
DOMINO: Domain-aware Model Calibration in

Medical Image Segmentation

Skylar E. Stolte1, Kyle Volle2,3, Aprinda Indahlastari4,6,7, Alejandro Albizu4,5,
Adam J. Woods4,5,6,7, Kevin Brink8, Matthew Hale2, and Ruogu Fang1,4,6

1 J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert
Wertheim College of Engineering, University of Florida (UF), USA

2 Department of Mechanical and Aerospace Engineering, Herbert Wertheim College
of Engineering, UF, USA

3 UF Innovation Station at the Research & Engineering Education Facility (REEF),
Herbert Wertheim College of Engineering, UF, USA

4 Center for Cognitive Aging and Memory, McKnight Brain Institute, UF, USA
5 Department of Neuroscience, College of Medicine, UF, USA

6 Department of Electrical and Computer Engineering, Herbert Wertheim College of
Engineering, UF, USA

7 Department of Clinical and Health Psychology, College of Public Health and
Health Professions, UF, USA

8 United States Air Force Research Laboratory, Fort Walton Beach, Florida, USA

Abstract. Model calibration measures the agreement between the pre-
dicted probability estimates and the true correctness likelihood. Proper
model calibration is vital for high-risk applications. Unfortunately, mod-
ern deep neural networks are poorly calibrated, compromising trustwor-
thiness and interpretability. Medical image segmentation particularly suf-
fers from this due to the natural uncertainty of tissue boundaries. This
is exasperated by their loss functions, which favor overconődence in ma-
jority classes. We address these challenges with DOMINO, a domain-
aware model calibration method which leverages the semantic confus-
ability and hierarchical similarity between class labels. Our experiments
demonstrate that our DOMINO-calibrated deep neural networks outper-
form non-calibrated models and state-of-the-art morphometric methods
in head image segmentation. Our results show that that our method can
consistently achieve better calibration, higher accuracy, and faster infer-
ence times than these methods, especially on rarer classes. This perfor-
mance is attributed to our domain-aware regularization to inform seman-
tic model calibration. These őndings show the importance of semantic
ties between class labels in building conődence into deep learning mod-
els. The framework has the potential to improve the trustworthiness and
reliability of generic medical image segmentation models.

Keywords: Image Segmentation · Machine Learning Uncertainty · Model
Calibration · Model Generalizability · Whole Head MRI
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1 Introduction

Machine learning calibration measures the agreement between the predicted
probability estimates and the true correctness likelihood [9]. Proper calibration
is vital for high-risk applications. Modern deep neural networks (DNNs) achieve
impressive accuracy at poor calibration [9]. Incorrectly calibrated models are
unreliable on out-of-distribution data and don’t know when they are likely to be
incorrect. This discrepancy leaves them vulnerable in critical decision making
scenarios such as self-driving cars, surgical robots, disease subtyping, and per-
sonalized intervention. On the other hand, well-calibrated models are less certain
when decisions are incorrect and comparably certain when correct. Their reliable
conődence provides valuable information to establish trustworthiness.

We hypothesize that domain-aware model calibration that leverages the se-

mantic confusability and hierarchical similarity among class labels can yield
well-calibrated and higher performing models. Our approach harnesses the inher-
ent similiarities between labels. To test this hypothesis, we have chosen medical
image segmentation because of its fundamental role in medical image analysis.
Prior works have found that overly-conődent decisions on tissue boundaries can
introduce signiőcant errors in brain volume estimations [4]. Head image seg-
mentation is prone to errors due to delicate tissue boundaries, tissue imbalance,
and low contrast. These challenges can make widely-adopted open-source soft-
ware fall short on high-ődelity tasks in patient sub-populations [13,18,3]. Errors
in head segmentation can lead to downstream errors in clinical pipelines, like in
parameter estimation for non-invasive brain stimulation [2,12]. Hence, we seek to
answer the question: can we leverage class relationships to build an automated,
high-performing, and well-calibrated head image segmentation model?

We answer this question with DOMINO, a framework that leverages domain
information among class labels to calibrate DNNs. Unlike prior works that push
class means to be orthogonal [16], we assume some class labels have natural sim-
ilarity. The choice of loss function is very important to calibration because loss
drives how a model learns and performs [17]. Medical image segmentation still
largely relies on standard loss functions [1]. We extend these approaches with
domain-aware loss regularization to improve model calibration. We study two
regularization schemes that are based on confusion matrices (CM) and hierar-
chical classes (HC), respectively. The former imposes a penalty based on class
confusability when using a standard network on a held-out data subset. The
latter groups labels into hierarchical classes based on common tissue properties.

Our experiments in Section 3 demonstrate that our DOMINO-calibrated
DNNs outperform non-calibrated models and state-of-the-art morphometric meth-
ods (e.g., Headreco) in head segmentation. Our method can consistently achieve
better calibration (Figure 6) and higher accuracy (Tables 2, 3), especially on
rarer classes. This performance is attributed to our domain-aware regularization
to inform semantic model calibration. These őndings show the importance of
semantic ties between class labels in building conődence into DNNs. DOMINO-
calibrated models improve model trustworthiness and generalizability. This sys-
tem could potentiate efficient cross-talk between human and machine [8].
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2 Domain-aware Model Calibration

2.1 U-Net Transformers (UNETR) Model

We employ UNETR [10] as our base model due to its superior performance
on medical image segmentation. UNETR utilizes a U-Net architecture with a
transformer encoder. This approach combats the relative locality of convolu-
tional layers in fully convolutional networks (FCNs). Transformers have revo-
lutionized Natural Language Processing due to superior learning of long-range
sequences [19]. Transformers differ from FCNs in that the former encodes images
as a sequence of one-dimensional patch embeddings. Self-attention modules learn
weighted sums of values that are calculated from hidden layers. Hence, UNETR
reformulates 3D image segmentations as sequence-to-sequence predictions. The
network passes the transformer’s learned global contextual information to a tra-
ditional FCN decoder via skip connections at different resolutions. The decoder
concatenates localized information with the global multi-scale information from
the encoder. Non-regularized UNETR is referred to as UNETR-Base.

2.2 Domain-aware Loss Regularization

Concept Our penalty term addresses a deőcit with cross entropy (CE) loss in
uncertainty. CE loss maximizes the output associated with the ground truth label
class. Due to this, the network tries to increase the true label logit more than the
incorrect label logits. This results in networks that are overly conődent in the
predicted class. On the other hand, the non-selected classes’ softmax outputs do
not represent the true likelihood distribution.

Our work introduces more meaningful uncertainty into our deep learning
model by penalizing incorrect classes. Speciőcally, we assume that some classes
are naturally more similar to others. Prior work shows that network presentation
often pushes class means to all be orthogonal to each other [16]. This means
that the network assumes that all classes are equally separable. This assumption
őghts the natural similarities between certain classes. Thus, we hypothesize that
a network can learn better class representation by taking advantage of class

similarities, rather than őghting them. The methods described in this section
are applicable to classiőcation and segmentation. In this deőnition, segmentation
is considered analogous to pixel-wise classiőcation in uncertainty problems [14].

Derivation Our regularization term adds to any loss function as follows:

L(y, ŷ) + β(y′)(W )(ŷ) (1)

where L is a suitable loss function (here, we use DiceCE which is a combination
of Dice score and cross entropy), y is the one-hot encoded true label, and ŷ is the
softmax output. β can take on any value between zero and one. W represents a
generic regularization term of size N×N , where N is the number of classes. The
diagonals are zero, whereas the off-diagonals represent the penalties for confusing
classes. We propose two domain-aware approaches to design W as below.

Confusion Matrix-based (UNETR-CM) Confusion matrix-based calibra-
tion utilizes the natural confusability among class labels using a non-calibrated
DNN. First, we train UNETR-base without regularization on the training set.
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Then, we evaluate the trained model on a held-out validation set to generated a
confusion matrix on all classes. The loss regularization is computed as below:

Wij = S ·
Ii − Cij

Ii
(2)

Here, i and j represent the row and column indices, respectively. C is the con-
fusion matrix generated when UNETR-Base is applied on a held-out validation
set and normalized by class prevalence. Wij represents any given matrix entity.
Ii is ith row of the identity matrix. Thus Wii = 0 so there is no penalty for the
correct class. Finally, S is a scaling factor to make the regularization weights
more signiőcant. We set S = 3 based on empirical experiments; however, jointly
varying β and S can change the balance of the loss function. Low values for both
result in no regularization; too high and it begins to effect model accuracy. The
correct values for these hyperparameters will depend on the model and dataset.

Table 1: Hierarchical class groupings. *Eyes
are considered to fall within CSF and soft tissue
due to have aqueous and őbrous components.

Hierarchical groupings Tissues

Background (BG) BG

White matter (WM) WM

Grey Matter (GM) GM

Cerebrospinal ŕuid (CSF) CSF, Eyes*

Bone Cancellous bone, Corti-
cal bone

Soft tissue Skin, Fat, Muscle, Eyes*

Air Air

Major artery (Blood) Blood

Hierarchical Class-based
(UNETR-HC) Here, We
propose a regularization that
leverages the hierarchical re-
lationship between semantic
labels. Hierarchical groups are
more likely to have sim-
ilar properties than inter-
group classes. Hence, confus-
ing within hierarchical groups
can allow researchers and
clinicians to make more in-
formed and safer mistakes
when wrong. Table 1 shows the hierarchy for our head segmentation. We de-
őne the matrix penalty shown in Fig 1b by considering which classes are subsets
of the same super-class. In Fig 1b, each row represents the penalties for confusing
the given class with any other class. The maximum penalty is 3, and penalties
are manually lowered within the groups of table 1. The eye class is considered
close to two groupings. This method of generating the matrix penalty is more
subjective than UNETR-CM, but it incorporates domain knowledge.

3 Experiments and Results

3.1 Dataset

This study harnesses data from a Phase III clinical trial on cognitive training and
non-invasive brain stimulation for cognitive improvements. The study recruited
a large participant group within the age range of 65 to 89 years and with signs
of age-related cognitive decline. The trial was approved by the Institutional
Review Boards at all involved institutions. Structural T1-weighted MRI scans
were obtained using a 32-channel, receive-only head coil from a 3-T Siemens
MAGNETOM Prisma MRI scanner. MPRAGE sequence parameters: repetition
time (TR) = 1800 ms; echo time (TE) = 2.26 ms; ŕip angle = 8°; őeld of view
(FOV) = 256 × 256 × 256 mm; voxel size = 1 mm3.
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(a) Penalty matrix for UNETR-CM
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(b) Penalty matrix for UNETR-HC

Fig. 1: Computed matrix penalties (W terms) for both experiments

Ground Truth Trained staff segmented the T1 MRIs into 11 tissues using semi-
automated segmentation. These 11 tissues included muscle, fat, skin, cortical
bone, cancellous bone, majory artery (blood), air, cerebrospinal ŕuid (CSF),
eyes, grey matter (GM), and white matter (WM). Semi-automated segmentation
consists of automated segmentation followed by manual correction. First, base
segmentations for WM, GM, and bone were obtained using Headreco, while air
was generated in the Statistical Parametric Mapping toolbox (SPM12). Next,
these automatic outputs were manually corrected using ScanIP Simpleware™
(version 2018.12, Synopsys, Inc., Mountain View, USA). Bone was separated into
cancellous and cortical tissue using thresholding and morphology. Blood, skin,
fat, muscle, and eyes (sclera and lens) were manually segmented in Simpleware.
CSF was generated by subtracting the other ten tissues from the entire head. The
resulting 11 tissue masks served as the ground truths for learned segmentation.

Implementation details We implement UNETR using the Medical Open Net-
work for Artiőcial Intelligence (MONAI-0.8) in Pytorch 1.10.0 [6]. We split our
113 MRIs into 93 training / 10 validation / 10 testing. Each DNN required 1
GPU, 4 CPU, and 30 GB of memory. Each model was trained for 25,000 itera-
tions with evaluation at 500 intervals. The models were trained on 256 x 256 x
256 images with batch sizes of 2 images. We trained our models with Adam op-
timization using stochatic gradient descent. UNETR segmentation results took
3 seconds per head. Headreco takes roughly 20 minutes per head.

3.2 Evaluation Metrics

We employ the following metrics on the 11-class and 6-class segmentations. We
perform the 6-class comparison because the current őeld standard in head seg-
mentation (e.g., Headreco) provide different tissues than our method. For ex-
ample, Headreco [15] uses 8 tissues and SPM uses 6 tissues. Thus, we had to
combine tissues into groups for a fair comparison.
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Dice represent the overlap of two binary masks [5]: Dice = 2|Y ∩Ŷ |

|Y |+|Ŷ |
where Y

and Ŷ represent the ground truth mask and generated mask for a given tissue,
respectively. A perfect overlap between these two generates a Dice score of 1,
whereas a 0 represents no mask overlap.

Hausdorff distance (Hausdorff) calculates the average distances between
the closest points in two data subsets [11,7]. Hausdorff distances are generally
more robust than Dice in respect to the precise boundaries.

H(Y, Ŷ ) = max(h(Y, Ŷ ), h(Ŷ , Y )) (3)

h(Y, Ŷ ) = max
y∈Y

(min
ŷ∈Ŷ

(d(y, ŷ))), h(Ŷ , Y ) = max
ŷ∈Ŷ

(min
y∈Y

(d(ŷ, y))) (4)

where y represents a point in Y and ŷ represents a point in Ŷ . H(Y, Ŷ ) is
the overall modiőed Hausdorff distance, whereas h(Y, Ŷ ) and h(Ŷ , Y ) are di-
rected Hausdorff distances. d(y, ŷ) and d(ŷ, y) are Euclidean distances. Smaller
the Hausdorff distance indicates better segmentation.

Top-N accuracy Top-N accuracy measures how often your true class falls
within your top N highest softmax outputs. This metrics reŕect meaning in the
outputs that were not the selected class. For instance, higher Top-2 and Top-3
predictions can show that a well-calibrated makes reasonable mistakes that are
supported by the data, rather than random misclassiőcations.
Calibration Curves show the relationship between the predicted probability
estimates and the true correctness likelihood. These plots are meant for binary
classiőcation, so for segmentation one class "positive" is compared to the rest
"negative". The prevalence of positive classes is compared to predicted certainty
for that class. Perfect calibration is a straight line from origin to (1,1).

3.3 Calibrated models outperform UNETR-Base on 11-classes
Qualitative analysis Figure 2 shows that UNETR-HC best captures the őne
detail of the boundary between GM and CSF. This observation is noticeable in
the upper left and upper right łgroovesž in the light blue (CSF) color. UNETR-
HC attempts to tract out these regions and label them as CSF, whereas the
UNETR-Base and UNETR-CM assign more of these pixels as GM. This bound-
ary is a major challenge in automatic segmentation due to partial volume effects.

Table 2: Top-N Accuracy on 11 classes

Method Top-1 Top-2 Top-3

UNETR-Base 0.876 0.979 0.990
UNETR-HC 0.891 0.984 0.993
UNETR-CM 0.895 0.986 0.996

Quantitative comparison Figure 3
and Table 2 show the Dice, Haus-
dorff, and Top-N. UNETR-CM per-
forms best in Dice and Top-N accu-
racy, whereas both UNETR-CM and
UNETR-HC outperform UNETR-
Base in Hausdorff. This insinuates
that UNETR-CM classiőes the most
pixels correctly, whereas both models
capture tissue boundaries.

3.4 UNETR with calibration outperforms or performs comparably
to Headreco in 6-class segmentation
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Table 3: Top-N Accuracy on 6 classes

Method Top-1 Top-2 Top-3

Headreco 0.905 0.977 0.983
UNETR-Base 0.913 0.993 0.998
UNETR-HC 0.924 0.995 0.998
UNETR-CM 0.928 0.996 0.999

Qualitative analysis We consoli-
date classes to compare fairly with
state-of-the-art head segmentation
such as Headreco [15]. In order to
compare the two methods we com-
bine DOMINO classes that are spe-
ciőc subsets of Headreco classes; for
example, cancelous and cortical bone
are both labeled as just bone. In Fig 4,
the three learned models are contrasted with the ground truth labels and the
Headreco output. Differences are highlighted with white rectangles. Our methods
show comparable or superior performance to Headreco across all tissue types.

Quantitative comparison Figure 5 and Table 3 show the Dice score, Hausdorff
distance, and top-1/2/3 accuracy on 6-classes. Calibrated UNETR is comparable
to Headreco in WM, GM, and CSF; all of our models outperform Headreco in
Air, Bone, and Soft tissue. UNETR-HC’s hausdorff distances shows that the reg-
ularization can improve 6-class segmentation without retraining. UNETR-CM
performs the best in Top-1/2/3 accuracy. Figure 6 shows that DOMINO regular-
ization achieves better calibration than UNETR-Base. All algorithms are about
evenly calibrated on GM and air, whereas our methods are better calibrated
than Headreco on WM, CSF, Bone, and soft tissue.

4 Conclusions

There is often a trade-off between performance and calibration. This work pro-
poses a novel domain-aware calibration method that improves both model cal-
ibration and performance. Our results show that regularization leads to better
calibration, increased top-N accuracy, and improved segmentation metrics. The
calibrated models perform well on full class and reduced class tasks without
retraining. This highly-ŕexible approach can be applied to widespread medical
segmentation. Further, model calibration can help improve cross-talk between
automated algorithms and manual labelers. Finally, our calibration can be ap-
plied to classiőcation tasks in medical image diagnosis. We will release DOMINO
to the community to support open science research.

Background

White Matter

Grey Matter

Eyes

CSF

Air

Blood

Cancellous

Cortical

Skin

Fat

Muscle
!"#$%&'("$)* +,-(./0123 +,-(./45 +,-(./64UNETR-Base Slice 150 UNETR-CM Slice 150Groundtruth Slice 150 UNETR-HC Slice 150

Fig. 2: Sample image slice for 11-tissue segmentation.The red squares show that
UNETR-HC captures the GM - CSF boundary better than other methods
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(a) (b)

Fig. 3: (a) Dice scores and (b) Hausdorff distances in 11-class segmentation.

!"#$%&'("$)* +,-(./0123 +,-(./45 +,-(./64

Background
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Grey Matter

CSF

Bone

Soft tissue

Air
UNETR-Base Slice 100 UNETR-CM Slice 100Groundtruth Slice 100 UNETR-HC Slice 100Headreco Slice 100631&"37#

Fig. 4: Sample image slice for 6-tissue segmentation. The white squares highlight
important regions where our methods outperformed Headreco
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Fig. 5: (a) Dice scores and (b) Hausdorff distances in 6-class segmentation.
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Fig. 6: Calibration curves for 6-class problem.
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