2021 IEEE International Conference on Big Data (Big Data) | 978-1-6654-3902-2/21/$31.00 ©2021 IEEE | DOI: 10.1109/BigData52589.2021.9671677

2021 IEEE International Conference on Big Data (Big Data)

Improving Algorithmic Decision—Making in the
Presence of Untrustworthy Training Data

Wenting Qi
Department of Computer Science
University at Albany, SUNY
Albany, New York, USA
wqi@albany.edu

Abstract—Although data quality is of paramount importance
in algorithmic decision-making, most existing methods for su-
pervised classification use training data without ever questioning
their fidelity. At the same time, counterfactual explanation
approaches widely used for post-hoc explanation of algorithmic
decisions may result in unrealistic recommendations when left
unconstrained. This work highlights a significant research prob-
lem, and introduces a novel framework to improve supervised
classification in the presence of untrustworthy data, while offering
actionable suggestions when an undesirable decision has been
made (e.g., loan application rejection). Evaluation results span-
ning datasets from different domains demonstrate the superiority
of the proposed approach, and its comparative advantage as the
percentage of mislabeled instances increases.

Index Terms—counterfactual explanations, data quality, data
science, supervised learning

I. INTRODUCTION

Machine learning models are increasingly applied in high—
stakes domains, including, but not limited to, health [1] and
policing [2], lending [3] and job profiling [4]. The success of
such models is intrinsically tied to the quality of data used to
train them. Unfortunately, obtaining good quality data, partic-
ularly with respect to their labels in a supervised classification
setting, is often impossible [5]. For instance, in homelessness
service provision [6], individuals are assigned to shelters not
necessarily based on their needs, but often due to availability
and capacity constraints. In such cases, untrustworthy data
are treated as reliable to compensate for the unavailability
of high quality data. At the same time, untrustworthy data
are often used to assess the accuracy of classification models
(e.g., when good quality data are limited). This practice can
result in potentially detrimental results [7], such as convicting
an innocent person [8] or deciding to not treat a cancer patient
risking irreversible health complications or even death [9].

Trustworthy automated classification and decision—-making
models require effective recognition and mitigation of “bad
data” in the learning process. We specifically focus on super-
vised learning in the presence of mislabeled data instances.
Our problem setting relates to that of adversarial learning [10],
where counterfactual data with small feature perturbations
are designed intentionally to push a machine learning model
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towards false predictions. The terms adversarial learning and
counterfactual explanations have often been used interchange-
ably [11]. However, counterfactual explanations are more
general object—class compared with feature—level adversarial
examples [12]. In our work, we use counterfactual data for
data instances associated with undesirable decisions.

At the same time, classification models must support their
decisions by offering “explanations” [13]. For instance, upon
declining a loan application, an algorithmic lending decision—
making system should offer constructive feedback (e.g., “Im-
prove your credit score to more than 750”) for the applicator
to get a sense of what is needed for her to be awarded a
loan in the future [14]. However, it may be unreasonable to
suggest changing someones race or skin color so as to achieve
the desirable outcome. To the best of our knowledge, exist-
ing machine learning models and counterfactual explanation
frameworks treat all features equally.

The presence of untrustworthy labels in the training data
hinders the ability to provide “correct” explanations of de-
cisions made by an automated classification model. This is
because mislabeled data directly influence the model training
process by introducing noise in the trustworthy data distri-
bution, thus perturbing the model decision boundary, which
in turn influences classification output. Since “explanations”
depend directly on prediction output and training data, if
a prediction is wrong, the corresponding explanation can
lead to inaccurate suggestions. Therefore, detecting potentially
mislabeled data is crucial to provide correct explanations of
decisions made by automated classification systems.

This work focuses on improving algorithmic decision—
making in the presence of untrustworthy training data, while
offering actionable suggestions when an undesirable decision
has been made (e.g., loan application rejection).

In summary, the main contributions of this paper are:

o Highlighting an under—explored but significant research

direction for the machine learning community.

o Conceptualizing and formulating the problem of learn-
ing trustworthy classification models in the presence of
mislabeled training data.

o Presenting CGEP, a practical approach to (i) identify,
in an wunsupervised manner, potentially mislabeled data
instances in the training set, (ii) perturb the feature vectors
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of such instances to achieve a more trustworthy clas-
sification model, and (iii) offer realistic counterfactual
explanations by considering real-world constraints.

o Demonstrating the superiority of the proposed solution
against baselines using three real-world datasets of vary-
ing size and complexity. The comparative advantage of
the proposed framework increases substantially as the
percentage of mislabeled increases in the training data.

II. RELATED WORK

Detecting mislabeled data in a training set has been rela-
tively well explored. [7], [15], [16]. [7] formulated mislabeled
data detection as an optimization problem, while accounting
for similarity between data instances. Similarity, however,
might be misleading if mislabeled data are not first iden-
tified and excluding. Ensemble-based methods [15], [17]-
[19] assume that mislabeled data result to conflicting class
labels when multiple independent classifiers are used for label
prediction [7]. However, most such methods rely on base
classifiers that are trained on data with potentially mislabeled
data instances [7]. Local learning is based on the assump-
tion that mislabeled data tend to be inconsistent with their
surrounding data labels [20], [21]. [21] used nearest centroid
neighborhood to detect mislabeled data, without considering
possible changes incurred by decisions of other data. Our work
leverages both local learning and ensemble learning to mini-
mize the influence of mislabeled data instances. Specifically,
we propose a cluster centroid—based method, and consider the
label of a data instance to be inconsistent with the class of
its nearest cluster centroid. Such data instance is treated as
mislabeled. Cluster centroids are computed by trusted data,
which are selected using majority voting.

As for the explainability of classification and automated
decision—making models, multiple approaches have been re-
cently explored [22]-[24]. Outcome explanations aim to ex-
plain a specific prediction from a given model, and are applica-
ble to a broader class of learning models [25], [26]. One of the
widely used methods generates explanations through feature
importance [27]. Recently, a method to produce example—
based explanations by feature perturbation was proposed [28].
Feature perturbation may lead to different prediction results
given a learning model, and as such, are considered coun-
terfactual data. [14] proposed to use multiple counterfactual
explanations for a given data instance by minimizing the
distance between the counterfactual data and original data
and maximizing the distance between multiple counterfactual
data. However, a smaller distance between counterfactual
and actual data points cannot guarantee that unreasonable
or offensive suggestions (e.g., changing race) will not be
provided. In our work, we incorporate real-world constraints,
such as immutable features (e.g., race) and directionality of
the perturbation process for features such as education level,
into the counterfactual data generation. The limiting factor
of explainability methods is that explanations are indirectly
generated from potentially mislabeled data that have been
used to train the decision—making model [14]. To the best
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of our knowledge, this is the first work to bridge the gap
between post—hoc explainability of classifciation models in
the presence of untrustworthy training data.

III. PRELIMINARIES AND PROBLEM STATEMENT
A. Notation and Setting

Let (X,Y) denote the training dataset, and N be the total
number of data instances. Each data instance z € X is associ-
ated with a d dimensional feature vector and label y € {0,1}.
In many real-world cases (e.g., applying for a loan), one of
the two labels (e.g., y = 1) is desirable (e.g., get the loan),
and the other is undesirable. The task is to train a model C' to
predict the label of previously unseen data. Let § denote the
predicted outcome. By comparing y with g, the training data
can be divided into four subsets, namely, the true positive set
X117 (G.e., y =1 and y = 1), false positive set Xp1 (i.e., y =0
and y = 1), true negative set Xog (i.e., ¥y = 0 and 4y = 0), and
false negative set X (i.e., y = 1 and y = 0). For data instance
x € Xgo, we wish to find its counterfactual data z.¢ to
achieve the desired outcome. Let the generated counterfactual
data pair to be denoted as (z.f, y,=1). Different with standard
classification, we inherently address the problem of mislabeled
data instances in both the training dataset and subsequently
generated counterfactual data. Therefore, original data and
counterfactual data belong to one of two sets: correctly labeled
set (X,,Y,) and mislabeled set (X, Ya,).

B. Problem Statement

The goal of this work is to improve algorithmic decision—
making by minimizing the influence of mislabeled data in-
stances in the training set, while at the same time providing
actionable counterfactual explanations of classification results.
To achieve this goal, we address three sub—problems: First,
potentially mislabeled data instances must be detected and
corrected. Second, actionable counterfactual data for each data
instance with an undesirable prediction outcome is generated.
Third, “invalid” counterfactual data are identified and replaced
with “valid” counterfactual data in an iterative manner.

IV. CLASSIFICATION WITH COUNTERFACTUAL DATA
GENERATION IN THE PRESENCE OF MISLABELLED DATA

We propose a framework for improved Classification with
counterfactual data GEneration in the Presence of mislabelled
data instances (CGEP). CGEP comprises three parts as fol-
lows. The mislabel detection component (Section IV-A) is
designed to detect mislabeled data, and substitute the label
for such data. The classification model (Section IV-B) is
used to predict the label of previously unseen data. The
counterfactual data generation component (Section IV-C)
perturbs the feature vector of data instances with undesirable
label, so as to bring them closer to the desirable outcome.

Algorithm 1 summarizes the process. Initially, (X,Y) is
provided as input to the mislabel detection component. Once
mislabeled data instances are identified, their labels are ad-
justed, and the updated dataset is used to train a classifi-
cation model. The outputs of the model are inspected, and
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data instances for which the predicted label is undesirable,
are fed into the counterfactual data generator to generate
counterfactual data with desirable prediction outcome. Note
that this correspond to instances x € Xgg, as opposed to
z € Xpo U Xig. The rationale behind this decision is that
the goal of training a classification model is to maximize
prediction accuracy, which is equivalent to maximizing the size
of X1 and Xgp, as well as minimizing the size of X and
Xo1. In general, our counterfactual generation component tries
to convert X to X1, whereas the classification model pushes
X0 to X7; in an attempt to improve classification accuracy.
Generated counterfactual data and their corresponding label
(i-e., (zcr,Yy=1)) are examined to ensure that they are not
considered to be noise (i.e., mislabeled) with respect to the
original data distribution. In the event that the counterfactual
data is detected as mislabeled, the original data (i.e.,(, yy—0))
is retained, and another attempt is made for counterfactual
data, until the generated counterfactual data is detected as
correctly labeled by the mislabel detection component, or the
number of maximum iterations is reached.
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Fig. 1. Aggregation of trusted data for computing cluster centroids ceny—=o
and ceny—1. Data instances are assigned to trusted label sets (Xy=1 and
Xy=0) if the majority vote corresponds to their label in the original test data.

positive or true negative depending on its original label.
After selecting and grouping true positive data set and true
negative data set, the cluster centroids ceny—q and ceny—q are
computed correspondingly using standard methods [32]. The
above processes visualized in the Figure 1.

We use a 5—fold cross—validation, so that each data in-
stance is examined for mislabeling. We group data instances
with trusted labels in X, and separate them into X,—; and
X,—o according to their label value. Then, we initialize the
cluster centroid ceny—; and ceny—o as follows: ceny—1 =

Algorithm 1 CGEP Algorithm

Input: (X,Y), €, desired class Yy=1, and Ag.
1: Initialize ¢t = 0.

2: Initialize the cluster centroids ceny—o and ceny—1.
3: for x € X do

4 if = satisfies Eq. (1) then

5: Add z in X,.

6: else if = satisfies Eq. (2) then

7. Add z in Xy.

8: end if

9: end for

10: Flip the label for all z € Xy,

11: while t =T or XOO is empty do
12: Train the classifier C* with updated dataset.
13: Output the prediction result of C* and aggregate true negative data

in X
14: Generate counterfactual data x.s for X
15: Update the dataset with (.ounterfactual data z.f which satisfies

Equation (3).
16: t=t+1
17: end while
Output: Trained learning model C, z.; for each x € Xgo:o.

A. Cluster—based Mislabeled Data Detection

To detect potentially mislabeled data, we assume the true
cluster centroid of desirable class is ceny—1, and the undesir-
able cluster centroid class is ceny—g. If the data x is labeled
as the desirable class, but the distance between x to desirable
cluster centroid ceny—; is larger than the distance between
z to undesirable cluster centroid ceny—g. In such case, z is
mislabeled. To get a reasonable estimate of the true cluster
centroids for the desired and undesired classes, data points
assumed to be correctly labeled must be identified.

We adopt majority voting [29] to discriminate between
the true positive and true negative data. We use Random
Forest (RF) [30], Decision Tree (DT) [31] and Support Vector
Machine (SVM), mainly due to their simplicity and popularity.
Specifically, if the original label is consistent with the majority
of the three classifiers, the corresponding data is either true
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lel:l‘ Zf\il x; * L(x; € Xy=1), ceny—p = le%O‘ Dol Ti ¥
1(x; € Xy—0), where 1 is the indicator function.

After determining the cluster centroids, potentially misla-
beled data in the original dataset are identified using the
following criterion: if z € X,., then x needs to satisfy Equation
(1); if z € X, then z needs to satisfy Equation (2) below.

(llz = cemy=ol| = [|z — ceny=1[[)(1(y = 1) = L(y = 0)) > 0 (1)

(Ile — ceny—o|| — [l — ceny—1 [)(L(y = 1) ~ 1y = 0)) <O (2)
Intuitively, Equation (1) checks for inconsistent data instances
with respect to their nearest cluster centroid. The meaning of
Equation (2) is opposite.

As mentioned in Section IV, the mislabel detection com-
ponent is additionally used to check whether the generated
counterfactual data are consistent with the data distribution of
the original dataset. If x.; satisfies Equation (3), then x.s is
corrected and retained, and is dropped otherwise.

[|zey — ceny=ol| — ||zey — ceny=1|| > 0. 3)

B. Classification Model

We opt for a simple feed—forward neural network (NN) [33]
for classification. Compared with other types of widely used
neural network structures, the feed—forward neural network
is more explicable because the information in this network
travels in an unidirectional manner, i.e., from the input to
hidden layers to the output. We adopt the cross—entropy loss,
defined as L = — Zfil 91 logo;, where 7; is the one-hot
encoding of label y; and o; is the output of the feed—forward
neural network with z; as input. The selection of cross—
entropy ensures that the output (a probability vector over the
two classes in our case) follows a binomial distribution.
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C. Counterfactual Data Generation

We formulate the counterfactual generation process as an
optimization problem that takes into account three constrains
described in Subsections IV-C1, IV-C2, and IV-C3, accord-
ingly below. Specifically, we define the loss function as:

dist(mgf ,zd)

dl = % Zi\le Zgzl Z3(p(ko,kr)—1(kEKoa)dir(ko,ky))’ S
where Z¢ is a normalization factor computed as:
d : L
2= G k) i e Kdirtho k) O
Then, the overall loss is defined as:
argmin(l — A\)dl + A(|C(zcy) — yy=1), (6)

Tef

where p(k,, k) and dir(k,, k,) are defined in Egs. (10) and
(9), and hyperparamter A controls the trade—off between the
validity and actionability of the generated counterfactual data.
The objective function in Eq. (6) is optimized iteratively,
with hyperparameter A\ being initialized as 0.5 (we use A to
denote this initial value). In each counterfactual optimization
iteration, the value of A increases from )y in increments of
0.01. The counterfactual data generation process terminates if
the counterfactual data with a desirable outcome is generated,
or the maximum number of iterations allowed (1) is reached.
€p is the minimum distance requirement for the counterfactual
data prediction output to the desirable output.

1) Validity Constraint: Validity [28] is a critical constraint
in the counterfactual data generation process. In our context,
ZTop is valid if the prediction outcome is desirable (i.e.,
C(zcf) = 1), and invalid otherwise. [14] defined validity
constraint as a loss minimization over multiple counterfactual
data for a given data instance. Different from [14], to reduce
complexity, and at the same time improve the functionality of
counterfactual explanations as suggestions for improvement,
we generate one counterfactual data per instance. Therefore,
we relax [14]’s validity constraint into:

argmin yloss(C(xcf), Yy=1); @)

Tef
where yloss(a,b) = |la — b||2.

2) Proximity Constraint: Proximity [14] evaluates the dis-
tance between counterfactual data z.; and the original feature
vector x for a given data instance. Intuitively, z.; being
close to x translates to either few changes or small changes
in magnitude that must be made to achieve the desirable
label. We use [; distance to quantify the distance between
counterfactual data and original data as:

®)

arg min dist(zes, x) = ||xcr — 1.
Tef
For categorical features, we assign a distance of 1 if the

categorical feature value of counterfactual data is different than
its original data, in line with [34].
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Fig. 2. Example of distribution-aware difference matrix. In the matrix the y
axis direction points original feature value k,, the x-axis direction points to
perturbation result k,. The matrix based on Eq. (9).

BS. BE. MA Ph.D.
1 1 1 1
BS.
1 1 1 1
BE.
MA 0 0 1 1
. ° 0 ® L

-
@ ® =z 3 [featurevalue
v m ¥ g

frequency
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Fig. 3. TIllustrative example of feature perturbation direction matrix (PDM).
In the matrix on the right, the y axis represents original feature value k., and
the = axis the corresponding perturbation result k. The matrix is computed
using Eq. (10). B.S., B.E., M.A., and Ph.D. are short for Bachelor of Science,
Bachelor in Engineering, Masters, and Doctor of Philosophy degree.

3) Actionability Constraint: The proximity constraint im-
poses limits only to the magnitude of the changes, rather than
what those changes can be. As a result, counterfactual data
may make unreasonable suggestions. To avoid such fallacies,
we propose additional constraints, as follows.

First, immutable features (e.g., race) are excluded from the
feature perturbation process. Second, we consider the feature
distribution into the counterfactual data generation process.
For example, considering the task of predicting annual income
with desirable class being “over $50, 000 and undesired label
being “below $50,000”. Let also a feature value distribution
of occupation as illustrated in Figure 2. Although a CEO
achieves 100% desirable income, there is only one CEO
instance. Since occupation is a categorical feature, the distance
of “not working” to the rest of the feature values is the same.
Unfortunately, transitioning to “CEO” may be significantly
more challenging for a jobless individual. To address this
challenge, we propose a distribution—aware distance matrix
in the counterfactual data generating process. Specifically, we
compute the distance between the original feature value, k,,
and the perturbed value, k., as:

il k)
N -l et = ko)

K3

1(x¥

4

p(ko, ky) = (©))

where k£ € 1,2,...,d is a perturbed feature, and M denotes
the total number of feature values in k. A toy example of the
distribution—aware distance matrix is shown in Figure 2.
Last but not least, we impose directionality in the feature
perturbation process of features that inherently allow for
changes only in one direction. For instance, it is both counter
intuitive for counterfactual explanations to suggest downgrad-
ing one’s education level. To incorporate this intuition into the
counterfactual data generation process, we group features that
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can only be perturbed in one direction in set K,4, and use a
feature perturbation direction matrix (PDM) for those features:

dir(ko, k) = {

Figure 3 shows a toy PDM for a hypothetical scenario involv-
ing a feature based on education level.

1, if k, to k, is permissible, (10)
0, if k, to k, is not permissible.

V. EXPERIMENTS

We conduct experiments on three real-world datasets to
explore the effectiveness of the proposed algorithm. All codes
are implemented in Python 3.8 with Pytorch 1.9.0, and all
experiments were conducted on a commodity laptop running
macOS Big Sur with 3.8 GHz 8—core intel Core 17 processor.
To ensure the reproducibility of our work, we will make our
source code available on Github upon acceptance.

A. Datasets

We use the following datasets, which are widely used to
evaluate counterfactual explanations for machine learning [34].

Adult-Income: This publicly dataset [35], comprises
individual-level data, including educational, employment, and
personal situation from 1994 Census database. The task is to
determine whether a person earns over $50,000 a year [14].

Bank-Marketing: This publicly dataset [35] is related
to phone call based marketing campaigns of a Portuguese
banking institution. A client is contacted more than once in
order to access her willingness to subscribe to a product (i.e.,
bank term deposit) [36]. Therefore, the task for this dataset is
to determine whether the client will subscribe a term deposit.

German-Credit: This small dataset [37] includes infor-
mation about clients who took a loan from a bank. The
classification task in this context is to determine whether the
client has good credit confidence based on their past history.

Summary statistics for these datasets are provided in Table
I. To encode categorical features, we adopt the numerical
mapping method [38], which has been shown to resolve some
of the issues found by simple one-hot encoding. As numerical
mapping is known to induce numerical bias, however, we
assign a distance of 1 if the counterfactual categorical feature
value is different from the original in the loss calculation
process [14] to avoid influencing the proximity loss.

B. Baselines

We compare CGEP with the following baselines:

o SingleCF: Proposed in [28], this SOTA method is de-
signed to optimize validity and proximity constraints.

e CGEP-NN-NoCF: The NN classifier used in CGEP
without counterfactual data generation. This baseline is
used to quantify the ineffectiveness of a NN approach
without counterfactual data, as compared against CGEP.

o CGEP-RF-NoCF: The Random Forest classifier [30]
used in CGEP without counterfactual generation. This
baseline is used to demonstrate the benefit of feed—
forward neural network for classification as opposed to a
simpler model, such as random forest. Nevertheless, our
framework can be used with any classification model.
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C. Experiment Setup

We split each dataset into a training and testing set with
a ratio of 3:1. We use cross—validation on the training set
to select the hyperparameters of the feed—forward neural
network and choose parameters mentioned in Algorithm 1. The
structure of the feed—forward neural network used in SingleCF,
CGEP-NN-NoCF, and CGEP are same. The chosen structure
has three hidden layers, and the number of neurons for each
layer is 64, 32, 2. For SingleCF and CGEP, we use the Adamw
optimizer [39], which is implemented in PyTorch [40], with
a learning rate of 0.01, to minimize the loss function. We set
€0 = 0.1 and T¢ = 30.

D. Evaluation Metrics

We wuse accuracy, true positive rate, proximity, and
average number of perturbed features to evaluate the
proposed solution. Specifcially, we evaluate classification

accuracy while accounting for counterfactual data, as
SN ((i=i=1)+(yi=7:=0))
N

computed as TPR = , to evaluate both the
classification model and counterfactual generator. The higher
the true positive rate, the better the performance. When
counterfactual data are used, data instances belonging to
TNR (i.e., true negative rate which is defined as: TNR =
Accuracy — TPR) according to the original training dataset
must be included in the computation of TPR. In line with [14],
we calculate the proximity of continuous features separately
and scale continuous features to [0,1]. Finally, we evaluate
the number of changed features for the counterfactual data
compared with the original data, by calculating the average
number of perturbed features. Generally, the counterfactual
data with fewer changed features are more actionable.

. We use true positive rate (TPR),
Ef;l yi=yi=1
N

E. Evaluation Results

Figure 4(a) shows that the accuracy results on Adult-Income
of CGEP with counterfactual data is much higher than the
accuracy of an equivalent model that does not consider coun-
terfactual data. This illustrates the benefit of counterfactual
data generation in the proposed solution model. By further
comparing CGEP-RF-NoCF and CGEP-NN-NoCF, it be-
comes evident that the feed—forward neural network performs
better than random forest in all three datasets. However, in the
presence of mislabeled data, the accuracy of SingleCF drops
quickly, as illustrated in Figure 5. The comparative advantage
of CGEP becomes clearer as the number of mislabeled data
instances in the training data increases for all three datasets.
In fact, even when more than half of the data being untrust-
worthy), classification accuracy can be maintained at a level
much higher than that achieved by SingleCF.

Figure 4(b) shows how the proposed solution and the
baselines fair with respect to true positive rate on Adult—
Income. True positive rate alone is not enough to justify the
superiority of CGEP. However, when the proximity metric
is also considered (see Figure 4(c)), the advantage of CGEP
becomes more evident. Similarly, Figure 6 shows that CGEP
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TABLE I
DATASETS STATISTICAL INFORMATION.

Dataset # of data # of mislabeled # of fea- # of categor- # of continues Imutable features One—directional
instances data instances tures ical features features feature
Adult-Income 48,842 127 14 6 8 gender, age, race, country  education
Bank—Marketing 45211 236 20 10 10 age education
German—Credit 1,000 20 15 5 5 age, credit history credit score
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Fig. 6. Average number of changed features (y—axis) per epoch (z—axis) for CGEP and the baselines over (a) Adult-Income, (b) German—Credit, and (c)

Bank—Marketing datasets, accordingly.

is better than SingleCF, in the sense that fewer features have to
be perturbed to achieve comparable or superior accuracy, even
in when the number of mislabeled data is small (i.e., when the
original dataset is used without synthetic mislabeled data).

VI. CONCLUSION

As automated classification and algorithmic decision—
making become part of everyday life, the trustworthiness of
data used to train such models becomes critical. This work
studied the problem of improving supervised learning in the
presence of mislabeled data instances in the training data. A
new framework was proposed to identify, in an unsupervised
manner, mislabeled data instances, perturb the feature vectors
of such instances to train a trustworthy classification model,
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and incorporate real-world constraints so as to offer reasonable
and realistic suggestions for improvement, when an unde-
sirable decision has been made by the classification model.
Experimental evaluation spanning three datasets demonstrated
the benefit of identifying and correcting mislabaled data,
while leveraging counterfactual explanations to improve clas-
sification. We hope that by highlighting this under—explored
problem, more effective methods will be developed to address
the challenges associated with quality issues in the datasets
used to train machine learning models.
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