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ABSTRACT

Public release of wrist-worn motion sensor data is growing. They
enable and accelerate research in developing new algorithms to
passively track daily activities, resulting in improved health and
wellness utilities of smartwatches and activity trackers. But, when
combined with sensitive attribute inference attack and linkage at-
tack via re-identification of the same user in multiple datasets,
undisclosed sensitive attributes can be revealed to unintended orga-
nizations with potentially adverse consequences for unsuspecting
data contributing users. To guide both users and data collecting
researchers, we characterize the re-identification risks inherent
in motion sensor data collected from wrist-worn devices in users’
natural environment. For this purpose, we use an open-set formu-
lation, train a deep learning architecture with a new loss function,
and apply our model to a new data set consisting of 10 weeks of
daily sensor wearing by 353 users. We find that re-identification
risk increases with an increase in the activity intensity. On average,
such risk is 96% for a user when sharing a full day of sensor data.
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1 INTRODUCTION

Consider the following two seemingly contrasting trends. First, a
growing number of sensory datasets, such as mORAL [4], ExtraSen-
sory [70], WISDM [72], Tesserae [47], and RAAMP2 [56], consist-
ing of motion data from wrist-worn devices are being publicly
released for research. They range from data collected in scripted
settings [19, 45, 72] to data collected for days or weeks in the natu-
ral field environment [4, 47, 56]. It indicates a growing utility and
adoption of wrist-worn devices (e.g., smartwatches, activity track-
ers), as well as a growing body of research that seeks to further
improve the utility of these devices by developing algorithms to
make new inferences of daily behaviors. These novel inferences in-
clude routine behaviors such as eating [68], drinking [6], brushing
and flossing [3, 4], and potentially sensitive ones such as smok-
ing [5, 51, 58], tremors [57], and pain [48].

Second, while the publicly released data is usually stripped of
explicit identifiers and anonymized using recommended practices
(e.g., using k-anonymity[67], [-diversity[44], and t-closeness[42]),
there exists a growing body of inference attacks showing that pro-
tected attributes such as age, gender, race, and even job type can be
inferred from accelerometry data alone [13, 17, 35, 75]. Even user
re-identification attacks are shown to be feasible when available
datasets are correlated with appropriately selected auxiliary data
(e.g., restaurant check-ins) [31, 33]. To improve the privacy protec-
tion of data contributors, both the users and the study researchers
publicly releasing such data need a better understanding of the extent
of re-identification risks embedded in wrist-worn motion sensor data
under different data collection scenarios.

In this paper, we analyze the re-identification risks from sharing
wrist-worn accelerometry data collected in an unscripted, natu-
ral setting. Re-identification attack using (commonly shared) ac-
celerometry data alone is significant, as it implies that a user con-
tributing to different datasets can be linked, resulting in collective
revelation of attributes, health states, and behaviors present in any
of these datasets. For example, an insurance company or an em-
ployer collecting motion sensor data of its subscriber or employee
(to reward healthy lifestyle) can learn of the users’ prior history
with smoking, pain, drug use, tremor, etc., from public datasets that
this user may have contributed to previously (to advance science).

In our problem formulation, we assume an adversary has ac-
cess to an anonymized sensor database consisting of labeled wrist-
worn accelerometry data from n users. The labels may refer to a
health condition or unhealthy daily behavior of the user that the
researchers were seeking to develop a treatment or intervention for.
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Figure 1: User re-identification attack from wrist-worn ac-
celerometry traces.

Furthermore, the adversary also has access to wrist-worn accelerom-
etry data from a user whose identity is known to the attacker
(Figure 1). The goal of the adversary is to determine, with high
confidence, if the user’s data are also contained in the anonymized
database and, if so, re-identify the anonymized user in the database.

To characterize re-identification risks from sharing wrist-worn
accelerometer data, we undertake the following tasks. First, we
formulate the re-identification problem as an open-set problem
for greater generalizability. Second, we present a re-identification
model, called WristPrint. It is composed of a base deep learning
model architecture that combines a convolutional neural network
(CNN) to extract a latent representation of micro-movements and
a recurrent neural network (RNN) layer to identify temporal pat-
tern in a sequence of micro-movements. We evaluate two boosting
models that uses the output of the base model on each unit of test
data to further improve the re-identification performance.

Third, to solve the open-set re-identification problem, we propose
a novel consistency-distinction (CD) loss function. It guides the
learning of our base model to minimize the intra-class variation
(for consistency in identifying a user) and maximize the inter-class
distance in feature space (to amplify distinction among different
users). Taken together, such a loss function helps achieve a high
re-identification rate for known users, while leaving the feature
space largely unencumbered so as to recognize the absence of an
unknown user when presented with their test data.

Fourth, we use a new dataset consisting of 353 users (full-time
employees in diverse industries with a wide variety of job func-
tions) who wore a wrist-worn device daily for ten weeks. Using a
public dataset consisting of scripted activities, we train an activity
classification model and apply it to the natural-life job performance
dataset to partition this dataset into various activity types. We then
train and test our WristPrint re-identification model to analyze the
re-identification risks inherent in data collected when performing
different types of activities in the natural environment.

Finally, to study the generalizability of our re-identification
model beyond our dataset, we perform an entropy-based analy-
sis and representation-overlap analysis via ROC characterization
of true matching rate (TMR) and false acceptance rate (FAR).

Key Findings: First, we find from our experiments that out of
various daily activities users engage in, exercise carries the highest
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re-identification risk and stationary state the lowest risk. Second,
we observe that releasing one day of wrist-worn accelerometer data
for a user in our dataset poses an average re-identification risk of
96%. Third, from entropy-analysis, we observe saturation around
100 distinct users in the training dataset. Fourth, we find that for
the common activity of walking, the differential entropy is 56 bits,
equivalent to ~ 7.2 x 1016 users. Finally, in our experiments when
the model is provided with test data of 60 minutes, it achieves a
TMR of 94%, with a FAR of < 1.75%.

2 PROBLEM FORMULATION

We begin by introducing notations (see Table 1) and some defi-
nitions we use throughout the paper before formalizing the re-
identification problem as an open-set machine learning problem [29].

l Notation ‘ Meaning ‘
Is Set of anonymized user indices, with |I4]| =n
D Database of anonymized sensor traces,
D= UuEIA{(su’u)}
Ik Set of known identities of users, with |Ix| = k
Sy Sensor trace of a user x € I
K : Iy — Ix | Secret function that maps anonymized indices
of users to their unique known identities
A Common unit length of segmentation for s,
st ith segment (of length A) from s, ,
forie {1,2,.., |Isul/Al}
D D= UuEIA {(sb’u)lliiul/AJ}
F Feature space of sensor segment in D
¢:D—>F Feature generator
¢:F — [0,1]" Likelihood from classifier
0<7T <1 Decision threshold over the likelihood
to declare positive re-identification
Mp = (9,0, 7T) Base classification model
M Boosting model using m outputs from
the Base model

Table 1: Symbols and Notations

Definition 2.1 (Sensor Trace). Let sensor data point from a user u
at time # be s,(t) = (p1(t), p2(t), .... pa (1)) € R, where p;(t) is a
single scalar value along one of d dimensions. A segment sy (ts, te)
is a contiguous time-series of sensor data from time f to t,, i.e.,
su(ts, te) = {su(t) : ts <t < te}. Sensor trace s, is a collection of
all data segments from user u, i.e., sy = Uy, 1,) {su(ts, te) }-

For our work, we use 3-axis accelerometry data (i.e., d = 3)
collected from wrist-worn devices, e.g., activity trackers.

Definition 2.2 (Re-identification). Let 74 = {1,2, ..., n} be the set
of user indices with non-empty sensor trace. Then, the anonymized
sensor database D = |J,e7, {(su,u)}. Let I be the set of user
identities that are known to the adversary. The adversary also has
access to sensor trace Sy for a known user x € Ig. There exists
a secret function (unknown to the adversary) K : 74 — Ik that
maps anonymized indices of users to their unique known identities.
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2.1 Attack Model

Over the years, several defenses have been proposed for protecting
data privacy and user anonymity. These include anonymization
strategies that sanitize data by stripping them of personally identi-
fying information and other quasi-identifying attributes [42, 44, 67],
perturbations such as adding noise [43, 59, 71], generating and re-
leasing only synthetic data that match desired properties of the
original data [52, 74], and using cryptographic constructions to
securely compute functions over data, protecting both data confi-
dentiality and privacy [54]. However, at the time of releasing raw
data, various pragmatic constraints such as the need for maximiz-
ing future research potential, low tolerance of some applications to
noisy data (e.g., health diagnostics depend on preservation of the
signal morphology [59]), and even limitations in adopting privacy
techniques (e.g., choosing appropriate values for the privacy pa-
rameters (¢, §) when using differential privacy [21, 38]), has led to
anonymization strategies being preferred over others [23, 27, 28].

Accordingly, we use the following setting for our re-identification
attack. We assume that the adversary has access to an anonymized
sensor database, 9. As shown in Figure 1, the metadata (e.g., name,
age, gender) associated with each user trace is suitably anonymized
in D, whereas sensor traces are released with minimal or no changes
(e.g., using the data release mechanisms in [19, 70, 72]) and a user is
only identified with their corresponding data index u € I4. The ad-
versary also has access to a user’s sensor trace Sy together with their
known identity x € Jk. The goal of the adversary now is to perform
a two-step re-identification attack: (i) determine whether the user,
corresponding to the trace $, is in D (membership inference); and
(ii) if present, to also determine the index u corresponding to the
user, i.e., K(u) = x (identity matching).

Akin to other re-identification problems [36, 37], our problem
can be formulated as a similarity search problem. In a similarity
search problem, one is given a database D of items and a similarity
function. The similarity score is high if two items are similar, and
low, otherwise. Given a new item, one wants to efficiently find the
item closest to this new item in the database. Usually, in a similarity
search problem, the similarity metric is defined using a suitable
mapping ¢ : D — F of the items in D to some metric space F,
and then sim(s;, s;) = dp(¢(si), ¢(sj)), where dp(-, -) denotes the
metric in F. For example, in the fingerprint matching problem, the
mapping might map a fingerprint image to fixed set minutiae [36]
or a compact fixed length FingerCode [37], with the distance metric
being the Euclidean distance.

To solve our user re-identification problem, one can find, using a
suitable similarity search query, the most similar data to the given
input Sx. Here, our database D consists of time-series segments,
which may correspond to different activity states, e.g., walking,
exercising, stationary, etc. Our challenge is to identify suitable
structural patterns that can be considered as features or latent
space, which constitutes the mapping ¢ and a metric space F, in
which the distance function for quantifying similarity is defined.
We develop machine learning algorithms to discover discriminative
features from these time series data segments.

We assume the adversary employs a classification model M for
the re-identification task. An attack is successful if the attacker can
correctly re-identify the user, i.e., if for any given input §x from a
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known user x € Jx who also contributed data in the database D,
the model M outputs user u such that K(u) = x, and similarly, for
any given input $x from a known user who did not contribute to
the database D, M outputs 0 for “not present.”

2.2 Privacy Risks

Let D be a released anonymized database and $x the sensor trace
of an arbitrary user whose identity is known to the adversary.
We assume that the attacker learns a machine learning model M
using D such that for any test data $x, M(Sx) outputs the closest
matching user identifier from the database, if the matching score is
acceptable, and 0, otherwise, when the user is determined to not
have any data in the database. The re-identification risk, R(D),
is defined as the expected probability with which the model, M,
accurately predicts the index of user u € I, if the user has data
in D, ie., K(u) = x, and predicts 0, when there exists no u such
that K'(u) = x. To formally define this risk, we define two metrics
— the detection and identification rate (DIR) or true matching rate
(TMR), and the false alarm rate (FAR) — which are often used to
characterize the performance of open-set identification problems.

True Matching Rate (TMR). Sensor trace Sy from a known user
x € Ik is detected if M correctly identifies u € 74, with K(u) = x.
[{(8x, x)IM(5x) = u, where K(u) = x}| (1)
[{(8x, x)|3u € I, such that K(u) = x}|

False Acceptance Rate (FAR). False acceptance occurs when M
falsely detects a user index u € I4 in the database D for a sensor
trace $y from a known user x € I with no data in . Note, M
should output 0 if no data for user x is present in D.

[{(sx, x)|M(sx) = u € Iy, where K(u) # x}| 5

[{(sx, x)|u € I4, such that K(u) = x}| @
There is a trade-off between TMR and FAR that is usually shown
on a receiver operator characteristic (ROC).

Let px = Pr[3u € I4 : K(u) = x] be the probability of user x
having data in 9. Then, we express the expected re-identification
risk (R(D)) as follows, using the model’s performance.

TMR or DIR =

FAR =

R(D) = E(s. ) (Pr[M(§x) = ulu € Iy, K(u) = x] * px
+ (1= PriM () = ulu € T, K(u) # x]) * (1 - px))

=TMR = px + (1 = FAR) = (1 — px) (3)

Thus, R(D) is a weighted average of TMR and (1-FAR).

3 PROPOSED MODEL: WRISTPRINT

We now present the overall architecture of the attack model and a
high-level overview of the re-identification attack.

Overview of the WristPrint Approach: An overview of the end-
to-end WristPrint model appears in Figure 2. First, a given sensor
trace is segmented into fixed-size units. Then, a feature genera-
tor maps these segments into a feature space. The goal of feature
transformation is that all the points in the feature space from the
same individual cluster together, and clusters of different users are
maximally separated. The base classifier assigns each feature vector
to the nearest user id. Finally, the outputs of the base classifier for
each segment are aggregated to determine the best user id label. We
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Figure 2: Overview of the WristPrint model.

Algorithm 1WristPrint

Input: D: Sensor dataset of n users
Sx: Sensor trace from a test user
Output: User index of $y
function TRAINBASEMODEL(D, A)
D = {Segment(sy, A)|sy € D}
Mp = ($, @, T) = train(D)
> ¢: Feature generator, ¢: classifier, 7: decision threshold
return My
end function
Mp, A = argmax, TrainBaseModel(D, A)

(8L,...3™) = Segment (5. A) »m=| Bl |
Pe—¢ > Initialize
fori=1tomdo

x = Mp(8L)

P.append(x)
end for
u «— M(P) > Applying boosting method
return u

call this base-boosting pair model architecture since the base model
takes each unit length segment as input and detects user identifiers
as output, and the boosting model groups the user identifiers from
the base model to produce a single detection.
Re-identification Attack Algorithm: Algorithm 1 describes dif-
ferent steps of our proposed re-identification algorithm. It takes a
sensor database D of n users and a test sensor trace $y. At first, it
trains the base model using the database, TrainBaseModel(D) for
different values of the unit length A. As described in Algorithm 1,
it segments each sensor trace s, € D into unit segments of length
A using Segment (s, A) function. Let S, = {sL,s2,...,s™}, with
m = ||sy|/A], be the set of all A-long segments of sensor data from
user u. These segments from all users generate a new database
D = {(s},u)|s} € Sy, Yu € Iy}.

We train a base model My, using new database D, such that it
can assign a user id to each test sensor data segment $% of length
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A. We assume M\, is a function composition of ¢ and ¢, i.e., Mp =
¢ o ¢. Here, the function ¢ is trained by a neural network model,
which maps s}, € D into an appropriate feature space ¥. The
function ¢ needs to be trained such that feature space ¥ preserves
consistency among features generated by data from the same user
and distinction among features generated by data from different
users. The goal is to maintain intra-class similarity (for same users)
and inter-class differences (for different users) in the feature space.

To solve the similarity search problem, the attacker trains a
classifier, ¢ : ¥ — [0, 1], that creates clusters in feature space for
each class. For a feature vector of any given sensor data segment ..,
it outputs the probability of each class, i.e., ($(5L)) = (p1, ... pn),
where p; = Pr[u = j|$%] for anonymous index 1 < j < n. Finally,
a threshold 7 is learned, such that if all the probabilities are less
than the threshold, then the model My, outputs “not present”. We
also find the optimal unit length A during the training process. We
refer to M as the Base Model since it works on unit length data.

For a given database D and a sensor trace $x of length more
than A, the attacker creates a Boosting Method M by applying
the base model m = | [$x|/A] times. The Boosting model combines
the results of the base model to generate the final output. Boosting
capability depends on the value of [ = [$x|, segment length A, and
the size of training data in D.

4 THE BASE MODEL DESIGN
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Figure 3: Convolutional-recurrent layers-based base model
architecture. A combination of consistency-distinction (to
minimize intra-class and maximize inter-class differences)
and cross-entropy loss functions is used for model training,.

We now present the full architecture of our proposed base model.
To discover distinctive features for each person from unstructured
accelerometry data, we develop a deep-learning architecture. The
base model receives as input accelerometry trace (corresponding to
specific activity states) segmented in units of length A. In Section 5.2,
we describe how to find the best value of A.

Our base model consists of two major computational blocks:
feature computation and class likelihood. Since we seek to iden-
tify unique pattern over the given accelerometry time-series, we
consider the signal characteristics along both the time and ampli-
tude axes to create a unique fingerprint of the user. As shown in
Figure 3, base model’s overall architecture consists of two convolu-
tional blocks (convolutional layer followed by a max-pool layer),
one recurrent layer, two fully connected layers, and a softmax layer.
Accelerometry segments from wearable sensors are first processed
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by the two convolutional blocks to learn micro features from the
raw sensor data such as wrist movement or rotation. Next block in
the pipeline is a Gated Recurrent Unit (GRU) to capture temporal
patterns of the micro-feature sequence. Third block in the pipeline
are the fully connected layers used to generate a classification score.
Finally, the output of the fully connected layer is passed through a
softmax function to generate the likelihood of each class.

Details regarding specific instantiation of these layers are as
follows. We use 1-d convolution layers, each with 120 filters. The
max-pool filters, following each convolution layer, are of size two.
For regularization in the GRU layer, we user a dropout layer with a
probability of 0.5. The final fully connected (dense) layer outputs a
vector of dimension n, which is the number of classes (or users).

4.1 The Proposed Loss Function

Key to training a deep learning model for open set recognition
is the choice of an appropriate loss function. We propose a new
loss function that can guide the deep learning model to discover
a representation of the input data and an accompanying classifier
that can extract commonality among the data segments belonging
to the same user and maximize distinction among the data segments
from all other users (including the unseen ones). We now describe
our loss function, which we call consistency-distinction (CD) loss.

Consistency is preserving the commonality of the signal from
the same participant, and distinction is amplifying the differences
among different participants. Both are essential for an open set
recognition task [29]. We want to project raw accelerometry data
to a feature space representation that the deep learning model can
use to identify class boundaries satisfying both consistency and
distinction. With the standard cross-entropy loss, our proposed
architecture ensures separation among different users/classes, but
it does not guarantee consistency and distinction.

Our CD loss function builds upon the commonly used Triplet
Loss[60] and Center-Loss[73] functions. Triplet Loss seeks to max-
imize the separation among the classes (to amplify distinction),
while Center Loss seeks to minimize the footprint of each class
(to sharpen consistency). We first briefly introduce these two loss
functions, and then describe our proposed CD loss function.

4.1.1
series of triplets (s, s}, sff), where s}, and s;, are data from the same
user u, and szlﬁ is from a different user v. Triplet loss is designed to

Triplet Loss. The triplet loss [10, 60] is usually trained on a

keep s, closer to s{; than sﬁ , and widely used in many areas, such as
face recognition and person re-identification [60]. It is formulated
as follows:

Lip= > Allp(sh) = (sl = (st - $s5) +a,

(sts5hs8)

where ¢(s.,) denotes features from input s’,. Threshold e is a margin
enforced between positive and negative pairs, ensuring that the
minimum separation among different classes is at least a. The above
formulation of triplet loss adopts Euclidean distance to measure
the similarity of extracted features from two sensor segments.

4.1.2  Center Loss. For each iteration of training a deep learning
model, Center Loss [73] to be used in the current iteration is trained
on a mini-batch consisting of several data segments (s;,) from D of
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the same user u, i.e. Dyg € D. The collection of s}, are randomly
selected from D so Dyp can consist of any data segment from any
user. The Center Loss function seeks to minimize the intra-class
variations. Using ¢(S;,) to denote deep features of all data segments
from a user u, the Center Loss function is defined as

P ICARICIEM A

S{C eDumB

2

where (¢(Sy,)) is the centroid of deep features from Class u.

4.1.3  The Consistency-Distinction (CD) Loss Function. As described
above, the Triplet Loss function can be used to maximize inter-class
separation, and the Center Loss function can be used to maximize
the intra-class consistency. But, our goal is to guide the deep learn-
ing model to achieve both distinction and consistency together.
There are several challenges in developing a new loss function that
can simultaneously optimize both criteria.

First, the inputs for both loss functions are different. The Triplet
Loss function expects a triplet consisting of two data segments from
the same user and the other data segment from another user in
each training iteration. The Center Loss, on the other hand, expects
a mini-batch randomly selected from all training data, without any
preference for selecting data segments belonging to a common user.
The second challenge is how to adapt the consistency metric so
that the footprint of the classes are not disproportionately enlarged
due to the presence of some outliers, as it may adversely impact
the goal of maximizing the inter-class separation (including future
classes, for new users). The final challenge is how to compose a
new combined goal that prioritizes both consistency and distinction
from the diverse goals of the two loss functions.

We first address the challenge of input mismatch of the two loss
functions. Triplet loss selects triplets as input, but selecting tuples
for triplets is difficult, and the performance and stability of the
network depend on the correct order of the training set, which
results in a weaker generalization capability. Instead of training
the model as triplets, we train our model as mini-batch Dyp ¢ D
in each iteration. We modify the formulation of Triplet Loss when
composing the overall loss function.

We now define the specific distance metric we use in our loss
function. As described earlier, Neural network ¢ : D — ¥ com-
putes deep features for each sensor segment, where ¥ is the feature
space and f} = ¢(s],) is the computed deep feature vector from sen-
sor segment s’,. Let feature space be a metric space with L2-norm.

Recall that S, contains all the sensor segments of user u. The
distance between sensor segment s, and a class of sensor segments
S, is defined by the average distance between si and all other
elements of S, in the feature space,

=5 2 605 - g

s) €Sy,

d(si, Sy)

We use this definition of distance metric instead of the distance
from Centroid used in the Center Loss function in order to reduce
the number of model parameters. We now describe the consistency
and distinction metric before presenting our overall loss function.

Consistency (for Intra-class variation) of ¢(s?,) is the aver-
age distance of point ¢(s’,) from all other points ¢(s;,) of same
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class/user in feature space F. More formally, consistency of s, is,
C(s,) = d(s Su)

Now, consistency of the Class u is defined as an aggregated function,
¥, of all the point consistencies in the class.

Cu=1 ({C(S;)}s,’l EDMB)

We want this aggregated function to measure the sparsity of the
class and not be susceptible to outliers (see the second challenge
above). For this purpose, we can use a percentile measure for .
For our experiments, we use the 95th percentile of the point consis-
tency values of a class. Finally, consistency is defined by the mean
consistency of all the classes.

_ ZMGIA cu
n

C

Distinction (for Inter-class variation) of ¢ (s’,) is the distance
of point ¢(s;,) from the closest point belonging to a different class
in the feature space:

D(si) = min d(s},Sy)

velp,v#u
Overall distinction is defined as the mean distinction of all points.

Zs,il €Dmp D(SL)
Dl

To address the third challenge of composing an overall loss
function that can concurrently optimize both consistency and dis-
tinction, we formulate our loss function using a similar formulation
as triplet loss (by replacing positive and negative distances with
consistency and distinction, respectively). More specifically, we
propose our Consistency-Distinction (CD) Loss function as follows

Lep=C—-D+axC

With this formulation, the deep learning model will minimize the
value of loss function, resulting in minimizing consistency C and
maximizing distinction D, until the value of D is at least @ X C. Here,
«a is a threshold on the ratio that is enforced between intra-class
distance and inter-class distance. We note that our formulation
differs from the Triplet Loss that uses a as a constant threshold on
the difference in pairwise distances. We instead apply « to the ratio
between the intra-class distance and inter-class distance because
our loss function is not measuring the distance between two points,
but distance within and between two clusters.

For our proposed loss function to be acceptable in training of
a deep learning model, we need to show that it is differentiable.
We first note that since our distance function is a sum of several
distances and each distance is differentiable; therefore, our distance
function is differentiable. The gradient of d(s’, Sp) with respect to
a point in feature space f} is,

aJ

a—l:-d(sb, Sy) =

S0l

P CIEARTICA R

sleS,
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As our proposed loss function Lcp is a linear combination of
multiple differentiable functions, our loss function is also differen-
tiable. The gradient of Lcp with respect to f;; is computed as:

aLep 1 9 (S{;,Su))~

a .
D _ Zd sk Su) - =d
ofi m,z (aﬁ: o
€Sy
4.1.4 The Loss Function. We adopt the joint supervision of soft-
max loss and CD loss to train our proposed neural network for
discriminative feature learning. More specifically,

L=Lcg+ALeD,

where Lcf is cross-entropy soft-max loss [79] and a scalar A is
used for balancing the two loss functions.

u

5 BOOSTING MODEL DESIGN

We first present two choices for the boosting model and then discuss
considerations for selecting the unit length A for segmenting data.

5.1 Boosting Method

The boosting methods use the user ids produced by the base model
on each data segment of a given sensor trace to improve the re-
identification performance. For a given test data sample $y of length
1, we perform the following steps prior to boosting. We first partition
1

A
Second, each segment is fed as input to the base model Mj, resulting
in m likelihoods for each anonymized user u € 74. We thus obtain
a m X n matrix of likelihoods P. As shown in Figure 4, we consider
two boosting methods: a) MaxMean and b) Majority, and compare
their performance in experiments.

Sy intom =

segments where each segment is of length A.

s . *Majority
Sensor trace ensor segments il i Boostin
of length A Probability Matrix, P 8
Py | Py P, uy
. b | e | o | e w || =
S
=
= » Pu | P | e | P » |- S
)
€
g "
: . £ 3
H H S
= £
25
. P | e | BE U

Mean

of each column ll
P P Py -—) :

Boosting

Figure 4: Overview of the boosting approaches.

MaxMean boosting: This boosting method creates a likelihood
vector of size n from the likelihood matrix P by computing the
mean likelihood for each user id. Finally, it outputs user id with
the maximum likelihood, provided it is greater than the decision
threshold 77, and outputs 0, otherwise.

Majority boosting: This boosting method replaces each row with
the user id having the highest likelihood in that row (if it exceeds
the decision threshold 77, and 0, otherwise). This step reduces the
matrix of likelihoods to a vector with m most likely user id’s. Finally,
it reports the majority prediction from these m user id’s. In both
steps of majority assignment, any ties are broken randomly.
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5.2 Selection of Segment Length A

The segment length (A) for accelerometry data is determined by
the minimum amount of data that is sufficient to identify both
distinction of activity pattern from other users and consistency
with other segments from the same user. We note that the choice of
A can have a substantial impact on re-identification performance.

First, we expect the performance of the base model to increase
monotonically as we grow the value of A. This is because if a
smaller value of Aj has a better performance than a higher value
of Ag(> A1), then the base model can locate the segment of length
A1 within the large segment of Ay to achieve at least the same
performance as that when provided a sub-segment of length A;.
Intuitively, when the value of A is large (e.g., full day), it can capture
different aspects of the user’s motion patterns, revealing uniqueness
and consistency in daily patterns such as routines. Therefore, a
larger size of A increases the accuracy of the base model.

However, for a fixed length [ of a test sample, as the value of A in-
creases, the number of units that can be assessed by the base model
decreases, reducing the opportunity to boost the re-identification
performance by a boosting model. Hence, there is a trade-off be-
tween the value of A and the number of units of data assessed by
the base model that can be used to boost the overall performance.
As we show in experiments, the performance of the boosting model
exhibits a convex function behavior, allowing us to select an appro-
priate value of A for a given test length [.

6 RE-IDENTIFICATION RISK ANALYSIS
6.1 Dataset

Our goal is to analyze re-identification risks from wrist-worn ac-
celerometry data collected in the users’ natural environment. For
this purpose, we use a new dataset of raw accelerometery data from
wrist-worn devices that resulted from the mPerf research study
conducted to predict the work performance of employees using
modeled data from wearable sensors. The study was approved by
the Institutional Review Board (IRB Protocol # STUDY00000940
at the University of Minnesota-Twin Cities and an accompanying
IRB Protocol # PRO-FY2018-161 at the University of Memphis). All
participants provided written informed consent.

Each participant wore a wrist device (consisting of 3-axis ac-
celerometers, 3-axis gyroscopes and a 3-channel Photoplethysmog-
raphy sensor, all sampled at 25 Hz) and carried a smartphone with
the mCerebrum study app [32] installed. They were asked to collect
data for at least 8 hours each day for ten weeks (i.e., 70 days). The
participants were knowledge-workers from diverse professions,
including management, information technology, education, engi-
neering, production, sales, transportation, etc., covering various
job functions, ranging from senior executives to production per-
sonnel. A total of 380 participants completed all study procedures.
Excluding participant-days when at least one hour of accelerome-
try data is not present (due to data loss, corruption, non-wear, or
metadata mismatch), data from 353 participants (174 males, 123
females; mean age 31.7 + 7.5 years) for a total of 190,078 hours of
accelerometry data consisting of 51.3 billion data points were us-
able for this analysis. All data were stored and analyzed in Apache
PySpark based Cerebral Cortex open-source platform [40].
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6.2 Experiment Setup
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Figure 5: Splitting of training, validation, and testing set.
The dataset is first divided into training and testing sets, and
then the training set is further divided into a fitting set and
a validation set containing a closed set and an open set.

Figure 5 describes how we organize our entire dataset for train-
ing, validation, and testing. For the training dataset, we randomly
select 80% of the participants (282 out of 353) for training, leaving
20% (i.e., 71) participants to be only in the test set. Further, data
from 80% of participants in the training set (i.e., 226) are used in the
fitted set, leaving 56 participation for validation. Next, two-thirds
of the sensor traces from all 282 training set participants are used
to construct the training dataset (D;rqin). Within the fitted set of
users, two-thirds of their training data segments are used in the
fitted dataset. The remaining training data segments from these par-
ticipants in the fitted set and two-thirds of all data from participants
in the validation set are used for validation during training.

Test dataset for the adversary consists of one-third data from all
282 training participants and all data from 71 test participants. Since
the adversary has access to some test data from each participant,
Ik consists of known id of everyone. Anonymized set (Z4) consists
of anonymized index of 226 participants in the fitting set.

Since deep learning is compute-intensive, for the experiment on
finding the best segment length, we use a smaller version of the
validation dataset, namely D100,50 € D¢rain, With 100 participants
in the fitted set and 50 participants in the validation set.

For data processing, we first segment the accelerometry data into
one-minute windows. We retain a minute if it contains at least 85%
of the expected number of samples. To take into account the effect
of diversity in the available training data distribution, we conduct
each experiment several times with different random seeds to select
different windows of training data segments. For selecting a given
length [ of training data window for a participant, we randomly
choose a starting point and select a contiguous segment of length /
starting there. The test results are obtained by applying the trained
models on the test data set aside from each participant. We conduct
multiple iterations of the training window selection and report
averages to obtain a robust measure of performance.

6.3 Performance Metrics

For our performance evaluation, we use True Matching Rate (TMR),
and False Acceptance Rate (FAR), as defined in Section 2.2 (see (1)
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and (2)). They are the two most commonly used evaluation met-
rics for open set recognition (OSR) [53]. For the evaluation of re-
identification risk, we again use the definition from Section 2.2
(see (3)). We approximate py = Pr[3u € I : K(u) = x] in our
experiments as the percentage of total participants whose data is
used in the fitting set.

6.4 Model Architecture & Parameter Selection

In this section, we summarize the effects of varying the model
hyperparameters on validation accuracy, compare the performance
of alternative model architectures and demonstrate the effectiveness
of the Consistency-Distinction (CD) loss function.

6.4.1 Selection of A. To determine the best segment length A, we
evaluate different values (in seconds) from the set {5, 10, 20, 30, 45, 60,
90,120}. We then analyze the performance of the boosting model
for test samples of length (I) 5 minutes and 10 minutes.

100
—4- I=A (base accuracy)
—4— I=5 mins
—e— /=10 mins
80
2 60
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g I S ettt Sl
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Unit length, A (in seconds)

Figure 6: Validation accuracy of the boosting model for dif-
ferent values of A on the Djgo 50 data set. The best accuracy
occurs at A = 20 seconds.

From Figure 6, we see that the performance of the boosting model
approximates a convex function, peaking at A = 20 seconds, also
representing the best choice. We note that until A = 20 seconds,
the boosting model accelerates the performance gain from the base
model. After A = 20 seconds, the gain from the base model begins
to saturate. Concurrently, the number of segments in the test set
also reduces, resulting in a drop in performance at A = 30 seconds,
followed by gradual saturation.

6.4.2 Base Model Architectural Choices. Recall that our proposed
base model consists of both convolutional and recurrent layers. In
this experiment, we evaluate if a simpler model with a) convolu-
tional layers only (CNN), or b) recurrent layers only (RNN), can
provide comparable performance. The CNN model consists of two
convolutional layers, two max-pooling layers, ReLU as an activa-
tion function, and a fully-connected layer at the end. For the RNN
model, we use GRU units with a tanh activation function and 50%
dropout. We also compare it with a shallow learning model. For
the shallow model, we compute a set of features (as mentioned
in [22]) from raw data and then employ a fully connected layer that
takes this feature vector as input. The output of this layer is passed
through a softmax layer.
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Figure 7: (a) Performance of our proposed model compared
to Shallow Learning, CNN and RNN models. (b) The pro-
posed model requires significantly lesser amount of test
data to achieve the validation accuracy of 90% compared to
the closest-performing RNN model.

Figure 7 (a) shows that the validation accuracy of our proposed
model is higher than both the shallow and CNN models. Figure 7
(b) shows the test data lengths required by both the RNN and our
proposed model for varying train lengths, and a fixed accuracy of
90%. While the accuracy of our proposed model (90%) is only slightly
better than the RNN model (86%), it achieves the 90% accuracy with
only 15 minutes of test data, but, for the RNN model, 60 minutes of
test data is needed to achieve a similar accuracy.

S

Maxmean Boosting
Majority Boosting

20 30 40 50
Test Length, / (in minutes)

—e—

10 60

Figure 8: Performance of Majority and MaxMean boosting,.

6.4.3 Choice of the Boosting Model. Figure 8 presents a comparison
between Majority and MaxMean boosting. We observe that as the
number of segments in the test sample increases (starting at A
when no boosting occurs), MaxMean boosting performs better. A
potential reason is that averaging across each iteration of the base
model and then taking maximum provides greater robustness (in
finding the best matching id) than picking an id with the maximum
likelihood in each iteration and then selecting an id with the highest
frequency. When the number of test unit segments are small, and
ties are broken randomly, other id’s with similar patterns may have
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Figure 10: The model converges faster when using CD-loss
due to its robustness in the presence of noisy data.

a fair chance of being selected. For larger test segments (> 30
minutes), this difference in performance becomes negligible.

6.4.4 Choice of the Loss Function. To evaluate the impact of our
Consistency-Distinction (CD) loss function on model performance,
we determine the intra-class spread and inter-class distance (from
the closest class), both in the same feature space. We normalize the
set of both the distances to be in [0, 1] for ease of visual comparison.
The distribution of intra-class distances and inter-class distances
from models trained with cross-entropy, Triplet, and CD-loss func-
tions are shown in Figure 10. We observe that using our CD Loss
function reduces the intra-class distance (improving consistency)
and widens the inter-class distances, improving distinction. The CD
Loss provides 10% improvement over Triplet Loss for distinction
from unknown users (0.56 vs. 0.62). Qualitatively, CD loss improves
negative mining challenge in Triplet Loss by selecting the closest
negative instance vs. a random negative instance.

A second benefit of CD loss is its faster convergence. Presence of
outliers that are prevalent in noisy data collected from the field en-
vironment, in the training data can slow down model convergence.
Triplet loss is susceptible to such slowness due to its dependence
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Figure 11: Confusion Matrix of Activity Classification in
WISDM dataset

on the selection of a minibatch. By using aggregate (class) level
approximation of consistency and distinction in the feature space,
CD loss avoids such sensitivity on specific data points and hence
it convergences faster in the presence of noisy data expected in
real-life. With CD Loss, the model converges in 100 epochs vs. 400
when using Triplet Loss (see Figure 10).

6.5 Re-identification Risk Characterization

We now apply our model to characterize the re-identification risk
when wrist-worn accelerometry data from daily life are shared. We
first segment the day-long timeseries of data into broad classes
of physical activity states. We only consider activities that can be
detected from short 20-second data segments.

We train a Convolutional Neural Network (CNN) based activity
recognition model for each 20-second data segment using pub-
licly available WISDM dataset [72]. In WISDM, 51 participants
performed 18 different activities while wearing accelerometers on
their dominant wrists. Based on the amount of periodicity and varia-
tions present in different activity labels, we merge similar activities
to obtain the following classes — Stationary, Walking, Stairs, Sports,
and Exercise. Stationary refers to segments where the variation is
minimum and encompass labels such as sitting, standing, typing
and others. Walking incorporates activities when there is gait in-
formation present, with those involving Stairs separated out. Sports
refers to activities which consist of a mixture of stationary and
sudden burst of active segments. These include playing, catching,
dribbling, etc. Exercise includes activities of high magnitude such
as jogging, running and cycling. Although periodicity is observed
in the data segments for both Exercise and Walking, the two are
different based on the magnitude of variations present.

For generalizing across orientation differences in different de-
vices and study setups, we train the model using only magnitude of
accelerometer data. Using 20% of each participants data as testing
set, our model achieves an accuracy of 0.96 and a weighted F1-score
of 0.96. Figure 11 shows the confusion matrix. After the model is
trained, we apply it on our dataset to obtain the activity labels.

The model’s performance depends on the various properties of
the database: the number of users in the database (n), the set of
activities people perform in their daily life (A), the length of the
sensor traces (L) used for training, and the length of the sensor
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trace of the test sample (/). In this section, we analyze the effect of
these parameters on the re-identification risk.

6.5.1 Impact of Activity Type on Re-identification Risk. In their
daily life, users engage in a variety of different physical activities
while wearing a wrist sensor such as a smartwatch. To analyze the
impact of different activity states, we classify each data segment into
one of the five activity classes of Stationary, Walking, Stairs, Sports,
and Exercise. We then compare the re-identification risk associated
with each of the different activities for the following combinations
of train and test data lengths: a) train: 60 minutes, test: 30 minutes,
b) train: 60 minutes, test: 60 minutes, ¢) train: 120 minutes, test: 30
minutes, and d) train: 120 minutes, test: 60 minutes. As shown in
Figure 12, Exercise leads to the highest re-identification followed by
Walking. For Sports activities, performance when trained with 60
minutes of data is low, but performance improves considerably with
increase in training data length. Finally, data from the Stationary
state poses the least re-identification risk.

Train length v test length
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Figure 12: Activity-wise re-identification risk profile.
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Figure 13: Re-identification risks for different standard de-
viation threshold values used to filter data.

120v 60

0.15 0.2 0.25 03
Threshold, Th

Re-identification risk (%)
BN WA e N R D
O O O O O O O o © o o

6.5.2 Impact of Activity Intensity. To better understand why differ-
ent activity types pose different re-identification risks, we analyze
the impact of activity intensity on re-identification risk. We use a
standard deviation (SD) threshold to indicate the intensity of physi-
cal activity as experienced by the wrist-worn accelerometers. Only
segments with SD above a threshold (denoted by Th) are used to
train and test the model. Figure 13 shows re-identification risks
for different values of the threshold. As the threshold increases,
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we observe an improvement in re-identification accuracy. This ob-
servation indicates that higher intensity motion inherently carry
higher re-identification fingerprints.

Contribution of different activities
towards re-identification

I |

Walking

Re-identification risk (%)

___=Stationary ® Walking

= Sports Exercise

Stationary Sports Exercise Total

Figure 14: Activity-wise re-identification risk when user
shares one day of wrist-worn accelerometry data.

6.5.3  Re-identification Risk from An Entire Day of Sensor Wearing.
Section 6.5.1 presented the activity-wise re-identification risks if a
user spends the same amount of time in each activity class, observ-
ing that Exercise carries the highest re-identification risk. But, users
spend different amounts of time in each activity state. For example,
in our dataset, users spend only 1% of their time in Exercise state.
On the other hand, people remain mostly Stationary throughout
the day (80% of the time as observed in our study). While the re-
identification risk from stationary data is low, the large volume of
data can still contain useful discriminatory patterns.

We observe that on average, people wear their device for about
10 hours a day. Out of which, they remain Stationary for about 8
hours. On an average, 30 minutes are spent on walking, and only 6
minutes in Exercise. The contribution of each of the above activities
to re-identification risk is shown in Figure 14. To put these results
in perspective, we further translate other activities’ length in terms
of the average length of the Walking activity. For example, the risk
from 50 minutes of walking is 77%, which is the same as risk from
about 90 minutes of Non-stationary activity; similarly, 40 minute of
Walking has a similar re-identification risk as 6 minutes of Exercise,
and finally, 30 minutes of Walking has similar re-identification risk
as 480 minutes of remaining Stationary. Thus, the re-identification
risk from 10 hours of sensor data is the same as the risk from 150
minutes of Walking data. Taken together, re-identification risk from
one day of sensor data release is 96%.

6.5.4 Impact of Activity Duration on Re-identification Risk. To in-
form experiment designs that are conducted with an aim to publicly
release the wrist-worn accelerometry datasets for research (e.g.,
to develop or validate activity recognition models), we analyze
the time spent in different activity types that result in high re-
identification risks. For a given risk level, 7, and training length
L,ie, |sy| = L,Yu € T4, we want to determine the minimum test
length [, i.e., [Sx| = [, such that R(D) > 5. Consider the 2D plane,
where x-axis represents the training data length, and y-axis repre-
sents the test data length. We partition the space into two subspaces
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such that for all the points of one subspace re-identification risks
are lower than 7 and vice-versa. The re-identification risk mono-
tonically increases if we fix either the train length or the test length
and increase the other. Therefore, for each train length L, we find
the minimum test length such that the risk > 7. If we connect all the
points, we get a separation line. Figure 15a presents such separation
lines of each activity type for n = 90% and Figure 15b for n = 95%.
Detailed re-identification risk profiles for different activities over
a grid of training and test lengths is visualized into multiple heat
maps and presented in the Appendix (see Figures 19 and 20).

We observe that releasing even 40 minutes of exercise data can
enable an adversary to train a re-identification model that can
re-identify a user with only a few minutes of test data. But, for
walking (a routine activity), one and half hour of data is needed
to pose a high re-identification risk. We note that when a week or
longer duration of data from daily life is released, it is likely to have
adequate data for a significant re-identification risk.
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Figure 16: An increase in the number of fellow study partic-
ipating reduces the re-identification risk. The bars indicate
the corresponding test data lengths needed to achieve a re-
identification accuracy of 80% (for Sports activities).

6.5.5 Impact of Number of Users (n) in the Study on Re-identification
Risk. To understand the risk of participating in a large versus a
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small study, we analyze the impact of n on re-identification risk.
Having more users in the same dataset makes it more likely to find
users with similar fingerprints, reducing the re-identification risk.
For this analysis, we select the Sports activity to explore a wider
spectrum of re-identification risk. It has a lower re-identification
risk when compared with Walking, Stairs or Exercise, but still has
adequate re-identification risk unlike the Stationary state.

We fix the training data length of each user to 300 minutes, and
plot the effect of the number of users in Figure 16. We observe that
the trained model needs only five minutes of test data to achieve
80% re-identification accuracy for n = 10. But, as the population
size increases, the amount of test data needed also increases to
achieve the same level of re-identification accuracy.

6.6 Model Generalizability and Scalability

Practical limitations and associated costs of collecting large volumes
of diverse training data often imply that systems end up overfitting
to the limited available data. However, for our model-based re-
identification system to be useful it needs to generalize and maintain
alow FAR. Towards this end, we perform an entropy-based analysis
to assess the scalability of our re-identification system.

Let n be the number of users, and d be the dimension of the
latent representation (or feature space) used for performing re-
identification. We use the output of the dense layer (output of FC2
layer in Figure 3) as the d—dimensional continuous feature subspace
F c R We compute the differential entropy, H, (F), of the feature
subspace, such that 2Hn (F) roughly indicates the maximum volume
of unique users that can be represented with no overlap, iff each
user data had a unique support. However, due to natural variations
in user activities, their data is often a localized distribution in the
feature space. We use the per-user data distribution to compute the
average differential entropy for a single user as H (F). Thus, for a
well-trained model, the differential entropy of the re-identification
system is given by H,(F) — H;(F). High system entropy value
indicates lower chances of collision between the representation of
any two users and better generalization capability.
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Figure 17: Change in system differential entropy as new user
data are included for different activities. Saturation indi-
cates that the feature space learned by the model is able to
handle additional users without change.

6.6.1 Differential Entropy of the Re-identification System. To com-
pute system differential entropy, we project all segments from all
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the users into the feature space F. We then model the user data
distribution in the feature space as a multivariate Gaussian N (g, %),
where p is the zero-mean vector, and the covariance matrix 3 is
computed using the feature vectors. The differential entropy of a
multivariate Gaussian is given by, H(F) = %ln(|2|) + %(1 +In(21))
where |X| is the determinant of the covariance matrix.

We use the data from 353 users to compute H3s3(F). Figure 17,
shows the change in differential entropy of the system (Hzs53(F) —
H)1(F)) as new users are included in the system for different activi-
ties (Sports, Walking) and SD threshold based activity classification.
We observe that the plots, for each activity, start to saturate at some
point indicating that the feature space does not change appreciably
as more users are added. This leads us to believe that the model
has generalized well to the population represented by the training
dataset. We also compute the system differential entropy for each
activity and find that for Walking that most users routinely engage
in, the differential entropy is 56 bits, translating to ~ 7.2x101° users.
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Figure 18: ROC for Different Choices of Test Data Length

6.6.2  Evaluating Representational Overlap. Overlap in user repre-
sentation in the feature space adversely impacts both TMR and FAR.
Figure 18 shows an ROC curve of the boosting model for different
lengths of test data (I) for the activity state of Walking. For I = 10
minutes, the model achieves a 90.25% TMR and 2.16% FAR. As we
increase [ to 30 minutes, the model achieves more than 94.06% TMR
for an FAR of 3.49%. If the model is provided with test data of 60
minutes, the model achieves a TMR of 94% while keeping the FAR to
1.75%. This shows that users are represented with minimal overlap
allowing for their accurate re-identification.

6.6.3 False Acceptance Rate for An Independent Dataset. To further
test the utility of our open set formulation and new CD loss function
in achieving generalizability of the presented model, we compute
the FAR for a publicly available mORAL dataset [4]. In this dataset,
25 participants collected wrist-worn accelerometer and gyroscope
data throughout the day for one week continuously. The brushing
and flossing events are labeled from self-recorded videos. We apply
the trained activity detection model on this data to identify the
segments belonging to different activity types. We then select an
operating point for our model on the ROC curve corresponding
to different TMR and FAR values. Using these optimized decision
thresholds, we compute the false acceptance rate for the mORAL
participants. We obtain FAR values of 2.26% (TMR > 90%), 2.04%
(TMR > 94%) and 1.02% (TMR > 94%) in mORAL data for test
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lengths of 10, 30 and 60 minutes, respectively. This is similar to
what we observe in Section 6.6.2 when FAR and TMR values are
calculated from the original dataset. These results further confirm
the utility of our open set formulation and our CD loss function.

7 RELATED WORKS

There is a growing body of work on discovering and mitigating
security and privacy problems in human-cyber-physical systems
that emanate from continuous collection of sensor data from wear-
able devices carried by users in their daily life [2, 9, 11, 12, 14, 49,
63, 65, 66, 78]. They use methods drawn from signal processing,
information theory, and machine learning. In the following, we
focus on works that are closely related to user re-identification.

Sensor data-based approaches for re-identification can be grouped
into two categories — behavioral biometric approaches and device
fingerprinting. Behavioral biometric approaches have been used
for user authentication in several research works. Examples in-
clude [76] and [64] that use hand waving detected from two differ-
ent sources (accelerometer and ambient light sensor) to authenticate
a user in smartphones. Others [20, 24, 25, 34, 39, 61] feed keystroke
biometrics and touchscreen interaction pattern (key pressed lo-
cation, duration of keypress, size, drift, etc.) in different machine
learning models to authenticate phone users. These methods are
not directly applicable to person re-identification from wrist-worn
accelerometry data because they rely on scripted settings (e.g., wav-
ing a hand or holding the phone in hand).

Several LSTM based user authentication methods, i.e., Deep-
Auth [7, 66] and AUToSen [1], use accelerometer and gyroscope
data from the smartphone to capture behavioral patterns with high
accuracy. A learning based method called RiskCog [80] validates
users using data collected from accelerometer, gyroscope, and grav-
ity sensors with high accuracy. We show that our model trained
with the proposed CD loss function for an open set formulation
outperforms these models in the amount of training data needed.

Another popular approach to behavioral biometric is gait-based
authentication [22, 26, 41, 46, 55]. These approaches extract gait-
based unique fingerprint from physical activities such as walking or
running, using motion data from accelerometers placed on different
body locations, sometimes supplemented with a video. Recent re-
search on gait based person identification uses a variation of Deep
Neural Networks to achieve high accuracy [1, 77], establishing the
feasibility of extracting unique characteristics of the user from their
motion pattern. But, the applicability of these methods is limited
due to their reliance on multiple sensors placed on different loca-
tions of the human body. Also, their methods are trained to learn a
similarity function that measures matching scores of two templates
given the condition that the users performed a specific activity,
which is unlikely when users live freely in their natural environ-
ment. Therefore, none of the existing behavioral biometric solutions
show the feasibility of person re-identification from wrist-worn
accelerometry data collected from the natural environment.

Another complementary body of work seeks to re-identify a
device (and subsequently a user, if the device is not shared among
multiple users and until the user changes the device, e.g., upgrades
their phone). These works, referred to as device fingerprinting,
aim to generate a unique signature, or fingerprint, that uniquely
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recognizes a specific device. Several works find the fingerprint
by extracting statistical features and using supervised machine
learning approaches when the phone vibrates (for example, during
an incoming call or message) [18] or when stationary [15, 16]. These
methods were found to have an F1 score of 60% in field setting when
devices are held in hand.

Bojinov et. al. [8] models the imprecision in accelerometer cali-
bration via a device-specific scaling and translation of the measured
values. For analysis, they collected data when the device was sta-
tionary, achieving a re-identification rate of 53% for devices in their
dataset. More recently, [78] estimated the calibration matrix more
accurately by considering all three errors: scaling factor, bias, and
non-orthogonality misalignment errors. All of these methods model
the error of the sensor due to the hardware imperfections during
the sensor manufacturing process. Our work is complementary to
these works as we seek to extract distinctive and unique features
from the patterns of micro-movements of a user’s wrist.

Finally, privacy research on leakage of training data with the
release of trained models investigate membership inference at-
tacks [30, 50, 62, 69] to determine whether a specific data point
belonged to the training set. Their focus is to find an exact match of
a test sample with one in the training set, by exploiting the higher
prediction confidence that models usually report when tested on
their training data. Similar to our base model, they also use the
likelihood produced by the model. But, these methods do not ad-
dress our problem of data segmentation, construction of base model
architecture that extracts the unique common micro-movement pat-
tern for each class (i.e., person), or discovery of a loss function for
the base model to minimize the intra-class distance in the feature
space and simultaneously maximize inter-class separation, which
are technical contributions of our work.

8 LIMITATIONS AND FUTURE WORKS

Although our WristPrint method achieves a 96% re-identification
rate, there are several limitations to the presented work that open
up numerous opportunities for future research.

First, in our dataset, each user’s data came from the same device.
Different wrist-worn devices differ in sampling rates, sensitivity
range, mounting orientations, etc. This work did not experiment
with these variations, and hence their impact on re-identification
performance can be investigated in future works. More specifically,
a higher sampling rate and lower noise of the signal may allow
the model to capture finer-grained micro-movements, potentially
improving re-identification performance and reducing the amount
of data needed for training and testing for a specified level of perfor-
mance. Future work can also investigate the case when the model
is trained on data from one device but tested on another device.

Second, for this analysis, we only looked at the wrist-worn device.
Motion sensors are included in wearable devices such as earbuds
and smart eyeglasses that are worn on different body locations. Fu-
ture work can investigate the suitability of the presented modeling
approach for re-identification using motion data from such devices.

Third, our experiments show that the distinctive features of the
user’s wrist movement remain consistent for ten weeks. Future

2819

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

work can investigate the deterioration in re-identification perfor-
mance over time as user’s movement patterns evolve, especially
after major events such as accidents, pregnancy, and job changes.

Fourth, our experiments show that the impact of segmentation
length choice (A) on re-identification performance exhibits a convex
shape, displaying unique optimal value for a given test data length
(see Figure 6). Future work can develop theoretical frameworks to
prove such a property and derive optimal values of A analytically.

Finally, future work can investigate how the re-identification
risk increases when other sensing modalities included in wrist-
worn devices (e.g., gyroscopes and pulse plethysmograph (PPG)
for heart rate measurements) are used together with accelerometry
data. Using additional sensing modalities can potentially reduce
the amount of data needed for training and testing.

9 CONCLUSIONS

Several modalities of data are routinely used for user re-identification
and sometimes even for authentication. They include video, voice,
and fingerprints. But, new modalities of data are emerging that

capture users’ movement patterns at a very fine granularity. Wrist-
worn devices have emerged as one such increasingly popular de-
vice. To support research for new inferences of daily behaviors

from these devices, data collected from user studies are publicly

shared, assuming a lack of any identifying information embedded

in them. Our work shows that data collected from such devices,
even at 25 Hz, can support user re-identification with 96% accuracy.
This creates new research opportunities to address the new privacy,
security, and ethical challenges.
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APPENDIX

See Section 6.5.4 for a description of the figures presented here as
well as for the notations used in the figures.
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Activity: Exercise
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Figure 19: Effect of training and test length on re-identification risk for Exercise, Walking, Sports, and Stationary. Here, rf !

represents re-identification risk when train length is L, test length is [, and activity type is A. Please see Section 6.5.4 for details
on re-identification risk characterization.
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Figure 20: Effect of training and test length on re-identification risk for coarse grained activity classes based on standard
deviation thresholds. We use the notation r°2* to denote risk when Standard Deviation threshold (SD;p,) is varied together
with training length (L) and test length (/). See Section 6.5.4 for more details on re-identification risk.
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