
Received: 9 March 2021 | Revised: 22 August 2021 | Accepted: 28 August 2021

DOI: 10.1002/mas.21734

REV I EW ART I C L E

Recent advances inmass spectrometry analysis of
neuropeptides

Ashley Phetsanthad1 | Nhu Q. Vu1 | Qing Yu2 | Amanda R. Buchberger1 |

Zhengwei Chen1 | Caitlin Keller1 | Lingjun Li1,2

1Department of Chemistry, University of
Wisconsin‐Madison, Madison,
Wisconsin, USA
2School of Pharmacy, University of
Wisconsin‐Madison, Madison,
Wisconsin, USA

Correspondence
Lingjun Li, Department of Chemistry,
University of Wisconsin‐Madison, 5125
Rennebohm Hall, 777 Highland Ave,
Madison, WI 53706, USA.
Email: lingjun.li@wisc.edu

Abstract

Due to their involvement in numerous biochemical pathways, neuropeptides have

been the focus of many recent research studies. Unfortunately, classic analytical

methods, such as western blots and enzyme‐linked immunosorbent assays, are

extremely limited in terms of global investigations, leading researchers to search

for more advanced techniques capable of probing the entire neuropeptidome of an

organism. With recent technological advances, mass spectrometry (MS) has

provided methodology to gain global knowledge of a neuropeptidome on a spatial,

temporal, and quantitative level. This review will cover key considerations for the

analysis of neuropeptides by MS, including sample preparation strategies, in-

strumental advances for identification, structural characterization, and imaging;

insightful functional studies; and newly developed absolute and relative quanti-

tation strategies. While many discoveries have been made with MS, the metho-

dology is still in its infancy. Many of the current challenges and areas that need

development will also be highlighted in this review.
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1 | INTRODUCTION

The nervous system is one of the most highly regulated parts
of the human body, and signaling molecules are well known
for their roles in behavior, controlling bodily homeostasis,
and processing incoming information (Herlenius &
Lagercrantz, 2004; Hokfelt et al., 2000; Li & Sweedler, 2008;
Xie et al., 2011). Any perturbation of this system can have
detrimental effects on an organism, leading to temporary or
long‐term biochemical changes. Neuropeptides, one of the
largest classes of neuronal signaling molecules, are well
known for playing prominent roles in the nervous system
(Herlenius & Lagercrantz, 2004; Hokfelt et al., 2000; Li &
Sweedler, 2008; Xie et al., 2011). However, the comprehen-
sive analyses of the neuropeptidome, the entire range of
neuropeptides able to be expressed, remain to be challenging
due to global diversity of their size, sequence, and function.

The diversity of neuropeptides can be first observed at
the biological synthesis level. This review only focuses on
the typical neuropeptide biosynthesis pathway and not on
alternative ways of endogenous peptide production. A
typical neuropeptide biosynthesis starts with the transla-
tion of a prepropeptide RNA chains. A prepropeptide may
contain several neuropeptide copies, which are revealed
after multiple processing steps. Initially, a propeptide is
produced from the prepropeptide via proteolytic cleavages,
splicing events, or introduction of posttranslational mod-
ifications (PTMs) (Li & Sweedler, 2008). The result is a
propeptide which is packaged into vesicles where they are
stored before release. A strong stimulation, such as high
frequency firing, elicits site‐specific enzymes to produce
the final, biologically active peptides that are released from
the neuron. Mature neuropeptides released in the extra-
cellular space 'travel' through the body to reach (distant)
organs/tissues/cells which contain receptors where they
bind. The latter are sometimes referred to as neuropeptide
targets. The final neuropeptides generally range in length
from 3 to 70 amino acids long (Buchberger et al., 2015).
The signaling targets can be within the same neuron
produced, within the same organ, or in an entirely dif-
ferent tissue. In addition, neuropeptide anabolism, cata-
bolism, and thus function may even vary depending on
the destination of the signaling target (von Bohlen &
Halbach, 2005). To further increase the chemical diversity,
neuropeptides can have isoforms that may only vary by
one residue but have widely different functions within the
body. All these factors lead to a high, natural complexity
that is difficult to characterize even with complete genetic
coverage.

The development of sophisticated analytical tools or
simplified networks are required for deep neuropepti-
domic analysis. To decrease the complexities of neuro-
peptide analysis, many researchers have adopted different,

similar animal models, such as crustaceans or mice, to
characterize neuropeptidomic changes (Che et al., 2005;
Chen et al., 2014; OuYang, Liang, et al., 2015; Yin
et al., 2011; Zhang et al., 2015). Due to homology between
neuropeptides from different species, many of the results
and insights obtained from these simpler systems can be
readily transferred to more complex organisms, such as
humans (Bruzzone et al., 2006; Schmerberg & Li, 2013;
Yew et al., 2005; Yu et al., 2014). As the full complement
of neuropeptides has yet to be fully discovered, even with
the aid of these model organisms, it is important to de-
velop and implement more advanced technology.

To fully characterize neuropeptides, we require
methodology that is selective, sensitive, and swift, all
while being cost‐effective and capable of providing dy-
namic temporal and spatial information. In the past, re-
searchers have focused on the use of antibody‐based,
electrochemical, bioluminescent, or other biological as-
says to characterize neuropeptides (Li & Sweedler, 2008).
For example, radioimmunoassays (RIAs) were very
popular at one time due to being highly sensitive and
selective (Li & Sweedler, 2008), even to familial isoforms
(Jarecki et al., 2013), but their high cost and inability to
simultaneously study multiple analytes, spatially and
quantitatively, limits their global use. Unlike these clas-
sical methods, mass spectrometry (MS) has begun to
meet all the necessary requirements for scientists to fully
study neuropeptides. In general, MS measures the mass‐
to‐charge ratio (m/z) of an analyte of interest. These in-
struments are capable of analyzing neuropeptides down
to low attomole ranges while providing mass accuracy
down to a few ppm and resolution to differentiate be-
tween not only different neuropeptides but also familial
isoforms (Andren et al., 1994; Dowell et al., 2006; Hui
et al., 2012). While the development of high‐resolution,
accurate mass (HRAM) instrumentation allows for
identification at the single stage MS (MS1) level, masses
can also be selected for tandem MS (MS/MS). Peptide
precursor ions are fragmented, producing characteristic
fragments. As such, both known and novel analytes can
be characterized and/or confidently identified. In con-
junction with online or offline separations, MS is claimed
to be capable of analyzing “entire proteomes” in a short
amount of time (Hebert et al., 2014), making it an ex-
cellent tool to study the full complement of neuropep-
tides in a system (Castro et al., 2014; Hui et al., 2013;
Predel et al., 2010, 2018; Xie et al., 2011). Furthermore,
the development of MS imaging (MSI) has allowed to
obtain highly accurate spatial information of several
hundred analytes in one experiment. In addition, several
strategies have been also developed (label‐free and label‐
based) to quantitatively study neuropeptide changes,
such as due to a biochemical or environmental stressor
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(Buchberger et al., 2015; Southey et al., 2014; Yin
et al., 2011). It should be noted that proper handling and
separation of the samples are key to acquiring quality
data, especially in the case of specialized MS techniques
such as in vivo sampling methods and MSI (Buchberger
et al., 2015; Gemperline, Chen, et al., 2014; Li et al., 2009;
OuYang, Liang, et al., 2015). Overall, MS provides an
attractive ability to examine the full complement of
neuropeptides qualitatively and quantitatively.

While it seems that MS provides all the necessary
qualities to study neuropeptides, many of the techniques
used are still far from perfect. Figure 1 provides a pic-
torial representation of the possible workflows taken
when studying neuropeptides with a mouse used as a
model organism. This review will focus on the techno-
logical advancements and discoveries made, along with
the challenging areas that still need development.

2 | SAMPLE PREPARATION

Sample handling is the first step where researchers need to
be cautious to be accurate and consistent. Neuropeptides
are often present at low abundance in a background con-
taining all sorts of contaminants (e.g., salts, lipids). They
are prone to proteolytic degradation, so sample handling is
crucial. Yet it is often the least optimized step compared to
downstream well‐established instrumental MS methodol-
ogies (Buchberger et al., 2015; De Haes et al., 2015;
Romanova & Sweedler, 2015; Yu et al., 2014). While salts
and lipids compete with neuropeptides for ionization and
suppress peptide signals, proteolytic degradation or other
protein‐modifying enzymes can rapidly change composi-
tion of the neuropeptidome, leading to inconsistent and
sometimes confounding results.

2.1 | Prevention of neuropeptide
degradation

Neuropeptides are subject to rapid proteolysis at room
temperature. To preserve neuropeptide integrity, flash‐
freezing of the tissue is convenient to use and widely ap-
plied (Han et al., 2015; Sterkel et al., 2011). Other options
do exist, including boiling (Altelaar et al., 2009; Sturm
et al., 2010; Zhang, Wang, et al., 2018) and microwave ir-
radiation (Wardman et al., 2010). Heat denaturation, which
was introduced to eliminate postmortem degradation, can
be adapted for a wide range of tissues (Svensson et al., 2009)
and has been proven effective. Colgrave et al. (2011) have
shown that hypothalamic tissue treated with a stabilization
device yielded twice the number of mature neuropeptides
than those detected in the untreated samples. The Stabilizer

T1 (Denator), heat stabilization system has been shown to
successfully increase neuropeptide identifications com-
pared to other tissue preservation methods. It is worth
noting that a high number of identifications may not in-
dicate successful prevention of neuropeptide degradation,
but rather abundant peptide signal may be due to high
levels of postmortem degradation (Fridjonsdottir
et al., 2018; Yang et al., 2017). Protease inhibitors also serve
a similar purpose; for example, Onorato et al. (2019) re-
cently showed that recovery of neuropeptide (Pyr)1 apelin‐
13 from blood samples was only observed when samples
were treated with a stabilization cocktail consisting of
HALT® protease inhibitor (Thermo Fisher Scientific),
0.25mM phenylmethanesulfonyl fluoride and 25% guani-
dine HCl (v/v). Protease inhibitors are also added to bio-
logical liquids, such as crustacean hemolymph (Chen, Ma,
et al., 2009).

2.2 | Extraction strategies

Several workflows exist depending on the type of in-
formation sought from the sample (Buchberger et al., 2015;
Dallas et al., 2015; Yu et al., 2014). Tissue homogenization
and peptide extraction are procedures that affects identifi-
cation rate in neuropeptidomics. Homogenization typically
employs manual tissue grinding (i.e., using a pestle on
snap‐frozen tissue), sonication, or cell disrupter devices.
Homogenization and extraction are performed in the pre-
sence of solvents or buffers which can dissolve peptides and
simultaneously deactivate proteases in the sample. One of
the most generally utilized buffers in such application is
acidified methanol (Adamson et al., 2016; Budamgunta
et al., 2018; Chen, Jiang, et al., 2010; Hui et al., 2013; Lavore
et al., 2018; Sterkel et al., 2011; Van Bael, Watteyne,
et al., 2018; Ye et al., 2015) which contains 90% methanol
(MeOH), 9% glacial acetic acid, and 1% water. It is reported
to be able to extract neuropeptides from single neurons
(Zhang, Khattar, et al., 2018). This buffer system is further
optimized by Zhang et al. for a “mixing on column” pro-
tocol, an approach that includes four steps with varying
aqueous and methanol compositions. This hybrid protocol
was able to capture hydrophobic peptides as well as hy-
drophilic peptides simultaneously and create up to fivefold
more neuropeptide identifications (Petruzziello et al., 2012;
Yu, Khani, et al., 2015; Zhang, Petruzziello, et al., 2012).
Chen, Ma, et al. (2009) also demonstrated that the use of
acidified methanol with a protease inhibitor additive is ef-
ficient for trace‐level neuropeptide analysis in hemolymph
samples. However, C‐terminal methylation, an enzyme‐
assisted extraction artifact, might happen to some neuro-
peptides (Stemmler et al., 2013). Although use of acidified
methanol is prevalent, a 0.25% acetic acid solution (DeAtley
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et al., 2018; Fridjonsdottir et al., 2018) has been shown to
produce higher quality neuropeptide signal than acidified
methanol (Dowell et al., 2006). Therefore, examples of ef-
fective strategies are to perform either multiple peptide
extractions on the same tissue homogenate (Petruzziello

et al., 2013), collect, and combine the supernatant fraction
from each extraction (Yang et al., 2017, 2018). Alternatively,
a peptide extraction can be followed by the addition of salt
to the peptide extract supernatant to further precipitate
remaining proteins (Gomez‐Ramos et al., 2018).

FIGURE 1 General workflow and strategies for investigating neuropeptides by mass spectrometry. Two major routes: extract profiling
and tissue imaging [Color figure can be viewed at wileyonlinelibrary.com]
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A wide variety of organic buffers have been used in the
recent years to extract neuropeptides from several biological
matrices using acids such as formic acid, trifluoroacetic
acid, and ethylenediaminetetraacetic acid (summarized in
Table 1). For tissues that are difficult to homogenize, like
bone tissue, more corrosive extraction buffers such as 1.2
molarity (M) hydrochloric acid (HCl), and 20% acetonitrile
(ACN) are necessary (Gatenholm et al., 2019). Additionally,
delipidation strategies using n‐hexane (Van Bael, Edwards,
et al., 2018) or methyl‐tert‐butyl ether in MeOH (Li, Zhou,
et al., 2020) can also be applied during neuropeptide ex-
traction. In lieu of organic solvent extraction buffers, mo-
lecular weight cut‐off (MWCO) filters have also been used
for neuropeptide purification and isolation of a particular
size of neuropeptides. For example, neuropeptides from sea
cucumber radial nerves can be extracted using either arti-
ficial sea water (Chieu, Suwansa‐Ard, et al., 2019) or simple
urea‐based cell lysis buffers (Chen et al., 2019) followed by

MWCO filters. However, extra care must be taken using
these methods to avoid peptide degradation by catabolic
enzymes. For biological samples containing abundant high
molecular weight proteins, such as hemolymph (Fredrick &
Ravichandran, 2012), a combination of extraction using
acidified methanol and ultracentrifugation through MWCO
filters are necessary for neuropeptide analysis (Liu,
Buchberger, et al., 2019).

2.3 | Enrichment and sample clean‐up

Generally, crude neuropeptide extract still contain soluble
contaminants, such as salt, which can degrade mass spectral
quality and result in decreased peptide signal in MS mea-
surements (Constantopoulos et al., 1999), and desalting
neuropeptide extract is especially important for biological
samples that are suspended in proteomics/peptidomics

TABLE 1 Examples of various organic buffers applied for neuropeptide extraction from different biological material

Biological material Extraction buffer Reference(s)

Various 90% MeOH, 9% HOAc, 1% water Adamson et al. (2016); Budamgunta et al. (2018); Chen, Jiang,
et al. (2010); Hui et al. (2013); Lavore et al. (2018); Sterkel
et al. (2011); Van Bael, Watteyne, et al. (2018); Ye et al. (2015)

Whole sea anemone 90% MeOH, 9% water, 1% FA Hayakawa et al. (2019)

Rat spinal cord tissues 80% MeOH, 10% water, 10% FA Tillmaand et al. (2020)

Mice cecum 37.5% MeOH, 12.5% chloroform,
50% water

Keller et al. (2020)

Starfish 70% MeOH, 5% HOAc Kim et al. (2016)

Bed bug 50% MeOH, 1% FA Predel et al. (2018)

Beetle Ragionieri and Predel (2020)

Stick insect tissues 50% MeOH, 1% TFA Liessem et al. (2018)

Various 0.25% HOAc DeAtley et al. (2018); Dowell et al. (2006); Fridjonsdottir
et al. (2018)

Dog saliva 80% ACN Wang et al. (2019)

Human plasma Kirwan et al. (2018)

Oyster ganglia 90% ACN, 0.1% TFA Schwartz et al. (2019)

Monkey plasma and
cerebrospinal fluid

ACN Lee et al. (2018)

Citrus psyllid colonies 10% trichloroacetic acid, 2% 2‐
mercaptoethanol in acetone

Fleites et al. (2020)

Sea urchin 60% acetone, 40% water, 1% HCl Monroe et al. (2018)

Aplysia abdominal ganglia 80% acetone, 10% water, 10% FA Anapindi et al. (2018)

Rat spinal cord tissues Dry ammonium sulfate with
0.01M EDTA

Do, Ellis, et al. (2018)

Bone 1.2M HCl in 20% ACN Gatenholm et al. (2019)

Abbreviations: EDTA, ethylenediaminetetraacetic acid; FA, formic acid; TFA, trifluoroacetic acid.
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buffers. Examples of popular commercial methods for de-
salting neuropeptide extract typically involves solid phase
extraction utilizing reversed phase resin (i.e., C4, C8, or C18),
such as Millipore ZipTip pipette tips (Sigma‐Aldrich) and
Pierce Desalting Columns or Tips (Thermo Fisher Scientific),
or a hydrophilic polymer sorbent, such as Oasis hydrophilic‐
lipophilic‐balanced cartridges (Waters). These types of tools
are critical for peptidomics workflows because they not only
desalt, but also concentrate neuropeptide samples. Ad-
ditionally, pooling several tissues, organs, and neurons into
one sample is often necessary when concentrated neuro-
peptidomic content is desired for comprehensive neuropep-
tide identifications. Other methods of concentrating
neuropeptides are by utilizing monoclonal antibodies im-
mobilized on magnetic beads (Vocat et al., 2020), automated
solid‐phase extraction (Bardsen et al., 2019), and large vo-
lume sample stacking using capillary electrophoresis (CE)
(DeLaney & Li, 2019a). A recently developed technique to
quickly concentrate and desalt neuropeptides involve dis-
pensing a droplet of tissue extract onto a sample target
consisting of a hydrophobic circle surrounded by a hydro-
philic ring, which allows separation between salts and neu-
ropeptides to occur directly on the MS sampling plate (Wang
et al., 2017; Yoon et al., 2018).

2.4 | MS imaging

Unlike tissue homogenization, direct analysis of intact tissue
is a simpler way that enables comparing localization from
individual samples or animals which is usually important to
determine its biological relevance. For example, intact so-
mata were analyzed after aspiration by a pipette and transfer
onto an MS sampling plate for neuropeptide profiling
(Diesner et al., 2018; Neupert, Fusca, et al., 2018). Liquid
extraction surface analysis (LESA) is a direct tissue sampling
technique that has recently been commercialized by HTX
Technologies as the SepQuant droplet probe and has been
used successfully for neuropeptide analysis (Kertesz
et al., 2015). Pioneered by Caprioli et al. (1997), MSI has also
emerged as an attractive technology for localizing neuro-
peptides. Neuropeptide MSI experiments require sectioning
tissue into 10–20 μm thick slices. Tissues have to be em-
bedded into scaffold materials, such as gelatin (Chen, Cape,
et al., 2010; OuYang, Chen, et al., 2015; Ye et al., 2015),
sucrose (Verhaert et al., 2010), gelatin containing sodium
salts of carboxymethyl cellulose (Resetar Maslov et al., 2019),
at the time of snap‐freezing to facilitate sectioning and pre-
serving tissue integrity. Once sectioned, the tissue can be
directly mounted onto a glass slide or sample plate for matrix
application with an airbrush or automatic matrix sprayer
(Andersson et al., 2008; Ye et al., 2012). Spectral quality can
be improved by washing the tissue sections with organic

solvents (e.g., ethanol, methanol, acetone, water, or different
mixtures of these solvents) before matrix application to re-
move salts and lipids which negatively influence the matrix
crystallization process and signal quality (Buchberger, Vu,
et al., 2020; Kaletaş et al., 2009; Meriaux et al., 2011; Seeley
et al., 2008). The most common matrices for neuropeptide
imaging include α‐cyano‐4‐hydroxy‐cinnamic acid (CHCA)
(Chen, Ma, et al., 2009; Pratavieira et al., 2014) and 2,5‐
dihydroxybenzoic acid (DHB) (Chen, Cape, et al., 2010; Ye
et al., 2015; Zimmerman et al., 2009). More details on MSI
are described in a separate section below.

2.5 | Microdialysis

Though tissue homogenization and direct tissue analysis
are complementary in gaining insight into sample com-
position and localization, they all require sacrificing ani-
mals. This makes it impossible to track real‐time change
in vivo and brings in unwanted variations among animals
if following time course changes is the real objective. As
an emerging as well as underdeveloped technique, mi-
crodialysis offers the capability to monitor spatio‐temporal
dynamics of neuropeptides over a certain time period
upon external stimulus via a probe implanted into the
tissues of interest that allows continuous sampling from
the extracellular space (Kushikata & Hirota, 2011). When
sampling from extracellular space, the concentration gra-
dient drives the analytes to diffuse across the dialysis
membrane, which has a certain MWCO filter depending
on the substances of interest (OuYang, Liang, et al., 2015).
Due to the small probe size, animals endure minimal
physical damage and associated neurological disturbance.
Long‐term sampling can be accomplished while animals
are still alive and freely moving. It has found its applica-
tions in a wide variety of tissues and organs, including
skin (Baumann et al., 2019), hypothalamus (Guzman‐Ruiz
et al., 2015; Kurian et al., 2015), hippocampus (Takeda
et al., 2011), spinal cord (Wu, Zhang, et al., 2015), and
kidney (Wesson et al., 2015) in vertebrates as well as
neuronal organs in crustaceans (Behrens et al., 2008; Jiang
et al., 2016; Liang et al., 2015; Schmerberg et al., 2015).

Despite its attractiveness, challenges still exist for mi-
crodialysis sample preparation. High temporal resolution
(shorter intervals for collection of individual samples) is de-
sired for microdialysis measurements, but this must be
considered with MS sensitivity factor by selecting an ap-
propriate sampling volume. Balancing low neuropeptide
concentration in vivo (1–100 pM), small sample volumes
generated by microdialysis (1–10 μl) (Zhou et al., 2015) and
low recovery rate (20%–30%) (Schmerberg & Li, 2013) makes
the choice of instrument even more important. It has been
demonstrated that adding organic solvents, especially ACN,
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to dialysate is able to prevent adsorptive loss of low‐
abundance neuropeptides by hydrophobic interactions with
membrane surfaces (Maes et al., 2014; Zhou et al., 2015). By
treating the dialysis membrane and fused silica tubing with
polyethylenimine, recovery was improved by 1.2‐ to 80‐fold
(Zhou et al., 2015). This only benefited the detection of
peptides that carried a net positive charge, though, probably
due to reduced electrostatic interaction between peptides and
the microdialysis probe. An array of affinity‐enhanced mi-
crodialysis approaches have been tested by Schmerberg and
Li (2013), and they observed antibody‐coated magnetic na-
noparticles to provide the greatest enhancement in neuro-
peptide recovery. Other efforts to increase peptide recovery
include a study by Van Wanseele et al. (2017), who tested
several liquid chromatography (LC) columns and mobile
phases to find the combination for optimal recovery of
neuropeptides (Cortecs®C18+ column with a mobile phase
containing methanol as organic modifier and acetic acid as
additive) from microdialysate of a solution containing pep-
tide standards. Another advancement in microdialysis probe
sampling include nonspecific perturbing of the tissue of in-
terest to elicit a biochemical response. Al‐Hasani et al. (2018)
developed a microdialysis probe containing optical fibers for
the purpose of stimulating neuronal peptide release which is
subsequently collected in the probe perfusate. The peptide
profile resulting from nonspecific techniques such as this can
be used to generate additional research questions that can be
answered by more specific techniques, such as expression
knock‐out experiments. Although microdialysis is useful for
performing in vivo experiments, the recovery rate of neuro-
peptides is relatively low.

Overall, each sample handling step strives to increase
neuropeptide signal by decreasing interfering signal while
minimizing sources of neuropeptide loss. However, the
variety of chemicals and solvents used by different re-
search groups (even for similar tissue types) illustrates the
need for continued evaluation and comparison between
these different extraction and sampling systems. Ideally,
there would be a workflow that is unanimously agreed
upon to produce optimal neuropeptide signal, but it is our
opinion that there would likely exist multiple workflows
tailored for individual subclasses of neuropeptides and
specific underlying questions to address.

3 | DISCOVERY/SEQUENCE
IDENTIFICATION

3.1 | MS in general peptide structural
elucidation strategies

Before the introduction of MS, neuropeptides were
identified during searches for endogenous molecules that

produced a physiological effect, and Edman degradation
was used as a standard method to determine the primary
sequences (Yu, Liang, et al., 2015). This strategy requires
a substantial amount of sample, especially from tissue
types with scarce neuropeptide content, and a priori
knowledge of the analyte of interest since it is a “function
first” approach. With its high‐throughput capability, MS,
especially when coupled with electrospray ionization
(ESI) sources, allows thousands of peptides to be mea-
sured simultaneously. One of the pioneers in the field,
Dominic Desiderio, demonstrated the utility of MS for
endogenous (neuro)peptide structural analysis early on
(Desiderio & Yamada, 1982; Desiderio et al., 1993;
Kusmierz & Desiderio, 1992; Mahajan & Desiderio, 1978;
Yamada & Desiderio, 1982). By alternating between MS
and MS/MS, records of both intact mass and fragment
information (to determine the sequence) can be obtained.
Matching these two pieces of information to the re-
spective genome reveals exact neuropeptide sequences,
their origins, as well as functions. However, not all or-
ganisms have their genome fully characterized, which
sometimes makes genomic‐based database searching
unfeasible. This is overcome by de novo peptide se-
quencing, a technique that can provide neuropeptide
sequences solely based on tandem MS data, without the
need for a complete genome. MS has greatly shifted
discovery of neuropeptides from the identification of a
single peptide to the characterization of multiple peptides
representing entire peptidomes.

Various fragmentation techniques have been devel-
oped, see Table 2. Collision‐induced dissociation (CID),
the conventional vibrational activation, has been widely
used (Ye et al., 2013; Zhou et al., 2013). However, CID
has been criticized for preferentially cleaving the weakest
bonds, no matter of location in the peptide backbone or
side chains, such as with PTMs. Once a bond is cleaved,
the internal energy is released and the product will not
be further activated, which sometimes leaves spectra
with few dominating peaks to interpret (Medzihradszky
& Chalkley, 2015; Seidler et al., 2010). Furthermore, the
loss of PTMs can be detrimental to some studies. To
generate a better‐quality spectrum, an alternative frag-
mentation approach is the beam‐type CID or high‐energy
collision dissociation (HCD). It accelerates all ions across
the chamber instead of the ion trap, permitting multiple
collisions, and therefore fragments might break up fur-
ther to create products equally distributed along the
backbone (Jedrychowski et al., 2011; Medzihradszky &
Chalkley, 2015). Fragmentation by CID in a triple
quadrupole and HCD in an Orbitrap mass analyzer for
the structural characterization of neuropeptide receptor
antagonists were compared (Silva et al., 2018). Similar
qualitative and structural information was seen between

RECENT ADVANCES IN MASS SPECTROMETRY ANALYSIS OF NEUROPEPTIDES | 7 of 45



the two mass analyzers, though higher confidence
structural assignments were seen from the HCD‐
obtained data (Silva et al., 2018). Another comparison
was performed by Tu et al. between HCD in an orbitrap,
HCD in an ion trap, and CID in an ion trap using an
Orbitrap Fusion Lumos where they achieved the highest
number of identifications using HCD in the orbitrap,
then using HCD in the ion trap, and the lowest amount
from CID in the ion trap (Tu et al., 2016). Despite being
less sensitive than CID due to the higher ion volume
requirement to generate a spectrum, HCD has become
more and more popular due to its better data quality and
ability to record all products across a wide mass range
(Silva et al., 2018).

Two MS/MS methods complementary to collision‐
based activation that have been developed are electron‐
capture dissociation (ECD) (Zubarev et al., 2000) and
electron‐transfer dissociation (ETD) (Syka et al., 2004),
where a radical ion is formed and undergoes fragmenta-
tion to yield almost exclusively peptide backbone frag-
mentation, thus preserving labile PTMs. Following their
introduction, both electron‐based methods, particularly
ETD, have been gaining popularity among researchers
studying PTMs in proteomics (Sobott et al., 2009). While
still relatively new, ECD and ETD have the potential to be
a critical component of neuropeptide sequencing. Unlike
the digested protein fragments observed in bottom‐up
proteomics with predictable C‐termini and similar lengths,
neuropeptides tend to have varying sizes from a few to
several dozens of residues. For example, some FMRFa-
mides in invertebrates have only four amino acids
whereas CCK‐58, as indicated by its name, has 58. Fur-
thermore, endogenous proteolytic processing leads to the
production of peptides containing multiple internal basic
residues (histidine, lysine, and arginine) which hold
higher charges states in the gas phase, for which CID and
HCD show limited performance. Fortunately, that is
where ETD outperforms the former two (Hui et al., 2011).
Combining CID or HCD with ETD provided com-
plementary spectra for Sasaki et al. (2013) in their study
on endogenous peptides from a human endocrine cell
line, and ETD helped identify a previously unknown large
peptide, VGF[554–577]‐NH2. Rathore et al. (2015) devel-
oped a strategy to perform two dissociation techniques,
CID and ETD, in one analysis without a decrease in duty
cycle. Facilitated by the temporal separation gained
through ion mobility MS (IM‐MS) (see Ion mobility MS
section), a single packet of precursor ions can give rise to
b‐ and y‐type ions containing spectra and c‐ and z‐type
ions containing spectra. A hybrid strategy was further
developed by Hui et al. and Jia et al. where a bottom‐up
approach using CID and HCD fragmentation was coupled
with a top‐down strategy employing ETD fragmentation to T
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reveal more structural details of large neuropeptides (Hui
et al., 2011; Jia et al., 2012). This represents a new route to
discovery and characterization of large neuropeptides
since neither of these fragmentation techniques could
manage to provide a complete picture of a large neuro-
peptide alone. Rather than using CID, HCD, or electron
activated dissociation (ExD), Vrkoslav et al. (2018) have
shown that in‐source decay fragmentation can be used to
produce fragment ions for peptide structure characteriza-
tion in single‐stage matrix‐assisted laser desorption/ioni-
zation (MALDI) instruments lacking precursor ion‐
selection capabilities. To improve the coverage and qual-
ity of neuropeptide sequencing by in‐source decay,
Neupert reports a method for N‐terminal derivatization
using 4‐sulfophenyl isothiocyanate (Neupert, 2018). This
radical based dissociation technique enables the frag-
mentation of intact peptide ions, where traditional dis-
sociation techniques are inefficient.

Chemically derivatized peptides can carry some dis-
tinct fragmentation patterns and/or improve fragmenta-
tion, and some of them can be utilized for sequencing.
Dimethyl labeling is one of the well‐established methods
that has been employed in neuropeptide identification
studies (Fu & Li, 2005; Hsu et al., 2005; Ma et al., 2009), as
it features enhanced a1‐ion signal for N‐terminal de-
termination and simplified MS/MS interpretation. Di-
methyl labeling is also effective for analyzing dipeptides
and tripeptides (Tang et al., 2014). Short neuropeptides
(2–3 residues) are difficult to characterize. They have low
molecular weights, complicating the desalting process,
and can be hydrophilic, decreasing compatibility with
conventional C18 columns. However, these short peptides
are still bioactive and potentially important; their MS
analysis benefits from derivatization with Marfey's reagent
(Bobba et al., 2012). Acetylation is another example of
methods that target primary amines (Yew et al., 2009). A
nanosecond timescale photochemical click‐chemistry
based enhancement for neuropeptide detection was de-
veloped by Li et al. (2019) to remove matrix components to
decrease matrix effects and spectral complexity. A few
other chemical derivatization schemes have been devel-
oped in recent years but have yet applied to neuropeptide
studies. Kim, Shin, et al. (2011) reported an oxazolone
chemistry for incorporation of Br signature to the
C‐terminus, which populates MS/MS spectra with a series
of y‐ions bearing a Br signature for easier interpretation.
Isothiocyanate analogues with basic moieties have been
demonstrated to derivatize peptides and significantly im-
prove the MS sensitivity, while promoting Edman‐type
cleavage and maintaining other sequence fragments for
easy sequencing (Wang et al., 2009). Cationization by al-
kali metals have also been shown to improve de novo
sequence coverage of small peptides (<15–20 residues)

(Logerot & Enjalbal, 2020). The peptide derivatization
strategy reported by Frey et al. appends tertiary or qua-
ternary amines to the peptide's carboxyl groups present at
the C‐terminus and in aspartic and glutamic acid side
chains. As the amine appended, the charge state of that
peptide increases, improving its ETD fragmentation effi-
ciency (Frey et al., 2013). Charge state manipulation and
distribution of neuropeptides were further studied by
Nielsen and Abaye where it was found that the use of
electrolyte additives or supercharging reagents was suffi-
cient to alter the observed charge states and total ion
signal (Nielsen & Abaye, 2013). Bongaerts et al. (2020)
recently studied the use of several supercharging agents
on neuropeptide ionization and concluded the effects to be
highly dependent on the peptide. While supercharging
agents can alter charge state distributions to something
more desirable, care must be taken to choose the appro-
priate one for each analyte.

3.2 | Data independent analysis

While improvements in fragmentation techniques have
paved the way for the increased identification and
characterization of neuropeptides, traditional discovery/
shotgun proteomics strategy using data‐dependent ac-
quisition (DDA) is still limited by the number of MS/MS
spectra abled to be collected. This is problematic for the
analysis of more complex samples because only a small
fraction of analytes can be selected and fragmented. As
the most abundant precursor ions are selected for frag-
mentation, DDA biases detection to higher abundance or
more readily ionizable species. Data‐independent acqui-
sition (DIA) can address some shortcomings of DDA,
expanding proteome and peptidome coverage through its
increased MS acquisition abilities (Chapman et al., 2014).
DIA methods involve the isolation and fragmentation of
multiple precursor ions within a window simultaneously,
with windows spanning the whole m/z range of interest,
followed by the use of software to deconvolute the more
complicated MS/MS spectra containing fragments from
several precursors. This approach generates fragment
ions of all precursors in a sample instead of solely the
highest abundance ones. The information gathered from
every sample component can thus be accessed later as
well with the evolution of better software, increasing the
capabilities for untargeted analysis. While the additional
information enables a wider coverage and increases re-
producibility of analysis, the subsequent data deconvo-
lution becomes exponentially more complex. An up‐to‐
date and comprehensive review was written by Zhang,
Ge, et al. (2020) addressing several different DIA
schemes, as well as software tools for analysis and library
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building so this will not be addressed again in this
review.

While DIA is increasingly being incorporated into
proteomics analysis workflows, it is slow to be applied to
neuropeptidomics, a field that would benefit greatly from
a decrease in high‐abundance bias. This is made evident
by the work by Kwok et al. (2020), where they developed a
sensitive method for the detection of 42 bioactive peptides
and hormones using DIA. A side‐by‐side comparison
performed by Delaney and Li (2019b) demonstrated the
utility and benefits of incorporating DIA over DDA into
the neuropeptidomics workflow. An impressive improve-
ment was seen in the number of neuropeptide identifica-
tions, sequence coverage, and technical and biological
reproducibility, further demonstrating the utility of ap-
plying a DIA workflow to neuropeptidomics analysis.
While it has been demonstrated that a DIA approach can
provide benefits over DDA analysis, Saidi et al. also saw an
advantage to using parallel reaction monitoring (PRM) to
perform targeted peptide quantitation of neuropeptides
(Saidi et al., 2019). The authors compared the use of DIA
with PRM analysis and observed an increase in variability
and decrease in performance associated with DIA, in-
dicating DIA has larger advantages in an untargeted ca-
pacity, rather than in targeted analyses. These few
explorations into DIA for neuropeptide analyses demon-
strate promise for utilizing the advantages of DIA for

analysis, though it seems to be slow to be incorporated
into the neuropeptidomics workflow, potentially due to a
lack of tailored software tools and spectral libraries.

3.3 | Peptide bioinformatics: Database
search software/de novo sequencing
advances

3.3.1 | Peptide sequence prediction and
databases

Traditional proteomics workflows compare MS‐generated
fragmentation data to genome‐generated databases to
determine which proteins are found in a sample. Un-
fortunately, this workflow does not transfer directly to
neuropeptides; a comprehensive specific endogenous
(neuro)peptide database does not exist. Several independent
initiatives have been initiated in the past. If a species does
not have its genome fully sequenced, there is not an easily
obtained database to compare against. Furthermore, the
fact that neuropeptides go through a series of modifications
involving several endopeptidases before final maturation/
neuronal release introduces some degree of unpredictability
of their final active sequences, meaning that these genomic‐
generated databases may not be accurate. Therefore, not
much can be learned about neuropeptides without robust

TABLE 3 Various software tools designed specifically for advancing neuropeptide research

Type of tool Name Brief description Link to resource

Prediction ENPG Neuropeptide prediction https://sourceforge.net/projects/enpg/

NeuroPID Neuropeptide precursor and neuromodulator
prediction

http://neuropid.cs.huji.ac.il/

NeuroPIpred Insect neuropeptide prediction https://webs.iiitd.edu.in/raghava/neuropipred/

NeuroPP Neuropeptide precursor prediction NA

NeuroPred Neuropeptide prediction http://neuroproteomics.scs.illinois.edu/
neuropred.htm

NeuroPred‐FRL Neuropeptide prediction http://kurata14.bio.kyutech.ac.jp/
NeuroPred-FRL/

SignalP Signal peptide prediction http://www.cbs.dtu.dk/services/SignalP/

Database BLAST Sequence alignment search tool http://www.ncbi.nlm.nih.gov/BLAST/

DINeR Insect neuropeptide database http://www.neurostresspep.eu/diner/

NeuroPep Database of neuropeptides, their genes, precursors http://isyslab.info/NeuroPep/

SwePep Endogenous peptide database NA

MS Data Search IggyPep Hybrid de novo and genome wide‐database search NA

NeuroPedia Searchable neuropeptide database and spectral
library

http://proteomics.ucsd.edu/Software/
NeuroPedia.html

PRESnovo Motif prescreening before de novo sequencing https://www.lilabs.org/resources
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bioinformatics tools even with a complete genome data-
base. To predict neuropeptide sequences in silico from a
genome and construct a reliable database, multiple algo-
rithms have been developed and tested, which has been
well‐reviewed in several publications (Boonen et al., 2008;
Hayakawa et al., 2019; Yu et al., 2014). We have compiled a
list of tools and resources, including sequence prediction
tools, database compilations, and tools to search MS spec-
tra, specifically developed to benefit the MS identification of
neuropeptides in Table 3. Generally, when studying a new
organism, the genome of which is available, the online
BLAST program allows extraction of all potential neuro-
peptide prohormones (NPPs) with known NPPs from re-
lated species (Christie, 2015; Conzelmann et al., 2013). The
deduced NPPs are processed to remove signal peptides
using the online program SignalP 5.0 (Almagro Armenteros
et al., 2019; Christie, 2015; Petersen et al., 2011), after which
they are ready to be submitted to neuropeptide prediction
tools such as NeuroPred (Han et al., 2015; Hummon
et al., 2003; Tegge et al., 2008), ENPG (Hayakawa
et al., 2019), NeuroPred‐FRL (Hasan et al., 2021), and
specific for insect neuropeptide prediction, NeuroPIpred
(Agrawal et al., 2019). Another resource for insect research
is DINeR, a database for neuropeptide sequences and
functionality (Yeoh et al., 2017). In another homology‐
based search, Ofer and Linial (2014) reported a machine
learning scheme, Neuropeptide Precursor Identifier (Neu-
roPID), that can be trained on hundreds of identified NPPs
and used to predict metazoan NPPs. NeuroPP, another tool
for neuropeptide precursor prediction has also been devel-
oped for improved screening (Kang et al., 2019). Burbach
presented an inventory of known neuropeptides, classified
in families according to shared structural properties (http://
www.neuropeptides.nl) (Burbach, 2010), which is included
in another database additionally compiled of genes and
precursors called NeuroPep (Wang, Wang, et al., 2015).
SwePep, while not currently active, was also an endogenous
peptide specific database that improved MS analysis (Falth
et al., 2006). However useful, these databases are not
searchable directly with MS/MS data. NeuroPedia, a spe-
cialized neuropeptide database and spectral library that is
directly searchable using MS/MS data was constructed,
improving identification efficiency, sensitivity, and relia-
bility (Kim, Bark, et al., 2011). Instead of using homology‐
based or de novo sequencing database filtration‐based
searches, Menschaert et al. developed a genome‐wide da-
tabase searching method combined with de novo sequen-
cing, IggyPep. Compared to using limited‐sized database
searches, a 30% increase was seen in identification rate
when searching the sea urchin neuropeptidome
(Menschaert et al., 2010). This approach was later adapted
to include enhanced homology‐based gene discovery to
discover new prohormones and neuropeptides, previously

unidentified by the original IggyPep method (Monroe
et al., 2018). Also using genomic information, Jarecki et al.
discovered novel neuropeptides through searching Ascaris
suum libraries of expressed sequence tags and preliminary
genome survey sequences (Jarecki et al., 2011). The field of
neuropeptidomics faces challenges as many of the model
organisms for analysis do not have a fully sequenced gen-
ome. To address these informatics challenges, as well as
others with endogenous peptide specific concerns in mind,
like technical difficulties arising from a lack of enzymatic
digestion, a streamlined analytic framework was developed
for large‐scale peptidomics (Jarecki et al., 2011). By in-
corporating database mining and predicting fragmentation
patterns, many neuropeptides could be identified and 21
putative novel neuropeptides were discovered (Jarecki
et al., 2011). Also with the goal of improving endogenous
neuropeptide analysis, Secher et al. developed a full work-
flow, from sample extraction to bioinformatic analysis, for
increased identification and insight into function through a
prioritization scheme for biologically relevant peptides
(Secher et al., 2016).

While not developed specifically for neuropeptide
analysis, PEP Search (http://www.mycompoundid.org/
mycompoundid_IsoMS/searchSmallPeptide.jsp) (Tang
et al., 2014) can be used for the identification of small
neuropeptides, such as dipeptides and tripeptides. Be-
sides specialized endogenous (neuro)peptide search
engines, common proteomics database search pro-
grams can be used to identify neuropeptides, though
the translation may not be that straightforward. To
provide a reference for people who want to use a
common database search program, Akhtar et al. (2012)
elaborated on the strengths and weaknesses of several
of these programs (OMSSA, X!Tandem, and Crux) to
identify neuropeptides.

3.3.2 | De novo Sequencing

If genomic information is too scarce to create a thorough
NP database, de novo sequencing can be used to derive
amino acid sequences of peptides solely based on MS/MS
fragmentation spectra. Since the late 1990s, a handful of
de novo sequencing tools have been developed (e.g.,
PEAKS, PepNovo). A more comprehensive review of de
novo sequencing tools can be found in other reviews
(Allmer, 2011; Ma & Johnson, 2012). As high resolving
power and accuracy are extremely important when de-
riving a peptide sequence, modern mass spectrometers
will continue to make de novo sequencing easier with
instrumental advances, which in turn requires new de
novo sequencing software tools to be developed accord-
ingly to work with certain type of instruments.
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For example, pNovo was designed for use with HCD
fragmentation (Chi et al., 2010). UniNovo was introduced
two years later, claiming to be able to work well for
spectra from various types of fragmentation methods
(CID, ETD, HCD, and CID/ETD) (Jeong et al., 2013).
Later, Ma et al. presented a novel de novo sequencing
program, Novor, offering improvements in both the
speed and accuracy for peptide de novo sequencing
analyses (Ma, 2015), compare to PEAKS (Mazurais
et al., 2015). Most recently, DeepNovo was introduced by
Tran et al. (2017), an innovative deep learning‐based
approach for de novo sequencing, outperforming PEAKS,
PepNovo, and Novor. This method was later adapted to
create DeepNovo‐DIA for analyzing DIA data (Tran
et al., 2019). While not created for endogenous peptide
analysis, the field of neuropeptidomics benefits from in-
corporation of these tools into the neuropeptide analysis
workflow.

Neuropeptide identification has been facilitated by
these various advances and can be further improved
through preliminary processing before database search-
ing. PRESnovo was developed to take advantage of the
common conserved sequence motifs found in many
neuropeptides as a prescreening method to improve the
subsequent de novo sequencing (DeLaney et al., 2020).
By searching through a predefined motif database,
probable motifs can be assigned to each precursor from a
MS/MS spectrum, which increases correct identifications
seen through PEAKS, compared to without PRESnovo
prescreening (DeLaney et al., 2020). Preprocessing was
also shown to be beneficial for the detection of neuro-
peptides, using a MATLAB‐based workflow and statis-
tical analysis (Salisbury et al., 2013).

After receiving the results from a database search, the
confidences of identifications must be evaluated, com-
monly using statistical false discovery rates and dummy
databases (Jeong et al., 2012). This is important for
measuring the integrity and confidence in identification
assignments. Using a mixed species database, the as-
signment fidelity and false positive percentages were
compared after the acquisition of single species neuro-
peptidomic data using Orbitrap, ion trap, and quadrupole
time‐of‐flight (TOF) instruments (Anapindi et al., 2018).
While all platforms saw a decrease in identifications
during the use of the mixed database, the Orbitrap data
was least negatively affected (Anapindi et al., 2018).
Overall, the quantity, quality, and reliability of neuro-
peptide identifications depends on the careful con-
sideration of neuropeptide sequence prediction, database
selection method, as well as the search method and fi-
delity evaluation parameters. While there are various
tools available for identification (and possibly support
quantitative analysis), these software are not created for

the characterization of endogenous peptides specifically;
instead, modern day software requires researchers to
state that no enzyme digestion is performed. The field of
neuropeptidomics could benefit from development of
effective bioinformatic tools able to perform identifica-
tion without specification of an enzyme or able to in-
terpret results at the endogenous peptide level, rather
than having to compromise and use the “digested pep-
tides” function at the software‐designated protein level.

4 | STRUCTURAL ANALYSIS

4.1 | Posttranslational modifications

As described above, neuropeptide synthesis begins with a
large precursor protein that undergoes cleavage by pro-
protein convertases. These processed peptides are subject to
various PTMs, all of which can affect neuropeptide binding
affinity, lifetime, and function (Hokfelt et al., 2000). PTMs
along with proteolytic processing leads to the generation of
distinct structures of bioactive peptides. Such PTMs, such
as phosphorylation, sulfation, and glycosylation, may be
introduced before or after proteolytic processing. While
studies to determine the presence of PTMs are important, it
is also of interest to understand the mechanisms for mod-
ification of neuropeptides (Hook et al., 2018). Location of a
PTM, whether on the precursor peptide or on the bioactive
peptide, may also be of importance. Multiple prolactin
variants were recently identified and their regulation pat-
terns were found to differ (Qian et al., 2018). Glycosylation
of the mature natriuretic peptide hormone family alters
processing, whereas the O‐glycosylation of the propeptide
decreases cleavage frequency and leads to fewer bioactive
peptides in circulation (Hansen et al., 2019). In addition to
the effects from propeptide modifications, altered receptor
activation and increased stability of the bioactive peptides
were also observed when glycosylation was located on the
receptor binding region of the mature peptide (Madsen
et al., 2020). Whereas formerly, bioactive neuropeptide
PTMs were thought to be conserved to terminal amino
acids (for protective effects against degradation) as well as
the precursor proteins (for cleavage purposes), though
PTMs at other positions along the neuropeptide backbone
are likewise observed (Baggerman et al., 2004; Busby
et al., 1987; Hummon et al., 2003).

The most common PTMs on neuropeptide termini in-
clude pyroglutamate modification of the N‐terminus (Gade
& Marco, 2015; Lee et al., 2010; Monroe et al., 2018;
Salisbury et al., 2013), which is thought to protect the peptide
from enzymatic degradation (Hayakawa et al., 2019), and
C‐terminal amidation, which is required for the biological
activity of many neuropeptides (Anapindi et al., 2018;
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Salisbury et al., 2013; Secher et al., 2016). To evaluate the
importance of neuropeptide amidation, Van Bael et al. de-
signed a gene knockout experiment targeting three putative
neuropeptide amidation enzymes in Caenorhabditis elegans,
an organism able to survive without neuropeptide bio-
synthesis enzymes. Their findings indicated the dependence
on C‐terminal amidation for reproduction, drastically inter-
fering with the quantity and success of egg‐laying, further
highlighting the importance of such PTMs (Van Bael,
Watteyne, et al., 2018).

Another common peptide hormone PTM is acetyla-
tion. Biological roles of acetylation include to increase
peptide stability, by protecting the peptide from enzymatic
degradation, and to regulate receptor affinity (Van Dijck
et al., 2011; Zhang, Petruzziello, et al., 2012). During the
characterization of pro‐opiomelanocrtin related hor-
mones, Yasuda et al. (2011) identified novel triacetylation
of α‐melanocyte‐stimulating hormone (α‐MSH). Acetyla-
tion has also been found to exist as a tissue specific
modification of mouse hemokinin‐1, detected only in the
brain and not in peripheral tissue, indicating a brain
specific functional role for this PTM (Deliconstantinos
et al., 2017).

Cysteine disulfide crosslinking of peptides is an im-
portant PTM observed in neuropeptides (Jia et al., 2012).
It provides structural rigidity and contributes to a pep-
tide's three‐dimensional structure, essential for receptor
recognition and peptide function. Challenges in MS
analysis of disulfide crosslinked molecules include its
low abundance and low fragmentation efficiency, owing
to the stability of the disulfide bond. Yu, Khani, et al.
(2015) developed a targeted ETD‐based method and data
mining scheme to improve the recognition and localiza-
tion of endogenous disulfide bonds in rat neuropeptides,
enabling future studies to target this PTM in a more high
throughput manner. To improve disulfide bond char-
acterization, Bhattacharyya et al. (2013) developed Dis-
Connect, an open source software, to determine disulfide
connectivity of peptide hormones, peptide toxins, and
proteins, and to characterize disulfide foldamers. In‐
source reduction methods have also been shown to suc-
cessfully map disulfide bond linkages in peptides
(Cramer et al., 2017; Stocks & Melanson, 2018, 2019; Ye
et al., 2015). A vendor neutral software tool, DiSulFinder,
was designed to identify peptide backbone fragments
with both intact or cleaved sulfur‐sulfur or sulfur‐carbon
bonds (Liang et al., 2018). Liang et al. were able to
quickly provide identifications for disulfide linkage de-
termination in the interchain disulfide‐linked crustacean
cardioactive peptide and insulin fragment peptide (Liang
et al., 2018).

Glycation, a PTM associated with age, altering pro-
tein structure and function, has also been shown to

modify neuropeptides. The different types and binding
sites of glycation for the neuropeptide substance P (SP)
were investigated by Lopez‐Clavijo et al. Using a multi-
modal MS approach, the authors were able to confidently
assign binding sites and identify intermediate products to
understand glycation and its different types, paving way
for studies of glycation on other neuropeptides (Lopez‐
Clavijo et al., 2012).

Acidic modifications such as phosphorylation of ser-
ine, threonine, or tyrosine and sulfation of tyrosine can
benefit from the use of negative ion mode MS analysis
and are commonly analyzed through such methods
(DeLaney, Phetsanthad, et al., 2020). With only a mass
difference of 0.0095 Da between the phosphorylation and
sulfation modifications, and both capable of modifying
tyrosine residues, HRAM instruments must be used to
resolve these small differences (for more isobaric PTMs
see the Isobaric PTMs section). Using a high‐resolution
Fourier‐transform ion cyclotron resonance MS (FTICR‐
MS), tyrosine sulfation was identified and localized
during the top‐down analysis of a sex ganglia‐specific
peptide in Hirudo medicinalis. Sulfation was confirmed
through high mass accuracy measurements as well as
characteristic isotopic abundance shifts consistent with
sulfur isotopes (Hsu et al., 2017). In another study, dur-
ing a multi‐MS platform neuropeptidomic characteriza-
tion of the rat habenular nuclei, novel sulfation sites
were discovered on secretogranin I prohormone and
confirmed through an additional targeted MS analysis
(Yang et al., 2018). In summary, although it is difficult to
differentiate between the two PTMs, it can be achieved
using the proper MS tools. In addition, enzymatic tools
may help conclusively establish sulfation (de Vries
et al., 2005). Neuropeptidomics can benefit from the in-
creased characterization of these two PTMs, as there are
many sulfated neuropeptides with unknown function
(Seibert & Sakmar, 2008).

Furthermore, phosphorylation is known to induce
dynamic modifications of neuropeptides and is of great
interest for characterization as potential biomarkers be-
cause of its common occurrence (Yasuda et al., 2011).
Over 50 novel neuropeptide phosphorylation sites were
discovered by Secher et al. by a newly developed bioin-
formatics tool. Functional studies show that phosphor-
ylation of α‐MSH reduces its binding to melanocortin
receptors. Serine phosphorylation of neuropeptides were
of much higher abundance compared to intracellular
proteins in the rat brain (Secher et al., 2016). While insect
phosphorylated neuropeptides are rare, Sturm and Predel
were able to identify phosphorylation of CAPA pyrokinin
in Lamproblatte albipalpus that is interestingly taxon
specific. Phosphorylation has not been observed in the
closely related species Periplaneta americana even
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though both cockroach share identical neuropeptides
sequences. This suggests some specific development
within the peptidergic system of Lamproblatta albipalpus
requiring phosphorylation for function (Sturm &
Predel, 2014). As phosphorylation is known to differen-
tially modify neuropeptides in diverse ways due to the
dynamic nature of neuropeptides, Lietz et al. did a study
to determine a global status of the phosphorylated neu-
ropeptidome of bovine dense core secretory vesicles
through characterizing phosphorylation stoichiometry
and site motifs of phosphopeptides. Among a wide range
of phosphosites detected, SxE was found to be the most
prevalent motif (Lietz et al., 2018). They also found dif-
ferential regulation of neuropeptides, as expected, on
many neuropeptides with both known and unknown
function, confirming that there is ample room for future
studies into the roles of neuropeptide phosphorylation.

4.2 | Glycosylation

Glycosylation is among the most ubiquitous and complex
PTMs in biology, with a diverse range of structural possibi-
lities leading to a variety of functional effects. These include
an improved metabolic stability to increase peptide hormone
circulatory half‐life (Flintegaard et al., 2010). There are sev-
eral types of glycosylation, primarily N‐ and O‐linked. Gly-
cosylation micro‐ and macro‐heterogeneity has been
observed on hormones and peptide hormones as well, de-
monstrating the high degree of diversity of glycans able to
modify neuropeptides (Bousfield et al., 2015). Glycosylation
is also shown to affect neuropeptide receptors (Quistgaard
et al., 2014). Cao et al. analyzed the biosynthesis pathway of
calcitonin, a peptide hormone implicated in cancer, and
discovered O‐glycosylated calcitonin. They observed that
both hormone forms responded similarly when the cells
were challenged with biosynthetic enzyme inhibitors (Cao
et al., 2017). This observation demonstrates the diverse range
of glycosylation effects, as it has also been shown to alter
response to enzymatic activity (Goettig, 2016).

The characterization of glycosylation is important be-
cause unlike other simpler PTMs with a static mass shift,
glycan composition, as well as the connectivity and con-
figuration of their glycosidic bond, can vary. To increase
detection sensitivity and specificity as well as provide
improved sequence coverage, Yu et al. used a targeted
analytical method employing oxonium ion‐triggered
electron‐transfer/higher‐energy collision dissociation
(EThcD) (Yu et al., 2017). Demonstrating its utility for
neuropeptides modified by glycosylation, several glycosy-
lated signaling peptides were analyzed and several glyco-
forms were identified. Additionally, novel glycosylated
insulin‐B chain, insulin‐C peptide, and BigLEN, a

potential body weight regulating neuropeptide, from
mouse and human tissue were reported (Yu et al., 2017).
They could distinguish two isobaric monosaccharides,
GalNAc and GlcNAc (Yu et al., 2017) through their dis-
tinct diagnostic oxonium ion fragmentation profiles
(Halim et al., 2014). This targeted method enables higher
quality fragmentation spectra to be obtained, along with
reducing instrument time required for glycopeptide ana-
lysis. Cao et al. (2020) also employed oxonium ion‐
triggered EThcD to characterize both N‐ and O‐linked
glycosylated neuropeptides in crustaceans (Figure 2). In a
pursuit to improve the characterization of glycopeptides,
Riley et al. systematically compared several fragmentation
methods and dissociation energies. The authors found the
optimal dissociation methods to differ between N‐ and O‐
linked glycans (Riley et al., 2020). While these results were
obtained through enzymatically digested peptides, the
differences in optimal fragmentation methods likely hold
true for endogenous peptides. Thus, the characterization
of each type of glycosylated neuropeptides, whether N‐ or
O‐linked, should include considerations for each frag-
mentation method before use.

Advances in glycoinformatics to aid in glycopeptide
characterization include the compilation of several glycomics
databases, such as GlyTouCan (Tiemeyer et al., 2017) and
glypy (Klein & Zaia, 2019), for glycan identification
(Campbell et al., 2014; Ranzinger et al., 2015). There has also
been the development of many software programs such as
MSFragger (Kong et al., 2017), GlycReSoft (Klein
et al., 2018), and O‐pair search with MetaMorpheus for
O‐glycopeptides (Lu et al., 2020). Byonic, a glycoproteomics
search program recently added the capability for a glycan
“wildcard search” to improve detection of glycans without a
priori knowledge of their mass (Roushan et al., 2020). This is
beneficial in the neuropeptidomic studies of organisms with
incompletely sequenced genomes and lack of knowledge of
potential glycans. More detailed information on the gly-
comics databases and bioinformatics tools available can be
found in various platforms (Aoki‐Kinoshita, 2017; Dallas
et al., 2012; Tsai & Chen, 2017; Woodin et al., 2013). A table
of useful information for recent MS‐based strategies and
software tools for glycopeptides is included within a recent
review article (Cao et al., 2021).

In a large‐scale effort to map O‐linked glycosylation on
peptide hormones, Madsen et al. found almost a third of
the 279 identified peptide hormones to be O‐glycosylated,
serving as a basis for global O‐glyconeuropeptide dis-
covery (Madsen et al., 2020). While peptide hormone
glycosylation seems common, it is still of low abundance
and is still difficult to detect, let alone characterize and
quantify. Thus, several strategies involving enrichment
and derivatization schemes were developed. Interested
readers are encouraged to examine the reported by Liu,
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FIGURE 2 Using EThcD, both N‐ and O‐linked glycosylated neuropeptides are identified. EThcD spectra of an (A) O‐linked
orcomyotropin neuropeptide discovered in rock crab Cancer irroratus nervous system, an (B) O‐linked truncated crustacean
hyperglycemic hormone precursor‐related neuropeptide discovered in blue crab Callinectes sapidus nervous system, and an (C)
N‐linked B‐type allatostatin (AST‐B) neuropeptide discovered in C. sapidus nervous system. Reprinted with permission from (Cao
et al., 2020). EThcD, electron‐transfer/higher‐energy collision dissociation [Color figure can be viewed at wileyonlinelibrary.
com]
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Cao, et al. (2019) for more information on different stra-
tegies for the isolation and characterization of glycosylated
neuropeptides. Additionally, a comprehensive review
about glycopeptide quantitation was published very re-
cently (Delafield & Li, 2020).

4.3 | Ion mobility MS

Isobaric species are challenging to study with MS due to
their identical nominal masses, especially in a discovery‐
based mode. Nonetheless, differentiation between dif-
ferent isobaric peptides is important as different isobaric
neuropeptides may have different properties and bioac-
tivity. IM‐MS is an analytical technique that separates
gas‐phase ions based on their differences in collisional
cross section (mobility) through the buffer gas, which
originate from differences in size and shape. The se-
paration mechanism of ion mobility is demonstrated in
Figure 3. IM‐MS for structure elucidation of isobaric
peptides when MS measurements is reviewed by Li et al.
(2020). Lamont et al. (2017) utilized IM‐MS and detected

two coeluting isobaric peptides, which they identified as
the opioid neuropeptides, leucine enkephalin, and
N‐acetylated alpha‐melanocyte stimulating hormone.
Aspartic acid isomerization to isoaspartic acid is sug-
gested to play a role in apoptosis and protein stability, but
the crucial differentiation via MS remains to be chal-
lenging. Sargaeve et al. (2011) demonstrated the ability to
distinguish between these isomers using diagnostic
fragment ions produced by ExD fragmentation methods.

Naturally occurring amino acids in peptides and proteins
are typically of the L‐isoform, with the D‐isoform being rare.
Even so, D‐amino acid containing peptides (DAACPs) can be
found in nature and are the focus of many studies as this
“unnatural” stereoisomer can have implications for 3D
conformation, bioactivity, and degradation. While many
studies have been performed on DAACPs, little of this has
been applied to the neuropeptidome. DAACPs can differ-
entially regulate neuropeptide activity by altering affinity to
its receptors. Using a combination of IM‐MS, computer
modeling, cell‐based assays and results from prior functional
studies (Bai et al., 2013), the Sweedler group discovered and
evaluated several analogues of the D‐amino acid containing

FIGURE 3 Schematic diagrams of analyte ions separation in a drift tube (small ion in blue, large ion in red). (A) Analytes are ionized
and enter the drift tube. Small ions travel faster in the drift tube due to less collision with the buffer gas. In this example, the small ion
has two conformations: compact ring conformation and unfolded linear conformation. Same ion with compact conformation will
travel faster than unfolded linear species. (B) Drift time profile of analyte ions [Color figure can be viewed at wileyonlinelibrary.com]
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neuropeptides GFFD and GTFD in the sea slug, Aplysia
californica (Do, Checco, et al., 2018). Careful modeling led to
correctly predicting activities with a feeding circuit related
receptor, showing the change from L‐Ala to D‐Ala to alter
peptide activity (Do, Checco, et al., 2018). The Sweedler
group has led many recent efforts in understanding bioactive
DAACPs through studying A. californica. One of their
workflows analyzes the relative abundances of key chirality‐
reporting fragment ions to distinguish between neuropeptide
L‐ and D‐epimers (Bai et al., 2011). Analyzing single neurons
with MALDI tandem MS, identification of D‐isoforms of
endogenous peptides was demonstrated directly from cells
and tissue (Bai et al., 2011). In addition, they evaluated
several protocols for untargeted DAACP discovery, again
using sea slug neurons (Livnat et al., 2016). Their validated
approach involves screening for resistance to aminopeptidase
M digestion, inducing a retention time shift between epi-
mers, and comparing the endogenous peptide with synthetic
standards leading to the discovery of two peptides with
D‐isomers. Only one of these peptides appeared to be
bioactive (Livnat et al., 2016). For a neuropeptide natively
present as both L‐ and D‐residue containing forms, both were
found to activate their newly identified receptor, with the D‐
epimer being the more stable (Checco et al., 2018). The same
group also discovered ten new DAACPs in the central ner-
vous system (CNS), two of which were found to be the first
animal DAACPs with more than one D‐amino acid residue
(Mast et al., 2020). This demonstrates the dynamic nature of
D‐isomerization to alter neuropeptides, highlighting the im-
portance of D‐epimer localization.

Benefits of DAACPs include enhanced metabolic sta-
bility; they are protected from many endogenous enzymes
that only recognize the L‐amino acid variant. Demonstrat-
ing the utility of modified neuromodulators in their ex-
ploration for improved pharmacological peptides, Magafa
et al. created a variety of neurotensin analogues. Using
various combinations of D‐amino acids and an unnatural
amino acid, they discovered several modified neuro-
transmitters with improved enzymatic stability, establishing
a basis for the rational design of novel pharmaceutical
neuromodulators (Magafa et al., 2019). While there have
been several method developments for endogenous
DAACP detection and identification, specific D‐residue
peptide localization tends to be complex or expensive
(Soyez et al., 2011). Jia et al. demonstrated the utility of a
MS fragmentation‐based IM‐MS method to localize
D‐amino acid residues in bioactive peptides in a single MS
analysis (Jia et al., 2014, 2016). As peptide epimers are
chromatographically separated, each can be fragmented by
CID before ion mobility separation to indicate the presence
and location of a D‐amino acid. The increasingly known
variability and complexities of the effects of this PTM are
why DAACPs will retain interest in the future.

4.4 | Conformational analysis by IM‐MS

While neuropeptides are often considered as 2D entities, it is
important to note that these analytes have 3D structures that
can widely vary. When combined with molecular dynamics
(MD) simulations, IM‐MS is able to provide gas‐phase pep-
tide ion structural insights at the atomic level. With IM‐MS,
analyte structure is determined from experimental values
measuring temperature‐dependent rotationally averaged
collision cross sections. It is hypothesized that these
reflect the gas‐phase ion conformations originating from

FIGURE 4 (See caption on next page)
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solution‐phase after desolvation (Jurneczko & Barran, 2011).
Compared to other biophysical techniques, such as X ray
crystallography or nuclear magnetic resonance (NMR)
spectroscopy, IM‐MS is sufficiently specific and sensitive to
ascertain structural information using impure, trace amount
of sample (Scarff et al., 2008). Moreover, whereas X ray
crystallography and NMR provide an averaged structure, IM‐
MS obtains snapshots of short‐lived intermediates and con-
formational transitional states and thus can be used to in-
terrogate dynamic heterogeneity (Gidden & Bowers, 2002;
Gidden et al., 2001). In fact, quite a few studies (Bereszczak
et al., 2012; Jenner et al., 2011; Shi et al., 2012, 2014;
Wyttenbach et al., 2009) report analyte ion gas phase struc-
ture and conformational dynamics, which provides im-
portant insights into what occurs in solution.

The conformation of neuropeptides is a very relevant
aspect with respect to their biological function. Bradykinin
(BK), a nine residue neuropeptide, has been a model
peptide both for conformational dynamics studies
(Papadopoulos et al., 2012; Pierson & Clemmer, 2015;
Pierson et al., 2010, 2011, 2013; Voronina & Rizzo, 2015)
and the development of systemic IM‐MS strategies for
structural studies in general. IM‐MS assisted by MD re-
vealed 10 independent populations of structures in solution
and three gas‐phase quasi‐equilibrium conformations due
to combinations of three cis and trans prolines (Pierson &
Clemmer, 2015; Pierson et al., 2010, 2011, 2013). The
Clemmer group investigated penultimate prolines in SP.

In a detailed and step‐by step manner to elucidate the
spontaneous peptide cleavage pathway, they showed trans
to cis configurational changes to be key in initiating
nonenzymatic degradation (Conant et al., 2019). Inspired
by the fact that penultimate proline residues are frequently
found in neuropeptides, Glover et al. (2015) utilized IM‐MS
to probe the effect of penultimate proline on neuropeptide
conformations. Besides protecting peptides from enzymatic
degradation, penultimate Pro also plays a key role in in-
creasing the conformational heterogeneity of neuropep-
tides, which may be important for receptor affinities and
thus function.

IM‐MS is able to distinguish between cis and trans
isomers of Pro‐containing peptides (Shi et al., 2016;
Warnke et al., 2015). While different observed con-
formations are attributed to the isomerization of
proline using specific criteria, they do not always in-
dicate cis/trans conformers; IM‐MS has limitations
for structure elucidation. To this end, the non‐proline
containing neuropeptide Y wild type and naturally
occurring proline containing mutant were in-
vestigated by Lietz et al. Though typical cis/trans
isomerization hallmarks were present, the presence of
these isomers were excluded (Lietz et al., 2016).
IM‐MS and MD analyses have their limits and require
other methods for validation. While Konig et al.
(2017) were originally unable to prove DAACP in ci-
cada hypertrehalosemic neuropeptides using IM‐MS,
they later showed that other techniques, such as
NMR, may be required to confirm the proposed 3D
structure (Konig et al., 2019).

Some neuropeptides are active through self‐
oligomerization (Cowley et al., 1992; Smith & Griffin, 1978)
and IM‐MS has proven instrumental to study this process.
For instance, important insights have been obtained on the
amyloid fibril formation that is a central implication in
neurodegeneration, including Alzheimer's or Parkinson's
diseases (Bernstein et al., 2009; Bleiholder et al., 2011).
Subsequently, IM‐MS studies of various Leu‐enkephalin
mutants highlighted the importance of characterizing dimer
and higher oligomers in determining possible protofibril
structures that a peptide system can access (i.e., single
β‐sheet or doublesheet steric zipper) (Bleiholder et al., 2013;
Do et al., 2014).

A number of studies (Heck, 2008; Kaddis & Loo, 2007;
Kondrat et al., 2013; Konijnenberg et al., 2013; McAllister
et al., 2015) demonstrated that certain peptide and protein
ions in the gas phase retain a memory of their solution
structures upon ionization (e.g., ESI). How exactly the
structure in the gas‐phase mimics the solution phase re-
mains to be clarified. The Russell group (Fort et al., 2014;
Servage et al., 2015; Silveira, Fort, et al., 2013; Silveira,
Servage, et al., 2013) used cryogenic IM‐MS (cryo‐IM‐MS) to

FIGURE 4 In hypothalamic slices, NPS stimulates silent OXT
neurons via NPSR but does not stimulate active OXT neurons. (A)
Schematic drawing of the PVN OXTpr‐GCaMP6s virus infusion
and subsequent [Ca2+] imaging of OXT neurons. (B) Basal activity
of two distinct subpopulations of OXT neurons (dark gray: active;
light gray: silent) illustrated by typical ΔF/F0 traces. Pie charts
represent the proportion of active (up) and silent (down) OXT
neurons: ns = 11, n OXT neurons (nn) = 237. (C) Pie charts of
proportion of responsive OXT neurons to NPS application alone
(2 μm, 20 s; ns = 11, nn = 24 of 237; green) or in the presence of
NPSR antagonist (SHA‐68 100 μm, >15min; ns = 6, nn = 3 of 135;
light blue) and typical ΔF/F0 traces. Pseudo‐color video extract of
identified OXT neurons through GCaMP6s imaging [Ca2+] in
control conditions (gray), in presence of NPS (green) or
NPS + SHA‐68 (light blue) (stacks of 50 images/10 s of recording).
Scale bar = 20 μm. (D) Relative AUC increase and maximal ΔF/F0
of OXT neurons in presence of NPS (ns = 11; green) or NPS + SHA‐
68 (ns = 6, light blue). Only response duration of OXT neurons in
presence of NPS (ns = 11; green) are represented here. White
circles represent average value per slice. *p< .05 (Student's t test).
**p< .01 (Student's t test). Reprinted with permission from (Grund
et al., 2017). NPS, neuropeptide S; NPSR, NPS receptor; ns, n slices;
OXT, oxytocin [Color figure can be viewed at
wileyonlinelibrary.com]
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reveal that intramolecular interactions can stabilize the ki-
netically trapped SP dehydrated conformer in a time scale of
several milliseconds. The use of cryo‐IM‐MS for the study of
analyte structure and is reviewed by Servage et al. (2016).

Besides peptide inherent secondary structure, external
environmental factors also affect peptide conformational
preference in the gas phase. IM‐MS studies have in-
vestigated temperature (Berezovskaya et al., 2013; Zilch
et al., 2007), activation voltage (Pierson et al., 2010), sol-
vent composition (Pierson et al., 2011), and metal binding
(Chen et al., 2011).

5 | MS IMAGING

Until recently, the most popular way to obtain spatial in-
formation of molecules was immunohistochemistry and
RIA. However, due to the selectivity of the antibodies used,
immunoassays are unable to acquire information from
more than one analyte. This is a disadvantage when
working with limited amount of sample. Within the last
years, MSI has emerged as an alternative method to cir-
cumvent this disadvantage. Through MSI, molecular ion
images are generated of a surface (e.g., tissue or tissue
slice). By rastering a laser along a predefined (x, y) grid, a
mass spectrum is acquired at each grid square (i.e., pixel).
Ion specific images are then generated by bioinformatic
tools. As such, MSI has the capability to generate hundreds
of images from a single experiment. The investigation of
neuropeptides and their spatial distribution patterns has
been accomplished by MSI throughout several organisms
for several applications (Altelaar et al., 2005; Berisha
et al., 2014; Buchberger, Vu, et al., 2020; Chen & Li, 2010;
Chen, Cape, et al., 2010; Chen, Hui, et al., 2010; De Haes
et al., 2015; Hanrieder et al., 2012; Herbert et al., 2010; Jia
et al., 2012; Mark et al., 2012; Monroe et al., 2008; OuYang,
Liang, et al., 2015; Pratavieira et al., 2014; Romanova
et al., 2009; Shariatgorji et al., 2014; Ye et al., 2013, 2015).
While the general workflow has become very well defined
(Figure 1), several modifications have been explored and
implemented to improve the quality and depth of MSI data.
Several reviews discuss these in the context of neurobiology
(Buchberger et al., 2018; Gemperline, Chen, et al., 2014;
Hanrieder et al., 2015; OuYang, Liang, et al., 2015).

5.1 | Ionization, identification, and
instrumentation

While several ionization techniques exist, only a small subset
has been used for MSI in biological relevant experiments.
MALDI MSI was first developed by the Caprioli group, who
successfully imaged proteins and peptides in thin tissue

slices of the rat pituitary and pancreas (Caprioli et al., 1997).
MALDI still remains the most utilized ionization methods
for MSI of biomolecules, including metabolites, lipids, and
proteins (Eriksson et al., 2013). Alternative ionization
methods employed include desorption electrospray
ionization (DESI) (Wiseman et al., 2008), nanostructure in-
itiator MS (NIMS) (Sturm, Greer, Chen, et al., 2013;
Yanes et al., 2009), and secondary ion MS (SIMS) (Altelaar
et al., 2005; Jiang et al., 2014; Lanni et al., 2014; Monroe
et al., 2008; Ogrinc Potocnik et al., 2017), but MALDI MSI
has been a predominant technique utilized in neuropeptide‐
related studies (Buchberger, Vu, et al., 2020; Chen, Cape,
et al., 2010; Chen, Hui, et al., 2010; Herbert et al., 2010; Jia
et al., 2012; Lanni et al., 2014; Pratavieira et al., 2014;
Verhaert et al., 2007, 2010; Ye et al., 2013, 2015). Crustacean
neuronal tissues have been studied under various MSI con-
ditions to understand the functional roles of neuropeptides
through mapping their localization (Buchberger, Vu,
et al., 2020; Chen & Li, 2010; Chen, Cape, et al., 2010; Chen,
Hui, et al., 2010; Jia et al., 2012; OuYang, Liang, et al., 2015;
Ye et al., 2013). The alternative ionization methods suggest
various advantages over MALDI, such as being matrix‐free,
preventing analyte diffusion (see sample preparation below).
They also have distinct disadvantages. For example, while
NIMS is excellent for metabolites, lipids, and so forth, it has
been shown to not ionize neuropeptides efficiently when
compared to MALDI (Sturm, Greer, Chen, et al., 2013). For
additional information on MSI, we refer the reader to an in‐
depth review on developments in high resolution MALDI
MS relevant for neurobiology (DeLaney, Phetsanthad,
et al., 2020). For a summary of the advantages and dis-
advantages of different MSI ionization sources (i.e., MALDI,
SIMS, NIMS, DESI, and LAESI, and LESA), we refer the
reader to Table 1 in a recent review (Rocha et al., 2017).

With only minor amino acid differences between
neuropeptides in the same family, methods for confident
identification need to be in place. Classically, MS/MS of
singly charged ions, which are primarily produced during
MALDI ionization, is inefficient, leading to poor frag-
mentation and thus inconclusive identifications. Also,
due to the varying distribution of analytes across a tissue,
the motion of constantly rastering across the tissue
makes it difficult to be able to fragment a mass that was
originally detected in a previous raster step. Thus, accu-
rate mass matching followed by subsequent tissue extract
ESI MS/MS analysis (Ly et al., 2019) have been common
ways to identify analytes. With the development of
modern instrumentation, such as the HRAM Orbitrap,
identification of analytes with similar masses has become
more reliable (Verhaert et al., 2010). Yet, tandem MS is
still difficult on singly charged ions. Significant effort has
been put in developing hybrid methods of MS and MS/
MS occurring in a single square form to facilitate the
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isolation of ions identified in first pass MSI spectra
(OuYang, Chen, et al., 2015). These hybrid methods also
increase the image quality, as shown in Figure 5
(OuYang, Chen, et al., 2015).

Singly charged ions produce the simplest spectra, which
means that MALDI‐TOF analyses allow for the widest mass
range that can be analyzed. Tandem TOF (TOF/TOF) mass
analyzers have a theoretically infinite mass range, with

analytes larger than 50 kDa being imaged with high signal
(Leinweber et al., 2009; van Remoortere et al., 2010). Un-
fortunately, most TOF/TOF mass spectrometers lack the
mass accuracy and resolution that allow for differentiation
between closely massed neuropeptides of interest (Verhaert
et al., 2010). On the other hand, Orbitraps and FTICR in-
struments have a limited mass range, leading to several
larger neuropeptides of interest not being imageable as singly

FIGURE 5 Comparison between linear and spiral DDA MS imaging. (A, B) Illustrate the step motion and size, respectively, while
(C–H) demonstrate image quality obtained from both with high mass accuracy. Reprinted with permission from (OuYang, Chen,
et al., 2015) [Color figure can be viewed at wileyonlinelibrary.com]
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charged ions. Several methods to handle these larger mass
analytes have been developed, such as in situ digestion and
generating multiply charged ions by MALDI (Cillero‐Pastor
& Heeren, 2014; Dreisewerd, 2014; Groseclose et al., 2007).
Dependent on the sample preparation conditions, multiply
charged ions are usually produced by using laserspray ioni-
zation (LSI) at atmospheric, intermediate, or high vacuum
(Chen et al., 2014; Hale et al., 2021; Inutan et al., 2011;
Trimpin et al., 2011). Trimpin and coworkers have analyzed
a 12+ charge state cytochrome c by atmospheric pressure
(AP)‐MALDI on a Thermo Fisher Q Exactive mass spec-
trometer (Trimpin et al., 2010).

Data processing represents challenges as well, parti-
cularly in high‐throughput data collection. Pipelines for
automated identification of unique peptides were devel-
oped (e.g., MSI‐Query) (Bruand et al., 2011). Software
packages developed to view MS images are vendor‐
specific (e.g., Thermo Fisher ImageQuest and Tissue-
View, Waters HDImaging, Bruker SCiLS lab, etc.) or
more generic/open source (e.g., MSiReader, Cardinal,
msIQuant) (Bemis et al., 2015; Källback et al., 2016;
Robichaud et al., 2013). Many packages are utilized to
identify masses unique to the tissue (which may be
known or unknown), such as the program written to
perform accurate mass matching with an intensity
threshold (Buchberger, Sauer, et al., 2020). A particular
program has been published for normalization and
quantitation‐based studies (Kallback et al., 2012). This
software enables the quantitation of SP in mouse brain
structures, which correlated well with previous studies
(Kallback et al., 2012).

One area that has gained a lot of attention is spatial
resolution, defined as how small the pixels can get in MSI.
Higher spatial resolution allows MSI of smaller biological
tissues down to even single cells (Boggio et al., 2011; Xie &
Fidler, 1998; Zimmerman et al., 2011). Two factors play
major roles in the maximum resolution achievable in
MALDI MSI: matrix crystal size and focusing of the laser.
The crystal size is dependent on the matrix and applica-
tion method used (see Section 5.2). It is especially in-
strumental advancements which have provided most
improvements in this context. Commercial instruments
allow for small pixels with oversampling, but this can lead
to poor signal in tissues with already low analyte con-
centrations. However, with home‐built instruments, some
groups have achieved 5‐µm resolution without over-
sampling (Guenther et al., 2011; Kompauer et al., 2017;
Mark et al., 2012; Rompp & Spengler, 2013), which allows
imaging discrete cellular structures (Boggio et al., 2011;
Dueñas et al., 2017; Xie & Fidler, 1998; Zimmerman
et al., 2011). It should be noted that this typically lowers
the throughput of the instrument due to the longer ac-
quisition time, but some companies have developed

scanning laser beams to lessen this time (Ogrinc Potocnik
et al., 2015). Alternatively, Zimmerman et al. (2009) have
achieved this by placing individually stretched cells on an
ITO‐coated slide and analyzing them with a Bruker Ul-
traflex II MALDI‐TOF/TOF (laser beam diameter is be-
tween 5 and 30 µm), which allowed them to acquire MS
and MS/MS images of neuropeptides throughout the cell
body (>0.5mm diameter). The Bruker rapifleX MALDI
TOF/TOF mass spectrometer has become a popular
choice for peptidomics (Vu et al., 2020) due to its high
spatial resolution (<20 μm) and the fast laser repetition
rate, and its ability to scan the full area of a pixel while the
sample stage moves continuously, allowing rapid acqui-
sition of MSI data. Continued instrumental development
allows researchers to do more single cell studies, and
quality reviews discuss the next challenges that need to be
met to advance the field (Berman et al., 2010; Boggio
et al., 2011; Xie & Fidler, 1998; Zimmerman et al., 2011).

5.2 | Sample considerations

Proper sample handling is crucial for maintaining the spatial
distribution and abundance of biomolecules in a sample,
allowing for maximum spatial resolution, sensitivity, and
reproducibility of an MSI experiment (Goodwin, 2012).
Studies of postmortem changes in peptide and protein
abundance in brain tissue demonstrate the necessity for
sample collection protocols that limit sample degradation
(Goodwin et al., 2008; Skold et al., 2007). To preserve sample
integrity, samples are typically flash frozen either using li-
quid nitrogen or dry ice. Alternatively heat stabilization, of-
ten using, for example, a Stabilizor T1, (Goodwin et al., 2010;
Sturm, Greer, Woodards, et al., 2013). Fixation methods,
such as formaldehyde‐fixed paraffin embedding (FFPE), are
commonly used to preserve samples in biomedical research,
but this procedure is reported not be compatible with MSI
FFPE is known to result in crosslinking between peptides
and proteins, which is predicted to have a negative impact
on MSI. Optimized protocols for MSI on FFPE material in-
volve deparaffination, antigen retrieval, and trypsin digestion
before analysis (Casadonte & Caprioli, 2011; De Sio
et al., 2015). MSI of proteins and neuropeptides has been
performed in rat brain FFPE samples, after deparaffination
and tryptic digestion, and in Penaeus monodon shrimp
(Chansela et al., 2012; Lemaire et al., 2007; Stauber
et al., 2008). A protocol for performing MSI of neuropeptides
from FFPE tissue without antigen retrieval and enzymatic
digestion has also recently been developed (Paine
et al., 2018). Alternatively, alcohol fixation methods have
been used to fix samples without any of the complications of
FFPE (Chaurand et al., 2008). The PAXgene system is an
alcohol fixation system commercially available that can be

RECENT ADVANCES IN MASS SPECTROMETRY ANALYSIS OF NEUROPEPTIDES | 21 of 45



used to fix samples before MSI, although use of this system is
not as widespread as FFPE (Ergin et al., 2010). Interestingly,
DHB matrix can also be used as a one‐step tissue preserva-
tion and peptide extraction solvent (Alim et al., 2019;
Romanova et al., 2008). Multiple reviews discuss sample
preparation in more depth (Buchberger et al., 2018;
DeLaney, Phetsanthad, et al. 2020; Gemperline, Chen,
et al., 2014; Goodwin, 2012; OuYang, Liang, et al., 2015).

Traditionally, before MSI analysis, the typical (frozen)
tissue samples are sectioned into 10–20 μm thick slices,
which is roughly the thickness of a single mammalian cell
(Crossman et al., 2006). Before sectioning, samples are
usually embedded in a support substance to aid in sec-
tioning. These can be water and gelatin that do not inter-
fere with the MSI analyses of neuropeptides. Other
polymer‐based support substances such as optimal cut-
ting temperature (OCT) medium is known to contaminate
the sample and suppress ion formation (Buchberger
et al., 2018; OuYang, Liang, et al., 2015). A novel embed-
ding material, poly[N‐(2‐hydroxypropyl)methacrylamide],
was tested on mouse lung and bumblebee samples and it
was found to be suitable for MALDI MSI with low back-
ground signal and ion suppression effects (Strohalm
et al., 2011). Also egg yolk seems to be an appropriate
embedding material for MSI of neuropeptides in rat pi-
tuitary, preventing OCT contamination (Sosnowski
et al., 2015). The sectioned samples are transferred to a
simple glass or a metal coated glass slide, depending on
instrumentation, using either a thaw‐mount method or
with double‐sided tape (Goodwin et al., 2012). Certain in-
tact tissues are thin enough to bypass the sectioning step
and can be directly analyzed by MALDI MS. Examples of
this are crustacean pericardial organs and cardiac ganglion
(Buchberger, Vu, et al., 2020; DeLaney & Li, 2020; Zhang,
DeLaney, et al., 2018), and the insect corpus cardiacum
(Verhaert et al., 2007; Verhaert et al., 2010). It is important
to note that fragile samples, such as pericardial organs,
benefit from immediate MS analysis after dissection to
prevent tissue degradation.

There are multiple treatment steps that can be taken
before matrix application. For protein analysis, washing
tissue sections with organic solvents such as xylene,
chloroform, or alcohols has been shown to increase de-
tection through removal of contaminating compounds,
such as lipids and salts (Lemaire et al., 2006; Seeley
et al., 2008). However, washing steps risk to cause delo-
calization or loss of low molecular weight or hydrophilic
neuropeptides if not optimized (OuYang, Liang,
et al., 2015; Yu et al., 2014). Nonetheless, proper opti-
mization of tissue washes has been shown to be effective
at enhancing neuropeptide signal (Vu et al., 2020). Re-
duction of salt adducts has also been shown using a
condensation/matrix recrystallization procedure after

matrix deposition (Monroe et al., 2007). An aqueous MSI
tissue wash containing sodium phosphate salts resulted
in detection of a complementary cohort of neuropeptides
compared to control, unwashed tissue (Vu et al., 2021).
MSI of neuropeptides in Aplysia nervous tissue utilized a
tissue stretching method to fragment the tissue into small
pieces, which minimizes analyte diffusion and salt ad-
duct formation (Zimmerman et al., 2009). Another op-
tion is the application of trypsin to the sample to digest
larger proteins or certain large neuropeptides to the mass
range ideal for higher resolution instrumentation
(Cillero‐Pastor & Heeren, 2014; Groseclose et al., 2007).
Optimization of digestion times, proteases, and matrix
application has been performed in brain tissue to im-
prove the repeatability of trypsin digestion (Diehl
et al., 2015; Heijs et al., 2015). Other protocols look to
improve trypsin digestion reliability and reproducibility
utilizing graphene oxide‐immobilized enzyme reaction
(Jiao et al., 2013) or microwave irradiation and hydrogel
discs (Taverna et al., 2015).

The choice of matrix and matrix application method is
critical for ionization of the target analytes while limiting
diffusion in MALDI MS analysis (Kaletaş et al., 2009).
Common matrices include CHCA and DHB for the analysis
of peptides and sinapinic acid and DHB for the analysis of
larger proteins. Matrix concentration, solvent composition,
and deposition temperature are factors that impact matrix
crystal size and therefore spatial resolution. Hulme et al.
observed that a higher concentration of matrix and higher
deposition temperature (i.e., drier deposition) resulted in
high spatial resolution (15–25 μm), but using a lower con-
centration and temperature resulted in more neuropeptide
identifications but at lower spatial resolution (50 μm)
(Hulme et al., 2020). Many new matrices are being in-
vestigated for application in MSI experiments of all analyte
types, from metabolites up to proteins (Buchberger
et al., 2018; Dreisewerd, 2014). The derivatization of che-
mical compounds with amines, including catecholamine
neurotransmitters and neuropeptides, by reacting primary
amines with pyrylium salts have been proposed as a novel
matrix for MSI of primary amine compounds, which are
usually challenging to detect (Shariatgorji et al., 2015). Ad-
ditionally, graphene has been used as matrix on brain tissue
to detect lipids and small peptides (Friesen et al., 2015). The
choice of matrix is important for studies using LSI to pro-
duce multiply‐charged ions. For example, when using 2‐
nitrophologlucinol as a matrix, multiply‐charged ions are
produced at both vacuum and atmospheric conditions, but
some matrices, like CHCA, only produce singly charged ions
at all conditions (Chen et al., 2018; Inutan et al., 2011, 2012).
To apply matrix for MSI experiments, several different op-
tions are available, including robotic spotters, airbrush, and
automated spraying devices. Robotic spotters, such as
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acoustic droplet ejectors (Aerni et al., 2006) and inject prin-
ters (Baluya et al., 2007; Franck et al., 2009) apply small
amounts of matrix in spots of approximately 150‐200 um
diameter in an ordered array across the tissue. Automated
spraying systems, such as the TM‐Sprayer or M5 Sprayer
(HTX Imaging), pneumatic spraying devices, and the Im-
agePrep (Bruker Daltonics) vibrational sprayer, allow more
control compared to manual airbrush. Use of these auto-
mated methods has been shown to produce higher quality
data compared to other methods (Gemperline, Rawson,
et al., 2014). Our group has reviewed recent advances (from
years 2017 to 2020) in MSI washes, matrices, and other
sample preparation considerations for neuropeptide analysis
(Buchberger et al., 2018; Vu et al., 2020).

5.3 | Special applications of MSI

While the application of MSI to directly answer biological
questions has boomed, MSI has also been utilized for new
applications. For example, the 3D analysis of structures in
a heterogeneous tissue (Chen, Hui, et al., 2009; Dueñas
et al., 2017; Jones et al., 2012; Trede et al., 2012). For
example, consecutive sections have been analyzed in 3D to
demonstrate the spatial variability of several crustacean
neuropeptides (Chen, Hui, et al., 2009). MSI has been used
in 3D cell culture studies (Fernandes, 2004; Li &
Hummon, 2011), for example, to understand the depth of
drug penetration or the production of different metabolite
due to changing environments (e.g., normoxia vs. hypox-
ia). Another analytical technique that has been combined
with MSI is microfluidics, to study neuropeptide secretion
from a cell (Jo et al., 2007; Zhong et al., 2012). Finally,
unlike spot analysis, analyte traces analyzed by MSI has
become a way to add temporal information to this spatial
technique (DeLaney & Li, 2019a; Wang et al., 2011; Zhang,
Jia, et al., 2012; Zhang, Ye, et al., 2012; Zhang et al., 2013).
Initially, this was used to analyze CE or LC traces of tissue
extracts, but MSI of traces has evolved to direct analysis of
microdialysates (OuYang, Liang, et al., 2015). This com-
bination has also proven to be remarkably accurate for
quantitative analysis, allowing both relative and absolute
concentrations of neuropeptides to be obtained (Zhang,
Ye, et al., 2012; Zhang et al., 2013).

6 | ADVANCES IN
QUANTITATION

To analyze a system for biological relevance, quantitative
tools are necessary. Most techniques are compatible with
both ESI and MALDI sources, but special considerations
should be made for either ionization method. ESI is well

known for consistency, but often ESI is done in con-
junction with LC separation. Any run‐to‐run variation
will need to be corrected for by bioinformatic tools.
MALDI, on the other hand, is notorious for inconsistent
ionization (such as due to variability in matrix crystal-
lization). This makes MALDI, without further metho-
dological developments, inherently semiquantitative.
With that in mind, we will focus below on the develop-
ment of relative (i.e., comparative) versus absolute (i.e.,
actual) quantitation with both label versus label‐free
methodology for the study of neuropeptides (Figure 6).
Many recent quality reviews exist, and only the major
contributions will be highlighted below (Buchberger
et al., 2015; Fricker, 2018; Fricker et al., 2006; Li &
Sweedler, 2008; Romanova et al., 2013; Yin et al., 2011).

6.1 | Labeling‐based methods

The incorporation of standard isotopes has revolutionized
MS for quantitative analysis. The more variations of iso-
topes we have, the more samples we will be able to com-
pare, which will thus increase analysis throughput. There
are several different ways to incorporate isotopes into an
analyte of interest, including in vivo metabolic labeling.
This is done usually by culturing cells with a heavy isotope,
for example, in the form of an amino acid, allowing it to be
incorporated during the synthesis of other cells (Ong
et al., 2002; Potts et al., 2016). Heavy amino acids have also
been added into the diets of animals (Kruger et al., 2008;
Zanivan et al., 2011) and plants (Lewandowska et al., 2013).
A simplified protocol has been created to quantify fruit fly
neuropeptides by growing differential isotopically labeled
yeast that can be fed to different groups of flies (Kunz
et al., 2018). Isotopic neuropeptides can also be adminis-
tered intranasally or intravenously into animals (Lee
et al., 2018). While decreasing variability in the population
analyzed, full incorporation of the isotopes can take a long
time depending on cell turn over, especially in animals,
leading to a high cost. The number of samples that can be
compared is limited by the number of isotopes of an ele-
ment. This methodology has been mainly used in protein
quantification (Geiger et al., 2010; Kruger et al., 2008;
Lewandowska et al., 2013; Ong et al., 2002; Potts
et al., 2016; Zanivan et al., 2011), although it could be
adapted for neurochemical cell culture studies.

Another variation of this MS labeling method is in vitro
chemical tags. Generally, the analytes of interest are deri-
vatized with a chemical tag that includes stable isotopes,
which produce well‐defined mass differences between the
samples at either the MS1 or MS2 level. For neuropepti-
domic studies, MS1‐based quantitation is becoming more
and more common. In particular, duplex dimethyl labeling
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has been used thanks to its simplistic and quick labeling on
all primary amines (e.g., N‐terminus and ε‐lysine). For ex-
ample, the Li lab has utilized this method for studying the
dynamic changes in neuropeptides due to environmental
stress (Buchberger, DeLaney, et al., 2020; Buchberger, Sauer,
et al., 2020; Chen, Hui, et al., 2010; Chen et al., 2014; Liu,
Buchberger, et al., 2019; Zhang et al., 2015). Wilson et al.
achieved in vivo quantitation of Leu‐enkephalin and Met‐
enkephalin after on‐column dimethyl labeling of micro-
dialysis perfusate from rat brain (Wilson et al., 2018). Di-
methyl labeling was expanded from 2 to 5 plex (Boersema
et al., 2008; Buchberger, Sauer, et al., 2020; Hsu et al., 2006;
Tashima & Fricker, 2018). Isotopic dimethyl N,N‐leucine
(iDiLeu) and mass defect‐based N,N‐dimethyl leucine
(mdDiLeu) also contains five spaced channels, which allows
for relative or absolute quantitation (Greer et al., 2015; Zhong
et al., 2019). By labeling four channels with neuropeptide
standards to construct a calibration curve, the fifth channel
can be used to calculate the absolute concentration of an
unknown sample. Care should be taken that, when all five
channels are in use and ESI is chosen as the ionization
technique, isotopic impurities and charge state differences
may lead to overlapping peaks and thus inaccurate quanti-
tation (Greer et al., 2015). In terms of MS1‐based quantita-
tion, other options exist to label the N‐terminus, such as
succinic anhydride (Bark et al., 2009; Fricker, 2006; Hou
et al., 2012; Rubakhin & Sweedler, 2008), acetic anhydride
(Che & Fricker, 2002), and 4‐trimethylammoniumbutyryl

(Che et al., 2005). Amino acid specific labels, including
isotopic‐coded affinity tag, metal‐coded affinity tag, and
tyrosine‐specific cysteine labeling (Ahrends et al., 2007; Choi
et al., 2010), are also accessible to study neuropeptides. All
these labeling schemes come with similar considerations to
dimethyl labeling, iDiLeu, and mdDiLeu. While a balance
between multiplexing and spectral complexity is a major
concern, the development of tags with smaller spaces alle-
viates some of this burden. Unfortunately, these small spa-
cing usually requires high‐resolution instrumentation, which
may not be readily available for many labs. For example,
neutron‐encoded (Hebert, Merrill, Stefely, et al., 2013),
mdDiLeu (Hao et al., 2017), and dimethyl pyrimidinyl or-
nithine (Frost et al., 2017) tags all take advantage of isotopic
mass defect, but high multiplexing requires resolution only
achievable by top tier instrumentation.

The use of chemical tags that quantitate at the MS/MS
level can also decrease the MS1 spectral complexity oc-
curring above. Instead of producing mass shifts at the MS1
level, all the differentially labeled peptides occur at the
same mass in the initial MS1 scan. If the associated peak is
selected for fragmentation, characteristic reporter ions are
created, usually in the low mass range where no inter-
ference occurs. Unlike at MS1 level, where theoretically
every analyte can be quantified, one is limited by the
peptides which get selected for fragmentation. Thus the
duty cycle of an instrument can play a major role in the
depth of quantitation achieved. Many commercial tags,

FIGURE 6 Two major types of quantitation in MS. (A) Label‐free quantitation strategies, include intensity comparisons and spectral
counting. (B) Label‐based quantitation. These techniques can be done at both MS1 and MS2 levels [Color figure can be viewed at
wileyonlinelibrary.com]
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such as isobaric tags for relative and absolute quantitation
(iTRAQ) and tandem mass tags (TMT), have been used
(McAlister et al., 2012; Rubakhin & Sweedler, 2008).
iTRAQ has even been used for single cell analysis, al-
lowing the relative quantities of peptides to be obtained by
MALDI MS (Rubakhin & Sweedler, 2008). Unfortunately,
the cost of these commercially available labels limits their
use. N,N‐Dimethyl leucine (DiLeu) is one, low cost ex-
ample for MS2 level quantitation, and it has been ex-
panded from 4‐ to 21‐plex quantitation (Frost et al., 2020;
Frost, Greer, & Li, 2015; Frost, Greer, Xiang, et al., 2015;
Liu et al., 2020; Xiang et al., 2010). Recently, DiLeu and
iDiLeu have been combined to form a strategy called hy-
brid offset‐triggered multiplex absolute quantification
(HOTMAQ) which enables the formation of an internal
standard curve at the MS1 level, peptide sequencing and
identification at the MS2 level, and peptide quantification
at the MS3 level (Zhong et al., 2019). With the multitude
of channels all these tags contribute, both absolute and
relative quantitation is possible. Most of these tags have
not been applied to neuropeptide quantitation, but they
would provide a practical way to compare several samples
in one instrumental run.

6.2 | Label‐free methodology (LFQ)

LFQ techniques are more frequently used in the study of
neuropeptides. Unlike labeling strategies, label‐free meth-
ods allow one to compare an infinite number of samples.
The simplest label‐free method is based on signal intensity,
meaning that the signal intensity in the spectra, or more
accurately the area under the curve in the LC chromato-
gram, correlates with the analyte concentration. Relative
quantities are easily found by just comparing samples at
either the MS1 or MS2 (i.e., MS/MS) level, although peak
alignment and other postprocessing aspects need to be
considered due to run‐to‐run variability (Jiang et al., 2012;
Johansson et al., 2006; Ranc et al., 2012). For example, Ranc
et al. (2012) utilized the extracted ion chromatograms to
obtain relative quantities of different endogenous peptides
in the tree shrew visual system. It should be noted that at
the MS/MS level, multiple reaction monitoring, or mon-
itoring of only specific, characteristic fragments, and PRM,
or monitoring of all fragments, can lead to lowering the
limit of detection by 100‐fold (Bobba et al., 2012; DeAtley
et al., 2018; Pailleux & Beaudry, 2014; Saidi et al., 2019;
Song & Liu, 2008; Wang et al., 2014; Yang et al., 2017).

To acquire the absolute concentration of neuropeptides,
(a) a calibration curve is required (Chung‐Davidson
et al., 2020; Schmerberg et al., 2015; Song & Liu, 2008;
Wang et al., 2014); (b) a synthetic, isotopic internal
standard, also known as an AQUA peptide is added

(Bozzacco et al., 2011; Ozalp et al., 2018; Salem et al., 2018);
or (c) a peptide standard similar to the peptide of interest
(Dong et al., 2018) to be used as a proxy. Several software
packages assist in processing these large datasets, including
commercial software packages (SIEVE, PEAKS, Proteome
Discoverer, etc.) or open access platform (e.g., Skyline).
Several groups have developed their own pipelines, such as
using accurate mass time (Wu, Monroe, et al., 2015), in-
formed quantitation (Wu, Monroe, et al., 2015), and DeCy-
der MS (Johansson et al., 2006; Kaplan et al., 2007).

Many of the above informatics tools also assist in
another LFQ method: spectral counting. Unlike peak
area/signal intensity measurements, spectral counting is
dependent upon the number of times an analyte is se-
lected for fragmentation. Similar to MS/MS label‐based
quantitation, only high concentration molecules are
analyzed due to the limited duty cycle of an instrument.
Also, care should be taken on instrumental parameters,
such as scan and exclusion parameters to increase sam-
pling depth (Zhou et al., 2012). Relative comparisons are
easily done by comparing the number of MS/MS spectra
collected between analytes, although validation of the
smaller differences will be particularly important. Fur-
thermore, only estimates can be made based upon total
protein concentration (Neilson et al., 2011). When com-
paring SIEVE peak area analysis and spectral counting
on peptides in the rat suprachiasmatic nucleus, it was
revealed that spectral counting provided a richer char-
acterization of differences in differential peptide abun-
dance when rats were analyzed at different circadian
rhythm points (Southey et al., 2014). Furthermore, when
compared to SILAC and spectral counting for quantifying
proteins, spectral counting was found to be able to
quantitate ~50% more proteins before a limit being set
(Collier et al., 2010). This shows the power of spectral
counting and LFQ for neuropeptidomic analysis, and it is
likely that these approaches will be increasingly used.

6.3 | DIA quantitation

DIA strategies can be applied to improve quantitative
studies, however the use of label‐based quantitation adds
additional complexity to the MS or MS/MS spectra col-
lected. This makes spectral deconvolution and accurate
quantitation difficult to achieve. Therefore, LFQ is
commonly used in conjunction with DIA. In fact, a re-
cent comparison study between LFQ DIA and isobaric
tag labeling with DDA demonstrated similar perfor-
mance between workflows (Muntel et al., 2019). Per-
forming 10 LFQ DIA analyses demonstrated better
quantitative accuracy while a single multiplex TMT la-
beled DDA analysis resulted in an increase in identified
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proteins and quantitative precision (Muntel et al., 2019).
This demonstrates the capability of LFQ DIA for quan-
titation; although, to fully leverage the benefits of DIA,
specific DIA labeling strategies need to be developed.
mdDiLeu (Zhong et al., 2020), NeuCode SILAC (Hebert,
Merrill, Bailey, et al., 2013; Hebert, Merrill, Stefely,
et al., 2013), and MdFDIA (Di et al., 2017), are labeling
strategies that have been successful for DIA quantitation.
The latter two rely on metabolic labeling and are thus
restricted to cell culture applications, and none of these
techniques have been applied to neuropeptidomics. De-
velopments in the DIA quantitative analysis to more
broadly study the brain proteome are summarized by Li,
Gonzalez‐Lozano, et al. (2020).

Parker et al. (2015) applied a LFQ DIA strategy in a
targeted phosphoproteomics analysis to understand sig-
naling of the peptide hormone insulin. The increased
throughput and reproducibility, enabled by DIA analysis,
led to the quantitation of 86 protein targets affected by
insulin (Parker et al., 2015). In a new Skyline software
application (MacLean et al., 2010), Schmerberg et al. (2015)
performed quantitation of LFQ DIA MS/MS data in a
pseudo‐multiple reaction monitoring analysis of crustacean
neuropeptides. They were able to identify and quantify
several neuropeptides from microdialysate and their
changes across the feeding study illustrating the sensitivity
of the method (Schmerberg et al., 2015). Saidi et al. (2019)
evaluated the utility of label‐free and isotopic dilution DIA
methods for targeted quantitation of neuropeptides and
found an increase in variance when compared to PRM
methods. This could be attributed to the increase in cycle
time for the DIA method, which decreases the points per
chromatographic peak acquired. DeLaney and Li opti-
mized the DIA duty cycle for crustacean neuropeptides by
considering various isolation windows and m/z ranges.
They also evaluated the quantitative accuracy and observed
experimental errors between 18.0% and 32.8% (DeLaney &
Li, 2019b). Potential improvements to this method could
include the use of label‐based quantitation. While the
capabilities and applications for DIA has expanded over
the years, it will benefit from additional improvements and
new labeling strategies for accurate and reproducible
quantitation.

6.4 | Special considerations: MSI

High throughput data collection is key in developing new
analytical techniques. Thus, the application of quantitative
methods to imaging was a natural transition to acquire
both spatial and quantitative information in a single in-
strumental run. Some applications have been discussed
briefly above (see Section 5.3) (Zhang, Ye, et al., 2012;

Zhang et al., 2013; Zhong et al., 2012), but the streamlining
of methods has obtained a lot of attention recently for
drugs and metabolites (Pirman, 2015; Sun & Walch, 2013).
While this has not been fully developed for neuropepti-
domics, it could be easily implemented in the future. It
should be noted that these techniques still require further
development to become more common practice in the
scientific community (Cillero‐Pastor & Heeren, 2014).

As stated above, there are label‐free and label‐based
techniques for acquiring quantitative information from
samples. LFQ is the most commonly used in MSI, including
the use of a calibration curve or an internal standard
(Clemis et al., 2012; Goodwin et al., 2012; Groseclose &
Castellino, 2013; Hamm et al., 2012; Lanekoff &
Laskin, 2017; Nakanishi et al., 2014; Rodrigues et al., 2014;
Shariatgorji et al., 2014). In these cases, usually the standard
(s) are either spotted onto the tissue or added to the MALDI
matrix solution before its application. Alternatively, the use
of multiple isotopically labeled standards can be sprayed
onto the tissue section for use as internal standards (Dewez
et al., 2021). Koeniger et al. (2011) have taken a more un-
ique approach by taking nearby, separate sections for MSI
and LC‐MS quantitation, since serial sections have similar
analyte concentrations. This approach requires homogenous
tissues. MSI, label‐based quantitation applications are still
novel. The only published example utilizes a duplex‐isotopic
immunohistochemical staining azo dye which, after laser
energy absorption, produces signature reporter ions sepa-
rated by 5Da (Wang, DeGnore, et al., 2015). While all these
methods seem promising, without the ability to process this
data quickly, the throughput of quantitative MSI is limited.
Some groups have produced software for on‐tissue calibra-
tion curve quantitation, both open source (e.g., MSiReader)
or commercial (e.g., SCiLS or Quantinetix) (Kallback
et al., 2012; Robichaud et al., 2013). More effort needs to be
applied to developing additional bioinformatics tools in
this area.

The generation of a calibration curve using a peptide
standard to absolutely quantify neuropeptides is considered
the gold standard. This can be performed on a variety of
instruments and does not require many biological replicates
to produce confident results. However, peptide standard
synthesis is expensive. Additionally, if the neuropeptides
selected for quantification exclude other comodulating neu-
ropeptides involved in a particular biochemical pathway,
incorrect conclusions might be drawn. As only a small
number of discovered neuropeptides have been functionally
evaluated, there is high risk of not selecting all the neuro-
peptides involved in the pathway. In this case, it is better to
perform global profiling analyses to detecting as many neu-
ropeptides as possible simultaneously. Therefore, the next
best alternative for quantitation is to either incorporate iso-
topes into animals before sample collection or to chemically
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derivatize the animal samples after collection. For both
methods, the optimal means would involve detection of the
same neuropeptides in all conditions, while also not detect-
ing any non‐modified neuropeptides. Additionally, in che-
mical derivatization, a 100% labeling efficiency would be
achieved. Overall, global profiling of changes in neuropep-
tide expression can serve as a foundation to understand
neuropeptide function and dysregulation.

7 | FUNCTIONAL STUDIES

Neuropeptides impact a large and diverse array of physio-
logical processes (Insel, 2010; Mills et al., 2020; Neumann &
Landgraf, 2012; Steinhoff et al., 2014; Wang et al., 2021; Xu
et al., 2020). Functional elucidation is not trivial notably
due to neuropeptide co‐transmission capabilities (Nusbaum
et al., 2017) and pleiotropic nature (Souza‐Moreira
et al., 2011). Changes in neuropeptide abundance and lo-
calization can act as a foundation for functional studies
since dysregulation of these characteristics indicate an ab-
normal or disease state (DeLaney, Buchberger, & Li, 2018)
(see elsewhere in this review). Thus, MS‐based quantifica-
tion of neuropeptides can be exploited to understand neu-
ropeptide expression level changes under physiological and
pathological conditions. For example, Ye et al. (2017) pro-
filed neuropeptide expression changes due to differential
food intake and functionally validated the role of sig-
nificantly changed neuropeptides by injecting them into
rats. This section focuses on physiology‐ and microdialysis‐
based functional studies where neuropeptides are the target
analyte. Yet, it is also worth noting that neuropeptide re-
ceptor dynamics also play a critical role in neuropeptide
function (DeLaney et al., 2018).

7.1 | Physiology‐based functional
studies

Besides MS, other techniques are often used to understand
neuropeptide function, and these characterizations are
critical for development of therapeutics. For example, pi-
tuitary adenylate cyclase activating polypeptide, known to
improve cornea health, is shown by Kovacs et al. (2020) to
be resistant to degradation in solution, demonstrating its
potential for use in eye drops. A common technique to
investigate neuropeptide function is overexpression of the
peptide in an animal model. Transgenic mice over-
expressing thyrotropin‐releasing hormone exhibit higher
blood pressure and heartbeat rate (Landa et al., 2020).
Since the development of transgenic animal models is
difficult and costly, so alternative methods are often
preferred.

Neuropeptide function are often characterized by ex-
amining physiological effects in vitro or ex vivo. Such studies
allow the researcher to control experimental parameters
better than in in vivo experiments. For example,
somatostatin/allatostatin‐C ArSS2 standards have a relaxa-
tion effect on dissected starfish tube foot, apical muscle, and
cardiac stomach muscle contractions (Zhang, Yanez Guerra,
et al., 2020). Muscle contractions are typically recorded using
a timer or by connecting the tissue to a force‐displacement
transducer or similar instrument recording contraction force.
Manual counting is advantageous when studying small an-
imals as employed in a recent study on the effect of adipo-
kinetic hormone Carmo‐HrTH‐II neuropeptide on heartbeat
rate (Katali et al., 2020). Since certain invertebrates, includ-
ing decapod crustaceans, have neurogenic hearts, neuro-
peptide modulation of cardiac function has become a field of
interest, broadly reviewed by Calabrese et al. (2016).
Marciniak et al. (2020) showed that FMRF6 causes a de-
crease in beetle heartbeat rate and an increase in hindgut
contractions. Dickinson et al. perfused shrimp pyrokinin
PevPK2 neuropeptide onto a lobster heart to observe an in-
crease in heartbeat rate and amplitude and decrease in heart
contraction duration. Altering the peptide sequence resulted
in a loss of activity (Dickinson et al., 2015). The Dickinson
group used semi‐intact heart preparations to evaluate the
neuropeptide modulation of heart (Wiwatpanit et al., 2012)
and also published a review on crustacean neuropeptide
modulation of pattern generating systems (Dickinson
et al., 2016). Cardiac assays have also been performed on
mammals. Studneva et al. (2019) administered forms of ga-
lanin to myocardial injury‐induced rats and recorded blood
pressure and heart rate in vivo.

Additional methods to investigate neuropeptide
function measure biochemical effects. Wei et al. (2020)
cultured crab hepatopancreas tissue and applied crus-
tacean cardioactive peptide (CCAP), measuring an in-
crease in nitric oxide and resulting improved bacterial
clearance in the medium. To investigate the impact of
neuropeptides on reproduction, Chieu, Turner, et al.
(2019) incubated dissected sea cucumber ovarian tu-
bules in solutions containing gonad‐stimulating peptide
and observed oocyte maturation. Hao et al. (2019) in-
jected newly synthesized diapause hormone (DH)‐like
peptides into locusts and found some peptides to induce
diapause in eggs. Atkins et al. (2018) applied neuro-
peptides, including arginine vasopressin to excite rat
optic nerves ex vivo to evaluate their involvement in the
regulation of circadian rhythm.

One strategy is to minimize sample handling, as seen in
the use of microfluidic platform to culture neurons in a ca-
pillary and directly analyze secreted neuropeptides by MS
(Lee et al., 2016). While in vitro and ex vivo experiments
have their clear benefits, there is a push towards in vivo
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approaches, particularly when translation to therapeutics is
aimed for.

7.2 | Microdialysis‐based functional
studies

Microdialysis probes in or adjacent to the location injected
with peptides can be used to collect local perfusates.
Guvenc‐Bayram et al. (2020) observed an increase in
prostaglandin in mice hypothalamic injected with nefastin
1, indicating that this peptide activates the arachidonic
acid‐cyclooxygenase and ‐lipoxygenase signaling pathway.
Our lab has recently investigated neuropeptides im-
plicated in circadian rhythm using microdialysis (Liang
et al., 2015), after the development of a protocol for the in
vitro microdialysis of a neuropeptide standard as well as
the in vivo microdialysis sampling of neuropeptides from a
live crab (Behrens & Li, 2010). Using microdialysis cou-
pled with MS, Mabrouk and Kennedy (2012).

Bulbul et al. administered neuropeptide‐S into Parkin-
son's disease‐induced rats and observed increased dopamine
levels (collected via microdialysis) 7 days after the adminis-
tration. This suggests that the peptide has protective effects
in the brain (Bulbul et al., 2019). Grund et al. (2017) ex-
amined potential anxiety disorder therapeutics and saw that
neuropeptide S stimulates oxytocin release (Figure 4). Cui
and Smith (2019) studied the neuronal regulation of obesity
and demonstrated an increase in agouti‐related peptide
release when Gs‐linked G protein‐coupled receptors were
activated. Willie et al. (2012) combined intracerebral micro-
dialysis and electroencephalography/electromyography with
motor activity monitoring to study the effect of orexin neu-
ropeptides in brain injury. In addition to roles in biochemical
signaling, certain neuropeptides have measurable behavioral
effects. Lee et al. delivered oxytocin neuropeptide into mice
and observed a decrease in the rate by which mice self‐
administered the drug methylphenidate (CNS stimulant)
along with differential regulation of dopamine levels (col-
lected via microdialysis from mice that were randomly im-
planted in the right or left brain side) between different brain
regions (Lee et al., 2019). A logical next step is to expand the
number of simultaneously measurable characteristics, parti-
cularly during in vivo experiments, and to increase the
sensitivity for neuropeptide detection, such as by improving
sample preparation methods (see Section 2).

8 | CONCLUSIONS

In the last decade, significant advances in MS instrumenta-
tion and associated technologies have accelerated the pro-
gress of neuropeptide research, enabling high throughput

neuropeptidome characterization. As the biological im-
portance of neuropeptides is increasingly realized, we predict
that more people will be attracted to study them and conduct
more in‐depth investigations. However, compared to well‐
established proteomic workflows and tools, there are still
many technological gaps to be filled, and implementation of
advancements in proteomics tools should be more readily
applied to neuropeptidomics. Techniques capable of reliably
enriching scarcely distributed neuropeptides and removing
interfering substances are in high demand. As neuropeptides
vary in length and structure, there is a need for customized
MS approaches to be developed based on each particular
family, class, and even isoform of neuropeptides being tar-
geted to enable obtaining comprehensive MS/MS spectra.
For MSI, areas of interest are developing more robust sample
preparation techniques, improving spatial resolution, in-
creasing throughput, and development of quantitation
methods. Algorithms that are capable of integrating pro-
hormone cleavage preferences would be beneficial in per-
forming mature neuropeptide prediction from genomes as
they are increasingly being sequenced. Further advances in
bioinformatics must keep up such that all MS data will be
interpreted in a convenient fashion while providing rich
chemical information. Although empirical determination of
individual neuropeptide functions is highly valuable, the
time it takes to do so can be considered a bottleneck step in
the overall pipeline from discovery to therapeutics. To im-
prove and facilitate interpretation of neuropeptidomics data,
methods capable of elucidating neuropeptide comodulation
must be developed. Finally, further development of sensitive,
reliable quantitation approaches that can handle limited
sample amount will be key to allow cross comparisons of
neuropeptides in a high throughput manner. While the field
of neuropeptide analysis by MS has seen great advances over
the years, the incorporation of more advanced techniques
and tools in the future will greatly benefit our understanding
of neuropeptides and neurochemical signaling.
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