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Abstract—In this study, we generalize a problem of sampling
a scalar Gauss Markov Process, namely, the Ornstein-Uhlenbeck
(OU) process, where the samples are sent to a remote estimator
and the estimator makes a causal estimate of the observed real-
time signal. In recent years, the problem is solved for stable
OU processes. We present solutions for the optimal sampling
policy that exhibits a smaller estimation error for both stable and
unstable cases of the OU process along with a special case when
the OU process turns to a Wiener process. The obtained optimal
sampling policy is a threshold policy. However, the thresholds are
different for all three cases. Later, we consider additional noise
with the sample when the sampling decision is made beforehand.
The estimator utilizes noisy samples to make an estimate of the
current signal value. The mean-square error (mse) is changed
from previous due to noise and the additional term in the mse is
solved which provides performance upper bound and room for a
pursuing further investigation on this problem to find an optimal
sampling strategy that minimizes the estimation error when the
observed samples are noisy. Numerical results show performance
degradation caused by the additive noise.

Index Terms—Ornstein-Uhlenbeck process, sampling policy,
threshold policy, noisy sample.

I. INTRODUCTION

The problem of sampling an Ornstein-Uhlenbeck (OU)
process is recently addressed in [1] and another problem
of sampling a Wiener process in [2]. However, the optimal
sampling policy provided in [1] is only for the stable scenario.
In practice, real-time applications of OU processes consider
both stable and unstable cases [3]. Therefore, a sampling
problem that considers only the stable scenario is insufficient
for practical and more dynamical systems, and a generalization
of this problem that considers both stable and unstable cases
is necessary.

Moreover, a real-time system often consists of noise along
with the signal process. Therefore, the analysis based on noisy
observation of samples to minimize signal estimation error
is practically much more important in real-time networked
control and communication systems. In this paper, we gener-
alize a sampling problem of a scalar Gauss-Markov process,
named the OU process by considering both stable and unstable
scenarios. Later on, we consider noisy samples of OU process
and compute the mse from which we establish estimation
performance bounds of mse. The optimal sampling policy
for noisy samples is not provided in this work but will be
considered in our future study.

This work was supported in part by NSF grant CCF-1813050, ONR grant
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The OU process is defined as the solution to the following
stochastic differential equation (SDE) [4], [5]

dXt :9(M—Xt)dt—|—ath, (1)

where p, 6, and ¢ > 0 are parameters and W; represents a
Wiener process. In case of stable OU process, § > 0 [1]. In
(1), if @ — 0, and o = 1, X reduces to a Wiener process. If
6 < 0, then X; becomes an unstable OU process. Examples
and properties of OU processes are explained in [1].

First, we aim to find an optimal sampling strategy that
minimizes the mse. The samples of the OU process pass
through a channel in first-come, first-serve (FCFS) strategy.
A remotely located estimator utilizes these causally received
samples to make an estimate X; of X;. We obtain lower
bound of mse in the absence of any additional noise in the
system. Second, our goal is to find the expression of mse with
the presence of noise in the system. This analysis provides
an upper bound of mse when the estimator receives noisy
samples. We summarize the contributions of this paper as
follows:

e The optimal sampling problem in the absence of noise
is formulated and the solved optimal sampling policy
is a threshold policy on instantaneous estimation error.
The structure of the thresholds v(3) of a parameter (3
are different for the three cases: 8 > 0 (Stable OU
process), 8 = 0 (Wiener process), and § < 0 (Unstable
OU process). The value of [ is equal to the optimum
value of the time-average expected estimation error. The
computation of § remains the same irrespective of the
signal models.

o Further, we consider noisy samples and obtain an explicit
expression for mse. From the expression, we establish a
performance upper bound of mse.

o Our results hold for general i.i.d. transmission time dis-
tributions of the queueing server with a finite mean.

A. Related Work

The results in this paper are tightly connected to the area of
remote estimation, e.g., [1], [2], [6]-[15]. Optimal sampling
policy of Wiener processes with a zero channel delay was
studied in [8], [10], whereas we consider random i.i.d. channel
delay. A discrete-time optimal stopping problem was solved
by using Dynamic programming in [8] to find the optimal
sampling policy of OU processes. In [1], an optimal sampler
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Fig. 1: System model.

of stable OU processes is obtained analytically where the sam-
pling is suspended when the server is busy and is reactivated
once the server becomes idle. The optimal sampling policy for
Wiener processes in [2] and stable OU processes in [1] is a
special case of ours. Remote estimation of Wiener processes
with random two-way delay was considered in [14].

In [13], a jointly optimal sampler, quantizer, and estimator
design were found for a class of continuous-time Markov
processes under a bit-rate constraint. In [15], the quantization
and coding schemes on the estimation performance are studied.
We consider noisy channels with random delay to establish
performance bounds. A recent survey on remote estimation
systems was presented in [16].

II. MODEL AND PROBLEM FORMULATION
A. System Model

We consider a continuous-time remote estimation system
that is illustrated in Fig. 1, where an observer takes samples
from an OU process X;. After sampling, additional noises
from the sampler and the channel are added to the samples.
Then, the noisy samples are sent to the estimator. The channel
is modeled as a single-server FIFO queue with i.i.d. service
times. The samples undergo random service times in the
channel due to fading, interference, congestions, etc. We also
consider that at a time, only one sample can be delivered
through the channel.

The operation of the system starts at time instant ¢ = 0.
The generation time of the :-th sample is S;, which satisfy
S; < Siy1 for all 7. Then, i-th sample undergoes a random
service time Y;, and is delivered to the estimator at time D,
where Sg' +}’; < Dg‘, Dg‘ +}Ii+1 < D“H'l’ and 0 < ]E[K] < 00
hold for all 7. The i-th sample packet (S;, Xs,) contains the
sample value X g, and its sampling time .S;. Suppose that after
sampling, noise Ng, is being added to the sample X5, and the
noisy observation of the sample X g, is denoted by Ug,. Hence,

Us, = Xs, + Ng,, (2)

where Ng, is the additive noise with zero mean and variance
b;. Each sample packet (S;,Ug,) contains the sampling time
S; and the noisy sample Us,. If channel noise Ng with
zero mean and variance by is added to the sample during
its transmission through the channel, then the sample value
becomes

Qs, = Us, + Ng,. 3)

Initially, at ¢ = 0, the state of the system is assumed to hold
So =0, and Dy =Y. The initial state of the OU process Xy
is a finite constant. The process parameters p, 8, and o in (1)
are known at both the sampler and estimator.

Let, the idle/busy state of the server at time ¢ is denoted
by I; € {0,1}. We also assume that an acknowledgement
is immediately sent back to the sampler whenever a sam-
ple is delivered and this operation has zero delay. By this
assumption, the sampler is aware of the idle/busy state of the
server and the available information at time ¢ can be given by
{Xe, I : 0< s <t}

B. Sampling Policies

The sampling time 5; is a finite stopping time with respect
to the filtration {F,",t > 0} (a non-decreasing and right-
continuous family of o-fields) of the information that is
available at the sampler such that [17]

{S;i <t}e Ff,vt>0. (4)

Let m = (51, Sa, ...) denote a sampling policy and IT denote
the set of causal sampling policies that satisfy two conditions:
(i) Each sampling policy w € II satisfies (4) for all 7. (ii)
The sequence of inter-sampling times {T; =
0,1,...} forms a regenerative process [1, Section 1IB]: An
increasing sequence 0 < Il; < l; < ... of almost surely
finite random integers exists such that the post-l, process
{T}.+i.7 = 0,1,...} is independent of the pre-l; process
{T;,i = 0,1,...,lx — 1} and has same distribution as the
post-lp process {Tj,+4,7 = 0,1,...}; We further assume that
]E['!k—i-l — lk] < o, ]E[Sh] < oo, and 0 < E[ka+1 — Sik] <
oo, k=1,2,...

i1 Sﬁai =

C. MMSE Estimator

In this section, we provide the MMSE estimator for noisy
samples of the OU process.

By using the expression of OU process for stable scenario
[18, Eq. (3)] and the strong Markov property of the OU process
[19, Eq. (4.3.27)], a solution to (1) for ¢ € [S;, 00) given by
the following three cases:

Xs,;e_e(t_s") —|—,u[1 _ e—ﬂ(t—S‘-}]

+%6‘6(“5"}Wezw S_1> if >0,
Xi= ¢ oWy, if #=0, (5

Xg,e70=5) 4 pu[1 — e=0(=54)]

+v%%e_6(t_s"}wl_ezs(e Si)s if 8 <0.

The estimator uses causally received samples to formulate
an estimate X of the real-time signal value X, at any time ¢ >
0. The available information at the estimator has two parts: (i)
M; = {(S:,Qs,, D;) : D; < t}, which contains the sampling
time S;, noisy sample value @)s,, and delivery time D; of the
samples that have been delivered by time ¢ and (ii) no sample
has been received after the last delivery time max{D; : D; <
t}. Similar to [1], [2], [8], [20], we assume that the estimator
neglects the second part of information. Then, as shown in
[15], the MMSE estimator for ¢t € [D;, D;41), i =0,1,2,...
for all of the cases in (5) is given as follows

X; =E[X;|M;]
:QSie—ﬂ(t—S‘:) + ,u,[l _ S—G(E—Sg)] . (6)



D. Performance Metric

We evaluate the performance of remote estimation by the
time-average mean square error which is expressed as follows:

T A
/ (X; — Xt)th] . @)
0

A lower bound of (7) can be obtained when the additive
noises are not considered (Ng, = 07Ngi = 0). On the
other hand, an upper bound can be found by taking both the
noises into account. Moreover, we formulate the following
optimal sampling problem that minimizes the time-average
mean-squared estimation error over an infinite time-horizon
when no noise is considered.

mse = limsup —E
T—o0

T—o0

1 T .
MSeoptwn = mi%} limsup —E [ / (X — Xt)th] . (®)
mTeE 0

where msegpi.wn is the optimum value of (8) without noise. We
do not provide the optimal sampling policy in the presence of
noises in this study, but it will be considered in our future
work.

III. MAIN RESULTS

In this section, we first present the lower bounds for mse
in (7) for different conditions on the OU process parameter
6. Second, we provide the optimal sampling policy for mini-
mizing the expected estimation error defined in (8). Later, we
present upper bound for mse in (7).

A. Lower Bounds for mse

Let us consider an OU process with initial state Oy = 0
and parameter ; = 0, which can be expressed as

ﬁe—“wezet,h if 6>0,
Ot = O'Wt, if 0= O, (9)
f_’fwe—“wkeaet, if 6<0.

Before presenting the optimal sampler without noise, let us
define the following parameter:

2
TR e 2%, if 040
f— 2 ? ?
msey; { SRV, if =0,

where msey, is the lower bound of mse. We will also need to
use the following two functions

(10)

G(z) = %%erf(x), z € [0,00), (11)
K(x) ge;‘” erfi(z), z € [0, 00), (12)

where if z = 0, both G(z) and K (x) are defined as their
right limits G(0) = lim,_,o+ G(z) = 1, and K(0) =
lim, ,q+ K(x) = 1. Furthermore, erf(-) and erfi(-) are the
error function and imaginary error function respectively, de-
fined as

erf(z) = \/2%/01 e~ dt, erfi(z) = jE/Ox eldt.  (13)

Note that G(x) is strictly increasing on € [0,00) [1],
whereas K (x) is strictly decreasing on x € [0,00). Hence,
their inverses G~1(-) and K ~!(-) are properly defined.

First, we consider that the system has no noise, i.e., Ng, = 0
and Ngi = 0. Therefore, from (2) and (3), we get, Xg, =
Us, = Qs,. Then, the following theorem illustrates that the
optimal sampling policy is a threshold policy and the threshold
is found for all the three cases of the OU process parameter
0.

Theorem 1. If the Y;’s are i.i.d. with 0 < E[Y;] < oo, then
(S51(8), 52(B), . . .) with a parameter (3 is an optimal solution
to (8), where

Sir(8) =inf {t = Di(8) :[ X, - K| 2v(8)} . (14)
D;(B) = S;(B) +Y;, and v(B) is given by
e <_"’By> if 0>0,
v(B) ={ V3(8 - E[Y3)), if =0, (15)
KT (), i e<o,

where G=1(-) is the inverse function of G(-) in (11), K~1(-)
is the inverse function of K(-) in (12), and B is the unique
root of

Di+1(B) 53
B[ (X - 02t - BEID:(8)-Di(B)] = 0.
D;(B)
(16)
The optimal objective value to (8) is then given by
D;+1(B %
E[fp 70 - X%l

MSEopt-wn = (17)

E[Di+1(8)—Di(B)]

In [1], it is proved that the optimal sampling policy for
stable OU process, i.e., when § > 0 is a threshold policy.
The threshold obtained in [1] coincides with v(f) in (15) for
the case of @ > 0. For § = 0, the threshold is obtained for
o = 1 which represents a Wiener process [2]. For 6§ < 0,
the proof procedure works in the same way as explained in
[1] for stable OU processes. The threshold v(3) is obtained
by solving similar free boundary problems explained in [1]
and the optimality of (17) for § < 0 is thus guaranteed.
However, the threshold structure is different for all the three
cases in Theorem 1. The function K (z) in (12) is related to
the function G(x) in (11) as follows

K(z) = G(jx), (18)

where j is the imaginary number represented by j = +/—1.
Therefore, the threshold v(3) for # < 0 can be expressed by
the following equation as well:

Lz — msey; (19)
Ve |

v(B) =i =G (2"

Though the threshold functions v(3) varies with signal
structure, the computation of the parameter 3 remains the same
for all cases and the uniqueness of the root of (16) is proved
in [1]. The decision of taking a new sample defined in (14)
works in the same way as explained in [1].



B. Upper Bounds for mse

Suppose that the additive noise in the sampler and channel
exist in the system, i.e., Ng, # O,Ngi = 0. Moreover, the
sampler follows the sampling strategy obtained in (14). The
OU process O; is a Gauss-Markov process. When noises
get incorporated with Oy, it does not remain Markov. The
analysis presented in our previous study [1] was based on the
strong Markov property of the OU processes. Due to the non-
Markovian structure of noisy samples of OU processes, finding
an optimal sampling policy requires different analytical tools.
Due to lack of space, we do not provide the optimal sampling
policy with the presence of noise, but it will be considered in
our future study.

Because the noises Ng, and Ng are independent of the
sampling times and the observed OU process, by utilizing (2),
3), (5), (6), and (17), the mse at the estimator which is an
upper bound of (7) can be expressed as

E[fp 7 - X2l

E[Dzﬂ(ﬁ)—pi(ﬁ)]

E[fpi (O s, — (Ns, + Ng e~

] E[D;1(8)—Di(B)]
E[[hi7 0% dt]

" ElDi1(8)-Di(B)]

[fD 1(%1)(/3) Ns, + N}, )2e —20(t— S)dt]

E[D;+1(8)—Di(B)] ’
where (20) follows due to the fact that the OU process Oy
has initial state Oy = 0 and the noises Ns, and Ng with
zero mean are independent of the observed OU process and
sampling times.

To compute (20), the first fractional term remains the same
as the msegpwy in (17) with Ng, = 0 and N’Si = 0. For
stable OU processes, the associated mseopt_wn is computed in
[1, Lemma 1]. The expression of Ot g; 1s the same for both
stable and unstable OU processes. Therefore, the solution for
(20) holds for all three cases in (9). For computing the second
term, as Ng, and Ng are independent of the observed OU
process and the sampling times, the numerator of the second
fractional term in (20) can be written as:

Diy1(B)
E / (NS _"_N/ )2 —29(t S)dt

D;(B)
/Dz‘+1(ﬁ)
D;(B)

Then, we have the following lemma for the last term in (21).

mse =

0(t— S)) dt}

(20)

=E[(Ns, + Ng,)*|E

e‘Qe(t_Si)dt] .Q@D

Lemma 1. It holds that

Di11(B)
E / e 2005 gy
D;(B)

(22)

1F1 (17 %1 %O%}) >E[629Y}+1}}:| .
Fi(1 )

T T
—MSE without noise
-~ MSE with noise | |
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a
Fig. 2: MSE vs. the scale parameter « of i.i.d. normalized log-normal
service time distribution with E[Y;] = 1, where the parameters of the
OU process are 0 = 1 and 6 = 0.5.

Proof. See Appendix A. [

By using Lemma 1 and the expressions obtained in [I,
Lemma 1], all the associated expectations in (20) can be ob-
tained by Monte Carlo simulations of scalar random variables
Oy, and Y;, which does not require to directly simulate the
entire random process {O;,t > 0}.

IV. NUMERICAL RESULTS

Figure 2 illustrates the MSE of i.i.d normalized log-normal
service time, where V; = ¢*Xi/E[e®Xi], and o > 0 is the
scale parameter of log-normal distribution. The (X7, X, ...)
are i.i.d. Gaussian random variables, where E[X;] = 0 and
Var(X;) = 1. The maximum throughput of the queue is 1 as
E[Y;] = 1. Both of the noises Ng, and Ng are considered to
have 0 mean and variance 0.1. With the growth of the scale
parameter «, the tail of the log-normal distribution becomes
heavier. The MSE with noise curve shows performance degra-
dation as the additional term due to noise added with the mse
without noise.

V. CONCLUSION

In this paper, we have explained the optimal sampling
strategies for minimizing the instantaneous estimation error
for three different cases of scalar Gauss-Markov signal pro-
cesses. The optimal sampler exhibits a threshold policy and
by using causal knowledge of the signal values, a smaller
estimation error has been obtained. The optimal threshold has
been changed with signal structure. For noisy samples, the
additional term added in the mse due to noise is found. An
optimal sampler design for noisy samples of Gauss-Markov
processes will be considered in our future study.
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APPENDIX A
PROOF OF LEMMA 1

In order to prove Lemma 1, we need to consider the
following two cases:
Case 1: If |Xp,(s)

— Xp,(p)| [Oy,| > wv(B), then

Si+1(B8) = D;(5). Hence,
D;(B) = Si(B) + Y, (23)
Di1(B) = Si+1(B) + Yis1 = Di(B) + Yiq1. (24)

Let us consider the following equation:

Dit1(B)
d/
Di(B)

Yi+Yiq1
/Y
i

_ i —20y o
E[zee (1

e—QG(t—Si)dt‘OYL_ =q,Y; =y,|0y,| > v(B)

6_293d8‘OYi =q,Y; =y,|0y,| > v(B)

~2Y) [0y, = ¢,Y; = 3, |Ovi| > vw)]

1
:%67293/1}3 [1 _ e 20Yin |OY1; =qY, =y, |OYz| > U(ﬁ)}

:%6729?/{1 — ]E[e*%Y"“] },

(25)

where (25) holds due to the fact that Y;,; is independent of
Oy, and Y.

Case 2: If | Xp, )

Diy1(B)
d/
D;(B)

Yi+2Z; Yvi+
/1
Y:

_ XDi(B)| = |Oy,| < v(B), then
e_QQ(t_Si)dt‘Oyi =¢q,Y; = y,|Oy,| <v(B)
e_QGSdS‘OYi =q,Yi = y,|Oy,| <v(B)

_]E|:29 729y(1 o 6729Zi672eyi+1)|01/i _ q,Yi _ y]

(26)

:%e*%yﬂi {1 — e 20%ip20Yin ’Oyi =qY = y}
:i€720y 1 _ E 67292i Y’Z — y E[6720n+1]

20
:i6720y 1— E[efﬂ)Zi — q]E[6726n+1] ,

20 ‘
where the last equation in (26) holds because Z; is condition-
ally independent of Y; given Oy,. Next, we need to compute
E[e=29%i|Oy, = q], where Z; is a hitting time of the time-
shifted OU process Oy, given as

Z; =
inf{t : Orry, & (—v(B),v(8))[O0y, = q € (—v(B),v(B))}.

27)

By using the characteristic function of the hitting time of the
OU process in [21, Eq. 15a], we get that

:q]_ 1F1(7270-2q)

lFl( DRI 0-621}2(5)) .
Therefore, (26) becomes

Diy1(B)
=\
D;(B)
1F1(13 2 a2q )

_i —20 _ —20Yi41
_206 y{ 1F1( u2u£2v2(ﬂ))]E[e ]}

By combining (25) and (29), we get that

Diy1(B8)
=\
D;(B)

1
:%e_%y [1 — min{l,

Ele2%%'|Oy, (28)

~20(t=S)) dt\Oy = 4,Y; = y,|0v,| < v(B)

(29)

6*29(“Si)dt’0yl =q,Yi=y

1 (17% %q ) e 20Yisa
1F1(1, 3, 502(B)) }]E[ ]}

(30)

Finally, by taking the expectation over Oy, and Y; in (30),
Lemma 1 is proven.



