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Abstract—In the conventional robust T -colluding private in-
formation retrieval (PIR) system, the user needs to retrieve
one of the possible messages while keeping the identity of
the requested message private from any T colluding servers.
Motivated by the possible heterogeneous privacy requirements
for different messages, we consider the (N,T1 : K1, T2 : K2)
two-level PIR system with a total of K2 messages in the system,
where T1 ≥ T2 and K1 ≤ K2. Any one of the K1 messages
needs to be retrieved privately against T1 colluding servers, and
any one of the full set of K2 messages needs to be retrieved
privately against T2 colluding servers. We obtain a lower bound
to the capacity by proposing two novel coding schemes, namely
the non-uniform successive cancellation scheme and the non-
uniform block cancellation scheme. A capacity upper bound is
also derived. The gap between the upper bound and the lower
bounds is analyzed, and shown to vanish when T1 = T2. Lastly,
we show that the upper bound is in general not tight by providing
a stronger bound for a special setting.

Index Terms—Colluding, information retrieval, privacy

I. INTRODUCTION

Capacity characterizations of the canonical private infor-
mation retrieval (PIR) system and its variants have drawn
considerable attention recently in the information and coding
theory community, for which novel code constructions and
impossibility results have been discovered.

In the canonical PIR model, user privacy needs to be
preserved during message retrieval from replicated servers, i.e.,
the identity of the desired message should not be revealed to
any single server. Specifically, the user is required to retrieve
one of the K messages from N servers, each of which stores a
copy of K messages, such that the identity of the desired mes-
sage is not revealed to any single server. In the PIR capacity
characterization problem, the goal is to identify the minimum
download cost, i.e., the minimum amount of download per-bit
of the desired message, the inverse of which is referred to as
the capacity of PIR. The PIR capacity was characterized in [1]
through a code construction and a matching converse bound.
The code construction recursively exploits three key elements:
server symmetry, message symmetry, and side information;
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the converse bound recursively reduces the problem scale by
utilizing the privacy constraint.

The canonical PIR problem formulation is to some extent
idealized and possesses abundant symmetry and homogeneity
(both in the servers and messages), which were judiciously
exploited in the code construction proposed in [1]. Going
forward, it is imperative to enrich the canonical model to
make it more heterogenous and comprehensive so that 1)
practical constraints that arise naturally in diverse applications
are incorporated and tackled, and 2) the extendability and
limitation of the capacity results [1] are better understood.
Along this line, the following aspects that generalize the
canonical model have been studied in the literature.

1) Colluding pattern: Privacy is guaranteed against each
single server in the canonical model, which has been
generalized to any set of T colluding servers in [2]. The
T -colluding privacy constraint was further generalized to
the fully heterogeneous model where each colluding set
of servers can be an arbitrary subset of all servers [3],
[4]. Interestingly, while server symmetry appears to be
broken, the recursively constructed MDS coded queries
can still be allocated according to a linear program,
and furthermore, this elegant solution was shown to be
optimal [4].

2) Download per server: As the message size is allowed
to approach infinity in capacity characterizations, the
download size per server can be made the same through
symmetrization in the canonical model [5]. However, if
other metrics are considered such as message size [5]–
[7] or physical constraints that limit the communication
link between each server and the user [8], schemes
with heterogeneous downloads per server are useful and
sometimes necessary. While server symmetry is lost, the
iterative construction from [1] can proceed with the two
remaining elements in a similar manner [6], [8], [9].

3) Message size: The K messages are assumed to have equal
length and allowed to approach infinity in the canonical
model. The generalization to arbitrary different lengths
was considered in [10] and the iterative construction
from [1] was applied to truncated subsets of messages
with the same length [10]. The minimum message sizes
for capacity-achieving codes were considered in [5],
[7] where server symmetry and side information were
utilized in the code constructions.

4) Server storage: Each server has the same storage capa-
bility and stores all K messages in the canonical model.
The storage system at the servers has been generalized to
MDS coded [11], [12] or coded by a given linear code
[13] for each message, and arbitrarily uncoded [14] with
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heterogeneous capabilities [15], [16]. In these settings the
iterative construction from [1] is still largely compatible
with the storage structure. However, for the general model
where all messages can be jointly coded, the tradeoff
between the storage constraint and the download cost is
far from being fully understood [17]–[20].

The main motivation of this work is a crucial aspect that has
not been previously addressed – the heterogeneity of the pri-
vacy constraints on the messages. That is, in all existing works,
each message is required to be equally private in the sense that
any single server [1], or any colluding set of T servers [2], is
completely ignorant of the desired message identity. However,
the sensitivities of different types of information are commonly
different in practice. To be more concrete, let us consider the
following simple example setting.

Example 1. There are a total of four short videos, which
are replicated on six storage servers. The first two videos
are political campaign videos from two opposing political
parties, while the other two videos are non-political music
videos. Given the sensitivity of revealing one’s political view,
as well as the requirement of protecting the user’s privacy in
a general sense, the user may wish to assure the following
privacy protection when retrieving one of these videos:

• Any one of the servers will not be able to infer any
information regarding which message is being requested;

• Any three of the servers jointly will not be able to infer
any information regarding which one of the first two
messages is being requested.

Consider the following several scenarios: 1) When any video is
retrieved, any one of the server will not infer any information
regarding which was being requested, and any four or more
servers may collude to infer exactly which was being retrieved,
2) When the user retrieves one of the political campaign
videos, any two or three servers may collude to infer that
the retrieved video is indeed a political campaign video, but
they will not be able to infer which one it is, thus protecting
the user’s political view; 3) When a non-political video is
retrieved, any two or three servers may collude to infer exactly
which video is retrieved. Therefore, the user’s political view
is indeed protected in a stronger manner than his preference
among general contents. It should be noted that the user is not
enforcing a stronger privacy protection against the fact that a
political video is retrieved in general, since this fact alone does
not reveal any sensitive information about the user’s political
preference: only the information on exactly which political
video is retrieved will reveal such information.

Motivated by the consideration above, we formulate the
problem of multilevel private information retrieval problem.
Specifically, the privacy level of a message set is defined
as the maximum allowed number of colluding servers that
the identity of a desired message is kept private among that
message set. We focus on the two-level PIR system, where
some K1 messages out of the K2 messages have a higher
privacy level of T1, i.e., any colluding set of T1 servers do not
learn anything about which one of the K1 messages is desired,
while all the K2 messages together have a lower privacy level

of T2, any colluding set of T2 servers do not learn anything
about which one of the K2 messages is desired.

Characterizing the capacity of the two-level PIR system
turns out to be rather challenging. A naive approach, which
can be used as a baseline, is to treat the system as if it
were a homogeneous T1-colluding private information retrieval
system. However, the crux of the two-level PIR hinges on
how to leverage the less stringent privacy requirement for
some messages. Towards this end, we must treat the two
sets of messages with distinct privacy levels differently, i.e.,
message symmetry cannot be taken for granted. Without
message symmetry, the iterative construction breaks since
message symmetry is the key step that enables the connection
between the layers, and we have to delve deeper into the code
structure to adjust the parameters of the MDS coded queries in
a heterogeneous manner. As a result, we discover two general
schemes that can outperform the naive baseline scheme. For
the converse direction, we first apply the iterative induction
technique to obtain a general upper bound, and analyze the
gap between the upper bound and the lower bound. We then
show that this bound is strictly sub-optimal by deriving a
tighter bound for a special case. This implies that the induction
technique must be combined with more delicate consideration
on the heterogeneous nature of the system. This observation
may shed some light on other open settings, where it is not
known if similar symmetric reduction based converse bounds
are tight [8], [21], [22].
Notations: We adopt the notation i : j , {i, i+1, . . . , j−1, j}.
Denote vector aN , (ai)i∈N for any sequence (a1, a2, . . .)
and N ⊂ N. We use X ∼ Y to indicate that the random
variables X and Y follow an identical distribution. For any
matrix A[:, :], the first coordinate is for row indices and the
second coordinate is for column indices.

II. PROBLEM FORMULATION

There are K2 mutually independent messages W1:K2 =
(W1,W2, . . . ,WK2) in the system. Each message is uniformly
distributed over FLq , where Fq is a large enough finite field
and L is the number of q-ary symbols in the message (i.e.,
the message length). This is equivalent to

H(W1) = H(W2) = · · · = H(WK2
) = L, (1)

H(W1:K2
) = K2L, (2)

where (and in the rest of this work) we take base-q logarithm
for simplicity. There are N servers in the system, each of
which stores a copy of all the K2 messages. Let k∗ ∈ 1 : K2

be the identity of the desired message. The process to retrieve
message Wk∗ , for any k∗ ∈ 1 : K2, involves three steps:

1. (Query) The user sends a randomized query Q
[k∗]
n to

server n for each n ∈ 1 : N ;
2. (Answer) Each server n, where n ∈ 1 : N , returns an

answer A[k∗]
n to the user;

3. (Recovery) The user recovers the message as Ŵk∗ , using
the queries Q[k∗]

1:N to all the servers and the answers A[k∗]
1:N

from all the servers.
Denote the set of all possible queries sent to server n as
Qn. Q[k∗]

n ∈ Qn is a random variable, whose superscript [k∗]
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indicates that the query is for retrieving message Wk∗ . The
user has no knowledge of W1:K2 , and thus the queries are
independent of the messages, that is

I(Q
[k∗]
1:N ;W1:K2) = 0, ∀k∗ ∈ 1 : K2. (3)

Each symbol of the answer A[k∗]
n , the answer to the query

Q
[k∗]
n , is a sequence of symbols in Fq; denote the number of

symbols of A[k∗]
n as `[k

∗]
n . The answer A[k∗]

n is a deterministic
function of the query Q[k∗]

n and the messages W1:K2
, that is

H(A[k∗]
n |Q[k∗]

n ,W1:K2) = 0, ∀k∗ ∈ 1 : K2, n ∈ 1 : N.
(4)

The recovered message Ŵk∗ depends on the queries Q[k∗]
1:N as

well as the answers A[k∗]
1:N , that is

H(Ŵk∗ |A[k∗]
1:N , Q

[k∗]
1:N ) = 0, ∀k∗ ∈ 1 : K2. (5)

The message should be retrieved correctly, i.e., Wk∗ = Ŵk∗

for all k∗ ∈ 1 : K2. Additionally, the system has certain
privacy requirements. To measure user privacy when querying
for any message in a certain set of messages, we first introduce
the definition of privacy level.

Definition 1 (Privacy level). Let the messages in the system
be W1,W2, . . . ,WK . The queries of a scheme have privacy
level T for a subset of messages WS , where S ⊆ 1 : K, if
for any T ⊆ 1 : N with |T | = T , for retrieving any message
in WS , the queries to the servers in T have the same joint
distribution, i.e.,

Q
[k]
T ∼ Q

[k′]
T , ∀k, k′ ∈ S. (6)

The notion of privacy level has the following operational
meaning: if WS has privacy level T , then when one of
the messages in WS is retrieved, even if any T of the N
servers collude, the identity of the requested message in WS
remains private, however these colluding servers may be able
to infer that the requested message is in the set WS . It
is straightforward to verify that the set of messages with
higher privacy level automatically has lower privacy levels.
In addition, when the set S is a singleton, if T servers can
infer the desired message is in WS , the identity of the desired
message is known. Thus it is not meaningful to study the
privacy level of WS for singleton S, though we will still allow
it for notational convenience.

In this work, we consider the two-level PIR system. The
system parameters in such a system are (N,T1 : K1, T2 : K2)
with T1 ≥ T2 ≥ 1 and 1 ≤ K1 ≤ K2. All the messages
W1:K2

have the default weaker privacy level T2, but the first
K1 messages W1:K1

have an enhanced privacy level T1. We
are interested in the retrieval rate (or simply rate) which is the
number of useful message symbols retrieved per unit download

R ,
L∑N

n=1 E[`[k
∗]

n ]
. (7)

The download cost D is defined as the inverse of R, i.e.,
D , R−1. Schemes with higher achievable rates are preferred,
and the supremum of the achievable rates among all possible
schemes is called the capacity of the system, denoted as C.

III. MAIN RESULT

We first provide some new notation. Define the function
D∗N (K,T ) as follows

D∗N (K,T ) , 1 +
T

N
+ · · ·+

(
T

N

)K−1
, ∀T,K,N ∈ N,

(8)

whose inverse is the capacity of the T -colluding PIR system
with N servers and K messages (sometimes simply referred
to as a T -private system). The main result of this work is
summarized in the theorem below.

Theorem 1. The capacity C of the (N,T1 : K1, T2 : K2)
two-level PIR system satisfies

max (RNS, RNB) ≤ C ≤ R, (9)

where

R =

(
D∗N (K1, T1) +

T2
N

(
T1
N

)K1−1

D∗N (K2 −K1, T2)

)−1
,

(10)

RNS =

(
D∗N (K1, T1) +

(
T1
N

)K1

D∗N (K2 −K1, T2)

)−1
,

(11)

RNB =

(
max

(
D∗N (K1, T1) +

T2
N
D∗N (K2 −K1, T2),

D∗N (K2 −K1, T2) +
T2
N
D∗N (K1, T1)

))−1
. (12)

The lower bound to the capacity in this theorem has two
components: RNS is obtained by the Non-uniform Successive-
cancellation (NS) coding scheme given in Section V, and
RNB is obtained by the Non-uniform Block-cancellation (NB)
coding scheme given in Section VI. The proof for the upper
bound R is given in the supplementary material. The upper
bound R in Theorem 1 is in general not tight. Specifically,
the following proposition tightens the upper bound for the
(3, 2 : 2, 1 : 3) two-level PIR system, for which Theorem
1 gives an upper bound of 9

17 .

Proposition 1. The capacity C of the (3, 2 : 2, 1 : 3) two-level
PIR system satisfies

C ≤ 11

21
. (13)

The proof of this proposition is given in the supplementary
material, which is obtained using the computer-aided approach
discussed in [23]–[25].

To further understand these bounds in Theorem 1, define

D = R
−1
, DNS = R−1NS, DNB = R−1NB.

Three observations are in order:

1) Theorem 1 gives that

D ≤ minD ≤ min (DNS, DNB) . (14)
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The difference between D and DNS is

DNS −D =
T1 − T2
N

(
T1
N

)K1−1

D∗(K2 −K1, T2).

It is seen that this gap diminishes geometrically as K1

grows, and also vanishes when T1 = T2 as expected.
2) Any (N,T1 : K2, T2 : K2) code, i.e., a T1-private code

with N servers and K2 messages, is valid for the (N,T1 :
K1, T2 : K2) PIR system. The optimal download cost of
the former is exactly given by DT-PIR = D∗N (K2, T1).
Comparing with this naive approach, the coding gain of
the proposed NS scheme is thus

DT-PIR −DNS

=

(
T1
N

)K1

(D∗N (K2 −K1, T1)−D∗N (K2 −K1, T2)) ,

which is non-negative, and strictly positive if and only if
K2−K1 ≥ 2. Note that the strategy of using an (N,T1 :
K2, T2 : K2) code when a message in WS is requested,
and using an (N,T1 : 1, T2 : K2) code for the other
messages is not valid, since this would lead to privacy
leakage in the latter case, i.e., leaking the information
that the requested message is not in the set S.

3) The relation between RNS and RNB is as follows.
• For the cases when

D∗N (K1, T1) ≥ D∗N (K2 −K1, T2) and
T2
N

<

(
T1
N

)K1

,

the lower bound RNB is better

RNS < RNB

=

(
D∗N (K1, T1) +

T2
N
D∗N (K2 −K1, T2)

)−1
;

• For the cases when

D∗N (K1, T1) < D∗N (K2 −K1, T2) and
D∗N (K1, T1)

1−
(
T1

N

)K1
>
D∗N (K2 −K1, T2)

1− T2

N

,

the lower bound RNB is also better

RNS < RNB

=

(
D∗N (K2 −K1, T2) +

T2
N
D∗N (K1, T1)

)−1
;

• For all the other cases, the lower bound RNS is better,
i.e., RNB ≤ RNS.

The upper bound and lower bounds are shown in Figure 1.
In Figure 1(a), the gap between the upper bound R and the
rate of NS coding scheme RNS deminishes geometrically as
K1 grows. It can be seen in Figure 1(b), that when T1 is close
to T2, the NS scheme performs better, and matches the upper
bound if T1 = T2; when T1 is close to N , the NB scheme
performs better, and in this case matches the upper bound if
T1 = N .
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(a) (10, 6 : K1, 2 : K1 + 4) two-level PIR
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(b) (10, T1 : 2, 2 : 6) two-level PIR

Fig. 1. Upper and lower bounds on the capacity of two-level PIR system

TABLE I
A 2-PRIVATE CODE WITH (N,K) = (4, 2)

Server-1 Server-2 Server-3 Server-4
a1, b1 a2, b2 a3, b3 a4, b4

a5 + b5 a6 + b6 a7 + b7 a8 + b8

IV. A GENTLE START

In this section, we first provide a brief review of the T -
colluding PIR code using two example cases, and partly based
on insights obtained from these example cases, we provide two
example codes to illustrate the proposed coding schemes.

A. Two T -colluding PIR examples

As mentioned earlier, an (N,T1 : K1, T2 : K2) two-level
PIR system degrades to a T1-private system when K1 = K2,
and thus it is expected that there is a connection between the
code construction for the T -private systems and that for the
2-level PIR systems. The capacity of the T -private system
was identified in [2]. We next consider two special cases of
the codes proposed there, in order to provide the necessary
intuition for the proposed codes.

1) First set (N,T1 : K1, T2 : K2) = (4, 2 : 2, 1 : 2), which
is essentially a 2-private system with N = 4 servers
and K = K1 = K2 = 2 messages. In the code given
in [2], the message length is 8. The messages are first
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TABLE II
A 1-PRIVATE CODE WITH (N,K) = (4, 2)

Server-1 Server-2 Server-3 Server-4
c1, d1 c2, d2 c3, d3 c4, d4

c5 + d5 c6 + d6 c7 + d7 c8 + d8
c9 + d9 c10 + d10 c11 + d11 c12 + d12
c13 + d13 c14 + d14 c15 + d15 c16 + d16

precoded as W ∗1 = S1W1 and W ∗2 = S2W2, where
S1 and S2 are random matrices drawn uniformly from
the set of all 8 × 8 full-rank matrices over Fq . Let a1:8
and b1:8 be MDS-coded symbols of messages W ∗1 and
W ∗2 , respectively, using appropriate coding parameters.
The coding structure is given in Table I. To retrieve
W1, we choose a1:8 = W ∗1 and b1:8 to be (8, 4)-MDS
coded symbols using any 4 symbols from W ∗2 ; the coding
parameters for retrieving W2 are obvious by symmetry.
Since the symbols b5:8 can be recovered from b1:4, W1

can be recovered correctly. It is not difficult to verify that
the retrieval is private due to the precoding and MDS-
coding steps.

2) Next let (N,T1 : K1, T2 : K2) = (4, 1 : 2, 1 : 2),
which is essentially the canonical PIR system with N = 4
servers and K = K1 = K2 = 2 messages. The coding
structure is given in Table II, where c1:16 and d1:16
are MDS-coded symbols of two messages, respectively,
with appropriate coding parameters. To retrieve W1, we
can use c1:16 = W ∗1 and let d1:16 be (16, 4)-MDS
coded of any 4 symbols in W ∗2 ; the coding parameters
for retrieving W2 are obvious by symmetry. Since the
symbols d5:16 can be recovered from d1:4, W1 can be
recovered correctly and privately.

Comparing the two cases, a few observations are in order:
1) The codes in Table I and Table II have two layers: the

first layer has single symbols, i.e., a, b, c, or d, and the
second layer has summations of two symbols, i.e., a+ b
or c+ d.

2) Although the 2-private code meets the privacy require-
ment of the 1-private system, the coding structure in Table
II is more efficient. Particularly, the ratio between the
first layer transmissions and second layer transmissions
changes from 8 : 4 to 8 : 12. Placing more symbols
in the second layer is preferable, because one desired
symbol essentially takes two symbol transmissions in the
first layer, yet it takes only one in the second layer.

3) The improved transmission ratio between the two layers
is a consequence of the chosen MDS coding parameters
for the non-requested message (i.e., the interference): in
Table I, it is (8, 4) while in Table II it is (16, 4). These
parameters, which are chosen to satisfy the decoding and
privacy requirements, determine the number of symbols
in different layers.

These observations suggest that in a two-level PIR system,
we will need to adjust the MDS coding parameters for differ-
ent messages according to their privacy levels, but maintain
the code structure consistent between the two cases when
retrieving two types of messages. This is a considerable

generalization of the T -private setting, since in the T -private
setting the MDS coding parameters can be chosen uniformly
for all the messages, except the requested message, while in
our setting, the privacy levels create heterogeneity among the
messages.

In the code construction given in [2], the following lemma
plays an instrumental role in formally showing the privacy
condition to hold, which we shall also utilize in this work.

Lemma 1 (Statistical effect of full rank matrices [2]). Let
S1, S2, . . . , SK ∈ Fα×αq be K random matrices, drawn inde-
pendently and uniformly from all α×α full-rank matrices over
Fq . Let G1, G2, . . . , GK ∈ Fβ×βq be K invertible square ma-
trices of dimension β×β over Fq . Let I1, I2, . . . , IK ∈ Nβ×1

be K index vectors, each containing β distinct indices from
[1 : α]. Then

(G1S1[I1, :], G2S2[I2, :], . . . , GKSK [IK , :])
∼ (S1[1 : β, :], S2[1 : β, :], . . . , SK [1 : β, :]), (15)

where the notation S[I, :] is used to indicate the submatrix of
S by taking its rows in I.

B. An example of the NS scheme

We next provide an example to illustrate the proposed NS
coding scheme. In this example, the two-level PIR system is
specified by the parameters (N,T1 : K1, T2 : K2) = (4, 2 :
2, 1 : 4), i.e., there are 4 servers and 4 messages W1:4, and
messages W1:2 have privacy level T1 = 2, while all messages
W1:4 have privacy level T2 = 1. The length of each message
is L = 64 here.
Encoding: To retrieve a message, the answers are formed in
three steps, and the queries are simply the encoding matrix for
these answers. Assume for each (n, k) pair where n ≥ k, an
MDS code in Fq is given and fixed, and we refer to it as the
(n, k) MDS code. The coding structure is illustrated in Table
III and Table IV, for the retrieval of W1 and W4, respectively.
The coding steps can be understood as follows:

1) Precoding: Let S1, S2, S3, and S4 be four random ma-
trices, which are independently and uniformly drawn
from the set of all 64 × 64 full rank matrices over Fq;
these matrices are known only to the user. The precoded
messages W ∗1:4 are

W ∗1 = S1W1; W ∗2 = S2W2;

W ∗3 = S3W3; W ∗4 = S4W4. (16)

2) Group-wise MDS coding: The precoded messages are
partitioned into non-overlapping segments, and each seg-
ment is MDS-coded under certain (n, k) parameters, the
result of which is referred to as a coding group. These
MDS-coded symbols for the four messages are denoted as
a1:64, b1:64, c1:64, d1:64, respectively. In the tables, these
coding groups are distinguished using different colors,
with the corresponding MDS parameters given in the first
column. For example, the red coding groups in Table III
for both b25:28,33:36 and c9:12,25:28 are obtained by encod-
ing 4 pre-coded symbols in W ∗2 and W ∗4 , respectively.
In each coding group, the coded symbols are ordered
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TABLE III
NS SCHEME IN (N,T1 : K1, T2 : K2) = (4, 2 : 2, 1 : 4) FOR RETRIEVING W1

Coding group Server-1 Server-2 Server-3 Server-4
a: (64, 64) a1, a2, a3 a4, a5, a6 a7, a8, a9 a10, a11, a12
b: (24, 12) b1, b2, b3 b4, b5, b6 b7, b8, b9 b10, b11, b12
c: (8, 4) c1 c2 c3 c4
d: (8, 4) d1 d2 d3 d4

a13 + b13 a14 + b14 a15 + b15 a16 + b16
a17 + b17 a18 + b18 a19 + b19 a20 + b20
a21 + b21 a22 + b22 a23 + b23 a24 + b24
a25 + c5 a26 + c6 a27 + c7 a28 + c8
a29 + d5 a30 + d6 a31 + d7 a32 + d8

b, c: (8,4) b25 + c9 b26 + c10 b27 + c11 b28 + c12
b, d: (8,4) b29 + d9 b30 + d10 b31 + d11 b32 + d12

c, d: (24, 12) c13 + d13 c16 + d16 c19 + d19 c22 + d22
c14 + d14 c17 + d17 c20 + d20 c23 + d23
c15 + d15 c18 + d18 c21 + d21 c24 + d24

a33 + b33 + c25 a34 + b34 + c26 a35 + b35 + c27 a36 + b36 + c28
a37 + b37 + d25 a38 + b38 + d26 a39 + b39 + d27 a40 + b40 + d28
a41 + c29 + d29 a42 + c30 + d30 a43 + c31 + d31 a44 + c32 + d32
a45 + c33 + d33 a46 + c34 + d34 a47 + c35 + d35 a48 + c36 + d36
a49 + c37 + d38 a50 + c38 + d38 a51 + c39 + d39 a52 + c40 + d40

b, c, d: (24, 12) b41 + c41 + d41 b42 + c42 + d42 b43 + c43 + d43 b44 + c44 + d44
b45 + c45 + d45 b46 + c46 + d46 b47 + c47 + d47 b48 + c48 + d48
b49 + c49 + d49 b50 + c50 + d50 b51 + c51 + d51 b52 + c52 + d52

a53 + b53 + c53 + d53 a54 + b54 + c54 + d54 a55 + b55 + c55 + d55 a56 + b56 + c56 + d56
a57 + b57 + c57 + d57 a58 + b58 + c58 + d58 a59 + b59 + c59 + d59 a60 + b60 + c60 + d60
a61 + b61 + c61 + d61 a62 + b62 + c62 + d62 a63 + b63 + c63 + d63 a64 + b64 + c64 + d64

and sequentially placed in the tables, indicated by their
subscripts.

3) Forming pre-coded message sums: The summations of
the MDS-coded messages are formed accordingly, which
can be seen clearly from Table III and Table IV.

Decoding and correctness: The coding structure is layered,
where in each layer the number of summands in each down-
loaded symbol is the same. From top to bottom, the number of
summands increases from 1 to 4. The symbols of interference
messages in each coding group are placed in two adjacent
layers, where the signals (i.e., the summation of the symbols
of interference messages) in the top layer can decode the
interference signals in lower layer due to the common linear
MDS code.

In Table III, for each coding group, the total number of
interference signals placed in two adjacent layers and the top
layer follow the ratio (2 : 1) = (8 : 4) = (24 : 12). For exam-
ple, 8 interference signals in the red coding group are placed
in the second and third layers, where 4 downloaded symbols
b25:28 + c9:12 in the second layer can decode b33:36 + c25:28
in the third layer, because b, c are encoded by the same linear
(8, 4) MDS code. Consequently, a33:36 can be recovered. It
can be verified that a1:64 can all be recovered either directly
or in this fashion. By symmetry, W2 can be retrieved similarly.

In Table IV, for each coding group, the numbers of inter-
ference signals of each coding group placed in two adjacent
layers and the top layer have the ratio at most 4 : 1. For

example, 16 interference signals in red coding groups are
placed in the second and third layers, where any 4 of the
12 downloaded symbols a13:24 + b13:24 in the second layer
can decode a37:40 + b37:40 in the third layer because a, b are
encoded by the same linear (16, 4) MDS code. Consequently,
d25:28 can be recovered. It can be verified that d1:64 can all
be recovered either directly, or in this fashion. By symmetry,
W3 can be retrieved similarly.

Privacy: The coding pattern, i.e., the manner of forming pre-
coded message sums, is the same for the retrieval of any
message in W1:4. Since it is a linear code, the coded symbols
can be generated by the corresponding coding matrices. From
Table III, it is seen that the coding matrix of the coded symbols
of any message from any two servers has full row-rank. For
examples, the coded symbols a’s in server-1 and server-2
can be generated by a full row rank coding matrix using the
message W1, due to the pre-coding and the group-wise MDS
coding. By applying Lemma 1, the messages W1:2 thus have
privacy level 2. The 1-privacy for all the messages can be seen
in a similar manner.

Performance: The total number of downloaded symbols is
116 and the message length is 64. Thus the rate is RNS =
64
116 = 16

29 . The scheme for 2-private systems has rate 8
15 <

RNS.

Remark: The construction resembles the scheme in [2] (also
discussed in Section IV-A), but it allows non-uniform coding
structure to leverage the requirements of two levels of privacy.
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TABLE IV
NS SCHEME IN (N,T1 : K1, T2 : K2) = (4, 2 : 2, 1 : 4) FOR RETRIEVING W4

Coding group Server-1 Server-2 Server-3 Server-4
d: (64, 64) d1 d2 d3 d4
a: (16, 4) a1, a2, a3 a4, a5, a6 a7, a8, a9 a10, a11, a12
b: (16, 4) b1, b2, b3 b4, b5, b6 b7, b8, b9 b10, b11, b12
c: (16, 4) c1 c2 c3 c4

a29 + d5 a30 + d6 a31 + d7 a32 + d8
b29 + d9 b30 + d10 b31 + d11 b32 + d12
c13 + d13 c16 + d16 c19 + d19 c22 + d22
c14 + d14 c17 + d17 c20 + d20 c23 + d23
c15 + d15 c18 + d18 c21 + d21 c24 + d24

a, b : (16, 4) a13 + b13 a14 + b14 a15 + b15 a16 + b16
a17 + b17 a18 + b18 a19 + b19 a20 + b20
a21 + b21 a22 + b22 a23 + b23 a24 + b24

a, c: (16,4) a25 + c5 a26 + c6 a27 + c7 a28 + c8
b, c: (16,4) b25 + c9 b26 + c10 b27 + c11 b28 + c12

a37 + b37 + d25 a38 + b38 + d26 a39 + b39 + d27 a40 + b40 + d28
a41 + c29 + d29 a42 + c30 + d30 a43 + c31 + d31 a44 + c32 + d32
a45 + c33 + d33 a46 + c34 + d34 a47 + c35 + d35 a48 + c36 + d36
a49 + c37 + d38 a50 + c38 + d38 a51 + c39 + d39 a52 + c40 + d40
b41 + c41 + d41 b42 + c42 + d42 b43 + c43 + d43 b44 + c44 + d44
b45 + c45 + d45 b46 + c46 + d46 b47 + c47 + d47 b48 + c48 + d48
b49 + c49 + d49 b50 + c50 + d50 b51 + c51 + d51 b52 + c52 + d52

a, b, c: (16,4) a33 + b33 + c25 a34 + b34 + c26 a35 + b35 + c27 a36 + b36 + c28

a53 + b53 + c53 + d53 a54 + b54 + c54 + d54 a55 + b55 + c55 + d55 a56 + b56 + c56 + d56
a57 + b57 + c57 + d57 a58 + b58 + c58 + d58 a59 + b59 + c59 + d59 a60 + b60 + c60 + d60
a61 + b61 + c61 + d61 a62 + b62 + c62 + d62 a63 + b63 + c63 + d63 a64 + b64 + c64 + d64

Due to the homogeneity of the privacy requirements for all the
messages in T -private systems, the MDS coding parameters
for each coding group are chosen to be (N,T ). In the proposed
scheme for the (N,T1 : K1, T2 : K2) system, there is
symmetry among servers, and also symmetries among W1:K1

and among WK1+1:K2 but not across all the messages. Thus
when retrieving message Wk∗ with k∗ ∈ 1 : K1, the ratio
of the MDS parameters (n, k) in each coding group of the
undesired messages need to be chosen as (N,T1), while as
for message Wk∗ with k∗ ∈ K1 + 1 : K2, the MDS coding
parameters in each coding group would be (N,T2). However,
since N/T1 < N/T2, with the same retrieval pattern, there
exists certain slack in the placement pattern when retrieving
Wk∗ with k∗ ∈ K1 + 1 : K2. For example, the red coding
group in Table IV only needs 4 symbols in layer-2 to decode
the remaining symbols in both layer-2 and layer-3, yet 12
symbols are retrieved and available directly in layer-2.

C. An example of the NB scheme

We provide an example to illustrate the proposed NB
coding scheme for the same two-level PIR system specified
by paramters (N,T1 : K1, T2 : K2) = (4, 2 : 2, 1 : 4). The
length of each message is again L = 64.

Encoding: The coding structure is illustrated in Table V and
Table VI, for the retrieval of W1 and W4, respectively. The
coding procedure also consists of three steps, as in the NS

code, however the patterns are different, which is evident from
the tables.

Decoding and correctness: There are three blocks in Table
V and Table VI. In Table V, the symbols c1:4, d1:4, and
c5:16 + d5:16 in the second block can be used to reconstruct
the interference signals in the third block, i.e., c17:28, d17:28,
and c29:64 + d29:64, by the property of the MDS code in each
coding group. Canceling these interference signals generated
by W3:4, i.e., eliminating the coded symbols c and d, Table V
essentially reduces to the scheme discussed in Section IV-A
for the 2-private system: here 32 interference signals b1:8,17:40
can be used to reconstruct b9:16,41:64. The desired message
W1 can thus be recovered. By symmetry, W2 can be retrieved
similarly.

In Table VI, the symbols a1:8, b1:8, and a9:16 + b9:16 in the
first block can be used to reconstruct the interference signals
in the third block, i.e., a17:40, b17:40, and a41:64 + b41:64.
Canceling the interference signals generated by W1:2, i.e.,
eliminating the coded symbols a and b, Table VI reduces to
the scheme discussed in Section IV-A for the 1-private system,
and the desired message W4 can be recovered. By symmetry,
W3 can be retrieved similarly.

Privacy: When message W1 or W2 is requested, the coded
symbols of message W3:4 are downloaded as interference
signals, and the interference signals such as c, d, or c+ d are
mixed to a, b, a+b. With the symbols c, d eliminated in Table
V, we have the retrieval pattern of the 2-private system, which
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TABLE V
NB SCHEME IN (N,T1 : K1, T2 : K2) = (4, 2 : 2, 1 : 4) FOR RETRIEVING W1

Coding group Server-1 Server-2 Server-3 Server-4
a : (64, 64) a1, b1 a3, b3 a5, b5 a7, b7
b : (64, 32) a2, b2 a4, b4 a6, b6 a8, b8

a9 + b9 a11 + b11 a13 + b13 a15 + b15
a10 + b10 a12 + b12 a14 + b14 a16 + b16

c : (16, 4); d : (16, 4) c1, d1 c2, d2 c3, d3 c4, d4

c+ d : (48, 12) c5 + d5 c8 + d8 c11 + d11 c14 + d14
c6 + d6 c9 + d9 c12 + d12 c15 + d15
c7 + d7 c10 + d10 c13 + d13 c16 + d16

a17 + c17, b17 + d17 a18 + c18, b18 + d18 a19 + c19, b19 + d19 a20 + c20, b20 + d20
a21 + c21, b21 + d21 a22 + c22, b22 + d22 a23 + c23, b23 + d23 a24 + c24, b24 + d24
a25 + c25, b25 + d25 a26 + c26, b26 + d26 a27 + c27, b27 + d27 a28 + c28, b28 + d28
a29 + c29 + d29 a32 + c32 + d32 a35 + c35 + d35 a38 + c38 + d38
a30 + c30 + d30 a33 + c33 + d33 a36 + c36 + d36 a39 + c39 + d39
a31 + c31 + d31 a34 + c34 + d34 a37 + c37 + d37 a40 + c40 + d40
b29 + c41 + d41 b32 + c44 + d44 b35 + c47 + d47 b38 + c50 + d50
b30 + c42 + d42 b33 + c45 + d45 b36 + c48 + d48 b39 + c51 + d51
b31 + c43 + d43 b34 + c46 + d46 b37 + c49 + d49 b40 + c52 + d52

a41 + b41 + c53 + d53 a44 + b44 + c56 + d56 a47 + b47 + c59 + d59 a50 + b50 + c62 + d62
a42 + b42 + c54 + d54 a45 + b45 + c57 + d57 a48 + b48 + c60 + d60 a51 + b51 + c63 + d63
a43 + b43 + c55 + d55 a46 + b46 + c58 + d58 a49 + b49 + c61 + d61 a52 + b52 + c64 + d64

a53 + b53 a56 + b56 a59 + b59 a62 + b62
a54 + b54 a57 + b57 a60 + b60 a63 + b63
a55 + b55 a58 + b58 a61 + b61 a64 + b64

is clearly 2-private. To see all the messages have privacy level
1, observe that the coding pattern is the same for the retrieval
of any message. In both Table V and Table VI, the coding
matrix of the coded symbols for any single message from any
single server has full row rank. Thus by Lemma 1, messages
W1:4 have privacy level 1.

Performance: The total number of downloaded symbols is
116 and the message length is 64. Thus the rate is RNB =
64
116 = 16

29 , which coincides with RNS in this example.

Remark: The coding structure has the following feature: elim-
inating the coded symbols c and d in Table V or Table VI,
the remaining part has the same coding structure as the 2-
private code discussed in Section IV-A; eliminating the coded
symbols a and b in Table V or Table VI, the remaining part
has the same coding structure as the 1-private code discussed
in Section IV-A. The NB coding structure can be interpreted
as a mixture of the T1-private code of message W1:K1

and
T2-private code for messages WK1+1:K2

discussed in Section
IV-A, which is constructed in three blocks. Since the retrieval
needs to follow the same pattern, the underlying T1-private
code and the underlying T2-private code are required to have
the same message length. A T2

N fraction of the T1-private code
forms the first block, a T2

N fraction of the T2-private code
forms the second block. The remaining N−T2

N fractions of both
codes are mixed together to form the third block by simple
pairwise summations in an arbitrary order; in case they have
different numbers of remaining coded symbols, the remaining
summands are included directly.

V. THE NON-UNIFORM SUCCESSIVE CANCELLATION
SCHEME

In this section, we provide the general code construction for
the non-uniform successive cancellation scheme.

A. Specifying coding group parameters

It is clear from the example in Section IV-B that the
proposed code can be viewed as consisting of K2 layers and
multiple coding groups. We next first specify the appropriate
parameters for each coding group. We identify each coding
group by its composition. For example, in Table III, the red
coding group is of form b + c, and thus we can use the set
of message indices involved to identify it as K = {2, 3}, i.e.,
it involves the messages (W2,W3). Clearly this coding group
will be placed in the 2nd and 3rd layers.

More generally, for each coding group, there are a total of
five parameters to specify: the total number of coded symbols
n1(K) and n2(K), and the number of MDS code message
symbols k1(K) and k2(K) when retrieving a message of
privacy level T1 and that of privacy level T2, respectively; and
the number of symbols to be placed in the top layer m(K).
In other words, during the retrieval of a message Wk∗ , when
k∗ ∈ 1 : K1, an (n1(K), k1(K)) MDS code is used for this
coding group, while during the retrieval of a message Wk∗ ,
when k∗ ∈ K1+1 : K2, an (n2(K), k2(K)) MDS code is used
for this coding group. After MDS encoding, m(K) symbols
will be placed in the |K|-th layer, while the remaining will
be placed in the (|K| + 1)-th layer as interference, and the
symbols are uniformly distributed across all servers.
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TABLE VI
NB SCHEME IN (N,T1 : K1, T2 : K2) = (4, 2 : 2, 1 : 4) FOR RETRIEVING W4

Coding group Server-1 Server-2 Server-3 Server-4
a : (32, 8) a1, b1 a3, b3 a5, b5 a7, b7
b : (32, 8) a2, b2 a4, b4 a6, b6 a8, b8

a+ b : (32, 8) a9 + b9 a11 + b11 a13 + b13 a15 + b15
a10 + b10 a12 + b12 a14 + b14 a16 + b16

d: (64, 64) c1, d1 c2, d2 c3, d3 c4, d4

c : (64, 16) c5 + d5 c8 + d8 c11 + d11 c14 + d14
c6 + d6 c9 + d9 c12 + d12 c15 + d15
c7 + d7 c10 + d10 c13 + d13 c16 + d16

a17 + c17, b17 + d17 a18 + c18, b18 + d18 a19 + c19, b19 + d19 a20 + c20, b20 + d20
a21 + c21, b21 + d21 a22 + c22, b22 + d22 a23 + c23, b23 + d23 a24 + c24, b24 + d24
a25 + c25, b25 + d25 a26 + c26, b26 + d26 a27 + c27, b27 + d27 a28 + c28, b28 + d28
a29 + c29 + d29 a32 + c32 + d32 a35 + c35 + d35 a38 + c38 + d38
a30 + c30 + d30 a33 + c33 + d33 a36 + c36 + d36 a39 + c39 + d39
a31 + c31 + d31 a34 + c34 + d34 a37 + c37 + d37 a40 + c40 + d40
b29 + c41 + d41 b32 + c44 + d44 b35 + c47 + d47 b38 + c50 + d50
b30 + c42 + d42 b33 + c45 + d45 b36 + c48 + d48 b39 + c51 + d51
b31 + c43 + d43 b34 + c46 + d46 b37 + c49 + d49 b40 + c52 + d52

a41 + b41 + c53 + d53 a44 + b44 + c56 + d56 a47 + b47 + c59 + d59 a50 + b50 + c62 + d62
a42 + b42 + c54 + d54 a45 + b45 + c57 + d57 a48 + b48 + c60 + d60 a51 + b51 + c63 + d63
a43 + b43 + c55 + d55 a46 + b46 + c58 + d58 a49 + b49 + c61 + d61 a52 + b52 + c64 + d64

a53 + b53 a56 + b56 a59 + b59 a62 + b62
a54 + b54 a57 + b57 a60 + b60 a63 + b63
a55 + b55 a58 + b58 a61 + b61 a64 + b64

The message length for the NS coding scheme is L =
NK2 in the proposed scheme; note that the length may
be reduced in some cases, however we choose this value
to simplify the presentation of the code construction with-
out any loss in terms of the download cost. To introduce
(n1(K), k1(K), n2(K), k2(K),m(K)), we first define

M , TK2−K1
2 +

T1 − T2
N − T2

(
NK2−K1 − TK2−K1

2

)
= NK2−K1 − N − T1

N − T2

(
NK2−K1 − TK2−K1

2

)
, (17)

which is an integer. For any (i, j) ∈ 0 : K1 × 0 : K2 −K1,
define d0,0 , 0 and for i+ j ≥ 1, define

di,j ,

{
MTK1−i

1 (N − T1)i−1, if j = 0

TK1−i
1 (N − T1)iTK2−K1−j

2 (N − T2)j−1, o.w.

Then we specify

m(K) , Nd|K∩1:K1|,|K∩K1+1:K2|, (18)

and

n1(K) , m(K) +Nd|K∩1:K1|+1,|K∩K1+1:K2|, (19)

n2(K) , m(K) +Nd|K∩1:K1|,|K∩K1+1:K2|+1, (20)

k1(K) ,
T1
N
n1(K), k2(K) ,

T2
N
n2(K). (21)

The properties of the functions used for encoding, correct-
ness and privacy of the NS coding scheme, are summarized
as Lemma 2 below, which is proved in the supplementary

material.

Lemma 2. The tuple (n1(·), k1(·), n2(·), k2(·),m(·)) has the
following properties:

1) For any non-empty K ⊂ 1 : K2,

k1(K) = m(K), k2(K) ≤ m(K) (22)

2) The following equality holds:∑
K⊂1:K2, k∗∈K

m(K) = L (23)

3) When k∗ ∈ 1 : K1, for any k 6= k∗ the following
inequality holds: ∑

K⊂1:K2/{k∗}, k∈K

k1(K) < L (24)

When k∗ ∈ K1 + 1 : K2, for any k 6= k∗, the following
inequality holds: ∑

K⊂1:K2/{k∗}, k∈K

k2(K) < L (25)

B. Encoding, decoding, privacy, and performance
Encoding: The queries and answers are formed in three steps,
and the queries are simply the encoding matrix for these
answers. Assume for each (n, k) pair where n ≥ k, an MDS
code in Fq is given and fixed, and we refer to it as the (n, k)
MDS code.

1) Precoding: Let S1:K2
be K2 independent random ma-

trices, which are uniformly drawn from the set of all
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NK2×NK2 full rank matrices over Fq; these matrices are
known only to the user. The precoded messages W ∗1:K2

are

W ∗k = SkWk, ∀k ∈ 1 : K2. (26)

2) Group-wise MDS coding:
The precoded messages are partitioned into non-
overlapping segments, and each segment is MDS-coded
under certain parameters. We use Wk(K) to denote a
segment of message Wk indexed by K ⊂ 1 : K2.
One special coding group corresponds to the precoded
desired message W ∗k∗ , where the precoded message W ∗k∗
is (NK2 , NK2) MDS-coded into W̃k∗ , which is then
partitioned into non-overlapping segments W̃k∗(K∪{k∗})
for each K ⊂ 1 : K2, where W̃k∗(K ∪ {k∗}) has length
m(K∪{k∗}). The non-overlapping segments of W ∗k∗ exist
because of item 2 in Lemma 2. Other coding groups are
indexed by non-empty sets K ⊂ 1 : K2/{k∗}. For each
K ⊂ 1 : K2/{k∗}, the coding group indexed by K is
specified as follows.
• If k∗ ∈ 1 : K1, for each k ∈ K, a segment of W ∗k

with length k1(K) is (n1(K), k1(K)) MDS-coded into
(W̃k(K), W̃k(K ∪ {k∗})), which have lengths m(K)
and m(K ∪ {k∗}), respectively.

• If k∗ ∈ K1+1 : K2, for each k ∈ K, a segment of W ∗k
with length k2(K) is (n2(K), k2(K)) MDS-coded into
(W̃k(K), W̃k(K ∪ {k∗})), which have lengths m(K)
and m(K ∪ {k∗}), respectively.

The non-overlapping segments of W ∗k for any k 6= k∗

exist because of item 3 in Lemma 2.
3) Forming pre-coded message sums: There are K2 layers in

the coding structure. The summation of the MDS-coded
messages are placed in the layered structure from top to
bottom as follows. For i = 1, 2, . . . ,K2, in the i-th layer,
the summations (which are vectors) are

A
[k∗]
1:N (K) =

∑
k∈K

W̃k(K), ∀K ⊂ 1 : K2 with |K| = i,

(27)
and each vector is partitioned and distributed to N servers
uniformly. The MDS coded symbols of coding group
indexed by K are shown in Table VII.

Decoding and correctness: For any non-empty K ⊂ 1 : K2/
{k∗}, the MDS-coded interference symbols (W̃k(K), W̃k(K∪
{k∗}))k∈K in the coding group indexed by K are placed in
two adjacent layers. Specifically, (W̃k(K))k∈K are placed in
the |K|-th layer in the form of a signal

A
[k∗]
1:N (K) =

∑
k∈K

W̃k(K), (28)

and (W̃k(K ∪ {k∗}))k∈K are placed in the (|K|+ 1)-th layer
in the form of

A
[k∗]
1:N (K ∪ {k∗}) = W̃k∗(K ∪ {k∗}) +

∑
k∈K

W̃k(K ∪ {k∗}).

(29)

The interference signal in the top layer can cancel the in-
terference signal in the bottom layer. The interference signal

∑
k∈K W̃k(K) in the |K|-th layer (top layer) has length m(K).

• When k∗ ∈ 1 : K1, since (W̃k(K), W̃k(K ∪ {k∗}) are
encoded by the same linear (n1(K), k1(K)) MDS code
for each k ∈ K, by item 1 in Lemma 2, that m(K) =
k1(K), the interference signal

∑
k∈K W̃k(K ∪ {k∗}) in

the (|K|+ 1)-th layer can indeed be recovered.
• When k∗ ∈ K1 + 1 : K2, since (W̃k(K), W̃k(K ∪ {k∗})

are encoded by the same linear (n2(K), k2(K)) MDS
code for each k ∈ K, by item 1 in Lemma 2, that m(K) ≥
k2(K), the interference signal

∑
k∈K W̃k(K∪{k∗}) in the

(|K|+ 1)-th layer can be recovered.

Thus we have W̃k∗(K ∪ {k∗}) for all K ⊂ 1 : K, and the
desired message Wk∗ can be recovered.

Privacy: The coding pattern, i.e., the manner of forming pre-
coded message sums, is the same for the retrieval of any
message Wk∗ . Specifically, when the identity of the desired
message k∗ ∈ 1 : K1,

n1(K) = m(K) +m(K ∪ {k∗}), (30)

and when k∗ ∈ K1 : K2,

n2(K) = m(K) +m(K ∪ {k∗}). (31)

Moreover, there are m(K) summations of form K placed
in the |K|-th layer. Thus the placements of the pre-coded
message sums are the same for retrieving any message Wk∗ .
For example, there are 4 sums of form b+c in the 2nd layers of
both Table III and Table IV. Similarly, the pre-coded sums can
be indicated by the set of messages involved, e.g., summations
of form b+ c are indicated by K = {2, 3}.

Since it is a linear code, the coded symbols can be generated
by the corresponding coding matrices. When k∗ ∈ 1 : K1, the
desired precoded message W ∗k∗ is (NK2 , NK2) MDS coded
into W̃k∗ ; and for each k 6= k∗, in the coding group K ⊂
1 : K2/{k∗} with k ∈ K, a non-overlapping segment of W ∗k
is the (n1(K), k1(K)) MDS coded where n1(K) : k1(K) =
N : T1. Thus for any k ∈ 1 : K2 the coding matrix of MDS
coded symbols W̃k in any T1 servers from the segments of
the precoded W ∗k is a T1NK2−1×T1NK2−1 full rank matrix.
By applying Lemma 1, the messages W1:K1

thus have privacy
level T1.

The statement above also implies that for any k ∈ 1 :
K2 the coding matrix of MDS coded symbols W̃k in any
T2 servers from the segments of the precoded W ∗k is a
T2N

K2−1 × T2N
K2−1 full rank matrix. In addition, when

k∗ ∈ K1 + 1 : K2, the desired precoded message W ∗k∗ is
(NK2 , NK2) MDS coded into W̃k∗ ; and for each k 6= k∗,
in the coding group K ⊂ 1 : K2/{k∗} with k ∈ K, a
non-overlapping segment of W ∗k is the (n2(K), k2(K)) MDS
coded where n2(K) : k2(K) = N : T2. Thus for any
k∗ ∈ 1 : K2, the coding matrix of MDS coded symbols W̃k

in any T2 servers from the segments of the precoded W ∗k is a
T2N

K2−1 × T2NK2−1 full rank matrix. By applying Lemma
1, the messages W1:K2 thus have privacy level T2.

Performance: The message length is L = NK2 . The total
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TABLE VII
PLACEMENT OF CODING GROUP INDEXED BY K IN THE |K|-TH AND (|K|+ 1)-TH LAYERS

Layer Coding group Servers 1 : N
...

...
...

· · · · · ·
|K|-th coding group K: (ni(K), ki(K)), m(K) symbols:

∑
k∈K W̃k(K)

where i = 1 if k∗ ∈ 1 : K1 otherwise i = 2 · · ·
· · · · · ·

(|K|+ 1)-th m(K ∪ {k∗}) symbols: W̃k∗(K) +
∑
k∈K W̃k(K ∪ {k∗})

· · · · · ·
...

...
...

length of answers is
N∑
n=1

`[k
∗]

n =
∑
K⊂1:K2

m(K). (32)

The rate can thus be computed as

RNS =
L∑N

n=1 E[`[k
∗]

n ]
(33)

=
N

N

NK2−1∑K1

i=1

(
K1

i

)
di,0 +

∑K1

i=0

∑K2−K1

j=1

(
K1

i

)(
K2−K1

j

)
di,j

(34)

=

(
1 +

T1
N

+ · · ·+
(
T1
N

)K1−1

+

(
T1
N

)K1

·

(
1 +

T2
N

+ · · ·+
(
T2
N

)K2−K1−1
))−1

.

(35)

Remark: In the general code construction, the message length
is NK2 . The message length can be further reduced as long
as the length of each non-overlapping segments in Group-wise
MDS coding step share a maximum common divisor greater
than 1. For the example of the NS scheme for (N,T1 : K1, T2 :
K2) = (4, 2 : 2, 1 : 4) two-level PIR we discussed in Section
IV-B, the message length L = 64 = NK2/4. It is the same for
the NB general scheme we will present in the next section and
the example of the NB scheme illustrated in Section IV-C.

VI. THE NON-UNIFORM BLOCK CANCELLATION SCHEME

From the example in Section IV-C, the proposed NB coding
scheme uses the T -private code discussed in Section IV-A
as base codes, and consists of three blocks. The NS coding
scheme studied in the previous section naturally degrades to
the T -private code when K1 = K and T1 = T2 = T , thus
it is leveraged directly in the NB coding scheme. We first
construct two precoded tables, which correspond to the NS
codes for messages W1:K1

with privacy level T1 and messages
WK1+1:K2

with privacy level T2, respectively. Then a portion
of the precoded Table-A is placed in the first block of NB
code, a portion of the precoded Table-B is placed in the second
block, and the rest of both precoded tables are mixed and form
the third block.

A. Precoded tables
The message length for the NB coding scheme is L = NK2

for the (N,T1 : K1, T2 : K2) two-level PIR system. The
NS code proposed in Section V for the (N,T1 : K1, T1 :
K1) two-level PIR consists of K1 layers and has a message
length NK1 . Since the message length here is L = NK2 =
NK1NK2−K1 , the NS code can be applied here by stacking
the parameters (m(·), n1(·), k1(·), n2(·), k2(·)) by a factor of
NK2−K1 . We shall view this coding structure as precoded
Table-A. Similarly, define the NS code with message length
NK2 for the (N,T2 : K2 −K1, T2 : K2 −K1) two-level PIR
with messages WK1+1:K2

as precoded Table-B.
In the precoded Table-A, there are K1 layers of precoded

sums. The precoded sums can be indicated by the set of
messages involved. Here m̃(K1) summations of composition
K1 are placed in the |K1|-th layer for any non-empty subset
K1 ⊂ 1 : K1, where

m̃1(K1) = NK2−K1+1(N − T1)|K1|−1T
K1−|K1|
1 . (36)

Similarly, there are K2 − K1 layers in the precoded Table-
B, and m̃(K2) summations of compositions K2 placed in the
|K2|-th layer for any non-empty subset K2 ⊂ K1 + 1 : K2,
where

m̃2(K2) = NK1+1(N − T2)|K2|−1T
K2−K1−|K2|
2 . (37)

When the identity of the desired message k∗ satisfies
k∗ ∈ K1 + 1 : K2, the precoded Table-B is well-defined, and
the precoded Table-A is a pure-interference table specified as
follows.

1) Precoding: Let S1:K1 be K1 independent random matri-
ces, uniformly drawn from the set of all NK2×NK2 full
rank matrices over Fq; these matrices are known only to
the user. The precoded messages W ∗1:K1

are

W ∗k = SkWk, ∀k ∈ 1 : K1. (38)

2) Group-wise MDS coding: The precoded messages are
partitioned into non-overlapping segments, and each seg-
ment is MDS-coded under certain appropriate parame-
ters. The coding groups are indexed by non-empty sets
K1 ⊂ 1 : K1. For any non-empty set K1 ⊂ 1 : K1, for
each k ∈ K1, a segment of W ∗k with length T2

N m̃1(K1)

is (m̃1(K1),
T2

N m̃1(K1)) MDS-coded into W̃k(K1).
3) Forming pre-coded message sums: From the 1st layer to

the K1-th layer, the summations (vectors) placed in the
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i-th layer are formed as∑
k∈K1

W̃k(K1), ∀K1 ⊂ 1 : K1 with |K1| = i, (39)

for i = 1, 2, . . . ,K1.

We can similarly define the pure-interference precoded Table-
B, with the MDS parameters (m̃2(K2),

T2

N m̃2(K2)) for any
coding group indexed by a nonempty set K2 ⊂ K1 + 1 : K2.

B. Encoding, decoding, privacy, and performance

Encoding: When the identity of the desired message k∗ ∈
1 : K1, the precoded Table-A is an NK2−K1 -stacked NS code
and the precoded Table-B is a pure-interference table. When
k∗ ∈ K1+1 : K2, the precoded Table-A is a pure-interference
table while the precoded Table-B is an NK1 -stacked NS code.
The three blocks of NB code are specified as follows.

In precoded Table-A, there are m̃1(K1) precoded summa-
tions indexed by K1 for any non-empty set K1 ⊂ 1 : K1.
For each non-empty set K1 ⊂ 1 : K1, T2

N fractions of
the summations indexed by K1 are placed in the |K1|-th
layer of the first block. Thus a T2

N fraction of the precoded
Table-A forms the first block. Similarly, a T2

N fraction of
the precoded Table-B forms the second block. The remaining
N−T2

N fractions of both tables are mixed together to form the
third block by simple pairwise summations in an arbitrary
order; in case they have different numbers of remaining coded
symbols, these remaining summands are included directly. The
summations of each form are partitioned and distributed to N
servers uniformly.

Decoding and correctness: When k∗ ∈ 1 : K1, the pre-
coded Table-B is a pure-interference table. Since the coding
group indexed by non-empty set K2 ⊂ K1 + 1 : K2 are
(m̃2(K2),

T2

N m̃2(K2)) MDS coded, the T2

N fraction of the pre-
coded summations placed in the second block can cancel the
N−T2

N fraction of the precoded summations placed in the third
block. After canceling all the interference signals involving
messages WK1+1:K2

, the NB code becomes precoded Table-
A, which can recover the desired message Wk∗ . Similarly,
when k∗ ∈ K1 + 1 : K2, the precoded Table-A is a pure-
interference table, and the MDS parameters (n, k) again satisfy
n : k = N : T2. Thus the interference signals in the first block
can cancel the interference signals in the third block, and the
the desired message Wk∗ can be recovered by the remaining
precoded Table-B.

Privacy: When k∗ ∈ 1 : K1, any T1 of N servers collude may
be able to infer the desired message is in W1:K1

. However,
since the pure-interference precoded Table-B is mixed to the
precoded Table-A arbitrarily in the third block, and precoded
Table-A has privacy level T1 for retrieving any message in
W1:K1 , i.e., even if any T1 of N servers collude, the identity
of the request message Wk∗ in W1:K1 remains private. It is
straightforward to verify that W1:K2

have privacy level T2
since both precoded tables are T2-private.

Performance: The message length is L = NK2 . The size of
precoded Table-A is

t1 =
∑

K1⊂1:K1

m̃1(K1) =
NK1 − TK1

1

N − T1
NK2−K1+1; (40)

the size of precoded Table-B is

t2 =
∑

K2⊂K1+1:K2

m̃2(K2) =
NK2−K1 − TK2−K1

2

N − T2
NK1+1;

(41)

and the size of the third block is

m =

(
1− T2

N

)
max (t1, t2) . (42)

Since the sizes of the first block and second block are T2

N t1
and T2

N t2 separately, the rate is thus

RNB =
L∑N

n=1 E[`[k
∗]

n ]
=

L
T2

N t1 +
T2

N t2 +m
, (43)

which is indeed (12) after elementary simplification.

VII. CONCLUSION

We considered two-level private information retrieval sys-
tems, and provided a capacity lower bound by proposing
two novel code constructions and a capacity upper bound. It
is further shown that the upper bound can be improved in
a special case, however the improved bound also does not
match the proposed lower bound. We suspect the proposed
code constructions can also be improved to yield better lower
bounds, which we leave as a future work. Some of the
techniques given in this work can be adopted to multilevel
PIR with more than two privacy levels, and when storage
constraint is introduced. The two-level model can be viewed as
natural generalization of the canonical PIR model. In addition
to the extensions and generalizations we discussed in the
introduction section, there have been other PIR models in
the literature, such as private computation [27], PIR with
side information [28], and weakly private information retrieval
[26]. The multilevel privacy model we proposed here can also
be further extended to such scenarios.
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