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AbstractÐAlthough data quality is of paramount importance
in algorithmic decision±making, most existing methods for su-
pervised classification use training data without ever questioning
their fidelity. At the same time, counterfactual explanation
approaches widely used for post±hoc explanation of algorithmic
decisions may result in unrealistic recommendations when left
unconstrained. This work highlights a significant research prob-
lem, and introduces a novel framework to improve supervised
classification in the presence of untrustworthy data, while offering
actionable suggestions when an undesirable decision has been
made (e.g., loan application rejection). Evaluation results span-
ning datasets from different domains demonstrate the superiority
of the proposed approach, and its comparative advantage as the
percentage of mislabeled instances increases.

Index TermsÐcounterfactual explanations, data quality, data
science, supervised learning

I. INTRODUCTION

Machine learning models are increasingly applied in high±

stakes domains, including, but not limited to, health [1] and

policing [2], lending [3] and job profiling [4]. The success of

such models is intrinsically tied to the quality of data used to

train them. Unfortunately, obtaining good quality data, partic-

ularly with respect to their labels in a supervised classification

setting, is often impossible [5]. For instance, in homelessness

service provision [6], individuals are assigned to shelters not

necessarily based on their needs, but often due to availability

and capacity constraints. In such cases, untrustworthy data

are treated as reliable to compensate for the unavailability

of high quality data. At the same time, untrustworthy data

are often used to assess the accuracy of classification models

(e.g., when good quality data are limited). This practice can

result in potentially detrimental results [7], such as convicting

an innocent person [8] or deciding to not treat a cancer patient

risking irreversible health complications or even death [9].

Trustworthy automated classification and decision±making

models require effective recognition and mitigation of ªbad

dataº in the learning process. We specifically focus on super-

vised learning in the presence of mislabeled data instances.

Our problem setting relates to that of adversarial learning [10],

where counterfactual data with small feature perturbations

are designed intentionally to push a machine learning model
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towards false predictions. The terms adversarial learning and

counterfactual explanations have often been used interchange-

ably [11]. However, counterfactual explanations are more

general object±class compared with feature±level adversarial

examples [12]. In our work, we use counterfactual data for

data instances associated with undesirable decisions.
At the same time, classification models must support their

decisions by offering ªexplanationsº [13]. For instance, upon

declining a loan application, an algorithmic lending decision±

making system should offer constructive feedback (e.g., ªIm-

prove your credit score to more than 750º) for the applicator

to get a sense of what is needed for her to be awarded a

loan in the future [14]. However, it may be unreasonable to

suggest changing someones race or skin color so as to achieve

the desirable outcome. To the best of our knowledge, exist-

ing machine learning models and counterfactual explanation

frameworks treat all features equally.
The presence of untrustworthy labels in the training data

hinders the ability to provide ªcorrectº explanations of de-

cisions made by an automated classification model. This is

because mislabeled data directly influence the model training

process by introducing noise in the trustworthy data distri-

bution, thus perturbing the model decision boundary, which

in turn influences classification output. Since ªexplanationsº

depend directly on prediction output and training data, if

a prediction is wrong, the corresponding explanation can

lead to inaccurate suggestions. Therefore, detecting potentially

mislabeled data is crucial to provide correct explanations of

decisions made by automated classification systems.
This work focuses on improving algorithmic decision±

making in the presence of untrustworthy training data, while

offering actionable suggestions when an undesirable decision

has been made (e.g., loan application rejection).
In summary, the main contributions of this paper are:

• Highlighting an under±explored but significant research

direction for the machine learning community.

• Conceptualizing and formulating the problem of learn-

ing trustworthy classification models in the presence of

mislabeled training data.

• Presenting CGEP, a practical approach to (i) identify,

in an unsupervised manner, potentially mislabeled data

instances in the training set, (ii) perturb the feature vectors

2
0
2
1
 I

E
E

E
 I

n
te

rn
at

io
n
al

 C
o
n
fe

re
n
ce

 o
n
 B

ig
 D

at
a 

(B
ig

 D
at

a)
 | 

9
7
8
-1

-6
6
5
4
-3

9
0
2
-2

/2
1
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 | 

D
O

I:
 1

0
.1

1
0
9
/B

ig
D

at
a5

2
5
8
9
.2

0
2
1
.9

6
7
1
6
7
7

Authorized licensed use limited to: UNIVERSITY AT ALBANY SUNY. Downloaded on September 29,2022 at 20:52:23 UTC from IEEE Xplore.  Restrictions apply. 



1103

of such instances to achieve a more trustworthy clas-

sification model, and (iii) offer realistic counterfactual

explanations by considering real±world constraints.

• Demonstrating the superiority of the proposed solution

against baselines using three real±world datasets of vary-

ing size and complexity. The comparative advantage of

the proposed framework increases substantially as the

percentage of mislabeled increases in the training data.

II. RELATED WORK

Detecting mislabeled data in a training set has been rela-

tively well explored. [7], [15], [16]. [7] formulated mislabeled

data detection as an optimization problem, while accounting

for similarity between data instances. Similarity, however,

might be misleading if mislabeled data are not first iden-

tified and excluding. Ensemble±based methods [15], [17]±

[19] assume that mislabeled data result to conflicting class

labels when multiple independent classifiers are used for label

prediction [7]. However, most such methods rely on base

classifiers that are trained on data with potentially mislabeled

data instances [7]. Local learning is based on the assump-

tion that mislabeled data tend to be inconsistent with their

surrounding data labels [20], [21]. [21] used nearest centroid

neighborhood to detect mislabeled data, without considering

possible changes incurred by decisions of other data. Our work

leverages both local learning and ensemble learning to mini-

mize the influence of mislabeled data instances. Specifically,

we propose a cluster centroid±based method, and consider the

label of a data instance to be inconsistent with the class of

its nearest cluster centroid. Such data instance is treated as

mislabeled. Cluster centroids are computed by trusted data,

which are selected using majority voting.

As for the explainability of classification and automated

decision±making models, multiple approaches have been re-

cently explored [22]±[24]. Outcome explanations aim to ex-

plain a specific prediction from a given model, and are applica-

ble to a broader class of learning models [25], [26]. One of the

widely used methods generates explanations through feature

importance [27]. Recently, a method to produce example±

based explanations by feature perturbation was proposed [28].

Feature perturbation may lead to different prediction results

given a learning model, and as such, are considered coun-

terfactual data. [14] proposed to use multiple counterfactual

explanations for a given data instance by minimizing the

distance between the counterfactual data and original data

and maximizing the distance between multiple counterfactual

data. However, a smaller distance between counterfactual

and actual data points cannot guarantee that unreasonable

or offensive suggestions (e.g., changing race) will not be

provided. In our work, we incorporate real±world constraints,

such as immutable features (e.g., race) and directionality of

the perturbation process for features such as education level,

into the counterfactual data generation. The limiting factor

of explainability methods is that explanations are indirectly

generated from potentially mislabeled data that have been

used to train the decision±making model [14]. To the best

of our knowledge, this is the first work to bridge the gap

between post±hoc explainability of classifciation models in

the presence of untrustworthy training data.

III. PRELIMINARIES AND PROBLEM STATEMENT

A. Notation and Setting

Let (X,Y ) denote the training dataset, and N be the total

number of data instances. Each data instance x ∈ X is associ-

ated with a d dimensional feature vector and label y ∈ {0, 1}.

In many real±world cases (e.g., applying for a loan), one of

the two labels (e.g., y = 1) is desirable (e.g., get the loan),

and the other is undesirable. The task is to train a model C to

predict the label of previously unseen data. Let ȳ denote the

predicted outcome. By comparing y with ȳ, the training data

can be divided into four subsets, namely, the true positive set

X11 (i.e., y = 1 and ȳ = 1), false positive set X01 (i.e., y = 0
and ȳ = 1), true negative set X00 (i.e., y = 0 and ȳ = 0), and

false negative set X10 (i.e., y = 1 and ȳ = 0). For data instance

x ∈ X00, we wish to find its counterfactual data xcf to

achieve the desired outcome. Let the generated counterfactual

data pair to be denoted as (xcf , yy=1). Different with standard

classification, we inherently address the problem of mislabeled

data instances in both the training dataset and subsequently

generated counterfactual data. Therefore, original data and

counterfactual data belong to one of two sets: correctly labeled

set (Xr, Yr) and mislabeled set (Xw, Yw).

B. Problem Statement

The goal of this work is to improve algorithmic decision±

making by minimizing the influence of mislabeled data in-

stances in the training set, while at the same time providing

actionable counterfactual explanations of classification results.

To achieve this goal, we address three sub±problems: First,

potentially mislabeled data instances must be detected and

corrected. Second, actionable counterfactual data for each data

instance with an undesirable prediction outcome is generated.

Third, ªinvalidº counterfactual data are identified and replaced

with ªvalidº counterfactual data in an iterative manner.

IV. CLASSIFICATION WITH COUNTERFACTUAL DATA

GENERATION IN THE PRESENCE OF MISLABELLED DATA

We propose a framework for improved Classification with

counterfactual data GEneration in the Presence of mislabelled

data instances (CGEP). CGEP comprises three parts as fol-

lows. The mislabel detection component (Section IV-A) is

designed to detect mislabeled data, and substitute the label

for such data. The classification model (Section IV-B) is

used to predict the label of previously unseen data. The

counterfactual data generation component (Section IV-C)

perturbs the feature vector of data instances with undesirable

label, so as to bring them closer to the desirable outcome.

Algorithm 1 summarizes the process. Initially, (X,Y ) is

provided as input to the mislabel detection component. Once

mislabeled data instances are identified, their labels are ad-

justed, and the updated dataset is used to train a classifi-

cation model. The outputs of the model are inspected, and
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can only be perturbed in one direction in set Kod, and use a

feature perturbation direction matrix (PDM) for those features:

dir(ko, kr) =

{

1, if ko to kr is permissible,

0, if ko to kr is not permissible.
(10)

Figure 3 shows a toy PDM for a hypothetical scenario involv-

ing a feature based on education level.

V. EXPERIMENTS

We conduct experiments on three real±world datasets to

explore the effectiveness of the proposed algorithm. All codes

are implemented in Python 3.8 with Pytorch 1.9.0, and all

experiments were conducted on a commodity laptop running

macOS Big Sur with 3.8 GHz 8±core intel Core i7 processor.

To ensure the reproducibility of our work, we will make our

source code available on Github upon acceptance.

A. Datasets

We use the following datasets, which are widely used to

evaluate counterfactual explanations for machine learning [34].
Adult±Income: This publicly dataset [35], comprises

individual±level data, including educational, employment, and

personal situation from 1994 Census database. The task is to

determine whether a person earns over $50, 000 a year [14].
Bank±Marketing: This publicly dataset [35] is related

to phone call based marketing campaigns of a Portuguese

banking institution. A client is contacted more than once in

order to access her willingness to subscribe to a product (i.e.,

bank term deposit) [36]. Therefore, the task for this dataset is

to determine whether the client will subscribe a term deposit.
German±Credit: This small dataset [37] includes infor-

mation about clients who took a loan from a bank. The

classification task in this context is to determine whether the

client has good credit confidence based on their past history.
Summary statistics for these datasets are provided in Table

I. To encode categorical features, we adopt the numerical

mapping method [38], which has been shown to resolve some

of the issues found by simple one±hot encoding. As numerical

mapping is known to induce numerical bias, however, we

assign a distance of 1 if the counterfactual categorical feature

value is different from the original in the loss calculation

process [14] to avoid influencing the proximity loss.

B. Baselines

We compare CGEP with the following baselines:

• SingleCF: Proposed in [28], this SOTA method is de-

signed to optimize validity and proximity constraints.

• CGEP±NN±NoCF: The NN classifier used in CGEP

without counterfactual data generation. This baseline is

used to quantify the ineffectiveness of a NN approach

without counterfactual data, as compared against CGEP.

• CGEP±RF±NoCF: The Random Forest classifier [30]

used in CGEP without counterfactual generation. This

baseline is used to demonstrate the benefit of feed±

forward neural network for classification as opposed to a

simpler model, such as random forest. Nevertheless, our

framework can be used with any classification model.

C. Experiment Setup

We split each dataset into a training and testing set with

a ratio of 3:1. We use cross±validation on the training set

to select the hyperparameters of the feed±forward neural

network and choose parameters mentioned in Algorithm 1. The

structure of the feed±forward neural network used in SingleCF,

CGEP±NN±NoCF, and CGEP are same. The chosen structure

has three hidden layers, and the number of neurons for each

layer is 64, 32, 2. For SingleCF and CGEP, we use the Adamw

optimizer [39], which is implemented in PyTorch [40], with

a learning rate of 0.01, to minimize the loss function. We set

ε0 = 0.1 and TC = 30.

D. Evaluation Metrics

We use accuracy, true positive rate, proximity, and

average number of perturbed features to evaluate the

proposed solution. Specifcially, we evaluate classification

accuracy while accounting for counterfactual data, as∑
N

i=1
((yi=ȳi=1)+(yi=ȳi=0))

N
. We use true positive rate (TPR),

computed as TPR =
∑

N

i=1
yi=ȳi=1

N
, to evaluate both the

classification model and counterfactual generator. The higher

the true positive rate, the better the performance. When

counterfactual data are used, data instances belonging to

TNR (i.e., true negative rate which is defined as: TNR =
Accuracy − TPR) according to the original training dataset

must be included in the computation of TPR. In line with [14],

we calculate the proximity of continuous features separately

and scale continuous features to [0,1]. Finally, we evaluate

the number of changed features for the counterfactual data

compared with the original data, by calculating the average

number of perturbed features. Generally, the counterfactual

data with fewer changed features are more actionable.

E. Evaluation Results

Figure 4(a) shows that the accuracy results on Adult±Income

of CGEP with counterfactual data is much higher than the

accuracy of an equivalent model that does not consider coun-

terfactual data. This illustrates the benefit of counterfactual

data generation in the proposed solution model. By further

comparing CGEP±RF±NoCF and CGEP±NN±NoCF, it be-

comes evident that the feed±forward neural network performs

better than random forest in all three datasets. However, in the

presence of mislabeled data, the accuracy of SingleCF drops

quickly, as illustrated in Figure 5. The comparative advantage

of CGEP becomes clearer as the number of mislabeled data

instances in the training data increases for all three datasets.

In fact, even when more than half of the data being untrust-

worthy), classification accuracy can be maintained at a level

much higher than that achieved by SingleCF.

Figure 4(b) shows how the proposed solution and the

baselines fair with respect to true positive rate on Adult±

Income. True positive rate alone is not enough to justify the

superiority of CGEP. However, when the proximity metric

is also considered (see Figure 4(c)), the advantage of CGEP

becomes more evident. Similarly, Figure 6 shows that CGEP
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