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Abstract—In this paper, we analyze the impact of information
freshness on supervised learning based forecasting. In these
applications, a neural network is trained to predict a time-
varying target (e.g., solar power), based on multiple correlated
features (e.g., temperature, humidity, and cloud coverage). The
features are collected from different data sources and are subject
to heterogeneous and time-varying ages. By using an information-
theoretic approach, we prove that the minimum training loss is
a function of the ages of the features, where the function is not
always monotonic. However, if the empirical distribution of the
training data is close to the distribution of a Markov chain, then
the training loss is approximately a non-decreasing age function.
Both the training loss and testing loss depict similar growth
patterns as the age increases. An experiment on solar power
prediction is conducted to validate our theory. Our theoretical
and experimental results suggest that it is beneficial to (i) combine
the training data with different age values into a large training
dataset and jointly train the forecasting decisions for these age
values, and (ii) feed the age value as a part of the input feature
to the neural network.

I. INTRODUCTION

Recently, the proliferation of artificial intelligence and cyber
physical systems has engendered a significant growth in ma-
chine learning techniques for time-series forecasting applica-
tions, such as autonomous driving [1], [2], energy forecasting
[3]-[5], and traffic prediction [6]. In these applications, a
predictor (e.g., a neural network) is used to infer the status
of a time-varying target (e.g., solar power) based on several
features (e.g., temperature, humidity, and cloud coverage).
Fresh features are desired, because they could potentially
lead to a better forecasting performance. For example, recent
studies on pedestrian intent prediction [1] and autonomous
driving [2] showed that prediction accuracy can be greatly
improved if fresher data is used. Similarly, it was found in
[4], [5] that the performance of energy forecasting degrades as
the observed feature becomes stale. This phenomenon has also
been observed in other applications of time-series forecasting,
such as traffic control [7] and financial trading [8].

Age of information (Aol), or simply age, is a performance
metric that measures the freshness of the information that a
receiver has about the status of a remote source [9]. Recent
research efforts on Aol have been focused on analyzing and
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Fig. 1: System Model.

optimizing the Aol in, e.g., communication networks [10]-
[16], remote estimation [17], [18], and control systems [19],
[20]. However, the impact of Aol on supervised learning
based forecasting has not been well-understood, despite its
significance in a broad range of applications. Recently, an
age of features concept was studied in [21], where a stream
of features are collected progressively from a single data
source and, at any time, only the freshest feature is used
for prediction. Meanwhile, in many applications, the fore-
casting decision is made by jointly using multiple features
that are collected in real-time from different data sources
(e.g., temperature readings from thermometers and wind speed
measured from anemometers). These features are of diverse
measurement frequency, data formats, and may be received
through separated communication channels. Hence, their Aol
values are different. This motivated us to analyze the per-
formance of supervised learning algorithms for time-series
forecasting, where the features are subject to heterogeneous
and time-varying ages. The main contributions of this paper
are summarized as follows:

« We present an information theoretic approach to interpret the
influence of age on supervised learning based forecasting.
Our analysis shows that the minimum training loss is a
multi-dimensional function of the age vector of the features,
but the function is not necessarily monotonic. This is a key
difference from the non-decreasing age metrics considered
in earlier work, e.g., [12], [19], [22] and the references
therein.

« Moreover, by using a local information geometric analysis,



we prove that if the empirical distribution of training data
samples can be accurately approximated as a Markov chain,
then the minimum training loss is close to a non-decreasing
function of the age. The testing loss performance is analyzed
in a similar way.

« We compare the performance of several training approaches
and find that it is better to (i) combine the training data with
different age values into a large training dataset and jointly
train the forecasting decisions for these age values, and (ii)
add the age value as a part of the feature. This training
approach has a lower computational complexity than the
separated training approach used in [23], where the fore-
casting decision for each age value is trained individually.
Experimental results on solar power prediction are provided
to validate our findings.

II. SYSTEM MODEL

Consider the learning-based time-series forecasting system
in Fig. 1, which consists of m transmitters and one receiver.
The system time is slotted. Each transmitter  takes measure-
ments from a discrete-time signal process s; ;. The processes
S1,,..-,5m, contain useful information for inferring the
behavior of a target process Y;. Transmitter [ progressively
generates a sequence of features X;; from the process s; ;.
Each feature X;; = f(si,4—r,Sit—1—7,-- -, Si,t—btr1—7) IS @
function of a finite-length time sequence from the process
51+, where b is the length of the sequence and 7 is the
processing time needed for creating the feature. The processes
S1t,...,5m, may be correlated with each other, and so are
the features Xy, ..., X, . The features are sent from the
transmitters to the receiver through one or multiple channels.
The receiver feeds the features to a predictor (e.g., a trained
neural network), which infers the current target value Y;.

Due to transmission errors and random transmission time,
freshly generated features may not be immediately delivered
to the receiver. Let Gj; and D;; be the creation time and
delivered time of the i-th feature of the process s;, respec-
tively, such that G;; < Gy ;41 and G, ; < Dy ;. Then, U,(t) =
max{G,; : D;; < t} is the creation time of the freshest
feature that was generated from process s;; and has been
delivered to the receiver by time ¢. At time ¢, the receiver uses
the m freshest delivered features (X1 y, 1), Xm,v,. ()
each from a transmitter, to predict the current target Y;. The
age of the features generated from process s; ¢+ is defined as

Al(t) =1t— Ul(t) =1— max{Gl,i : Dl,i S t}, (1)

which is the time elapsed since the creation time Uj(t) of the
freshest delivered feature X y,(;) up to the current time ¢. If
Ay (t) is small, then there exists a fresh delivered feature that
was created recently from process s; ;. The evolution of A(¢)
over time is illustrated in Fig. 2.

The predictor is trained by using an Empirical Risk Min-
imization (ERM) based supervised learning algorithm, such
as logistic regression and linear regression. A supervised
learning algorithm consists of two phases: offline training
and online testing. In offline training phase, the predictor
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Fig. 2: Evolution of the age A;(¢) in discrete-time.

is trained by minimizing an expected loss function under
the empirical distribution of a training dataset. Each entry
(@153 &myir 014, - -, 0m i, ¥y;) of the training dataset con-
tains m features (x4, ..., Zm, ), the age values of the features
(01,4, ---,0m,i), and the target y;. In Section IV, we will see
that it is important to add the age values into training data.
In online testing, the trained predictor is used to predict the
target in real-time, as explained above.

The goal of this paper is to interpret how the age processes
A™(t) = (A1(t),...,An(t)) of the features affect the per-
formance of time-series forecasting.

III. PERFORMANCE OF SUPERVISED LEARNING FROM AN
INFORMATION THEORETIC PERSPECTIVE

In this section, we introduce several information theoretic
measures that characterize the fundamental limits for the
training and testing performance of supervised learning. Based
on these information theoretic measures, the influence of
information freshness on supervised learning based forecasting
will be analyzed subsequently in Section IV.

Let X™ = (X4,...,X,,) represent a vector of m random
features, which takes value 2™ = (z1, ..., ,,) from the finite
space X™ = A&} x Ay X ... x X,. As the standard approach
for supervised learning, ERM is a stochastic decision problem
(X™ YV, A, L), where a decision-maker predicts Y € Y
by taking an action a = ¥(X™) € A based on features
X™ € X™. The performance of ERM is measured by a loss
function L : Y x A — R, where L(y,a) is the incurred
loss if action a is chosen when Y = y. For example, L is
a logarithmic function Lo (y, Py) = —log Py (y) in logistic
regression and a quadratic function Ls(y,9) = (y — §)? in
linear regression. Let Pxm y and Py,. ¢, respectively, denote
the empirical distributions of the trainirfg data and testing data,
where X™ and Y are random variables with a joint distribution
Pz . We restrict our analysis in which the marginals Pxm
and Py, are strictly positive.

A. Minimum Training Loss

The objective of training in ERM-based supervised learning
is to solve the following problem:

HL(Y[X™) = %QEXW,YNPW,Y[L(YW(X’”))L )

where V¥ is the set of allowed decision functions and
Hp(Y|X™) is the minimum training loss. We consider a case



that ¥ contains all functions from X" to A. Such a choice
of W is of particular interest for two reasons: (i) Since W is
quite large, Hy,(Y|X™) provides a fundamental lower bound
of the training loss for any ERM based learning algorithm. (ii)
When ¥ contains all functions from X™ to A, Problem (2)
can be reformulated as

Hp(Y|X™)

= min

L E : Pxm (x"L)EY'\’PY\Xm:mm [L(K w<xm))]
111(95 JEA, —~
vV zMmexm® ceXx

ZPXW.'IJ

xme Xxm

min E ~ P m_.m L 5/7 s
1/1(?67"1)6./4 Y Y| XM=z [ ( 1/}(37 ))]

where, in the last step, the training problem is decomposed
into a sequence of separated optimization problems, each
optimizing an action ¥ (x™) for given 2™ € X™. For the
considered ¥, H;,(Y|X™) in (2) is termed the generalized
conditional entropy of Y given X™ [24]. Similarly, the
generalized (unconditional) entropy H,(Y') is defined as [24]-
[26]

Hp(Y) = minEy.p, [L(Y,a)]. )

acA

The optimal solution to (4) is called Bayes action, which is
denoted as ap, . If the Bayes actions are not unique, one
can pick any such Bayes action as ap, [27]. The generalized

conditional entropy for Y given X = 2™ is [24]
H(Y|X™ =a2™) :Hgn Ey~py xm_pm [L(Y;a)]

= Eypy o (LY 6@™)]
o)

Substituting (5) into (3), yields the relationship

> Pxm(a™

xmexm

Hp(Y|X™) = ) HL(Y|X™ =2™). (6)
We assume that entropy and conditional entropy discussed in
this paper are bounded. We also need to define the generalized
mutual information, which is given by

I (Y; X™) = H(Y) — H(Y[X™). (7

Examples of the loss function L and the associated generalized
entropy Hp,(Y') were discussed in [21], [24]-[26].

B. Testing Loss

The testing loss, also called validation loss, of supervised
learning is the expected loss on testing data using the trained
predictor. In the sequel, we use the concept of generalized
cross entropy to characterize the testing loss. The generalized
cross entropy between Y and Y is defined as

HL(Y;Y) =Ey~p, [L(Y,ap,)], ®)

where ap, is the Bayes action defined above.~Simi1ar1y, the
generalized conditional cross entropy between Y and Y given

X =™ is
HL<Y/7Y‘Xm = ) EYNPY‘Xm,Im [L(Y? APy | xm_gm )] )

(€))

where APy xm_ym is the Bayes action of a predictor that
was trained by using the empirical conditional distribution
Py |xm_gm of the training data and P?|)?M:acm is the em-
pirical conditional distribution of the testing data. Using (9),
the testing loss of supervised learning can be expressed as

> Fenle

rmexm

H (Y;Y|X™) = ™ HL(Y;YV|X™ = z™), (10)
which is also termed the generalized conditional cross entropy
between Y and Y given X™.

IV. IMPACT OF INFORMATION FRESHNESS ON SUPERVISED
LEARNING BASED FORECASTING

In this section, we analyze the training and testing loss
performance of supervised learning under different age values.
It is shown that the minimum training loss is a function of the
age, but the function is not always monotonic. By using a
local information geometric approach, we provide a sufficient
condition under which the training loss can be closely approxi-
mated as a non-decreasing age function. Similar conditions for
the monotonicity of the testing loss on age are also discussed.

A. Training Loss under Constant Aol

For ease of understanding, we start by analyzing the mini-
mum training loss under a constant Aol, i.e, A™(t) = §™, for
all time t. The more practical case of time-varying Aol will
be studied subsequently in Section IV-B.

Markov chain has been a widely-used model in time-series
ana1y51s [28]-[30]. Define X" . = (X14—rs-- - Xmt—7,)
for 7 = (1,...,Tm), where X; ;,_,, is the feature generated
from transmitter [ at time t—7,. If Yy <> X; . <> X3" 0 m
is a Markov chain for all p™, 7™ > 0 (assume the Markov
chain is also stationary), then by using the data processing
inequality [25], one can show that the minimum training
loss Hp(Y:| X" sm) is a non-decreasing function of the age
vector §". However, practical time-series signals are rarely
Markovian [31]-[34] and, as a result, the minimum training
loss Hr,(Y;| X[" sm) is not always a monotonic function of §™.

To develop a unified framework for analyzing the minimum
training loss Hp (Y| X]" sm), we consider a relaxation of
the Markov chain model, called e-Markov chain, which was
proposed recently in [21].

Definition 1. e-Markov Chain: [21] Assume that the distribu-
tions Py|x, Pz x, and Px are strictly positive. Given ¢ > (,
a sequence of random variables Y, X, and Z is said to be an
e-Markov chain, denoted as Y <> X <> Z, if

Dy (Pyx z||Py|x Pz x Px) < €%, (11)
where D, 2(Py||Qy) is Neyman’s x*-divergence, given by
(Py(y) — Qv (y))?
D2 (Pyl||Qy) = . (12)
X ( YH Y) Z QY(y)

yey



The inequality (11) can be also expressed as

Le(Y;Z|X) < €, (13)

where I,2(Y; Z|X) is the x?-conditional mutual information.
If e = 0, then Y <& X <& Z reduces to a Markov chain.
Hence, e-Markov chain is more general than Markov chain.

For e-Markov chain, a relaxation of the data processing
inequality is provided in the following lemma:

Lemma 1 (e-data processing inequality). [21]IfY <> X <&
Z is an e-Markov chain and Hp(Y) for the loss function L
is twice differentiable in Py, then we have (as ¢ — 0)
I(Y; Z|X) = O(€),
H(Y|X) < HL(Y|Z) + O(é?).

(14)
15)

By using Lemma 1, the training loss performance of su-
pervised learning based forecasting is characterized in the
following theorem. For notational simplicity, the theorem is
presented for the case of m = 2 features, whereas it can be
easily generalized to any positive integer value of m.

Theorem 1. Let {(X1 4, Xo4,Y:),t > 0} be a stationary
stochastic process.

(a) The minimum training loss Hr,(Y:|X1,t—s,, Xo1—s,) isa
function of §; and 03, determined by

Hr(Yi| X1 4—5,, Xo24-5,) = f1(01,02) — f2(01,92), (16)

where f1(61,92) and f2(01,02) are two non-decreasing
Sfunctions of §1 and &2, given by

f1(61,62)
=Hp (Y| X1, Xo¢)
51—1

+ Z I (Yes Xip—tey Xop—6, | X1 t—k—1, Xo2,t—5,)
k=0
da—1

+ Z It (Ve X, Xo i X1, Xojt—k—1)s
k=0

f2(61,62)

61—1

= Z I (Y X1, Xojp—6, | X1 4y X24—5,)
k=0
do—1

+ Z I (Y Xa4, Xop—p—11X1,0, Xop—k)-
k=0

(b) If Hi,(Y) is twice differentiable in Py, and

Yy “ (Xl,t*‘rnXQ,t*Tz) “ (Xl,t*‘rl*,uNX?,t*Tz*Mz)

a7

(18)

is an e-Markov chain for all py, 7 > 0, then f2(61,d2) =
O(€?) and hence (as € — 0)

Hp (Y| X1,-5,, X2,4-5,) = f1(61,62) + O(€?).
Proof. See Appendix A. [

19)

According to Theorem 1, the minimum training loss
Hp (Y| X[ sm) is a function of the age vector 6. In ad-
dition, Hp(Y;|X["sm) is the difference between two non-
decreasing functions of 0. Furthermore, the monotonicity of
Hp (Y| X[ 5m) is characterized by the parameter € in the e-
Markov chain Y; <= X[ <> X" ,m. If € is small,
then the empirical distribution of training data samples can be
accurately approximated as a Markov chain. As a result, the
term fo(6™) is close to zero and Hp (Y| X" 5..) tends to be
a non-decreasing function of ¢™. On the other hand, for large
€, Hp,(Y;| X" sm) is unlikely monotonic in §™.

As depicted later in Figs. 3-4, the training loss can indeed
be non-monotonic on §". This finding suggests that it is
beneficial to investigate non-monotonic age penalty functions,
which are more general than the non-decreasing age penalty
metrics studied in, e.g., [12], [19], [22].

B. Training Loss under Dynamic Aol

In practice, the Aol A™(t) varies dynamically over time,
as shown in Fig. 2. Let Pa= denote the empirical distribution
of the Aol in the training dataset and A" be a random vector
with the distribution Pam. In the case of dynamic Aol, there
are two approaches for training: (i) Separated training: the
Bayes action for the Aol value A™ = §™ is trained by only
using the training data samples with Aol value ¢ [23]. The
minimum training loss of separate training for A™ = §™ is
Hp (Y| X[" 5m ), which has been analyzed in Section IV-A. (ii)
Joint training: the training data samples of all Aol values are
combined into a large training dataset and the Bayes actions
for different Aol values are trained together. In joint training,
the Aol value can either be included as part of the feature,
or be excluded from the feature. If the Aol value is included
in the training data (i.e., as part of the feature), the minimum
training loss of joint training is Hp (Y| X[ Am, A™). If the
Aol value is excluded from the training data, the minimum
training loss of joint training is Hp (Y;| X" om). Because
conditioning reduces the generalized entropy [24], [25], we
have

Hy (Y| X" o, A™) < Hp (Y| X" ) (20)

Hence, a smaller training loss can be achieved by including
the Aol in the feature. Moreover, similar to (6), one can get

Hp (Vi X[" am, A™) = > Pam (8™ Hy (Y| X[ 5m). (21)
am

Therefore, the minimum training loss of joint training is
simply the expectation of the training loss of separated
training. Our experiment results show that joint training can
have a much smaller computational complexity than separated
training (see the discussions in Section V-D). Therefore, we
suggest to use joint training and add Aol into the feature.

The results in Theorem 1 can be directly generalized to the
scenario of dynamic Aol. In particular, if the age processes
of two experiments, denoted by subscripts ¢ and d, satisfy a



sample-path ordering!

AT(t) < AF(), VT, (22)

then, similar to (19), one can obtain (as € — 0)
HL(YiIX] ap A < HL (VX[ o AF) +O(e2). (23)

Next, we show that (23) can be also proven under a weaker
stochastic ordering condition (26).

Definition 2. Univariate Stochastic Ordering: [35] A random
variable X is said to be stochastically smaller than another
random variable Z, denoted as X <4 Z, if

P(X>z)<P(Z>zx), VeekR. (24)

Definition 3. Multivariate Stochastic Ordering: [35] A set
U C R™ is called upper if 2™ € U whenever 2™ > ™ and
™ € U. A random vector X" is said to be stochastically
smaller than another random vector Z™, denoted as X™ <

zZm, if

P(X™eU)<P(Z™eU), forall upper sets U CR™.

(25)

Theorem 2. If {(X;",Y;),t > 0} is a stationary random
process, Yy AN X om AN Xt"iTm_Mm is an e-Markov chain
Sor all y™ ™ > 0, H(Y) is twice differentiable in Py,
and the empirical distributions of the training datasets in two
experiments ¢ and d satisfy

AT <st AF' (26)

then (23) holds.
Proof. See Appendix B. O

According to Theorem 2, if A" is stochastically smaller
than A’}’, then the minimum training loss of joint training in
Experiment c is approximately smaller than that in Experiment
d, where the approximation error is of the order O(€?).

C. Testing Loss under Dynamic Aol

Let PY denote the space of distributions on )Y and
relint(PY) denote the relative interior of PY, i.e., the subset
of strictly positive distributions.

Definition 4. (§-neighborhood: [36] Given 5 > 0, the [(3-
neighborhood of a reference distribution Qy € relint(PY) is
the set of distributions that are in a Neyman’s x>-divergence
ball of radius B? centered on Qy, i.e.,

N (Qy) ={Pr € PY: Do(Py||Qy) < 5°}.

Theorem 3. Let {(X]",Y:),t > 0} be a stationary stochastic
process.

27)

(a) If the empirical distributions of training data and testing
data are close to each other such that

2
PYt,X’"iAm,Am)S B,

t

sz (P{/“X;n_ﬂmAm (28)

IWe say 2™ < 2™, if &) < z; forevery | =1,2,...,m.

then the testing loss is close to the minimum training loss,
ie.,

Hi (Y Y| X[ 5,0 A™) =HL (Y| X{2 a0, A™) + O(B),
(29)

provided that the testing loss is bounded.
(b) In addition, if Hp(Y) is twice differentiable in Py,
Y, <5 X & X em_,m is an e-Markov chain
for all p™, ™™ > 0, and the empirical distributions of
the testing datasets in two experiments ¢ and d satisfy

AZ” <st Adm, then the corresponding testing loss satisfies

HL(Y/t;Yt|XZﬁA?,AZL) SHL(ﬁ;E\XﬁA?,A?)
+ O(max{e*, 3}).  (30)
Proof. See Appendix C. O

As shown in Theorem 3, if the empirical distributions of
training data and testing data are close to each other, then the
minimum training loss and testing loss have similar growth
patterns as the Aol grows.

V. CASE STUDIES

We provide several case studies using a real-world solar
power prediction task. A Long Short-Term Memory (LSTM)
neural network is used as the prediction model. Four cases
are studied: (i) training loss under constant Aol, (ii) sensitivity
analysis of input sequence length b under constant Aol, (iii)
training loss under dynamic Aol, and (iv) testing loss under
dynamic Aol.

A. Experimental Setup

1) Environment: We use Tensorflow 2 [37] on Ubuntu
16.04, and a server with two Intel Xeon E5-2630 v4 CPUs and
four GeForce GTX 1080 Ti GPUs to perform the experiments.

2) Dataset: A real-world dataset from the probabilistic
solar power forecasting task of the Global Energy Forecasting
Competition (GEFCom) 2014 [38] is used for evaluation.
The dataset contains 2 years of measurement data for 13
signal processes, including humidity, thermal, wind speed and
direction, and other weather metrics, as explained in [38].
Feature X;; = (Sit,...,S1t—b4+1) Of signal [ is a time
sequence of length b. The task is to predict the solar power at
an hourly level. We have used two different Aol values §; and
0o, where 6 features are of the Aol d; and 7 features are of the
Aol J5. In jointly training, we use an aggregated dataset with
samples of constant Aol §; = o ranging from 1 to 48 (hours).
The first year of data is used for training and the second year
of data is used for testing. During preprocessing, both datasets
are normalized such that the training dataset has a zero mean
and a unity standard derivation.

3) Prediction Model: A Long Short-Term Memory (LSTM)
neural network is used for prediction. It composes of one
input layer, one hidden layer with 32 LSTM cells, and one
fully-connected (dense) output layer. The object of training is
to minimize the expected quadratic loss under the empirical
distribution of the training samples. In other words, empirical
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mean square error (MSE) -+ Zf;(yi — §;)? is minimized,
where K is the number of training data entries, y; is the actual
label, and g; is the predicted label. All the experimental results
are averaged over multiple runs to reduce the randomness that
occurs during the training of LSTM. This training setting and
the hyper-parameters of Tensorflow 2 training algorithm are
consistently used across all evaluations. Note that in theoretical
analysis, we have considered that ¥ consists of all possible
functions from X to A. In practice, neural networks cannot
represent such a large function space and the trained weights
of the neural network may not be globally optimal. Hence, the
training loss (MSE) in the experimental study is larger than
the minimum training loss analyzed in our theory, but their
patterns should be similar.

B. Training Loss under Constant Aol

We start with the scenario of separated training, where the
Aol is the same across all input features, i.e., ;1 = d3 = 6. As
shown in Fig. 3, the training loss is not a monotonic function of
Aol §. Moreover, with the increase of input sequence length b,
the training loss becomes close to a non-decreasing function.
However, with the increase of input sequence length b, the
training loss tends to be close to a non-decreasing function.

Fig. 7: Testing loss and training loss vs.
dynamic Aol Aq(t) = Ax(t), where the
input length is b = 12.

This phenomenon can be interpreted by using Shannon’s high-
order Markov model for information sources [39]. Specifically,
the feature process X;, can be approximated as a Markov
chain model with order b, where the approximation error
reduces as the order b grows. Because of this, the training
loss is far away from an increasing function of the Aol when
b =6 or 12, and is nearly an increasing function of the Aol
when b = 24.

Next, we consider a more general case where §; and
can have different values. The results are shown in Fig. 4,
where both d; and 5 affect the training loss in accordance to
Theorem 1.

C. Sensitivity Analysis of Input Sequence Length b Under
Constant Aol

With the increase of input length sequence b, the training
loss is expected to decrease, because conditioning reduces the
generalized conditional entropy. To show this, we evaluate the
training loss for a wide range of input lengths, as shown in
Fig. 5. The observations are two-folded. First, for a given Aol
value, the training loss is a non-increasing function of the input
length b. Second, even with the increase of input length, a



larger Aol leads to a larger training loss. The observed pattern
agrees with our theoretical analysis.

D. Training Loss under Dynamic Aol

In the separated training method considered above, one
predictor (i.e., an LSTM neural network) is trained for every
Aol value. Hence, a number of predictors are needed. Training
these predictors may incur a huge computational cost, which
would be impractical for prediction tasks with huge datasets.
As discussed in Section IV-B, joint training is a better ap-
proach, where a single predictor is trained by jointly using
the input samples of different Aol values. As plotted in Fig.
6, if the Aol is excluded from the feature, joint training has
a significant performance degradation compared to separated
training as described in (20). However, with Aol as a part of
the input feature, joint training has comparable performance
as separated training, which agrees with the relationship in
(21). For a wide range of Aol values, the performance of
joint training is slightly better than separated training because
it uses all training data where separated predictor can only
be trained on the data with certain Aol. This phenomenon is
in alignment with data augmentation [40]. In current training
dataset for jointly training, we mainly focus on small Aols
so the joint model may not be as good as separated training
for very large Aol values. But such long Aol is rare in real-
world applications. Thus, the idea of appending Aol to the
input features is a good idea for time-varying Aol.

E. Testing Loss under Dynamic Aol

Training loss and testing loss are compared in Fig. 7 for joint
training under dynamic Aol. One can observe that the testing
loss is not monotonic in Aol, but it has a growing trend that
is similar to the training loss. In addition, the testing loss is
larger than the training loss, which is caused by the difference
between the empirical distributions of training and testing
datasets. Such a difference is quite normal in machine learning,
which occurs, for instance, if the datasets for training/testing
are not sufficiently large or if there is concept shift [41].

VI. CONCLUSION

In this paper, we have presented a unified theoretical frame-
work to analyze how the age of correlated features affects the
performance in supervised learning based forecasting. It has
been shown that the minimum training loss is a function of
the age, which is not necessarily monotonic. Conditions have
been provided under which the training loss and testing loss
are approximately non-decreasing in age. Our investigation
suggests that, by (i) jointly training the forecasting actions
for different age values and (ii) adding the age value into
the input feature, both forecasting accuracy and computational
complexity can be greatly improved.
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APPENDIX A
PROOF OF THEOREM 1

Part (a): By the definitions of generalized conditional en-
tropy and generalized mutual information, one can obtain
H(Y[X1, X2, 21, Z2)
=Hp(Y|Z1,Z2) — IL(Y; X1, X2|Z1, Zs)

=H(Y|X1,Xo) — I.(Y; Z1, Z2]| X1, X2), 31

which yields
HL(Y|Z1,2Z5) = HL(Y | X1, Xo)+I(Y; X1, Xo|Z1, Z2)

—IL(Y; 21, Z5| X1, X2).
(32)

Now, if we replace 7,725, X;1,X2, and Y in (32) with
Xit—k—1,X2,1—6,, X1,t—k, X2,t—5,, and Yy, respectively, then
(32) becomes
Hy(Ye| X1 0—p—1,X2:-5,)
=H(Yi| X1k, X2.1-5,)
FIn(Ye; Xty Xojt— 6,1 X1 t—k—1, X2,0-5,)

- IL(Y{s; Xl,tfkflv X2,t762 \X1,t7k, X2,t762)~ (33)

Equation (33) is valid for any value of ¢ and k. Therefore,
taking summation of Hp,(Y;|X1,—k—1,X2-s,) from k =0
to 61 — 1, we get
Hp (Y| X1,0-5,, X2,t—6,)
=Hp (Y| X1, X24-5,)

5171
+ Z It (Ve Xip—tey Xop—6, | X1t —k—1, Xo2,t—5,)
k=0
51—1
=Y IV Xuok1, Xop 5| X1tk Xoas,). (34)
k=0
Similarly, we can establish that
Hy (Y| X1,e, Xo4-5,)
=Hp (Y| X1, Xo¢)
6271
+ Z I (Y X4, Xop— k| X0, Xo—k—1)
k=0
62—1
=Y I (Ve X, Xogo k| Xa i, Xogok). (39)
k=0

Combining (34) and (35), we get (16).

Because, mutual information is a non-negative term, one can
observe from (17) that for a fixed d9, the functions f1(d1, d2)
is a non-decreasing function of d;. Moreover, f1(d1,d2) can
be written in another form as

f1(61,62)
=Hp (Y| X1, Xo¢)
do—1
+ Z It (Y Xp—s,, Xop—i| X106, Xot—k—1)

k=0
61—1

+ Z It (Y Xty Xot| Xt -1, Xoyt).
k=0

(36)

From the above equation, it is also observed that for a fixed
1, the functions f;(d1,02) is a non-decreasing function of
d2. Therefore, (17) and (36) imply that f1(d1,d2) is a non-
decreasing function of §; and . Similarly, from (18), we can
deduce that f5(d1,d2) is a non-decreasing function of §; and
9.

Part (b): Because H,(Y) is twice differentiable in Py and
Yrt <—E> (X17t77'17X2,t77'2) é (Xl,t7T17u17X2,t77‘27M2) ]S
an e-Markov chain for all p;, 77 > 0, by using Lemma 1,



f2(81,02) satisfies

61—1 d2—1
£2001,02) = )" 0() + > O(e?)
k=0 k=0

O(é%).

(37
This concludes the proof.
APPENDIX B
PROOF OF THEOREM 2

By using Theorem 1 and substituting Equation (19) into
(21), we obtain

Hi (Y| X" o s A™) = Bamapam [f1(A™)] + O(?). (38)

The expectations in the above equation exist as en-
tropy and conditional entropy are considered bounded and
Hy (Y| X[ pm, A™) < Hp(Y}) < oco. Moreover, f1(6™) is
a non-decreasing function of §™. Therefore, as A* <, AT,
we get [35]

Eapnrap [(AD)] < Eagpyy, [A(AT)]
By using (38) and (39), we obtain

Hp (Yo X{% A A7) < Hi (Yo X{% A, AT 4+ O(€?). (40)

(39)

This concludes the proof.

APPENDIX C
PROOF OF THEOREM 3

Part (a): First, we provide the following lemma.

Lemma 2. If

Dy (Py xllPyx) < 52 @D
then
Pg(z) = Px(z) + O(f), Vz € X, (42)
Py x(ylz) = Pyix(ylz) + O(B), Vy € Y,Vz € X, (43)
In addition, if H.,(Y;Y|X) is bounded, then
H(Y;Y|X) = HL(Y]X) + O(B). (44)
Proof. See Appendix D. O

Using Lemma 2, we prove part (a) of Theorem 3. Because
the condition (28) holds and the testing loss is assumed
bounded, if we replace X, Y, X, and Y in (44) with
(X[ pm, A™), Yy, (X 5,.,A™), and Y}, then (44) be-
comes (29).

Part (b): By using Theorem 2 and (29), we get

Hi(Yy; YAXZZA(T,AZ‘) <H (Y Y¥|Xtﬂ15;m AP

+0(8) +0(€), 45)

where O(8) + O(e?) = O(max{e?, 3}). This concludes the
proof.

APPENDIX D
PROOF OF LEMMA 2

Because
Dy2(Py 5||Py,x) = Dy2(Pgl|Px), (46)
from (41), we have
Dy (Pg||Px) < 8. 47)

By using the definition of Neyman’s Y2-divergence, from
inequality (47), we can show (42). Now, from inequality (41),
we get

D

zeX
yey

[Py 0l) Py (2) — Py (ol) P (2)]

2
Py|x (ylz) Px (z) < B 48)

Substituting (42) into the above inequality and after some
algebraic operations, we have

Z Px(x)

reX
yey

[P (vl) — Prix(ole)]

Prx (o) < 0(5°).

(49)

From (48), it is simple to observe that Py |x(y|z) # 0 and

Px(x) # 0 for all x € X and y € Y. Because Px(z) #
0, Vo € X, we can further obtain
2

2

3 < g(ﬁ )

= x ()

[Py 2 wle) = Py ()
Py x(ylz)

Nz e X. (50)

An equivalent representation of the above inequality is that
there exists a function C : ) — R such that for all x € X
and y € ),

o(p)

Py 2 (ylz) — Py x(ylz) = PX(x)C(y) Pyix (y|)
=0(B), (51)
where
Y Cly) <L (52)

yey

Equation (51) implies (43).
Define a function g(Py 5_,) as
9(Py 5—,) =HL(Y;Y|X = 2) - HL(Y|X =)
[L(Y,apy )] = HL(Y|X = z)].
(53)

:]:E"
Y~Po g

In this lemma, we assume that conditional cross entropy
H.(Y;Y|X) is bounded. Also, conditional entropy H (Y| X)
is considered bounded in this paper. Thus, g(Py g_,) is
bounded for all z € X. By the definition of conditional entropy



and conditional cross entropy, we obtain

9Py 5_,)
= (Pyixle) = Prix(le)) Ly, apy )
yey
—0(B). 54

The last equality is obtained by substituting the value of
Pf,lj((y\x) from (43). Substituting (53) into (54), we get

H (Y;Y|X =2)=H(Y|X =2)+0(3). (55
By using (42) and (55), yields

HL(Y;Y|X) =) Pg(z)HL(Y;V[X =)
zeX

=3 (Px(2) + O(8)) Hy(V: Y |X = )

=" Px(z) (H(Y|X = z)+ O(B)) + O(B)

=" Px(z)H,(Y]X = z)+ O(B)
reX
—HL(Y|X) +O(8). (56)

This concludes the proof.
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