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Abstract—In this study, we generalize a problem of sampling
a scalar Gauss Markov Process, namely, the Ornstein-Uhlenbeck
(OU) process, where the samples are sent to a remote estimator
and the estimator makes a causal estimate of the observed real-
time signal. In recent years, the problem is solved for stable
OU processes. We present solutions for the optimal sampling
policy that exhibits a smaller estimation error for both stable and
unstable cases of the OU process along with a special case when
the OU process turns to a Wiener process. The obtained optimal
sampling policy is a threshold policy. However, the thresholds are
different for all three cases. Later, we consider additional noise
with the sample when the sampling decision is made beforehand.
The estimator utilizes noisy samples to make an estimate of the
current signal value. The mean-square error (mse) is changed
from previous due to noise and the additional term in the mse is
solved which provides performance upper bound and room for a
pursuing further investigation on this problem to find an optimal
sampling strategy that minimizes the estimation error when the
observed samples are noisy. Numerical results show performance
degradation caused by the additive noise.

Index Terms—Ornstein-Uhlenbeck process, sampling policy,
threshold policy, noisy sample.

I. INTRODUCTION

The problem of sampling an Ornstein-Uhlenbeck (OU)
process is recently addressed in [1] and another problem
of sampling a Wiener process in [2]. However, the optimal
sampling policy provided in [1] is only for the stable scenario.
In practice, real-time applications of OU processes consider
both stable and unstable cases [3]. Therefore, a sampling
problem that considers only the stable scenario is insufficient
for practical and more dynamical systems, and a generalization
of this problem that considers both stable and unstable cases
is necessary.

Moreover, a real-time system often consists of noise along
with the signal process. Therefore, the analysis based on noisy
observation of samples to minimize signal estimation error
is practically much more important in real-time networked
control and communication systems. In this paper, we gener-
alize a sampling problem of a scalar Gauss-Markov process,
named the OU process by considering both stable and unstable
scenarios. Later on, we consider noisy samples of OU process
and compute the mse from which we establish estimation
performance bounds of mse. The optimal sampling policy
for noisy samples is not provided in this work but will be
considered in our future study.
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The OU process is defined as the solution to the following
stochastic differential equation (SDE) [4], [5]

dXt = θ(µ−Xt)dt+ σdWt, (1)

where µ, θ, and σ > 0 are parameters and Wt represents a
Wiener process. In case of stable OU process, θ > 0 [1]. In
(1), if θ → 0, and σ = 1, Xt reduces to a Wiener process. If
θ < 0, then Xt becomes an unstable OU process. Examples
and properties of OU processes are explained in [1].

First, we aim to find an optimal sampling strategy that
minimizes the mse. The samples of the OU process pass
through a channel in first-come, first-serve (FCFS) strategy.
A remotely located estimator utilizes these causally received
samples to make an estimate X̂t of Xt. We obtain lower
bound of mse in the absence of any additional noise in the
system. Second, our goal is to find the expression of mse with
the presence of noise in the system. This analysis provides
an upper bound of mse when the estimator receives noisy
samples. We summarize the contributions of this paper as
follows:
• The optimal sampling problem in the absence of noise

is formulated and the solved optimal sampling policy
is a threshold policy on instantaneous estimation error.
The structure of the thresholds v(β) of a parameter β
are different for the three cases: θ > 0 (Stable OU
process), θ = 0 (Wiener process), and θ < 0 (Unstable
OU process). The value of β is equal to the optimum
value of the time-average expected estimation error. The
computation of β remains the same irrespective of the
signal models.

• Further, we consider noisy samples and obtain an explicit
expression for mse. From the expression, we establish a
performance upper bound of mse.

• Our results hold for general i.i.d. transmission time dis-
tributions of the queueing server with a finite mean.

A. Related Work

The results in this paper are tightly connected to the area of
remote estimation, e.g., [1], [2], [6]–[15]. Optimal sampling
policy of Wiener processes with a zero channel delay was
studied in [8], [10], whereas we consider random i.i.d. channel
delay. A discrete-time optimal stopping problem was solved
by using Dynamic programming in [8] to find the optimal
sampling policy of OU processes. In [1], an optimal sampler
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ofstableOUprocessesisobtainedanalyticallywherethesam-
plingissuspendedwhentheserverisbusyandisreactivated
oncetheserverbecomesidle.Theoptimalsamplingpolicyfor
Wienerprocessesin[2]andstableOUprocessesin[1]isa
specialcaseofours.Remoteestimationof Wienerprocesses
withrandomtwo-waydelaywasconsideredin[14].

In[13],ajointlyoptimalsampler,quantizer,andestimator
design werefoundforaclassofcontinuous-time Markov
processesunderabit-rateconstraint.In[15],thequantization
andcodingschemesontheestimationperformancearestudied.
Weconsidernoisychannels withrandomdelaytoestablish
performancebounds. Arecentsurveyonremoteestimation
systemswaspresentedin[16].

II. MODELANDPROBLEMFORMULATION

A.System Model

Weconsideracontinuous-timeremoteestimationsystem
thatisillustratedinFig.1,whereanobservertakessamples
froman OUprocessXt. Aftersampling,additionalnoises
fromthesamplerandthechannelareaddedtothesamples.
Then,thenoisysamplesaresenttotheestimator.Thechannel
is modeledasasingle-serverFIFOqueuewithi.i.d.service
times. Thesamplesundergorandomservicetimesinthe
channelduetofading,interference,congestions,etc. Wealso
considerthatatatime,onlyonesamplecanbedelivered
throughthechannel.

Theoperationofthesystemstartsattimeinstantt=0.
Thegenerationtimeofthei-thsampleisSi, whichsatisfy
Si≤ Si+1 foralli.Then,i-thsampleundergoesarandom
servicetimeYi,andisdeliveredtotheestimatorattimeDi,
whereSi+Yi≤Di,Di+Yi+1 ≤Di+1,and0<E[Yi]<∞
holdforalli.Thei-thsamplepacket(Si,XSi)containsthe
samplevalueXSi

anditssamplingtimeSi.Supposethatafter
sampling,noiseNSi

isbeingaddedtothesampleXSi
andthe

noisyobservationofthesampleXSiisdenotedbyUSi.Hence,

USi =XSi+NSi, (2)

whereNSi istheadditivenoisewithzeromeanandvariance
b1.Eachsamplepacket(Si,USi

)containsthesamplingtime
Si andthenoisysampleUSi

.IfchannelnoiseNSi
with

zero meanandvarianceb2 isaddedtothesampleduring
itstransmissionthroughthechannel,thenthesamplevalue
becomes

QSi
=USi

+NSi
. (3)

Initially,att=0,thestateofthesystemisassumedtohold
S0=0,andD0=Y0.TheinitialstateoftheOUprocessX0

isafiniteconstant.Theprocessparametersµ,θ,andσin(1)
areknownatboththesamplerandestimator.

Let,theidle/busystateoftheserverattimetisdenoted
byIt ∈{0,1}. Wealsoassumethatanacknowledgement
isimmediatelysentbacktothesampler wheneverasam-
pleisdeliveredandthisoperationhaszerodelay. Bythis
assumption,thesamplerisawareoftheidle/busystateofthe
serverandtheavailableinformationattimetcanbegivenby
{Xs,Is:0≤s≤t}.

B.SamplingPolicies

ThesamplingtimeSiisafinitestoppingtimewithrespect
tothefiltration{F+

t,t≥ 0}(anon-decreasingandright-
continuousfamilyofσ-fields)oftheinformationthatis
availableatthesamplersuchthat[17]

{Si≤t}∈F+
t,∀t≥0. (4)

Letπ=(S1,S2,...)denoteasamplingpolicyandΠdenote
thesetofcausalsamplingpoliciesthatsatisfytwoconditions:
(i)Eachsamplingpolicyπ∈ Π satisfies(4)foralli.(ii)
Thesequenceofinter-samplingtimes{Ti= Si+1 −Si,i=
0,1,...}formsaregenerativeprocess[1,SectionIIB]: An
increasingsequence0≤ l1 <l2 <... ofalmostsurely
finiterandomintegersexistssuchthatthepost-lk process
{Tlk+i,i=0,1,...}isindependentofthepre-lk process
{Ti,i=0,1,...,lk−1}andhassamedistributionasthe
post-l0process{Tl0+i,i=0,1,...}; Wefurtherassumethat
E[lk+1 −lk]< ∞,E[Sl1

]< ∞,and0< E[Slk+1
−Slk

]<
∞,k=1,2,...

C. MMSEEstimator

Inthissection,weprovidethe MMSEestimatorfornoisy
samplesoftheOUprocess.

ByusingtheexpressionofOUprocessforstablescenario
[18,Eq.(3)]andthestrongMarkovpropertyoftheOUprocess
[19,Eq.(4.3.27)],asolutionto(1)fort∈[Si,∞)givenby
thefollowingthreecases:

Xt=






XSi
e−θ(t−Si)+µ1−e−θ(t−Si)

+ σ√
2θ

e−θ(t−Si)We2θ(t Si)−1, ifθ>0,

σWt, ifθ=0,
XSie

−θ(t−Si)+µ1−e−θ(t−Si)

+ σ√
−2θ

e−θ(t−Si)W1−e2θ(t Si), ifθ<0.

(5)

Theestimatorusescausallyreceivedsamplestoformulate
anestimateX̂tofthereal-timesignalvalueXtatanytimet≥
0.Theavailableinformationattheestimatorhastwoparts:(i)
Mt={(Si,QSi

,Di):Di≤t},whichcontainsthesampling
timeSi,noisysamplevalueQSi

,anddeliverytimeDiofthe
samplesthathavebeendeliveredbytimetand(ii)nosample
hasbeenreceivedafterthelastdeliverytimemax{Di:Di≤
t}.Similarto[1],[2],[8],[20],weassumethattheestimator
neglectsthesecondpartofinformation.Then,asshownin
[15],the MMSEestimatorfort∈[Di,Di+1),i=0,1,2,...
forallofthecasesin(5)isgivenasfollows

X̂t=E[Xt|Mt]

=QSie
−θ(t−Si)+µ1−e−θ(t−Si). (6)



D. Performance Metric
We evaluate the performance of remote estimation by the

time-average mean square error which is expressed as follows:

mse = lim sup
T→∞

1

T
E

[∫ T

0

(Xt − X̂t)
2dt

]
. (7)

A lower bound of (7) can be obtained when the additive
noises are not considered (NSi = 0, N ′Si = 0). On the
other hand, an upper bound can be found by taking both the
noises into account. Moreover, we formulate the following
optimal sampling problem that minimizes the time-average
mean-squared estimation error over an infinite time-horizon
when no noise is considered.

mseopt-wn = min
π∈Π

lim sup
T→∞

1

T
E

[∫ T

0

(Xt − X̂t)
2dt

]
, (8)

where mseopt-wn is the optimum value of (8) without noise. We
do not provide the optimal sampling policy in the presence of
noises in this study, but it will be considered in our future
work.

III. MAIN RESULTS

In this section, we first present the lower bounds for mse
in (7) for different conditions on the OU process parameter
θ. Second, we provide the optimal sampling policy for mini-
mizing the expected estimation error defined in (8). Later, we
present upper bound for mse in (7).

A. Lower Bounds for mse

Let us consider an OU process with initial state O0 = 0
and parameter µ = 0, which can be expressed as

Ot =


σ√
2θ
e−θtWe2θt−1, if θ > 0,

σWt, if θ = 0,
σ√
−2θ

e−θtW1−e2θt , if θ < 0.
(9)

Before presenting the optimal sampler without noise, let us
define the following parameter:

mseYi =

{
σ2

2θE[1− e−2θYi ], if θ 6= 0,
σ2E[Yi], if θ = 0,

(10)

where mseYi is the lower bound of mse. We will also need to
use the following two functions

G(x) =

√
π

2

ex
2

x
erf(x), x ∈ [0,∞), (11)

K(x) =

√
π

2

e−x
2

x
erfi(x), x ∈ [0,∞), (12)

where if x = 0, both G(x) and K(x) are defined as their
right limits G(0) = limx→0+ G(x) = 1, and K(0) =
limx→0+ K(x) = 1. Furthermore, erf(·) and erfi(·) are the
error function and imaginary error function respectively, de-
fined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt, erfi(x) =
2√
π

∫ x

0

et
2

dt. (13)

Note that G(x) is strictly increasing on x ∈ [0,∞) [1],
whereas K(x) is strictly decreasing on x ∈ [0,∞). Hence,
their inverses G−1(·) and K−1(·) are properly defined.

First, we consider that the system has no noise, i.e., NSi = 0
and N ′Si = 0. Therefore, from (2) and (3), we get, XSi =
USi = QSi . Then, the following theorem illustrates that the
optimal sampling policy is a threshold policy and the threshold
is found for all the three cases of the OU process parameter
θ.

Theorem 1. If the Yi’s are i.i.d. with 0 < E[Yi] < ∞, then
(S1(β), S2(β), . . .) with a parameter β is an optimal solution
to (8), where

Si+1(β) = inf
{
t ≥ Di(β) :

∣∣Xt − X̂t

∣∣≥v(β)
}
, (14)

Di(β) = Si(β) + Yi, and v(β) is given by

v(β) =


σ√
θ
G−1

(
σ2

2θ −mseYi
σ2

2θ −β

)
, if θ > 0,√

3(β − E[Yi]), if θ = 0,

σ√
−θK

−1

(
σ2

2θ −mseYi
σ2

2θ −β

)
, if θ < 0,

(15)

where G−1(·) is the inverse function of G(·) in (11), K−1(·)
is the inverse function of K(·) in (12), and β is the unique
root of

E

[∫ Di+1(β)

Di(β)

(Xt − X̂t)
2dt

]
− βE[Di+1(β)−Di(β)] = 0.

(16)

The optimal objective value to (8) is then given by

mseopt-wn =
E
[∫Di+1(β)

Di(β)
(Xt − X̂t)

2dt
]

E[Di+1(β)−Di(β)]
. (17)

In [1], it is proved that the optimal sampling policy for
stable OU process, i.e., when θ > 0 is a threshold policy.
The threshold obtained in [1] coincides with v(β) in (15) for
the case of θ > 0. For θ = 0, the threshold is obtained for
σ = 1 which represents a Wiener process [2]. For θ < 0,
the proof procedure works in the same way as explained in
[1] for stable OU processes. The threshold v(β) is obtained
by solving similar free boundary problems explained in [1]
and the optimality of (17) for θ < 0 is thus guaranteed.
However, the threshold structure is different for all the three
cases in Theorem 1. The function K(x) in (12) is related to
the function G(x) in (11) as follows

K(x) = G(jx), (18)

where j is the imaginary number represented by j =
√
−1.

Therefore, the threshold v(β) for θ < 0 can be expressed by
the following equation as well:

v(β) = j−1 σ√
−θ

G−1

(
σ2

2θ −mseYi
σ2

2θ − β

)
. (19)

Though the threshold functions v(β) varies with signal
structure, the computation of the parameter β remains the same
for all cases and the uniqueness of the root of (16) is proved
in [1]. The decision of taking a new sample defined in (14)
works in the same way as explained in [1].



B. Upper Bounds for mse

Suppose that the additive noise in the sampler and channel
exist in the system, i.e., NSi 6= 0, N ′Si 6= 0. Moreover, the
sampler follows the sampling strategy obtained in (14). The
OU process Ot is a Gauss-Markov process. When noises
get incorporated with Ot, it does not remain Markov. The
analysis presented in our previous study [1] was based on the
strong Markov property of the OU processes. Due to the non-
Markovian structure of noisy samples of OU processes, finding
an optimal sampling policy requires different analytical tools.
Due to lack of space, we do not provide the optimal sampling
policy with the presence of noise, but it will be considered in
our future study.

Because the noises NSi and N ′Si are independent of the
sampling times and the observed OU process, by utilizing (2),
(3), (5), (6), and (17), the mse at the estimator which is an
upper bound of (7) can be expressed as

mse =
E
[∫Di+1(β)

Di(β)
(Xt − X̂t)

2dt
]

E[Di+1(β)−Di(β)]

=
E
[∫Di+1(β)

Di(β)
(Ot−Si − (NSi +N ′Si)e

−θ(t−Si))2dt
]

E[Di+1(β)−Di(β)]

=
E
[∫Di+1(β)

Di(β)
O2
t−Sidt

]
E[Di+1(β)−Di(β)]

+
E
[∫Di+1(β)

Di(β)
(NSi +N ′Si)

2e−2θ(t−Si)dt
]

E[Di+1(β)−Di(β)]
, (20)

where (20) follows due to the fact that the OU process Ot
has initial state O0 = 0 and the noises NSi and N ′Si with
zero mean are independent of the observed OU process and
sampling times.

To compute (20), the first fractional term remains the same
as the mseopt-wn in (17) with NSi = 0 and N ′Si = 0. For
stable OU processes, the associated mseopt-wn is computed in
[1, Lemma 1]. The expression of O2

t−Si is the same for both
stable and unstable OU processes. Therefore, the solution for
(20) holds for all three cases in (9). For computing the second
term, as NSi and N ′Si are independent of the observed OU
process and the sampling times, the numerator of the second
fractional term in (20) can be written as:

E

[∫ Di+1(β)

Di(β)

(NSi +N ′Si)
2e−2θ(t−Si)dt

]

=E[(NSi +N ′Si)
2]E

[∫ Di+1(β)

Di(β)

e−2θ(t−Si)dt

]
. (21)

Then, we have the following lemma for the last term in (21).

Lemma 1. It holds that

E

[∫ Di+1(β)

Di(β)

e−2θ(t−Si)dt

]

=
1

2θ
E
[
e−2θYi

{
1−min

(
1,

1F1

(
1, 1

2 ,
θ
σ2O

2
Yi

)
1F1

(
1, 1

2 ,
θ
σ2 v2(β)

))E[e−2θYi+1 ]

}]
.

(22)
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Fig. 2: MSE vs. the scale parameter α of i.i.d. normalized log-normal
service time distribution with E[Yi] = 1, where the parameters of the
OU process are σ = 1 and θ = 0.5.

Proof. See Appendix A.

By using Lemma 1 and the expressions obtained in [1,
Lemma 1], all the associated expectations in (20) can be ob-
tained by Monte Carlo simulations of scalar random variables
OYi and Yi, which does not require to directly simulate the
entire random process {Ot, t ≥ 0}.

IV. NUMERICAL RESULTS

Figure 2 illustrates the MSE of i.i.d normalized log-normal
service time, where Yi = eαXi/E[eαXi ], and α > 0 is the
scale parameter of log-normal distribution. The (X1, X2, . . . )
are i.i.d. Gaussian random variables, where E[Xi] = 0 and
Var(Xi) = 1. The maximum throughput of the queue is 1 as
E[Yi] = 1. Both of the noises NSi and N ′Si are considered to
have 0 mean and variance 0.1. With the growth of the scale
parameter α, the tail of the log-normal distribution becomes
heavier. The MSE with noise curve shows performance degra-
dation as the additional term due to noise added with the mse
without noise.

V. CONCLUSION

In this paper, we have explained the optimal sampling
strategies for minimizing the instantaneous estimation error
for three different cases of scalar Gauss-Markov signal pro-
cesses. The optimal sampler exhibits a threshold policy and
by using causal knowledge of the signal values, a smaller
estimation error has been obtained. The optimal threshold has
been changed with signal structure. For noisy samples, the
additional term added in the mse due to noise is found. An
optimal sampler design for noisy samples of Gauss-Markov
processes will be considered in our future study.
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APPENDIX A
PROOF OF LEMMA 1

In order to prove Lemma 1, we need to consider the
following two cases:

Case 1: If |XDi(β) − X̂Di(β)| = |OYi | ≥ v(β), then
Si+1(β) = Di(β). Hence,

Di(β) = Si(β) + Yi, (23)
Di+1(β) = Si+1(β) + Yi+1 = Di(β) + Yi+1. (24)

Let us consider the following equation:

E

[∫ Di+1(β)

Di(β)

e−2θ(t−Si)dt
∣∣∣OYi = q, Yi = y, |OYi | ≥ v(β)

]

=E

[∫ Yi+Yi+1

Yi

e−2θsds
∣∣∣OYi = q, Yi = y, |OYi | ≥ v(β)

]

=E
[

1

2θ
e−2θy(1− e−2θYi+1)

∣∣OYi = q, Yi = y, |OYi | ≥ v(β)

]
=

1

2θ
e−2θyE

[
1− e−2θYi+1

∣∣OYi = q, Yi = y, |OYi | ≥ v(β)

]
=

1

2θ
e−2θy

{
1− E[e−2θYi+1 ]

}
, (25)

where (25) holds due to the fact that Yi+1 is independent of
OYi and Yi.

Case 2: If |XDi(β) − X̂Di(β)| = |OYi | < v(β), then

E

[∫ Di+1(β)

Di(β)

e−2θ(t−Si)dt
∣∣∣OYi = q, Yi = y, |OYi | < v(β)

]

=E

[∫ Yi+Zi+Yi+1

Yi

e−2θsds
∣∣∣OYi = q, Yi = y, |OYi | < v(β)

]

=E
[

1

2θ
e−2θy(1− e−2θZie−2θYi+1)

∣∣OYi = q, Yi = y

]
=

1

2θ
e−2θyE

[
1− e−2θZie−2θYi+1

∣∣OYi = q, Yi = y

]
=

1

2θ
e−2θy

{
1− E

[
e−2θZi

∣∣∣OYi = q, Yi = y

]
E[e−2θYi+1 ]

}
=

1

2θ
e−2θy

{
1− E[e−2θZi |OYi = q]E[e−2θYi+1 ]

}
, (26)

where the last equation in (26) holds because Zi is condition-
ally independent of Yi given OYi . Next, we need to compute
E[e−2θZi |OYi = q], where Zi is a hitting time of the time-
shifted OU process Ot+Yi given as

Zi =

inf{t : Ot+Yi 6∈ (−v(β), v(β))|OYi = q ∈ (−v(β), v(β))}.
(27)

By using the characteristic function of the hitting time of the
OU process in [21, Eq. 15a], we get that

E[e−2θZi |OYi = q] =
1F1

(
1, 1

2 ,
θ
σ2 q

2
)

1F1

(
1, 1

2 ,
θ
σ2 v2(β)

) . (28)

Therefore, (26) becomes

E

[∫ Di+1(β)

Di(β)

e−2θ(t−Si)dt
∣∣∣OYi = q, Yi = y, |OYi | < v(β)

]

=
1

2θ
e−2θy

{
1− 1F1

(
1, 1

2 ,
θ
σ2 q

2
)

1F1

(
1, 1

2 ,
θ
σ2 v2(β)

)E[e−2θYi+1 ]

}
. (29)

By combining (25) and (29), we get that

E

[∫ Di+1(β)

Di(β)

e−2θ(t−Si)dt
∣∣∣OYi = q, Yi = y

]

=
1

2θ
e−2θy

[
1−min

{
1,

1F1

(
1, 1

2 ,
θ
σ2 q

2
)

1F1

(
1, 1

2 ,
θ
σ2 v2(β)

)}E[e−2θYi+1 ]

]
.

(30)

Finally, by taking the expectation over OYi and Yi in (30),
Lemma 1 is proven.


