under certain assumptions on the payoffs, i.e.,
it is beneficial for the average individual. In this paper, we
provide conditions for general network structures based on
the strength of the dependence of payoffs on neighbors’
actions, i.e., competition, under which a rational agent is
expected to benefit, i.e., receive higher payoffs, from full
information disclosure. We find that all agents benefit from
information disclosure for the star network structure when
the game is homogeneous. We also identify that the central
agent benefits more than a peripheral agent from full in-
formation disclosure unless the competition is strong and
the number of peripheral agents is small enough. Despite
the fact that all agents expect to benefit from information
disclosure ex-ante, a central agent can be worse-off from
information disclosure in many realizations of the payoff
state under strong competition, indicating that a risk-averse
central agent can prefer uninformative signals ex-ante.

Index Terms— Information design, welfare maximization,
network games

[. INTRODUCTION

N an incomplete information network game, multiple play-

ers compete to maximize their individual payoffs that
depend on the action of the player, the neighboring players’
actions, and on unknown states. Incomplete information games
are employed to model traffic flow in communication or
transportation networks [1], [2], power allocation of users in
wireless networks with unknown channel gains [3], oligopoly
price competition [4], and coordination of autonomous teams
[5], [6]. The information design problem refers to the deter-
mination of the information fidelity of the signals given to the
players about the payoff state so that the induced actions of
players maximize a system level objective.

An information designer is an entity that is more informed
about the realized payoff state than the players. Information
designer selects an optimal probability distribution of signals
based on the state realization with respect to its objective (see
Fig. 1). Various entities, e.g., a system operator overseeing the
spectrum allocation, a market-maker, an independent system
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Fig. 1. Agents play a network game with individual payoffs that
depend on their neighbors’ actions and an unknown payoff state . An
information designer sends a signal w; drawn from information structure
¢(w|v) to each agent . Agent 4 takes an equilibrium action a; based
on the received signal w; to maximize its expected utility.

operator in the power grid, or the federal reserve, can be con-
sidered as an information designer. Information designers may
define different objectives such as maximizing social welfare
[7], minimizing misinformation [8], or maximizing auction
revenue [9]. In control systems, information design is used
for robust sensor design [10], deception/privacy modelling [11]
and queues with heterogeneous users [12]. In the absence of
a (real) designer, an information design problem can quantify
the sensitivity of a system level objective to the information
available to the players [13], [14].

In this paper, we consider social welfare maximization
via information design in linear-quadratic-Gaussian (LQG)
network games (Fig. 1). Social welfare is defined as the
aggregate utility of the players. In an LQG game, the players
have quadratic payoff functions, and the state and the signals
(types) come from a Gaussian distribution [15]. Under certain
assumptions for the quadratic payoff coefficients, the rational
behavior, defined as the Bayesian Nash equilibrium (BNE), in
LQG games is unique. In [7], we show that full information
disclosure is the optimal solution to social welfare maximiza-
tion under public information structures and/or common payoff
states (see Theorem 1).

While full information disclosure may be optimal from
the system perspective, here we analyze the effect of such
information disclosure policy on the payoffs of individual
agents and its dependence on the centrality of the agents. We
identify sufficient conditions for the individual preference of
informative signals based on the payoff coefficients prior to
realization of the state (ex-ante) in Theorem 2. We leverage
this result, and identify that both central and peripheral agents



in a star network structure prefer information disclosure ex-
ante for homogeneous LQG games (Proposition 1). In comput-
ing the benefit of information disclosure to individual agents,
we find that a peripheral agent can benefit more than the
central agent under full information disclosure if competition
is strong and number of agents is small (Proposition 2). In
sum, the incentives of the agents and the system designer are
in congruence ex-ante given the conditions considered.

We find that joint incentives of individual agents and the
system designer can cease to exist ex-post, i.e., after the
realization of the payoff state. In contrast to Proposition 1, the
central agent prefers no information disclosure ex-post if real-
ization of the payoff state is lower than expected. In the context
of Bertrand competition among firms in networked markets,
these results imply that central firms may not benefit from
information disclosure when the competition among firms is
strong. Ex-post analysis is not useful because agents do not
observe the realized payoff state when taking actions, but they
observe signals generated by the information designer based
on the realized state. Still, the ex-post analysis of incentives
imply that a risk averse central agent can prefer uninformative
signals ex-ante. These results extend prior knowledge on the
information design problem [14], [16] by providing a char-
acterization of the benefit of informative signals on players’
payoffs and its dependence on centrality of the players in
network games with incomplete information.

Il. INFORMATION DESIGN IN LQG NETWORK GAMES

A. Information Design in Incomplete Information Games

An incomplete information game G involves a set of n €
NT players belonging to the set AV := {1,...,n}, each of
which selects actions a; € A; to maximize the expectation of
its individual payoff function u;(a, ) where a = (a;);en € A
and v = (vi)ien € T correspond to an action profile and an
unknown payoff state, respectively. Agents form expectations
about their payoffs based on their beliefs/types w; € 2 about
the state. We represent the incomplete information game by
the tuple G := {N, A, {ui}tien, {witien}.

A strategy of player ¢ in an incomplete information game
maps each possible value of its type w; € 2 to an action, i.e.,
s; : 8 = A;. A strategy profile s = (s;);en is @ BNE with
respect to an information structure (distribution function) ¢, if
it satisfies the following inequality

Eelui(si(ws), s—i,¥)|wi] > Eclui(aj, s—i,y)|wi], (1)

for all a; € A;,w; € Q,i € N where s_; = (s;(w;));
denotes the equilibrium strategy of all the other players, and
E is the expectation operator with respect to the distribution
function ¢ and a prior distribution on the payoff state.

An information designer aims to optimize the expected
value of its objective function f(s,<), e.g., social welfare,
by deciding on an information structure ( belonging to the
feasible space of probability distributions Z, i.e.,

max B[ f(s, )] 2

where s is a BNE strategy profile (1) for the game G under
(. The timeline for the information design problem is as
follows—also see Fig. 1.

1) Designer selects ( € Z and notifies players.

2) Payoff state ~ is realized.

3) Players observe signals w drawn from ((w|7).

4) Players act according to BNE given (.

The information design problem in (2) is intractable in
the general case. Here, we focus on LQG network games
which yield to a tractable semi-definite program formulation
of the information design problem for objectives f(-) that are
quadratic in strategies and state [16].

B. Linear-Quadratic-Gaussian (LQG) Network Games

An LQG game corresponds to an incomplete information
game with quadratic payoff functions and Gaussian informa-
tion structures. In an LQG game, each player i € A decides
on his action a; € R according to a payoff function of the
form given below,

ui(a,y) = —Hyai —2 Z Hjja;a;+2via;+di(a—i,y) (3)
J#i

where a = (a;)ieny € R™ and v = (vi)ien € R™. The
term d;(a_;,y) is an arbitrary function of the opponents’
actions a_; = (a;);=; and payoff state 4. We assume the
utility function is strictly concave, i.e., H; > 0 for all
i € N. We collect the coefficients of the utility function
in a matrix H = [H;;|nxn. Payoff state v € R" follows
a Gaussian distribution, ie., v ~ 1 (u,X) where ¢ is a
multivariate normal probability distribution with mean p € R"
and covariance matrix > € R™*", Each player ¢ € N receives
a private signal w; € Q; = R™: for some m; € NT. We define
the information structure of the game ((w|~) as the conditional
distribution of w = (w;)ien given . We assume the joint
distribution over the random variables (w, «y) is Gaussian; thus,
¢ is a Gaussian distribution. For a positive definite matrix H,
there is a unique BNE strategy that is linear in private signals.
Moreover, we can obtain the BNE strategy by solving a set of
linear equations [15].

We consider network games where the nodes are the players
N, and edges £ determine the payoff dependencies, i.e., if
(1,7) ¢ € then H;; = 0, otherwise H;; € R for (i,j) € £.
Next, we provide an example.

Example 1 (Bertrand Competition in Networked Markets):
Firms determine the price for their goods (a;) facing a
marginal cost of production (v;). Firms compete over markets
that are connected [17]. The demand is a function of the
price of all the firms, ¢; = ¥ — wa; + 0 Z#i a; with positive
constants v, w and p. Firm 4’s profit is its revenue g;a; minus
the cost of production ~;q;,

wi(a,y) = ¢ia; — v 4)

Nodes of networks correspond to a firm in Bertrand com-
petition. If two nodes share an edge, they compete over
the same market. For a star network, the central node can
be a multinational firm competing with local competitors
(peripheral nodes).



Remark 1: Prior studies in network games with quadratic
payoffs focus on computation and characterization of equilib-
ria, and analyze the changes to the equilibria or social welfare
when network topology is modified via adding/removing links
or nodes [18]-[22]. In contrast, this paper considers the effects
of information design on individual payoffs when the design
objective is to maximize social welfare.

1. SociAL WELFARE MAXIMIZATION VIA INFORMATION
DESIGN

Social welfare is the sum of agents’ (quadratic) utilities:

a,7) = Zui(aw) )
= Z(—Hm‘a Z

J#i

i + 2via; + di(a_;,7)).

(6)

Given quadratic utilities and Gaussian information struc-
ture, the information design problem (2) is transformed to
the maximization of a linear function of a positive semi-
definite covariance matrix (X = cov(a,<y)) subject to linear
constraints stemming from the BNE condition in (1). That
is, the information design problem is a semi-definite program
(SDP)—see [7], [16] for an explicit formulation of the SDP.

Using this SDP formulation, it is shown in [7], [16] that
full information disclosure, i.e., signals that reveal the payoff
state, is an optimal strategy for the information designer under
certain special scenarios.

Theorem 1 (Proposition 7-8, [7]): Full information disclo-
sure is the optimal solution to (2) for social welfare maxi-
mization objective in (5), if either of the following conditions
hold:

(a) H is positive definite and information designer reveals a
single (public) signal.
(b) H is symmetric and there is a common payoff state, i.e.
’}/i:’Yj,V’i,jEN.
See [7] for the proof and details. We interpret the results in
Theorem 1 for network games where H,;; = 0 if (i,j) ¢
E. Theorem 1(a) implies that if H is diagonally dominant,
then full information disclosure is optimal for public signal
structures. In the context of Bertrand competition, this result
implies that if firms receive the same signal on the cost of
their production, it is preferable to reveal the realized cost
of production. According to Theorem 1(b), full information
disclosure is optimal given a common payoff state and sym-
metric H. A common payoff state corresponds to a common
marginal cost for firms in Bertrand competition. This result
implies that each firm should receive a fully informed signal
on the marginal cost to maximize the social welfare. Next,
we analyze the ex-ante information structure preferences of
individual agents based on their position in the network.

IV. EX-ANTE INFORMATION STRUCTURE PREFERENCES
OF AGENTS BASED ON NETWORK POSITION

When there is a common payoff state v, i.e., 7; = 7, for
i € N and public signals w; = @ for ¢ € N, individual

equilibrium actions under full and no information disclosure
are given by a; = y[H '1]; and a; = u[H ~'1];, respectively
for i € N where 1 € R" is a vector of ones and [-]; represents
the ith element of a vector—see Appendix for the derivation.
In this section, we treat the actions as random variables where
we assume 7y ~ (i, 0%) and p ~ (g, o).

Theorem 2: Consider a LQG network game with common
payoff state 4 and public information structures. Define

1], -2) Hy [Hll]j) -
i#i
(7)

If V;(H) > 0, then full information disclosure is preferable
by agent i € N over no information disclosure.

Proof: 1If agent i’s expected utility given full information
disclosure is larger than its expected utility at no information
disclosure, then full information disclosure is preferable. We
start with computing agent ¢’s expected utility under full
information disclosure by plugging in the equilibrium action
profile a = yH~'1 (see Lemma 1) into (3):

Vi(H) := [H'1]; <2 — Hy[H™

Blus(o,2)] = ELAH 10 (2 - Halr 1)

—QZHU

J#i

Next, we plug in the equilibrium action profile for no infor-
mation disclosure @ = uH 1 (see Lemma 1) into (3):

) +Eldi(aiy)] ®)

Efu(a,)] = (1], (E[uzl(—Hn[H‘llh

—221{”

J#i

We subtract (9) from (8) to obtain the difference between
expected utilities under full information and no information:

)+ 2E[w]) L Eldi(aciy)] ©)

BlAus(a,7)] = [H-11], (Ew 1)~ Ha 1,

—2ZH”

J#i
=o?[H 1], (2 — Hyi|

)+ 2E[y* — w]) (10

H™'1); —QZHU —11) ) (1)

J#i
To get the second equality, we use E[p?] —ud = 02, E[y?] =
0% + 0§ + pg and Elyu] = og + g given that v ~ 9(p, 0?)
and p ~ Y(po,0d). If E[Au;(a,v)] > 0, full information is
preferred. The condition E[Awu;(a,v)] > 0 is equivalent to
V;(H) > 0 by the fact that 0% > 0. [ |

A. Information Structure Preferences under Star
Network

We showcase Theorem 2 by applying to LQG games over
star networks. A star network is comprised of a central agent
(t =1) and n — 1 peripheral agents (j € N\ {1}). We derive
conditions for information structure preferences of both the
central and peripheral agents in homogeneous games.



Definition 1 (Homogeneous LQG games): A LQG network
game with a payoff coefficients matrix where H;; = 1 and
H,; = p, for (i,5) € £, and § € R is homogeneous.

Proposition 1: If the LQG game is homogeneous and (n —
1)|8] < 1, then full information disclosure is preferred over
no information disclosure by both the central and peripheral
agents in the star network.

Proof: We can compute [H~11]; in close form for star
networks,

Vil —1
(1) —1
where N; : {7 : (i,7) € &} denotes the neighbors of agent
i, and |N;| denotes its cardinality. We check the condition

Vi(H) > 0 for the central agent, say ¢ = 1, by substituting in
(12), [Ni|=n—1 and |N;| =1 for j € N\ {1},

(n—1)—1
(n—1)p7 — 1

[H'1]; = for i € N, (12)

(h—DFP -1
(13)

We simplify (13) to get ((n—1)8—1)((n—1)8-3) > 0. Given
that (n — 1)8 < 1, the inequality is always true. Thus, full
information disclosure is always preferable to no information
disclosure by the central agent.

Now we consider peripheral agents j € A\ {1}. We check
the condition V;(H) > 0 for a peripheral agent by substituting
in (12), V1| =n—1, and |N;| =1 for j e N'\ {1}

B-1 (. BB-D+2A(n-1-1)
(n—m@—1@ (n-1)57 1 >>&

(14)

(14) simplifies to (3 —1)% > 0 which is always satisfied. This
means E[Au;(a,~)] is always positive. Therefore, full infor-
mation disclosure is always preferable over no information
disclosure by the peripheral agents. ]
This result shows that all agents regardless of their position
in the star network are expected to benefit from information
disclosure. We analyze the change in the value of information
as a function of competition and number of players in homoge-
neous games in Fig. 2. We note that for homogeneous games
Vi:(H) = V;(B8,n), and V;(B,n) is given by (13) and (14),
respectively for central and peripheral agents. We observe that
Vi(B,n) is a decreasing function for the central agent while
it is an increasing function for a peripheral agent with respect
to 3. Also, %g’”) decreases further as  decreases or the
number of agents increases for the central agent. In contrast,
%g’") is not affected much by a change in the value of
for a peripheral agent.

Next, we identify the region for § where the expected
benefit of the information disclosure to a peripheral agent is
higher than that of the central agent.

Proposition 2: If the LQG game is homogeneous and

2(n—1) — 2(n—1

(=)= o) _ 2DV
n(n —2) n(n — 2)

where v(n) = n? — 2n + 4, then the gain of a peripheral

agent from information disclosure is higher than the gain of
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Fig. 2. Contour plot of %g’") for central (a) and peripheral (b)
agents under homogeneous payoff matrix H where H;; = 1 and
H;; = B, for (3,5) € €,and B € R. 73‘4,9(2’") < 0 for the central

agent and %ﬁ’") > 0 for a peripheral agent.
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Fig. 3. We plot (15) for number of agents from 3 to 20. We also plot
positive definiteness condition we impose on 3, i.e., (n — 1)8 < 1.
Indeed, the positive definiteness line (1/(n — 1)) crosses below the
lower bound in (15) at n > 9, indicating that the central agent benefits
more than a peripheral agent from information disclosure.

the central agent. For 8 values outside interval (15), the gain
of the central agent is higher than that of a peripheral agent.

Proof: We consider the difference between E[Auq(a,7)]
in (13), i.e., central agent’s benefit from information disclo-
sure, and E[Au;(a,v)] in (14) for j € N \ {1}, ie., a
peripheral agent’s benefit, to get

E[Auy(a,7)] — E[Au;(a,7)] =
(n=1)B-1)(n—-1)B—-3)—(B-1)
(n=1)>—-1)

We remove the positive valued denominator, and simplify the
numerator to get

n(n —2)3% —4(n—1)5+3 > 0.

>0. (16)

a7

Solving quadratic inequality (17) indicates that when S is in
the range given in (15), E[Aui(a,~)] — E[Auj(a,v)] < 0.
Thus, a peripheral agent benefits more than the central agent
from full information disclosure. The second part of the
result follows from the fact that we have E[Aus(a,v)] —
E[Auj(a,v)] > 0 for § values outside the interval (15). H
In Fig. 3, we plot the upper and lower bound values in (15)
as a function of n. We observe the bounds get closer as n
increases. When we contrast these bounds with the bound for
positive-definiteness, i.e., 5 < 1/(n — 1), we observe that the
upper bound is not realized for any g value. For n > 9, the
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Fig. 4. Ex-post information preference estimates of central and periph-
eral agents in submodular games on a star network with n = 4. Lines
show seven realized u values generated from v ~ (o = 1,0.32%).
Dashed lines indicate u < wo. Solid lines indicate u > wo. For each
w© and 3 value, 1000 ~ values are generated from +(u, 0.12). We
estimate Aw;(a,~) by averaging the values over ~ realizations. For
large 3 values, full information disclosure may not be preferred by the
central agent when p < po.

positive definiteness condition implies that the lower bound
cannot be exceeded. Thus, the central agent always benefits
more than a peripheral agent for n > 9.

V. EX-POST INFORMATION STRUCTURE PREFERENCES

Depending upon the realizations of p and <, agents may
prefer no information disclosure ex-post. We can say an
agent prefers full information disclosure over no information
disclosure if its change in the utility function from information
disclosure Au;(a,v) > 0, upon realization of p and ~. We
express Au;(a,v) as follows by removing the expectation
operator in (10),

Aug(a,y) = (v - u)[Hllh(w ) (—Hy[H 1),
—2) Hy[H'1];) + 27).
JF#i

We estimate (18) numerically via Monte Carlo simulation for
homogeneous submodular (6 < 0) and supermodular (5 >

(18)

0) games. In submodular games, agents’ actions are strategic
substitutes, i.e., when agent j increases its action agent %’s
incentive to increase its action decreases ( azjg;j < 0). In
supermodular games, agents’ actions complement each other,
i.e., when agent j increases its action, agent ’s incentive to
increase its action increases (£jg;j > (0)—see [21, Section
3]. The Bertrand competition with payoffs in (4) is an example
of a supermodular game.

We compute Awu;(a,~y) for submodular and supermodu-
lar games in Figs. 4 and 5, respectively. In particular, we
generate p values from ¥ (ug = 1,0.3%), and v values
from (1, 0.1%) where v denotes the normal distribution. We
estimate Awu;(a,) for every combination of 5 and u value
by averaging over realizations of ~.

In both types of games, the average change in utility
function over realizations of p is positive indicating that in-
formation disclosure is preferable and confirming Proposition
1. The value of information decreases on average for both
central and peripheral agents in both types of games as sub-
modularity parameter % increases. This is reasonable because
the dependence of the payoffs on others’ actions reduces as
|B| decreases. In both of the games, central agent prefers no
information disclosure ex-post when realized p is less than
1o and the absolute value of submodularity parameter is low
(Figs. 4(a) and 5(a)). Otherwise, the central agent prefers full
information disclosure ex-post. This indicates a risk-averse
central agent may prefer no information disclosure ex-ante. For
instance, a multinational company in a Bertrand competition
with local firms may prefer that information remains hidden
when the production costs are high and competition is stiff.
In contrast, a peripheral agent always prefers full information
disclosure regardless of the realized p values (Figs. 4(b) and

5(b)).

VI. CONCLUSION

We considered whether the incentives of agents in a net-
work game align with the information designer’s objective to
maximize social welfare or not. We provide a condition on the
benefit of full information disclosure on an individual agent
for general networks. Given only prior information about the
payoff state, agents in a star network preferred full information
disclosure. Unless the competition is strong and the number
of agents is small, the central agent benefited more than a
peripheral agent from full information disclosure. A rise in
strategic interaction results in a lower value of information
for central agent. However, ex-post incentive estimates showed
that a risk-averse central agent can prefer no information
disclosure ex-ante, while the peripheral agents continue to
benefit from information disclosure.
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APPENDIX

The expectation of the payoff state v given two Gaussian

signals (prior 1 and public signal @) as follows
Elylw; = o] = (1= &)p+ &

where &;(v) = #%, and v is the covariance matrix
of the distribution ¢(w|7).

Lemma I: Bayesian Nash equilibrium of LQG network
game given public signals @ and common payoff state v can
be represented by the following function

aj(@) = Ely|@][H™'1];  VieN, (20)

where 1 € R” is a vector of ones, and [-]; indicates the ith
element of a vector.

Proof: First order condition of the expectation of the
utility function in (3) with respect to a, yields

8E[ui|{wi:&)}] _ ey B . o
e~ Hua(@) ;H”E[aj{wl =&}

+ E[y{wi =@} =0,Vie N
We incorporate (19) into (21):
Hyaj (@) = =Y HijBlaj|@] + (1 - &)p+ Lo = 0,Vi e N

19)

2n

i#]

(22)
We assume agent i € N’s strategy is linear in its information
aX(@) = apw + aap with coefficients a;; and 2. We

substitute linear actions in (22) to get

Hii(ain@w + aop) = — Z H;j(ajiw+ ajop)
i#£]

+(1-&p+&@=0Yie N (23)
We solve for the action coefficients a; = |11, ..., an1] € R”

and as = [Q12,...,0n2] ER" 1y = 1 -y = H Y
where £ = [&1,...,&,] and &; is as in (19). Thus, a* (@) =
H=Y1w+ (I — H~1)€1p where [ is the identity matrix. (20)
follows from rearranging terms in a¢* and using (19). [ ]



