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Abstract: Wildfires have continued to increase in frequency and severity in Southern California
due in part to climate change. To gain a further understanding of microbial soil communities’
response to fire and functions that may enhance post-wildfire resilience, soil fungal and bacterial
microbiomes were studied from different wildfire areas in the Gold Creek Preserve within the
Angeles National Forest using 16S, FITS, 18S, 12S, PITS, and COI amplicon sequencing. Sequencing
datasets from December 2020 and June 2021 samplings were analyzed using QIIME2, ranacapa,
stats, vcd, EZBioCloud, and mixomics. Significant differences were found among bacterial and
fungal taxa associated with different fire areas in the Gold Creek Preserve. There was evidence of
seasonal shifts in the alpha diversity of the bacterial communities. In the sparse partial least squares
analysis, there were strong associations (r > 0.8) between longitude, elevation, and a defined cluster
of Amplicon Sequence Variants (ASVs). The Chi-square test revealed differences in fungi–bacteria
(F:B) proportions between different trails (p = 2 × 10−16). sPLS results focused on a cluster of Green
Trail samples with high elevation and longitude. Analysis revealed the cluster included the post-fire
pioneer fungi Pyronema and Tremella. Chlorellales algae and possibly pathogenic Fusarium sequences
were elevated. Bacterivorous Corallococcus, which secretes antimicrobials, and bacterivorous flagellate
Spumella were associated with the cluster. There was functional redundancy in clusters that were
differently composed but shared similar ecological functions. These results implied a set of traits for
post-fire resiliency. These included photo-autotrophy, mineralization of pyrolyzed organic matter and
aromatic/oily compounds, potential pathogenicity and parasitism, antimicrobials, and N-metabolism.

Keywords: DNA sequencing; functional diversity; molecular ecology

1. Introduction

Wildfires have continued to increase in frequency and severity in Southern California
due in part to climate change; furthermore, the size and intensity of fires has increased
since 1950 [1]. To gain a further understanding of microbial soil communities’ response
to fire and functions that may enhance post-wildfire resilience, soil fungal and bacterial
microbiomes were studied from different wildfire areas in the Gold Creek Preserve within
the Angeles National Forest using 16S, FITS, 18S, 12S, PITS, and COI (Cytochrome Oxidase
I) amplicon sequencing.
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Dispersal is a factor in the evolution of metacommunities [2]; in the setting of the study
site, Canyon relief, creek flow, and wind erosion in the Gold Creek Preserve aid in dispersal
of microbes. Wind erodibility is a part of soil classification [3]. Habitat isolation, distance
from the forest edge, or remoteness is also a factor that shapes community structure in the
biogeographical context [2].

Metacommunity ecology has focused on species attributes, including eukaryotic host
distributions, and landscape ecology focuses on site attributes [2]. This study attempts to
integrate both sets of attributes into a joined model for the assemblages of organisms that
are present in high relative abundance at various spatial coordinates. Antibiotic resistance
represents a rapid evolutionary process which dons novel ecological functions to bacteria
and modifies the competitive hierarchy [2]. Coexistence networks or clustered image
maps [4,5] may shed light on the evolution of groups of microorganisms in the context of
the study location and extent.

Heat from an intense wildfire would be expected to sterilize soil [6,7] and favor taxa
that metabolize pyrolyzed organic matter, such as Pyronema fungi [6]. Wetter soil would be
expected to increase the impact of heat on soil, along with fire intensity and duration [7].
Microbial biomass is characteristically lowered following a wildfire [8,9], and recovery of
soil communities may span decades [9]. Microbial diversity would be expected to decline
with the number of fires, as noted by Bowd et al. [10]. However, soil erodibility is enhanced
post-fire [11], which would aid in the dispersal of organisms. Additionally, low intensity
fires may not significantly decrease mycorrhizal populations, fire effects are expected to be
less in xeric environments, and microbes in the substratum are more resistant to burns [7].
Oliver et al. [8] reported no shifts in soil physical properties following low-intensity burns,
although fungal taxa did shift in composition.

Fungi can be readily identified in soil samples with fungi internal transcribed spacers
(FITS) markers. Vegetation communities have been strong predictors of bacterial and fungal
community responses to fires in boreal forests in Canada [9]. Plant environmental DNA
(eDNA) in the soil can be identified with PITS (plant internal transcribed spacers) markers,
although visual inspection of the site may be similarly informative. Typically, bacteria are
identified with the 16S marker.

Although bacteria and fungi were of primary interest, other microorganisms such
as algae and protists were also detectable with this assay, as well as nematodes and
arthropods. Protists have received little attention in studies of microbial communities [12];
this emphasizes the importance of including markers such as 18S and COI for identification
of eukaryotes in metabarcoding datasets. Predators control the size of populations, are
interdependent with microbes, play a role in designing the community structure, and
influence spatial heterogeneity through grazing [2]. These eukaryotic organisms may also
have symbiotic associations that help to shape the persistence of symbionts even when
the association no longer benefits both parties [2]. Furthermore, rapid establishment of
photosynthetic organisms is common after fire, and a decrease in the F:B ratio is common
after fire [7].

This study will contribute to the resolution of the important ecological inquiry ques-
tioning the limits to which microbial metacommunity diversity and functions are resistant
to short and long-term perturbations, how much functional redundancy is present in
microbial communities, and how major shifts in environmental conditions may affect
co-occurring groups of microorganisms [13].

We hypothesized that the Blue Trail, which is a wildlife corridor and was only burned
in one recent fire, would have the highest alpha diversity of fungi and the highest fungi–
bacteria (F:B) ratio. We hypothesized that trails would have a differential abundance of
taxa associated with their fire histories. We hypothesized that the Blue Trail would have
the highest alpha diversity of fungal taxa when contrasted with the other trails, which had
different fire histories. The Red Trail was burned in the 2009 Station Fire combined with
the Creek Fire, and the Creek Fire and 2016 Sand Fire affected the Green Trail.
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2. Materials and Methods

Data was generated from two rounds of soil sampling. Gold Creek Round 1 (20 sam-
ples) were taken in December 2020, and Round 2 (18 samples) were taken in June 2021.
Data available from Round 1 includes 16S, 18S, 12S, FITS, COI and PITS. The paper will
focus on soil microbes. December 2020 and June 2021 data were analyzed using DNA
Subway Purple Line [14], ranacapa [15], stats, vcd, and mixomics [5,16]. Ranacapa was
used for multivariate ANOVA and alpha diversity. R stats was used for Chi-square test of
proportions. Mixomics was used to conduct sparse partial least squares analysis (sPLS).
Samples were gathered from the Blue Trail wildlife corridor which was burned in the 2017
Creek fire. The Red Trail burned in the 2009 Station Fire combined with the Creek Fire, and
the Creek Fire and 2016 Sand Fire affected the Green Trail. The information for each of the
fires is given in Table 1.

Table 1. Description of the fires that have affected the area of interest [17]. © 1998–2019 Given Place
Media, publishing as Los Angeles Almanac. Reprinted with permission.

Fire Name Date Started Acres Burned Structures Destroyed

Station 26 August 2009 160,577 209
Sand 22 July 2016 41,432 18
Creek 5 December 2017 15,619 123

There are two sets of soil conditions present between the sites, based on USDA histor-
ical data [3]. Both of the soil classifications in the sampling area had low organic matter
(OM) from 0 to 10 cm. The Trigo-Modesto-San Andreas classification encompassed the
southern half of the Preserve, including the Blue Trail and the Red Trail. The Caperton-
Trigo classification was mainly located the Green Trail and is represented by Map unit 54.
The sites differ in their range of slope, pH, cation exchange capacity (CEC), texture, and
capacity for capillary water, as shown in Table 2. Since the Caperton-Trigo classification was
coarser, it had less capacity for available water, and was well-drained. The Caperton-Trigo
area also had a slightly acidic pH based on historical data, and a higher cation exchange
capacity, which one would expect to be favorable to plants despite the diminished water
availability. Furthermore, the samples associated with the Caperton-Trigo complex cor-
responded to a lower soil wind erodibility index (48 T/ac/year) regardless of its higher
maximum slope percentage, when compared with the Trigo-Modesto-San Andreas complex
(56 T/ac/year) [3].

Table 2. Soil classifications, soil physical and chemical properties are specified for the Gold Creek
Preserve according to USDA historical data [3].

Soil Class Slope pH CEC Texture %OM Avail. H2O/100 cm

Trigo-Modesto-San Andreas (Map unit 48) 15–70% 7 9.8 Loam 1 11.27 cm
Caperton-Trigo (Map unit 54) 50–85% 6.5 11.3 Gravelly loam 1 5.94 cm

Soil samples were taken from plant rootzones of Quercus agrifolia, Eriodictyon cras-
sifolium, Dendromecon rigida, and Arctostaphylos glauca. The Q. agrifolia had burned in
different combinations of fires, and the thickleaf Yerba Santa and Tree Poppy, which re-
quire scarification to germinate, established large stands at the sampling sites after the
2017 Creek Fire and 2016 Sand Fire, respectively. The manzanita trees resprouted from
trees that had been established after the Station Fire and regenerated following the 2017
Creek Fire. These plants were of interest since they produce secondary metabolites, such
as tannins, coumarins, protopine, and essential oils. Coumarins and terpenes influence
the composition of microbial communities in the rootzone [18]; microbes regulate plant
secondary metabolite production by enhancing gene expression or through horizontal gene
transfer [19].
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For Round 1, three samples were retrieved within a 1-foot radius of one another,
and the DNA was pooled prior to library construction for each marker. Three samples
were taken from three individuals of the same plant species in proximity of each marker
for Round 2. The soil sampling maps for winter and summer are displayed in Figure 1.
Sample metadata for summer 2021 and winter 2020 has been provided in Tables 3 and 4,
respectively. There were two rounds of sampling, during winter and during summer
(38 samples total) with 16S, FITS, 18S, 12S, PITS, and COI amplicons. The samples were
collected in sterile cryotubes. For Round 1 samples, the DNA was extracted at University of
California, Los Angeles and sequenced by University of California, Santa Cruz Genomics
Institute [20]. For Round 1, six molecular markers were amplified and sequenced with
Illumina barcode adapters at 35,000 paired reads each. Quality control was performed in
QIIME2; Cutadapt was used to remove Illumina adaptor sequences; DADA2 was used for
quality score trimming and identification of unique ASVs. Taxonomies were assigned to
Amplicon Sequence Variants with an 95% likelihood cutoff from the CRUX database. A
GreenGenes classifier was used. Each marker dataset was outputted into an ASV (Amplicon
Sequence Variant) table for downstream analysis using the Anacapa toolkit [21].

Figure 1. Left to Right: Round 1 soil sampling map (December 2020) and Round 2 soil sampling map
(June 2021).

Table 3. Sample metadata for Round 2 sampling.

SampleID Latitude Longitude Elevation Plant_Species Trail Replicate

Sample25 34.322778 −118.31167 2140 Charred_Oak BlueTrail rep1
Sample26 34.322778 −118.31167 2140 Charred_Oak BlueTrail rep2
Sample27 34.322778 −118.31167 2140 Charred_Oak BlueTrail rep3
Sample28 34.321389 −118.30889 2240 Charred_Oak RedTrail rep1
Sample29 34.321389 −118.30889 2240 Charred_Oak RedTrail rep2
Sample30 34.321389 −118.30889 2240 Charred_Oak RedTrail rep3
Sample31 34.321667 −118.31111 2200 Manzanita_SW RedTrail rep1
Sample32 34.321667 −118.31111 2200 Manzanita_SW RedTrail rep2
Sample33 34.321667 −118.31111 2200 Manzanita_SW RedTrail rep3
Sample34 34.3267402 −118.30997 2340 Bush_Poppy GreenTrail rep1
Sample35 34.3267402 −118.30997 2340 Bush_Poppy GreenTrail rep2
Sample36 34.3267402 −118.30997 2340 Bush_Poppy GreenTrail rep3
Sample37 34.3279066 −118.31028 2350 Charred_Oak GreenTrail rep1
Sample38 34.3279066 −118.31028 2350 Charred_Oak GreenTrail rep2
Sample39 34.3279066 −118.31028 2350 Charred_Oak GreenTrail rep3
Sample40 34.324444 −118.31167 2190 Yerba_Santa GreenTrail rep1
Sample41 34.324444 −118.31167 2190 Yerba_Santa GreenTrail rep2
Sample42 34.324444 −118.31167 2190 Yerba_Santa GreenTrail rep3
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Table 4. Sample metadata from Round 1 sampling.

Sample Name Lat Long Elevation Plant Trail Type Topography Soil Class

K0554_M8 34.3225 −118.313 2140 Oak Blue Trail soil Flat Trigo-Modesto-San Andreas
K0782_B2 34.32278 −118.313 2130 None Blue Trail sediment Creek Trigo-Modesto-San Andreas
K0782_C3 34.3225 −118.313 2140 Sycamore Blue Trail soil Flat Trigo-Modesto-San Andreas
K0787_G5 34.3225 −118.301 2090 Fern Blue Trail soil Flat Trigo-Modesto-San Andreas
K0788_A1 34.3225 −118.314 2090 Yucca Blue Trail soil Flat Trigo-Modesto-San Andreas
K0788_L7 34.3225 −118.314 2090 Low Creek Blue Trail sediment Creek Trigo-Modesto-San Andreas
K0782_L7 34.32389 −118.312 2210 Yerba Santa Green Trail soil Terrace Trigo-Modesto-San Andreas
K0783_B2 34.3251 −118.54 2230 Reed Green Trail sediment Creek Caperton-Trigo
K0783_G5 34.32611 −118.31 2330 Chemise Green Trail soil Terrace Caperton-Trigo
K0783_K6 34.32667 −118.309 2380 Ceanothus Green Trail soil Terrace Caperton-Trigo
K0783_L7 34.32722 −118.311 2400 Bush Poppy Green Trail soil Terrace Caperton-Trigo
K0788_C3 34.3251 −118.54 2230 None Green Trail sediment Canyon Caperton-Trigo
K0788_G5 34.32694 −118.31 2350 None Green Trail soil Canyon Caperton-Trigo
K0788_M8 34.32389 −118.312 2190 Yerba Santa Green Trail soil Slope Trigo-Modesto-San Andreas
K0790_C3 34.32694 −118.31 2350 Oak Green Trail sediment Creek Caperton-Trigo
K0560_B2 34.32194 −118.311 2200 Manzanita Red Trail soil Slope Trigo-Modesto-San Andreas
K0782_K6 34.32139 −118.309 2240 Oak Red Trail soil Terrace Trigo-Modesto-San Andreas
K0783_A1 34.3225 −118.312 2160 Toyon Red Trail soil Slope Trigo-Modesto-San Andreas
K0787_T9 34.32167 −118.311 2210 Manzanita Red Trail soil Slope Trigo-Modesto-San Andreas
K0788_T9 34.32278 −118.312 2190 Buckwheat Red Trail soil Slope Trigo-Modesto-San Andreas

Round 2 Data consists of 16S amplicons only. For Round 2, DNA was extracted with
the Qiagen (Hilden, Germany) Power Soil DNA kit and sent to James Madison University
for 16S amplification, library preparation [22,23], and pooled 16S amplicon NGS on the
Illumina (San Diego, CA, USA) MiniSeq platform. The V4 region of the bacterial 16s
rRNA gene was amplified and barcoded for each sample using the primers developed by
Kozich et al. (2013). Samples were screened for successful amplification on an agarose
gel and pooled. A double-sided bead cleanup was carried out to remove primer-dimers
and a low amount of off-target larger PCR products. Quality and concentration of the
pooled library was checked using a Bioanalyzer (Agilent, Santa Clara, CA, USA) and NEB’s
Library Quant Kit for Illumina. The library was then sequenced on a MiniSeq using a mid-
output reagent cartridge. Before loading, the library was combined with Ilumina’s PhiX
control (30:70 16s:PhiX) to ensure a high-quality run despite the low diversity of the 16s
library. A dual indexing strategy was used with these primers which used Kozich et al.’s
approach and the Schloss primers: Forward: GTGCCAGCMGCCGCGGTAA. Reverse:
GGACTACHVGGGTWTCTAAT [24,25]. DNA Subway was used; the Purple Line analysis
implemented DADA2 [26] and QIIME2 [27,28] for quality control, alpha rarefaction, and to
output the ASV table for taxonomic diversity analyses.

The methods used to identify the most important features employ a similar strat-
egy as Dwiyanto et al. [29], which included PERMANOVA, sparse partial least squares,
differential abundance analysis; we also considered the functional implications using pre-
dicted functions and references to known microbial functions. There were less robust
functional databases developed for fungi than bacteria, and protists are primarily charac-
terized by morphology [12] so there was less information available about their function in
the literature. Formal hypothesis testing was carried out in DESeq2 and visualized with
SystempipeR. The Round 1 and Round 2 16S Fastqs were compared using EZBioCloud
Metagenomic Taxonomic Profiling applications.

To examine other factors besides the fire history which may have been associated
with the most abundant microbes in the study, partial least squares clustering was per-
formed. sPLS has been used for a range of applications which have included genomic
selection in cattle breeding [30], data integration for expression studies and eQTL (expres-
sion quantitative trait loci) mapping [31,32], has helped establish relationships between soil
fungal diversity and the concentration of chlorinated pollutants [33], and has uncovered
differential abundance of microbial WGS shotgun metagenomic sequences [34].

Partial least squares has been considered a quasi-supervised approach. It has been
particularly useful for genomics and environmental sampling because it is a solution to the
p > n problem. That is to say, there are relatively few samples compared to the number of
features in the DNA sequencing dataset. Essentially, successive regressions are carried out
via projection onto latent constructs to unveil hidden biological effects [35].
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Next, variable selection was carried out to reveal the most important features in a
large dataset which can be obscured by an overabundance of features. The optimal number
of features is tuned for each of the selected number of components using k-fold cross-
validation with the purpose of minimizing the root mean square error of estimation [5,30].
In genomic selection efforts, the predictive error is minimized [30]. The model was further
filtered using regression coefficients [5,16,35].

The dataset was merged to reduce the number of necessary steps and was intended to
give a more wholistic picture of the microbiome, including which bacteria, archaea, plants,
fungi, and protists are associated with one another and their potential interactions. The
Round 1 data from 16S, FITS, PITS, 18S, and COI were concatenated, and zero-sum columns
were removed with R janitor [36]. The package mixomics was used to conduct sparse partial
least squares analysis, which is useful when there are a number of multicollinear features,
as in this case.

3. Results

The main results showed significant differences in bacterial and fungal taxa associated
with different fire areas in the Gold Creek Preserve. There were changes in fungal taxa
associated with soil samples that were affected by the Creek Fire in combination with the
2009 Station Fire, 2016 Sand Fire, or the 2017 Creek Fire alone. The computation of the
Abundance-based Coverage Estimator (ACE) index accounted for the number of rare and
abundant OTUs [37]. The highest fungal to bacterial ratio was related to the area that had
been affected by the two most recent fires, which was the Green Trail. However, there
was in fact a trend toward the highest alpha diversity of fungi residing in the Blue Trail
wildlife corridor.

Plant species was not a significant factor in determining the alpha or beta diversity of
the communities. However, in the sparse partial least squares analysis, there was evidence
of moderate associations (r > 0.5) between the type of plant, topography, soil vs. sediment,
soil classification, latitude, and a suite of prokaryotic and eukaryotic taxa. There were
strong associations (r > 0.8) between longitude, elevation, and a defined cluster of Amplicon
Sequence Variants (ASVs).

The results of the permutational ANOVA for the summer bacteria sequences indicated
that the Trail variable was associated with differences in beta-diversity between samples
(p = 0.04). The largest differences were between the Red Trail and the Blue Trail in the
winter samples. In the December samples, there was also a marginally significant result
for higher alpha diversity in bacterial communities associated with the Blue Trail when
contrasted with the Red Trail, based on a post hoc Tukey Test (p-adjusted = 0.09). The
Red Trail Samples were associated with a significantly lower number of observed bacteria
species when contrasted with the Green Trail. This evidence suggested that the higher fire
intensity of the Station Fire combined with the recent burn of the Creek Fire influenced the
abundance of fungal sequences amplified by the FITS marker. The Blue Trail was associated
with significant differences in 16S beta diversity when contrasted with the Red Trail, based
on the analysis in Ranacapa.

The Blue Trail samples taken as a whole, which had burned in the Creek Fire, were
associated with the most observed species for fungi. The salty area at the head of the canyon
on the Green Trail exhibited the least species richness for fungi. Overall, however, the Red
Trail had the lowest number of observed species, in general, as Figure 2 has revealed. In
the summer samples, the Trail variable was a significant factor associated with species
richness (p = 0.029). There were significant differences in the observed number of species
between the Red Trail and the Green Trail (p-adjusted = 0.022). This was a shift from the
winter samples, where differences were detected between the species richness of bacteria
between the Red Trail and the Blue Trail. There were significant differences in the summer
samples in terms of beta diversity between the Blue Trail and the Green Trail as well
(p-adjusted = 0.04), based on PERMANOVA.
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Plant rootzone was not significantly associated with alpha/beta diversity of the com-
munities based on PERMANOVA (permutational multivariate analysis of variance) and
observed species. However, in sPLS, moderate associations (r > 0.5) showed between
plant, topography, soil/sediment, soil classification, latitude, and suites of taxa. Strong
associations (r > 0.8) existed between longitude, elevation, and clusters of taxa. The sPLS
was useful for selecting relevant features. sPLS visualizations revealed evidence of overdis-
persion, shown in Figure 3.
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In the December samples, the ratio of bacterial to fungal sequences was calculated. A
Chi-square test of proportions was carried out. The null hypothesis was that there was no
difference in the proportions of bacteria to fungi between the three Trails. The F:B ratio for
the Blue Trail was 2.6, which was between the range for subtropical forest and desert, based
on published datasets [38]. The F:B ratio for the Red Trail was 3.18, which was similar to
cropland [38]; the ratio for the Green Trail was 3.47, which was similar to shrubland and
grassland [38]. The results showed that all three groups differed from one another in terms
of their bacteria to fungi ratios (p = 2.2 × 10−16). These results suggested that the effects of
repeated burns favor fungi. Interestingly, based on the 18S data from December, sediment
samples associated with a higher relative abundance of arthropods, except for the low
creek sample. The Rhagidiidae predatory mite was an important taxon according to the sPLS
results, as shown in Figure 4. Ascomycota sequences had the highest relative abundance,
followed by Basidiomycota. The Mucoromycota sequences were mainly present in the Blue
Trail soil samples. In Whitman et al., Mucoromycota increased at sites with higher burn
severity [9].
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The 16S data also showed a differential abundance of bacteria during the second
round of sampling on the Green Trail. Higher alpha diversity was observed in the second
round of 16S samples taken during the warm season in June, versus in the first round of
samples from the winter. There was no significant difference in beta diversity. It was also
be considered that the two sets of samples were processed and sequenced on separated
runs, which accounts for some of the variation. Nevertheless, the inspection of the negative
controls in both datasets suggested that were was little contamination in the DNA isolates
or amplicons.

sPLS was sensitive to outliers; results focused on a cluster of Green Trail samples with
high elevation and longitude, shown in the top cluster of Figure 4. Analysis revealed the
cluster included the post-fire pioneer fungus Pyronema [6,39], Tremella, and Strobiloscypha,
which produce strobiloscyphone antimicrobials [40]. Chlorellales algae, toxic Leptiota, and
potentially pathogenic Fusarium sequences were elevated. Bacterivorous Corallococcus,
which secretes antimicrobials [41], and bacterivorous flagellate Spumella [42] were asso-
ciated with the cluster. Plant-associated Rhogostoma, of the Cercozoa amoebae [43], had a
moderately positive association with elevation and longitude and was associated with the
soil organism grouping rather than the sediment grouping. This makes sense, since they
are extremely abundant in terrestrial ecosystems [43].

As evidenced in Figure 4, each cluster also had possible plant pathogens, such as
Phoma, Pyrenochaetopsis and Microbotrymycetes, saprophytes such as Penicillium and Tetr-
acladium, mycorrhizal fungi such as Genabea and Sporidesmium, and ammonia oxidizers
such as Nitrosarcheum and Planctomyces. Coprophilous fungi, which colonize dung, were
also represented. Parasites such as Acanthamoeba were also characterized in each cluster.
Mortierella, of the Mucoromycota, which are noted for their production of polyunsaturated
fatty acids, were associated with a cluster of taxa that were negatively associated with
elevation and latitude. Mucoromycota were also shown to be differentially abundant on
the Blue Trail, as noted in Tables 5 and 6, along with other lipid accumulators Umbelopsi-
daceae and Umbelopsis sp. Polyketide and antibiotic producers such as Minuisphaera and
Neosetophoma were also broadly distributed, which matches up with the results in Tables 5
and 6 from the DESeq2 [44] analysis, where different Cladorrhinum sp. sequence variants
were differentially abundant on each trail. Additionally, shown in Figure 4, each cluster of
taxa had autotrophic organisms characterized, such as red, green, golden, or brown algae,
or protists which are symbiotic with Cyanobacteria. Gemmatimonadetes autotrophic bacteria
were differentially abundant on the Green Trail and Blue Trail, as noted in Tables 7 and 8.
The Red Trail was associated with methanogens and methanotrophs.

Table 5. DESeq2 results for differentially expressed fungal taxa associated with the Red Trail vs.
the Blue trail during winter 2020. Positive log fold change results represent sequences that were
differentially abundant on the Red Trail. Negative log fold changes represent sequences that were
differentially abundant on the Blue Trail.

Taxon BaseMean log2FoldChange lfcSE p Value p adj Notes

OTU667 Mucor saturninus 11.66055 −22.2132 4.0127 3.10 × 10−8 4.01 × 10−6

Produces gamma
linoleic acid and

stores triacyl
glycerides [45]

OTU671 Umbelopsidaceae
(unclassified) 10.21483 21.992 4.012815 4.24 × 10−8 4.40 × 10−6

Converts
lignocellulosic

sugars to lipids [46]

OTU433 Cladorrhinum sp. 41.67976 22.62889 3.923235 8.03 × 10−9 1.39 × 10−6
Wheat endophyte

that controls
Fusarium [47]

OTU341 Plectosphaerella sp. 55.81719 −24.4068 4.012054 1.18 × 10−9 3.05 × 10−7 Root rot [48,49]

OTU536 Phallus hadriani 61.05296 −24.5181 4.01204 9.89 × 10−10 3.05 × 10−7 Dune stinkhorn
[50]
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Table 6. DESeq results for differentially expressed fungal taxa associated with the Green Trail vs. the
Blue Trail (Round 1). Positive fold change values correspond to sequences that were differentially
abundant on the Green Trail; taxa with significant negative fold change values are associated with
the Blue Trail.

Taxon BaseMean log2FoldChange p Value p adj Notes

OTU341 Plectosphaerella 55.81719 −25.5472 1.75 × 10−13 4.53 × 10−11 Root rot [48,49]

OTU672 Umbelopsis sp. 47.74795 −25.354 2.65 × 10−13 4.58 × 10−11

Endophyte,
Converts

lignocellulosic
sugars to lipids [46]

OTU536 Phallus hadriani 61.05296 −25.681 1.31 × 10−13 4.53 × 10−11 Dune stinkhorn
[50]

OTU433 Cladorrhinum sp. 41.67976 22.38416 7.61 × 10−11 5.57 × 10−9 Produces
antibiotics [47]

OTU363 Emericellopsis sp. 12.82686 −23.4318 1.42 × 10−11 1.80 × 10−9
Halotolerant,

sexual state of
Acremonium [51]

OTU224 Calloria urticae 10.1225 −22.1403 1.77 × 10−10 1.02 × 10−8 Pezizalaceae

OTU667 Mucor saturninus 11.66055 −23.3332 1.73 × 10−11 1.80 × 10−9

Produces gamma
linoleic acid and

stores triacyl
glycerides [45]

OTU434 Cladorrhinum
flexuosum 17.64756 −22.5163 8.61 × 10−11 5.57 × 10−9

Wheat endophyte
that controls
Fusarium [47]

OTU671 Umbelopsidaceae
(unclassified) 10.21483 −22.9432 3.74 × 10−11 3.23 × 10−9

Converts
lignocellulosic

sugars to lipids [46]

There were no highly significant differences in functional diversity between the dif-
ferent trails in the inferred functional analysis in EZBioCloud MTP [52] based on adjusted
p-values. The suggested that there is functional redundancy between the separate soil
communities, which allowed the soil ecosystem functions to be carried out, but within
different soil and fire history environments. There were some interesting trends that are
worth pointing out which had significant p-values < 0.05 but did not pass multiple testing
with FDR = 0.05.

As shown in Figure 5, Assimilatory nitrate reductase predicted functions were elevated
the Green Trail for the Round 1 samples; multidrug/chloramphenicol efflux transport
protein predicted functions were also elevated on the Green Trail. Elsewhere on the Blue
Trail, the Benzene toluene chlorobenzene dioxygenase ferredoxin component was predicted
to be elevated in the metagenome, along with Lichenysin synthetase. Beta-lactamase
antibiotic resistance functions were elevated for the Blue Trail, as well as Cu and Ag
efflux system and multidrug efflux system outer membrane protein, according to the
Kruskal–Wallis functional biomarker test in EZBioCloud. Halo acetate dehalogenase was
elevated on the Red Trail, according to the predicted functions; Propanediol dehydratase
and Stigmatellin polyketide synthase were also expected to be elevated on the Red Trail in
the Round 1 samples. Putrescine ornithine dehydratase was elevated on the Green Trail,
based on the predicted functional profile in EZBioCloud.
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Figure 5. Functional analysis with the Kruskal–Wallis test: (a) Assimilatory nitrate reductase for the
Green Trail vs. Red Trail; (b) Benzene toluene chlorobenzene dioxygenase ferredoxin component for
the Green Trail vs. Blue Trail; (c) Beta-lactamase for the Green Trail vs. Blue Trail; (d) Halo acetate
dehalogenase for the Blue Trail vs. Red Trail; (e) Propanediol dehydratase for the Green Trail vs.
Red Trail; (f) Putrescine ornithine dehydratase for the Green Trail vs. Blue Trail; (g) Stigmatellin
polyketide synthase for the Green Trail vs. Red Trail; (h) Lichenysin synthetase for the Green Trail vs.
Blue Trail.
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There were similar trends in the Round 2 samples, such as predictions for elevated
CAG pathogenicity island protein 4 sequences on the Green Trail vs. Red Trail; there were
also predicted elevated functions of coronafacic acid on the Green Trail when contrasted
with the Red Trail. Coronafacic acid mimics jasmonic acid in plants and promotes rhizomes.
Furthermore, there were elevated functions of coumaroyl quinate monooxygenase on the
Green Trail when contrasted with the Red Trail. Monooxygenases are used by microbes to
degrade polyaromatic compounds [6]. Pyronema fungi which occurred in high abundance
also share this function [6].

Taxa showed significant differences at different fire areas in the Preserve. The highest
fungi–bacteria (F:B) ratio was related to the Green Trail, burned in 2016 and 2017. The Chi-
square test revealed differences in F:B proportions between different trails (p = 2 × 10−16).
There was evidence of overdispersion in the alpha diversity results from both the Round 1
and Round 2 datasets, which indicated that a negative binomial model may be appropriate
for differential abundance analysis; the evidence is displayed in Figure 6. It was evident in
the partial least squares results as well, where the effect of outliers has a strong influence
on the model, and the results focus on the differences between the Green Trail and other
trails. There were no Phytophthora sequences found in the soil samples except with the COI
marker. It was not detected with the FITS or 18S marker. There were several other possible
plant pathogens detected including Alternaria, which is also a common saprobe.
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EZBioCloud Metagenomic Taxonomic Profiles for bacteria associated with the winter
versus the summer soil samples is shown in Figure 7. The taxonomies at the phylum level
are similar, which was consistent with the beta diversity results for these two groups. The
differences between the groups could be accounted for by Cyanobacteria in the winter
which were absent in summer. On the other hand, Gemmatimonadetes were present in
summer and absent in winter, as shown in Figure 7. These changes appeared to represent a
seasonal shift in microbial communities. Furthermore, there was a higher relative abun-
dance of Planctomycetes in winter, a higher relative abundance of Verrucomicrobia in summer,
and a higher relative abundance of Chloroflexi which are frequently found in hot springs
and hypersaline environments [53], in the winter samples.
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sequences at the phylum level using EZBioCloud MTP.

Table 7. Red Trail vs. Green Trail 16S Round 2 differential abundance analysis (summer). The
negative fold change values represent taxa that are elevated on the Green Trail. The positive fold
change values represent taxa that were elevated on the Red Trail.

Taxon BaseMean log2FoldChange p Value p adj Notes

OTU349 Gemmatimonas sp. 10.973 −6.21152 1.50 × 10−6 0.000307

Facultative
anoxygenic
phototroph,

requires organic
substrates [54]

OTU206 Sphingobacteriaceae
(unclassified) 27.15296 −7.84103 1.53 × 10−8 9.40 × 10−6

Polyketides,
Terpenes,

non-ribosomal
peptides,

antibiotics [55]

OTU481 Rickettsiales
(unclassified) 62.31641 4.675178 6.40 × 10−5 0.009801

Related to Typhus,
obligate

intracellular
parasite of animals

[56]

OTU454 Hyphomonadaceae
(unclassified) 20.30979 −7.4021 1.44 × 10−6 0.000307 Vascular wilt of

poplar [57]
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Table 8. Red Trail vs. Blue Trail 16S Round 2 differential abundance analysis. Taxa with negative fold
change values were elevated on the Blue Trail. Taxa with positive fold change values were elevated
on the Red Trail.

Taxon BaseMean log2FoldChange p Value p adj Notes

OTU206 Sphingobacteriaceae
(unclassified) 27.15296 −6.56403 0.000128 0.003176

Polyketides,
Terpenes, antibiotics

[55]

OTU349 Gemmatimonas sp. 10.973 −6.55623 2.98 × 10−5 0.000894 Autotrophic
bacterium [54]

OTU481 Rickettsiales
(unclassified) 62.31641 7.659409 3.13 × 10−5 0.000894 Intracellular parasite

[56]

OTU439 Aminobacter sp. 30.8104 8.159297 3.77 × 10−5 0.000998 Mineralizes
Chlorobenzoates [58]

OTU265 Ktedonobacteraceae
(unclassfied) 152.1212 8.940275 7.98 × 10−6 0.000329

Forms branched
mycelia, geothermal

areas [59]

OTU512 Burkholderia sp. 69.31398 9.189518 1.67 × 10−6 7.84 × 10−5

Possible plant
pathogen and

antibiotic resistant,
degrades chlorinated

pollutants [33]

OTU95 Legionellaceae
(unclassified) 121.8497 9.92243 3.03 × 10−9 5.63 × 10−7

Amino acids are
preferred energy

source [60]

OTU121 Pseudonocardiaceae
(unclassified) 99.14723 10.08414 1.15 × 10−8 1.43 × 10−6

Degradation of
polysaccharides and

chitin in dryland
soils [61]

OTU432 Methylocystaceae
(unclassified) 17.88785 18.59022 1.69 × 10−6 7.84 × 10−5 Methanotrophic

bacteria [62]

OTU89 Curtobacterium sp. 17.36935 20.60778 3.87 × 10−7 2.87 × 10−5

Degradation of
polysaccharides,

most common in S.
CA leaf litter [63]

OTU4 Thermoplasmata E2
(unclassified) 20.76215 20.82379 3.36 × 10−7 2.87 × 10−5 Uncultured archaea,

Methanogen [64]

OTU17 Acidobacteriaceae
(Unclassified) 48.96786 21.70634 1.43 × 10−9 5.31 × 10−7

Plant
growth-promoting

[65]

OTU602 Pseudomonadaceae
(unclassified) 45.49218 22.03954 8.96 × 10−7 5.54 × 10−5 Plant-associated,

motile [66]

Further investigation of the taxonomic composition at the class level revealed that
multiple classes of bacteria were detected in winter but not in summer, visualized in
Figure 8. These classes were Nitriliruptoria, Flavobacteria, and Clostridia. Meanwhile, during
summer there were other classes detected that were absent in the winter samples. These
classes were Rubrobacteria, Solibacteres, Oligoflexia, and Acidimicrobia.
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4. Discussion

The perilous life of plants in fire disturbed areas of the semi-arid forest was observed
to be threatened by many factors. Beyond abiotic factors such as fire damage to vascular
tissues and increasing frequency and duration of heat and drought, there was evidence
that woody plants were also confronted with many possible plant pathogens and parasites.
Some notable potential pathogens from the results were Pythium, Fusarium, Botryosphaeri-
aceae, Microbotrytomycetes, Xanthamonadales, and Hyphomonas. Pythium and Fusarium are
common fungi in bare-root forest nurseries [67]. What was remarkable about the pres-
ence of these possible pathogens in the Gold Creek results was the way that the putative
pathogens may be controlled by antibiotic-producers that were found in high abundance
on the various Trails. There was strong evidence supporting the presence of antibiotic
producers such as Cladorrhinum sp. in significant numbers, according to our results.

After fire, cyclic organic compounds have been shown to be released from plant
material and soil and hydrophobic films cover soil particles [7]. The ability to tolerate
and utilize these compounds is a means to survival and resilience in fire disrupted areas.
Different groups of organisms with resiliency traits at different combinations of longitude
and elevation in the area studied were revealed.

Based on the DNA sequencing results, it appeared that the support system of the
recovering forest involved predatory mites, bacterivores, nitrogen fixing cyanobacteria and
protist symbionts, algae, ammonia oxidizing bacteria and archaea, Actinobacteria which
reduce nitrogen, mycorrhizae from Ascomycota, Basidiomycota, and Mucoromycota, and
the post-fire pioneers Pyronema and other Pezizales. In Whitman et al., Mucoromycota
increased at sites with higher burn severity [9]. Pezizales are known to have increased
abundance of sporocarps after a burn [68,69], which would make them poised to colonize
when the fire subsides.

Bacterivores such as amoebae were important not only as predators but also due to
their role in spreading bacteria. Bacteria which feed on other bacteria were notable for their
role in mineralizing the nutrients bound to the body of soil bacteria. Where sugars are
scarce, some bacteria and fungi are able to use other energy sources such as amino acids or
Nitrogen, while others make their own energy through photosynthesis or facultative photo-
autotrophy. Naturally, there were also many soil bacteria in this context that acquire and
exhibit antimicrobial drug resistance traits. A few examples of this were the beta-lactamase
resistance genes, efflux systems and multidrug resistance.
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The high F:B ration on the Green Trail may have been due to the resistant nature of
fungal sclerotia [7] which may have had a persistent advantage over bacteria in this setting.
Bare soil has also been shown to have a high F:B ratio. Another possible explanation was
the winter season of the Creek Fire, combined with the soil classification on the Blue and
Red Trail, which would both contribute to the wetness of the soil when the fire took place.
Wetter conditions have been shown to contribute to soil sterilization during fires [7]. There
would be expected to be a short-lived increase in mobile nitrogen, phosphorus, potassium,
calcium and magnesium after a burn [7,11], which could in fact lead to an accumulation
of microbial biomass [7]. A flush of CO2 immediately during and after a fire, and an
increase in metabolic activity in the microbiome post-fire would be expected to occur,
after wetting and rewetting of soil in Mediterranean forests according Munoz-Rojas et al.’s
Australian study [70]. Furthermore, there were asymmetric changes in the carbon and
nitrogen cycles [70]; Rodriguez et al. found similar results in Quercus ilex [71]. Elevated CO2
has been shown to modify community composition in the wheat rootzone [72]. However,
over time leaching, wind, and water erosion leads to a loss of nutrients post-fire [11], and
CO2 will disperse.

An unexpected result is that the plant species was not a significant factor in determin-
ing the alpha or beta diversity of the communities. This is in contrast to what Mataix-Solera
et al. suggested [7]; it was suggested that shifts in plant communities would be the drivers
of microbial diversity rather than the effects of fire itself. In Whitman et al. [9], there
was a trifecta of plant and microbial fire response strategies including fast growers, heat
survivors, and post-fire affinity; burn severity was the most important factor. The dispersal
mechanisms noted earlier may explain the small number of differentially abundant taxa
that were identified in the DESeq2 analysis.

The moderate associations (r > 0.5) between plant, topography, soil/sediment, soil
classification, latitude, and suites of taxa partly agreed with previous research [7] and
the results of Whitman et al. [9]. Furthermore, we identified different microbial post-fire
responders than Whitman et al.’s Canadian study [9], with the exception of Penicillium.
The plant communities help to configure the clusters of taxa in multi-dimensional space.
However, in our study, strong associations (r > 0.8) existed between longitude, elevation,
and clusters of taxa, in agreement with Wang et al.’s study on lichen-associated fungi [73].

In Abaya et al.’s study [47], Cladorrhinum was demonstrated to be effective against
plant pathogens; Pyrenochaeta was one of the pathogens controlled. It is interesting because
in our results, Pyrenochaetopsis was an abundant and ubiquitous pathogen, and Cladorrhinum
was a differentially abundant fungus associated with the Red Trail and the Green Trail.

As a result of wildfires, aromatic and oily Plant and soil compounds released from
fire. Microbial Cyclopropane, benzene, toluene and chloroalkane processing functions
are favored. Nitrogen and Phosphorous are liberated from ash. Saprophytic fungi break
down organic matter, e.g., lignocellulose. Mushrooms accumulate lipids, gamma linoleic
acid, and triacylglyerides. Bacteria produce polyketides such as alkaloids, antimicrobial
and anti-insect compounds. Antibiotic resistance and tolerance as a response to selective
pressure (Beta lactamase and multidrug resistance). Fungi produce toxins for defense
such as amatoxin. Plant pathogen populations are controlled. Plant Pathogens respond to
selective pressure by adapting with antibiotic resistance. Nitrogen cycling is carried out
by bacteria, archaea, cyanobacteria and their symbionts, and fungi. Nitrogen fixation is
key, along with aerobic and anaerobic ammonia oxidizers, saprophytes, and coprophilous
fungi which represent the interaction with animal waste and cadavers. These concepts
were mapped in Figure 9.
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Algae and Cyanobacteria have been known as common post-fire pioneers and may
quickly colonize degraded ecosystems [7]. However, nitrate and nitrous oxide, oxi-
dized products of nitrogen fixation, are potential sources of groundwater pollution and
nitrification-related features should be monitored [74]. In our results, there were highly
abundant Cyanobacteria and ammonia-oxidizing bacteria and archaea. In Levy-Booth 2014,
the author expressed concern about dissimilative nitrogen metabolism [74]. In dissimilative
nitrogen metabolism, the nitrate product is excreted into the environment because more is
produced than needed to satisfy organismal needs [75].

The Red Trail Samples were associated with a significantly lower number of observed
bacteria species when contrasted with the Green Trail. This evidence suggested that the
higher fire intensity of the Station Fire combined with the recent burn of the Creek Fire
influenced the abundance of fungal sequences amplified by the FITS marker. As Oliver
et al. noted [8], the most important factors in soil microbial response to fire are the burn
frequency and intensity.

There was evidence of seasonal shifts in the alpha diversity of the bacterial communi-
ties, based on the (ACE) index. That was because there were more OTUs detected in the
Summer 16S results than the Winter 16S results. Ma et al. found similar results of seasonal
community composition shift in the rootzone of hazelnut [4].

5. Conclusions

There are a high number of significantly abundant microbes that remain unclassified.
This represents a major opportunity for discovery. However, caution is suggested due to
the large number of possible plant and animal pathogen and parasite sequences that were
discovered to be present in large numbers. Further study of the communities of organisms
at this site could lead to the discovery of antibiotics and bioinsecticides, derived from the
same organisms that are helping plants in the Angeles National Forest to resist infection.

There was functional redundancy between fungi and bacteria, and between differ-
ent clusters of samples, that emphasizes the most important functions identified in this
study and how they are important to recovery from fire. Clusters of taxa were differently
composed but shared similar ecological functions. These results implied a set of traits
for post-fire resiliency. These included photo-autotrophy, mineralization of pyrolyzed
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organic matter and aromatic/oily compounds, potential pathogenicity and parasitism,
antimicrobials, digestion of microbes, and N-metabolism.
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