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Abstract— In this paper, we consider a scheduling problem,
in which several streams of status update packets with different
priority levels are sent through a shared channel to their des-
tinations. We introduce a notion of lexicographic age optimality,
or simply lex-age-optimality, to evaluate the performance of
multi-class status update policies. In particular, a lex-age-optimal
scheduling policy first minimizes the Age of Information (AoI)
metrics for high-priority streams, and then, within the set of
optimal policies for high-priority streams, achieves the mini-
mum AoI metrics for low-priority streams. We propose a new
scheduling policy named Preemptive Priority, Maximum Age
First, Last-Generated, First-Served (PP-MAF-LGFS), and prove
that the PP-MAF-LGFS scheduling policy is lex-age-optimal. This
result holds (i) for minimizing any time-dependent, symmetric,
and non-decreasing age penalty function; (ii) for minimizing
any non-decreasing functional of the stochastic process formed
by the age penalty function; and (iii) for the cases where
different priority classes have distinct arrival traffic patterns,
age penalty functions, and age penalty functionals. For example,
the PP-MAF-LGFS scheduling policy is lex-age-optimal for min-
imizing the probability of age violation of a high-priority stream
and the time-average age of a low-priority stream. Numerical
results are provided to illustrate our theoretical findings.

Index Terms— Status updates, Age of Information (AoI), multi-
class systems, priority queuing, lexicographic optimality.

I. INTRODUCTION

DUE to the proliferation of cheap hardware, remote mon-
itoring has been adopted in many cyber-physical sys-

tems. In these applications, a monitor is interested in timely
updates about the status of a remote system. These status
updates range from the position and velocity of vehicles in

Manuscript received August 27, 2021; revised February 1, 2022; accepted
March 16, 2022. Date of publication March 28, 2022; date of current version
May 18, 2022. This work has been supported by ONR N000141812046, NSF
CCF1813078, NSF CNS1551040, NSF CCF1420651, and ONR N00014-
17-1-2417. Yin Sun’s work has also been supported in part by NSF grant
CCF-1813050, and ARO grant W911NF-21-1-0244. An earlier version of
this paper was presented in part at the 18th International Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOpt 2020) [1]. The associate editor coordinating the review of this
article and approving it for publication was H. Jiang. (Corresponding author:
Ali Maatouk.)

Ali Maatouk and Mohamad Assaad are with the Laboratoire des Sig-
naux et Systèmes, CentraleSupélec, 91190 Gif-sur-Yvette, France (e-mail:
ali.maatouk@centralesupelec.fr).

Yin Sun is with the Department of Electronics and Computer Engineering
(ECE), Auburn University, Auburn, AL 36849 USA.

Anthony Ephremides is with the Department of Electronics and Computer
Engineering (ECE), University of Maryland, College Park, MD 20742 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCOMM.2022.3162648.

Digital Object Identifier 10.1109/TCOMM.2022.3162648

autonomous driving to the temperature and humidity levels of
a certain area in environmental monitoring. In [2], the Age of
Information (AoI) was proposed to measure the timeliness of
status updates. Due to its widespread application range and
its ability to quantify the freshness of information, the AoI
has attracted a significant surge of interest in recent years
[2]–[16]. In particular, transmission scheduling of multiple
update streams in both centralized and distributed settings
has been explored in [5], [17]–[27]. For example, the authors
in [17] proposed both age-optimal and near age-optimal
scheduling policies for the single and multi-server cases,
respectively (we refer the readers to [28, Chapter 2]).

In a variety of real-life applications, information streams
are assigned different priorities based on how crucial and
time-sensitive their data are. A simple example is a vehicular
network where data can be divided into two categories: crucial
safety data and non-safety-related information. As the former
is more time-sensitive than the latter, it should always be
given a higher priority by the service facility [29]. Accord-
ingly, priority-based scheduling problems have been exten-
sively studied in the queuing theory literature for different
performance measures (e.g., delay, and throughput). In [30],
a notion of lexicographic optimality, or simply, lex-optimality,
was introduced for throughput maximization in multi-class
scheduling scenarios. The idea of lex-throughput-optimality
is to first find a class of optimal scheduling policies Πopt that
maximize the throughput of a high priority class, and then
find the optimal scheduling policies within Πopt that maximize
the throughput of the low priority class. Therefore, it provides
high priority streams the best possible service, and meanwhile,
optimizes the performance of the low priority streams without
affecting that of high priority ones.

There are few recent studies on status updates with multiple
priority classes. In [31], multiple information streams with
distinct priorities are processed at a common service facility.
The facility can have one waiting room for storing a status
update packet and the waiting room is shared by all the
streams. The authors studied a case where low priority packets
are preempted by high priority ones and the preempted packets
are discarded. Using a tool named Stochastic Hybrid Systems
(SHS), the authors found an expression for the average age
of each stream. The arrival rate of each stream was then
optimized accordingly. In another work [32], the authors
investigated the same settings of [31] but by letting each
stream have its own buffer space. Most recently, closed forms
of the average Peak Age of Information (PAoI) were found
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in M/M/1/1 settings where streams are assigned different
priorities [33]. Existing research efforts have been focused on
finding closed-form expressions of the average AoI/PAoI in a
particular scenario and for a specific arrival traffic model, pro-
viding insights on the performance of the system. Nonetheless,
how to optimize the age performance of status updates with
multiple priorities remains to be a fundamental open question.
In this paper, we provide an answer to this question. The key
contributions of this paper are summarized as follows:

• We introduce the notion of lexicographic optimality
for age minimization, which we will refer to as the lex-
age-optimality. The lex-age-optimality captures both the
age-optimality and priorities in a multi-class scheduling
for minimizing the AoI. It guarantees that the age perfor-
mance of low priority streams is optimized while ensuring
that high priority streams are not affected.

• In the case of a single server with i.i.d. expo-
nential service times, we propose a scheduling pol-
icy named Preemptive Priority, Maximum Age First,
Last-Generated, First-Served (PP-MAF-LGFS). Using
a sample-path argument, we show that this policy is
lex-age-optimal. Our lex-age-optimality results are not
constrained to the minimization of the average AoI
previously adopted in [31]–[33]. In fact, they hold
for (i) minimizing any time-dependent, symmetric, and
non-decreasing penalty function of the ages, and (ii) min-
imizing any non-decreasing functional of the age penalty
process. Unlike the previous works on multi-class status
updates [31], [33], our lex-age-optimality results are not
limited to a given traffic arrival process. Moreover, they
hold when the priority classes have distinct traffic patterns
and age penalty functionals. For example, we could be
interested in minimizing the probability of age violation
for a class and the average AoI for another. Similar
lex-age-optimality results can be also established for
discrete-time systems and status updates over a wireless
fading channel, as explained in Remark 1.

The rest of the paper is organized as follows: Section II is
dedicated to the system model where the required definitions
and the queuing model are presented. In Section III, we intro-
duce the notion of lex-age-optimality and prove that the
PP-MAF-LGFS policy is lex-age-optimal. Numerical results
that corroborate these findings are laid out in Section IV while
the paper is concluded in Section V.

II. SYSTEM MODEL

A. Notations and Definitions

We let x and x denote deterministic scalars and vectors,
respectively. Similarly, we will use X and X to denote
random scalars and vectors, respectively. Let xi denote the
i-th element of vector x, and let x[i] denote the i-th largest
element of vector x. Hence, x[1] and x[N ] denote the largest
and smallest elements of vector x, respectively. We denote
by [x] = [x[1], x[2], . . . , x[N ]]T the sorted version of vector
x in the descending order. Vector x ∈ R

N is said to be
smaller than y ∈ R

N , denoted by x ≤ y, if xi ≤ yi for
i = 1, . . . , N . The composition of two functions f and g is

denoted by f ◦ g(x) = f(g(x)). A function p : R
N �→ R is

said to be symmetric if p(x) = p([x]) for all x ∈ R
N . In other

words, the value of the function p(x) is invariant by permuting
the elements of x [34]. Next, we define stochastic ordering,
which we will use in subsequent age-optimality analysis.

Definition 1 (Stochastic Ordering of Random
Variables [35]): A random variable X is said to be
stochastically smaller than another random variable Y ,
denoted by X ≤st Y , if Pr(X > t) ≤ Pr(Y > t) ∀t ∈ R.

Definition 2 (Stochastic Ordering of Random Vectors [35]):
A set U ⊆ R

N is called upper if y ∈ U whenever x ≤ y
and x ∈ U . Let X and Y be two N -dimensional random
vectors, X is said to be stochastically smaller than Y , denoted
by X ≤st Y , if

Pr(X ∈ U ) ≤ Pr(Y ∈ U ) for any upper set U ⊆ R
N .

(1)

Definition 3 (Stochastic Ordering of Stochastic
Processes [35]): A stochastic process {X(t), t ≥ 0} is said
to be stochastically smaller than another stochastic process
{Y (t), t ≥ 0}, denoted by {X(t), t ≥ 0} ≤st {Y (t), t ≥ 0},
if for any sequence of time instants t1 < t2 < . . . < tm ∈ R

+

(X(t1), X(t2), . . . , X(tm)) ≤st (Y (t1), Y (t2), . . . , Y (tm)).
(2)

Let V be the set of Lebesgue measurable functions on
[0,∞), i.e.,

V = {g : [0,∞) �→ R is Lebesgue measurable}. (3)

A functional φ : V �→ R is said to be non-decreasing
if φ(g1) ≤ φ(g2) holds for all g1, g2 ∈ V that satisfy
g1(t) ≤ g2(t) for t ∈ [0,∞). We note that {X(t), t ≥ 0} ≤st

{Y (t), t ≥ 0} if, and only if, [35]

E[φ({X(t), t ≥ 0})] ≤ E[φ({Y (t), t ≥ 0})] (4)

holds for every non-decreasing functional φ for which the
expectations in (4) exist.

B. Queuing Model

Consider the status-update system illustrated in Fig. 1,
where N streams of status update packets are sent through a
shared service facility. Each update stream has a queue, which
could have an infinite or finite buffer space. The server can
process at most one packet at a time. The packet service times
are i.i.d. across streams and packets. The packet streams are
divided into I priority classes, with streams from the same
class having the same priority. Each stream is indexed by two
numbers (i, j), where i is the class index and j is the stream
index within class i. The classes are indexed in a decreasing
order of priority. In other words, classes 1 and I are the
highest and lowest priority classes, respectively. Let Ji be the
number of steams in class i. Let si,j and di,j denote the source
and destination nodes of stream (i, j), respectively. Different
streams may have different source and/or destination nodes.

The system starts operating at time t = 0. The n-th update
packet of stream (i, j) is generated at time Si,j

n , arrives to the
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Fig. 1. System model.

stream’s buffer at time Ai,j
n , and is delivered to the destination

di,j at time Di,j
n . Accordingly, we always have 0 ≤ Si,j

1 ≤
Si,j

2 ≤ . . . and Si,j
n ≤ Ai,j

n ≤ Di,j
n . We consider the following

synchronized packet generation and arrival processes.
Definition 4 (Intra-Class Synchronized Generations and

Arrivals): The packet generation and arrival times are said to
be synchronized across streams within each class, if for each
class i = 1, . . . , I , there exist two sequences {Si

1, S
i
2, . . .} and

{Ai
1, A

i
2, . . .} such that for all n = 1, 2, . . . and j = 1, . . . , Ji

Si,j
n = Si

n, Ai,j
n = Ai

n. (5)

We restrict our attention to the above packet generation
and arrival processes because establishing the lex-age-optimal
policy in the general case is challenging, as will be shown
later in the proof of Theorem 1. Note that we let each
class have its unique traffic pattern as we do not impose
inter-class synchronization. In practice, the synchronization
between streams within each class occurs when these streams
are synchronized by the same clock, as in monitoring and
control applications [36], [37]. Another example is a vehicular
network where high priority data such as position and velocity
are generated every T time units, while other data of lower
priority can have a different traffic pattern (e.g., updates on the
traffic are generated every T � time units) [29]. It is important
to note that, if Ji = 1, there is only one stream in class i and
the stream could have arbitrary packet generation and arrival
processes. For example, our study holds even for out-of-order
packet arrivals, i.e., Si

n < Si
n+1 but Ai

n > Ai
n+1, which were

not allowed in the models of [31], [33]. In the following, we let

I = {(Si
n, Ai

n), i = 1, . . . , I, n = 1, 2, . . .} (6)

denote the sequence of generation/arrival times for all the
classes of streams. We suppose that I is independent of the
service times of the packets and is not altered by the choice
of the scheduling policy.

Let π represents a scheduling policy that determines which
packets from which streams to send over time. Let Π denotes
the set of all causal scheduling policies, in which the decisions
are made without using any future knowledge. A policy is
said to be work-conserving if the service facility is kept busy
whenever there exists at least one packet in the queues. We let
Πwc ⊂ Π denote the set of work-conserving causal policies.

A policy is said to be preemptive if it allows the service facility
to switch to transmitting another packet at any time.

C. Age Penalty Functions and Functionals

The age of information of stream (i, j) at time t is:

Δi,j(t) = t − max{Si,j
n : Di,j

n ≤ t, n = 1, 2, . . .}, (7)

which is the difference between the current time t and the
generation time of the freshest packet that has been delivered
to the destination di,j . Let Δi(t) = (Δi,1(t), . . . , Δi,Ji(t))
denote the age vector at time t of all streams belonging to
class i, and let Δ(t) = (Δ1(t), . . . ,ΔI(t)) denote the age
vector of all streams at time t.

We introduce an age penalty function pt ◦ Δi(t) that
represents the level of dissatisfaction with the aged information
of class i at time t, where pt : R

Ji �→ R is a non-decreasing
function of Δi(t). Some commonly used age penalty functions
are listed below.

• The sum age of the Ji streams:

psum ◦ Δi(t) =
Ji∑

j=1

Δi,j(t). (8)

• The maximum age of the Ji streams:

pmax ◦ Δi(t) = max
j=1,...,Ji

Δi,j(t). (9)

• The average age threshold violation of the Ji streams:

pexceed−α ◦ Δi(t) =
1
Ji

Ji∑
j=1

�{Δi,j(t)>α}. (10)

where �{.} is the indicator function, and α is a fixed age
threshold that should not be violated.

• The sum age penalty function of the Ji streams:

ppen ◦ Δi(t) =
Ji∑

j=1

g(Δi,j(t)), (11)

where g : R
+ �→ R is a non-decreasing function. For

instance, an exponential function g(Δi,j) = exp(aΔi,j)
with a > 0 can be used for control applications where
the system is vulnerable to outdated information and the
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need for fresh information grows quickly with respect to
the age [11], [38].

We focus on the family of symmetric and non-decreasing
penalty functions:

Psym ={p : [0,∞)N �→ R is symmetric and non-decreasing}.
This class of penalty functions Psym is fairly large, and
include the age penalty functions in (8)-(11). Furthermore,
we point out that pt can change over time, which represents
the time-variant importance of the information streams. This
highlights the generality of the class of penalty functions that
we consider.

In addition to age penalty functions, we use non-decreasing
functionals φ({pt ◦ Δi(t), t ≥ 0}) of the age penalty process
{pt◦Δi(t), t ≥ 0} to represent the level of dissatisfaction with
the aged information of class i, which is called age penalty
functionals. One example of age penalty functionals is the
time-average age penalty:

φavg({pt ◦ Δi(t), t ≥ 0}) =
1
T

∫ T

0

pt ◦ Δi(t)dt. (12)

Different priority classes can have distinct age penalty func-
tions and functionals. This is important because each priority
class typically represents a different application and has its
own data timeliness requirements. For example, in vehicular
networks, time-crucial safety data related to vehicle position
should be delivered promptly. Typically, the system perfor-
mance is affected by the probability of violation of an age
threshold. Accordingly, we can choose the excess age penalty
function pexceed−α and the time-average age penalty functional
φavg for this class of traffic. On the other hand, for example,
we can choose the penalty function psum and the time-average
age penalty functional φavg for the updates on gas tank
levels. This further highlights the generality of our considered
framework.

In the following, we use {Δi
π(t), t ≥ 0} and {pt ◦

Δi
π(t), t ≥ 0} to represent the stochastic age process and

age penalty process of class i, respectively, when policy π
is adopted. We assume that the initial age Δπ(0−) at time
t = 0− is the same for all π ∈ Π.

III. MULTI-CLASS MULTI-STREAM SCHEDULING

A. Lexicographic Age Optimality

In the following, we introduce the notion of lexicographic
optimality for age minimization, which is referred to as the lex-
age-optimality. Recent efforts on age analysis in multi-class
systems focused mainly on finding closed-form expressions of
the average AoI/PAoI a particular scheduling policy [31]–[33].
Note that, in the multi-class system case, the minimization of
the total average AoI/PAoI falls short in capturing the differ-
ences in priority between the classes. In fact, this approach lets
each stream contribute equally to the penalty of the system
regardless of its class. As it will be shown below, the lex-
age-optimality not only solves this issue but also provides a
new research direction for age analysis in multi-class timely
status-update systems.

Definition 5 (Lex-Age-Optimality): A scheduling policy
P ∈ Π is said to be level-1 lex-age-optimal within Π if for
all I , pt ∈ Psym and π ∈ Π

[{pt ◦ Δ1
P (t), t ≥ 0}|I ] ≤st [{pt ◦ Δ1

π(t), t ≥ 0}|I ]. (13)

We let Π1
lex-opt ⊂ Π denote the set of scheduling policies that

are level-1 lex-age-optimal. In addition, policy P is said to be
level-k lex-age-optimal for k = 2, . . . , I if it is level-(k − 1)
lex-age-optimal, and for all I , pt ∈ Psym and π ∈ Πk−1

lex-opt

[{pt ◦ Δk
P (t), t ≥ 0}|I ] ≤st [{pt ◦ Δk

π(t), t ≥ 0}|I ], (14)

where Πk−1
lex-opt is the set of scheduling policies that are level-

(k−1) lex-age-optimal. If policy P is level-I lex-age-optimal,
it is said to be lex-age-optimal.

According to (4), (13) can be equivalently expressed as

E[φ({pt ◦ Δ1
P (t), t ≥ 0})|I ]

= min
π∈Π

E[φ({pt ◦Δ1
π(t), t ≥ 0})|I ], (15)

for all I , pt ∈ Psym, and non-decreasing functional φ :
V �→ R, provided that the expectations in (15) exist.
Similarly, an equivalent formulation of the level-k lex-age-
optimality (14) of a policy P ∈ Πk−1

lex-opt is

E[φ({pt ◦ Δk
P (t), t ≥ 0})|I ]
= min

π∈Πk−1
lex-opt

E[φ({pt ◦Δk
π(t), t ≥ 0})|I ], (16)

for all I , pt ∈ Psym, and non-decreasing functional
φ : V �→ R, provided that the expectations in (16) exist.

The goal of the lex-age-optimality is to first guarantee the
age-optimality of high priority classes, and then optimize the
age performance of the low priority classes accordingly. To see
how this is achieved, we recall from (15) that a level-1 lex-
age-optimal policy P achieves the smallest possible expected
value of any non-decreasing functional φ of the stochastic age
penalty process [{pt ◦ Δ1(t), t ≥ 0})|I ] among all causal
policies. Next, to maintain the age-optimality of the highest
priority class, our attention is restricted to the set of scheduling
policies that are level-1 lex-age-optimal. We have denoted this
set by Π1

lex-opt. To that end, and as seen in (16), a policy P
is level 2 lex-age-optimal if it achieves the smallest possible
expected value of any non-decreasing functional φ of the sto-
chastic age penalty process [{pt◦Δ2(t), t ≥ 0})|I ] among all
level-1 lex-age-optimal policies. This showcases how the lex-
age-optimality captures the priority of streams since, by defi-
nition, lex-age-optimal policies grant high priority streams the
best possible age performance without being influenced by
low priority streams. Then, while ensuring the age-optimality
of the high priority streams, the age performance of the low
priority streams is optimized. Consequently, we can see that
the lexicographic age-optimality framework imposes a hard
priority order between the streams, contrasting the soft priority
order achieved through the weighted AoI approach [18].
In fact, in the latter, a lower priority class can, at some point,
become more privileged to access the server once its weighted
AoI is large. On the contrary, the lexicographic age framework
provides a hard priority order between the streams. To that
end, no matter what the AoI of the other classes is, the higher
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priority classes will always be privileged for transmission if
that transmission reduces their AoI.

B. Lex-Age-Optimal Scheduling

We consider the case where the service time of each packet
is exponentially distributed with service rate μ. To address this
multi-stream scheduling problem, we first lay out the notion
of informative packets.

Definition 6 (Informative and Non-Informative Packets):
Consider a packet of stream (i, j) that is generated at time
Si,j

n ≤ t. The packet is said to be informative (non-
informative) at time t if t−Si,j

n < Δi,j(t) (t−Si,j
n ≥ Δi,j(t)),

i.e., the age of the packet is (not) smaller than Δi,j(t).
Equipped with the above definition, we consider in the

following several scheduling disciplines that are based on
informative packets.

Definition 7 (Preemptive Priority (PP) Policy Based on
Informative Packets): Among the streams with informative
packets, the streams with the highest priority are served first.
When an informative packet arrives, if it has a higher priority
than the packet that is being served, it will preempt the packet
under service. If the preempted packet is informative, it is
stored back to the queue; if the preempted packet is non-
informative, it can be either stored back to the queue or
dropped.

Definition 8 (Maximum Age First (MAF) Policy): Among
the streams from the same priority class, the stream with the
maximum age is served first; when multiple streams have the
same maximum age, ties can be broken arbitrarily.

Definition 9 (Last-Generated, First-Served (LGFS) Policy):
Among the informative packets from a stream, the last gen-
erated informative packet is served first; when multiple infor-
mative packets have the same latest generated time, ties can
be broken arbitrarily.

By combining the above three service disciplines, we pro-
pose a new scheduling policy called Preemptive Pri-
ority, Maximum Age First, Last-Generated, First-Served
(PP-MAF-LGFS) policy, which is defined as follows.

Definition 10 (Preemptive Priority, Maximum Age First,
Last-Generated, First-Served Policy): This policy is preemp-
tive, work-conserving, and obeys the following set of schedul-
ing rules:

• If there exist informative packets, the system will serve
an informative packet that is selected as follows

– among all streams with informative packets, pick the
class of streams with the highest priority;

– among the streams from the selected priority class,
pick the stream with the maximum age, where ties
can be broken arbitrarily;

– among the informative packets from the selected
stream, pick the last generated informative packet,
where ties can be broken arbitrarily;

• if there exists no informative packet, the system can serve
any non-informative packet or be idle.

As can be seen above, a crucial aspect of the
PP-MAF-LGFS policy is that informative packets should not
dropped, which will be shown later to be essential for lex-age-
optimality. Because of this, the packet management strategies

in [10] are not suitable for multi-class age-based scheduling.
As for non-informative packets, our proposed policy can either
drop them or serve them after all the informative packets have
been processed, which does not affect the AoI performance of
the proposed policy or its lex-age-optimality. Although non-
informative packets are not necessary for reducing the age, but
in many applications, they may still be needed at the monitor
(e.g., information updates on social network or stock market).
Note that in the case of a single priority class (i.e., I = 1), the
proposed policy coincides with the preemptive Maximum Age
First, Last-Generated, First-Served (MAF-LGFS) scheduling
policy proposed in [17], which was shown to be the optimal
scheduling policy in this special case.

By definition, our policy ensures that the service of high
priority informative packets is not interrupted or influenced
by any lower priority informative packets. This grants crucial
timely packets the best possible service. Note that informative
packets play a key role in our policy. In particular, the preemp-
tive priority discipline that we consider is a dynamic priority
rule in which the priority level depends on the existence of
informative packets: If a stream from class 1 has informative
packets, the stream has the highest priority; otherwise, if the
stream does not have any informative packets, the stream has
the lowest priority, even lower than the streams in the lowest
class I that have informative packets. This non-trivial aspect
of our policy ensures that low priority classes are provided
with the best possible opportunity for transmission while not
affecting the age of the high priority streams. On another note,
our policy ensures that the freshest packets from the selected
priority class are delivered first. These key observations are
crucial and will be used to establish the lex-age-optimality of
the PP-MAF-LGFS policy.

Theorem 1 (Multiple Streams per Priority Class): If (i) the
packet generation and arrival times are synchronized across
streams within each class, and (ii) the packet service times are
exponentially distributed and i.i.d. across streams and time,
then the PP-MAF-LGFS policy is lex-age-optimal.

Proof: This theorem is proven by using an inductive
sample-path comparison. Specifically, we first proceed with a
stochastic coupling between any two work-conserving policies
P, π ∈ Πwc. Next, we show by induction that the set of
scheduling rules that the PP-MAF-LGFS policy satisfies are
sufficient and necessary for level-k lex-age-optimality for
k = 1, . . . , I . Contrary to previous sample-path proofs in the
literature (e.g., in [17]), showing these scheduling rules are
sufficient for optimality is not enough for proving Theorem 1.
In fact, in order to prove level-(k + 1) lex-age-optimality,
one need to exactly characterize all the level-k lex-age-
optimal scheduling policy in Πk

lex-opt. This requirement poses
several technical difficulties, which are solved in our proof
by showing the necessity of the scheduling rules in Defini-
tion 10 for level-k lex-age-optimality. The details can be found
in Appendix A.

Theorem 2 (One Stream per Priority Class): If (i) the
packet service times are exponentially distributed and i.i.d.
across streams and time, and (ii) each priority class has only
one stream, then the PP-MAF-LGFS policy is lex-age-optimal
for arbitrary packet generation and arrival processes.
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Proof: When there is only one stream in each class i
for i = 1, . . . , I , then the intra-class synchronization assump-
tion reduces to the arbitrary packet generation and arrival
processes case. To that end, the theorem can be concluded
from the proof of Theorem 1.

To the best of our knowledge, this is the first lex-age-
optimality result for multi-class status updates. Our result
is strong as the optimality is established in terms of sto-
chastic ordering of stochastic processes for all symmetric
non-decreasing penalty functions, and for all non-decreasing
age penalty functionals. What makes these results further
interesting is that the priority classes can have different traffic
patterns, age penalty functions, and age penalty functionals.
As it was previously explained in Section II-C, this is of
paramount importance as priority classes typically represent
different applications, each with their own traffic arrivals
and data timeliness requirements. For example, in a certain
scenario, we can be interested in minimizing the time-average
sum-age for class 1 and the probability of age threshold
violation for class 2. Theorem 1 guarantees that our proposed
policy achieves the required data timeliness goal for any of
these cases, despite the differences in age penalty functions
and functionals between the classes.

Remark 1: Theorems 1 and 2 can be readily generalized to
discrete-time systems, where the packets are of the same trans-
mission time duration, i.e., one time slot, and the transmission
error probability is the same for every packet. By this, one
can show that the PP-MAF-LGFS policy is lex-age-optimal
in status updates over a wireless fading channel, where the
transmission error probability is determined by the data rate,
transmission power, and channel state distribution. The proof
techniques of these results are quite similar to their continuous-
time counterpart; the only difference is that Lemma 1 should
be replaced by a discrete-time coupling lemma, which can
be proven by using the memoryless property of geometric
distribution. It appears to be challenging to generalize the
results to the scenarios in which the packets from different
priority classes have different service rates (in the continuous-
time setting) or different transmission error probabilities (in
the discrete-time setting) due to difficulties in establishing the
coupling lemma (Lemma 1). We note that these results do not
apply to peak age minimization because the peak age is not a
non-decreasing functional of the AoI process.

IV. NUMERICAL RESULTS

In this section, we consider a vehicle in a V2X (Vehicle-
To-Everything) network that sends packets to nearby vehicles
and roadside units (see [29], [39] for two surveys). In the
aforementioned surveys, a list of possible packets use cases
are presented, each of which having multiple priorities in
status-updating networks. We pick 3 data categories in our
simulations:

1) Road Safety Data: These are the data primarily
employed to reduce the number of traffic accidents. This
class of streams has the highest priority among all data
types.

2) Traffic Management Data: The goal of these data is
to optimize the traffic stream and reduce the travel time

in the network. The priority of this class is secondary to
road safety data.

3) Convenience and Entertainment Data: The data in this
class are considered to be the least crucial as their aim
is to provide entertainment and convenience solely for
improving the quality of travel.

A. Age Functionals

The goal of this part of the simulations is to showcase the
performance of our proposed policy when the classes have
distinct age-dissatisfaction functionals. To that end, we con-
sider in our simulations that J1 = 2 (e.g., the vehicle’s
position and speed). Additionally, we assume that the packets’
generation frequency of these streams is 10 Hz. As for class 2,
we consider in our simulations that J2 = 2 (e.g., updates
concerning the destination of the vehicle). The generation
frequency of these packets is set to 1 Hz. Lastly, we consider
in our simulations that J3 = 2 and we suppose that the
generation frequency of their packets is 5 Hz. Based on the
above, we can conclude that the arrival rate to our considered
system is λtot = 31 packets per second. The service facility
of the vehicle is supposed to be constituted of 1 server
with the transmission times being i.i.d. across streams and
time. Moreover, the transmission times are considered to be
exponentially distributed with service rate μ.

We compare our proposed policy to the preemptive
MAF-LGFS1 policy proposed in [17]. The preemptive
MAF-LGFS policy schedules the packet of the stream with
the highest age, regardless of the class it belongs to. As for the
age penalty function and functional for each class, we choose
pexceed−α and φavg as the age penalty function and functional
for class 1 respectively, where α is set to 250 ms. By doing
so, we get

E[φavg({pexceed−α ◦ Δ1(t), t ≥ 0})]

=
1
2

2∑
j=1

1
T

∫ T

0

Pr(Δ1,j(t) > α)dt, (17)

where Pr(Δ1,j(t) > α) is the probability of violation of the
maximum tolerated age 250 ms by stream (1, j) at time t.
The interest in this time-average age penalty function is that
in vehicular networks, small age for the velocity and position
data can be tolerated but, after a certain value, the performance
of the system starts deteriorating due to this aging. For
class 2, we choose φavg as the age penalty functional. Lastly,
we choose psum and φavg for class 3. We iterate over a range
of the service rate μ and we run the simulations for 105 s.
We report in Fig. 2 the simulations results that showcase
the performance of each policy. We can conclude from these
results the following:

• As seen in Fig. 2a, our proposed policy always outper-
forms the preemptive MAF-LGFS policy for class 1 at
any service rate. Specifically, the probability of the age
threshold violation by the preemptive MAF-LGFS policy

1First-Come-First-Served (FCFS) policies are omitted from our simulations
as they will always be outperformed by LGFS policies since queuing will
lead to unnecessary staleness of the packets.
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Fig. 2. Comparison between the two policies in function of the service rate µ.

is 3 times higher than the one achieved by our policy.
This is a consequence of our proposed policy’s goal as it
gives priority to minimizing the time-average age penalty
of class 1 regardless of the other remaining classes.

• On the other hand, we can see in Fig. 2b-2c that the
preemptive MAF-LGFS policy outperforms our proposed
policy for classes 2 and 3. In fact, in our policy, giving
the priority to class 1 leads to a penalty for the remainder
of the classes. However, we recall that the probability of
violation of the age threshold in class 1 for our policy
is 3 times less than the preemptive MAF-LGFS. Accord-
ingly, the penalty incurred by the remaining classes is
justified. Moreover, we can see that as μ increases, the
gap between the two curves in both figures shrinks.
The reason behind this is that class 1’s packets finish
transmission much faster the higher μ is. Consequently,
in our proposed policy, the server will be able to finish
serving class 1 fast enough that it can start serving the
other classes before new packets for class 1 arrive to
the system. This reduces the incurred penalty by the low

priority classes due to the presence of the high priority
streams.

The above results highlight the performance of our proposed
lex-age-optimal policy, and showcase how it grants high prior-
ity streams the best possible age performance while optimizing
the age performance of the low priority classes accordingly.

B. Number of Streams

In this part of the simulations, the goal is to highlight
how the same two policies considered above compare when
the number of streams of the system changes. To that end,
we consider the generation frequency of all packets in the
system to be equal to 5 Hz. Additionally, for each priority
class, we choose psum and φavg as the age penalty function
and functional respectively. In the first settings, we fix μ = 40,
J2 = 2, J3 = 2 and we vary the number of high priority
streams J1. To compare the two policies, we define the age
performance ratio as the ratio between the sum-average age
achieved by the proposed PP-MAF-LGFS policy and the
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Fig. 3. Age performance ratio versus the numbers of streams in Class 1 and Class 3, where the age performance ratio for a given priority class is defined
as the sum-average age of the priority class achieved by the PP-MAF-LGFS policy and the preemptive MAF-LGFS policy.

preemptive MAF-LGFS policy. As seen in Fig. 3a, as the num-
ber of high-priority streams increases, the age performance
ratio for Class 1 remains relatively constant and below one.
Additionally, we can see that this ratio is larger than one for
the other classes, and increases as J1 increases. To understand
this trend, we recall that the preemptive MAF-LGFS policy
does not consider the priority difference among the classes.
Therefore, low priority classes are granted the channel even
when informative packets of higher priority classes exist.
However, the PP-MAF-LGFS policy will always privilege
the higher priority classes with informative packets. Conse-
quently, as J1 increases, the server is mainly allocated to
Class 1 while the low priority classes’ performance degrades.
Note that as the number of high priority classes increases, both
policies will spend most of their time serving the high priority
classes. For that reason, the gap between the two policies for
Class 1 remains quasi-constant.

In the second settings, we fix μ = 40, J1 = 2, J2 = 2 and
we vary the number of low priority streams J3. As can be
seen in Fig 3b, the PP-MAF-LGFS policy outperforms the
preemptive MAF-LGFS policy for Classes 1 and 2. Addition-
ally, the age performance ratio for Classes 1 and 2 decreases
as the number of low-priority streams increases. This is a
consequence of the fact that the PP-MAF-LGFS will always
privilege the higher priority packets for transmission, unlike
the preemptive MAF-LGFS policy that does not consider
the priority. Therefore, by examining the above two settings,
we can conclude that the PP-MAF-LGFS policy will con-
sistently outperform the preemptive MAF-LGFS policy for
the high priority classes. This performance advantage is more
significant when the number of low priority streams is high.

V. CONCLUSION

In this paper, we have introduced the notion of lex-age-
optimality that captures both the age-optimality and priorities
of the streams in a general multi-class priority-based schedul-
ing scenario. To that end, we have proposed a scheduling

policy in a general multi-class, multi-stream scheduling sce-
nario named Preemptive Priority, Maximum Age First, Last-
Generated, First-Served (PP-MAF-LGFS). Using a sample-
path argument, we were able to prove the lex-age-optimality
of the PP-MAF-LGFS policy in the single exponential server
case for any symmetric non-decreasing penalty function, and
for all non-decreasing age penalty functionals. Numerical
results were then presented to highlight the performance of
our proposed policy.

APPENDIX A
PROOF OF THEOREM 1

To establish this theorem, we first provide a set of schedul-
ing rules and prove by induction, and using a sample-path
comparison, that they are necessary and sufficient for level-
k lex-age-optimality for k = 1, . . . , I . Afterward, we show
that the PP-MAF-LGFS policy satisfies these rules for all
k = 1, . . . , I , and we can therefore conclude that it is lex-age-
optimal. Before proceeding in this direction, we first note that
the age vector Δ(t) = (Δ1(t), . . . ,ΔI(t)) evolves over time
as a Markov chain, where the state is the age vector and the
state transitions are determined by the scheduling policy. With
this in mind, let us consider two scheduling policies P, π ∈ Π.
In general, for any class i, a direct comparison between two
processes {pt ◦ Δi

P (t), t ≥ 0} and {pt ◦ Δi
π(t), t ≥ 0} to

establish a stochastic ordering between the two is complex,
as it involves comparing their probability distributions. To cir-
cumvent this difficulty, the following approach can be adopted:

• Define two policies P1, π1 ∈ Π on the same probability
space such that {pt◦Δi

P1
(t), t ≥ 0} and {pt◦Δi

P (t), t ≥
0} (respectively {pt◦Δi

π1
(t), t ≥ 0} and {pt◦Δi

π(t), t ≥
0} ) have the same distribution.

• Proceed with a direct comparison between {pt ◦
Δi

P1
(t), t ≥ 0} and {pt ◦ Δi

π1
(t), t ≥ 0}.

This approach is called coupling in the scheduling literature,
and we will adopt it in our proof. To that end, and using the
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memoryless property of the exponential distribution, we can
obtain the following coupling lemma.

Lemma 1 ([17, Lemma 1] Stochastic Coupling): For any
given I , consider two work-conserving policies P, π ∈ Πwc.
If the service times are exponentially distributed and i.i.d.
across streams and time, then the following holds:

1) There exists a work-conserving policy P1 such that
{ΔP1(t), t ≥ 0} and {ΔP (t), t ≥ 0} have the same
distribution.

2) There exists a work-conserving policy π1 such that
{Δπ1(t), t ≥ 0} and {Δπ(t), t ≥ 0} have the same
distribution.

3) P1 and π1 are defined on the same probability space
and, if a packet is delivered in policy π1 at time t, then
with probability 1, a packet is delivered in policy P1 at
time t.

Next, we present in the following proposition a set of
scheduling rules for the first k classes with k ∈ {1, . . . , I}.
We show that a policy P is level-k lex-age-optimal if, and
only if, these rules hold for the first k classes. Note that,
throughout this proof, we refer to classes 1 till k as the first k
classes. Before laying out the proposition, we define the notion
of work-conserving policies for the informative packets of a
class k.

Definition 11 (Work-Conserving Policies for the Informa-
tive Packets of a Class k): A scheduling policy P is said to
be work-conserving for the informative packets of a class k
if the service facility is kept busy whenever there exist one or
more informative packet in the queues of class k.

Proposition 1 (Lex-Age-Optimal Scheduling Rules): If
(i) the packet generation and arrival times are synchronized
across streams within each class, and (ii) the packet service
times are exponentially distributed and i.i.d. across streams
and time, a scheduling policy P is level-k lex-age-optimal for
k ∈ {1, . . . , I} if, and only if, the following four rules are
satisfied

1) Policy P is work-conserving for the informative packets
of the first k classes;

2) Among the streams which have informative packets and
are in the first k priority classes, the system will serve
the class of streams with the highest priority;

3) Among the streams from the selected priority class, the
system serves the stream with the maximum age, where
ties can be broken arbitrarily;

4) Among the informative packets from the selected stream,
the system serves the last generated informative packet,
where ties can be broken arbitrarily;

Proof: We prove this proposition by induction. Specifi-
cally, we show in step 1 that a policy is level-1 lex-age-optimal
if, and only if, Rules 1)-4) hold for class 1. Then, by assuming
that they are necessary and sufficient for level-k lex-age-
optimality, we use this assumption to prove in step 2 that
these rules are sufficient and necessary for level-(k + 1)
lex-age-optimality.
• Step 1: We prove in this step that these rules for k = 1 are

sufficient and necessary for level-1 lex-age-optimality.
1) Sufficiency: Let us consider a work-conserving policy

P ∈ Πwc that satisfies these rules for class 1. We compare

its performance to any work-conserving policy π ∈ Πwc.
As both policies are work-conserving, we consider the two
policies P1 and π1 that are defined on the same probability
space and originate from Lemma 1. Next, we provide the
following lemma that describes the evolution of the age vector
of class 1 upon a packet delivery by both P1 and π1.

Lemma 2 (Packet Delivery): Suppose that a packet is deliv-
ered at time t by both policies π1 and P1. The age vector
changes at time t from ΔP1 and Δπ1 to Δ�

P1
and Δ�

π1
,

respectively. If

Δ1,[j]
P1

≤ Δ1,[j]
π1

, j = 1, . . . , J1, (18)

then

(Δ1,[j]
P1

)� ≤ (Δ1,[j]
π1

)�, j = 1, . . . , J1, (19)

where Δ1,[j]
P1

and Δ1,[j]
π1 refers to the j-th largest element of

the age vector of class 1 in policy P1 and π1, respectively.
Proof: The proof can be found in Appendix B.

We can now proceed to prove that P is level-1 lex-age-
optimal. To do so, we compare the age vector Δ1 on a
sample-path of the policies P1 and π1. We note that for any
sample-path, ΔP1(0

−) = Δπ1(0
−). To that end, We consider

two cases:
Case 1: When there are no packets deliveries by any of the

policies, the age of each stream belonging to class 1 increases
at a unit rate.

Case 2: When a packet is delivered by π1, the evolution of
the age vector of class 1 is dictated by Lemma 2. By induction
over time, we obtain

Δ1,[j]
P1

(t) ≤ Δ1,[j]
π1

(t), j = 1, . . . , J1, t ≥ 0. (20)

For any symmetric non-decreasing function pt, and for t ≥ 0,
it holds from (20) that

pt ◦ Δ1
P1

(t) = pt(Δ
1,1
P1

(t), . . . , Δ1,J1
P1

(t))

= pt(Δ
1,[1]
P1

(t), . . . , Δ1,[J1]
P1

(t))

≤ pt(Δ1,[1]
π1

(t), . . . , Δ1,[J1]
π1

(t))

= pt(Δ1,1
π1

(t), . . . , Δ1,J1
π1

(t))

= pt ◦ Δ1
π1

(t). (21)

By Lemma 1, the processes {ΔP1(t), t ≥ 0} and {ΔP (t), t ≥
0} (respectively the processes {Δπ1(t), t ≥ 0} and
{Δπ(t), t ≥ 0}) have the same distribution. Accordingly,
using (21) and Theorem 6.B.30 in [35], we can deduce that

[{pt ◦ Δ1
P (t), t ≥ 0}|I ] ≤st [{pt ◦ Δ1

π(t), t ≥ 0}|I ], (22)

for all I , pt ∈ Psym and π ∈ Πwc. The extension of (22)
to the case where π is non-work-conserving is straightforward
due to the exponential distribution of the service time and
its independence across streams and time. In fact, due to the
memoryless property offered by the exponential distribution,
letting the server idle before a transmission will lead to
unnecessary staleness of the available packets. This can be
shown by a stochastic ordering argument but the details are
omitted for the sake of space. Consequently, (22) holds for
any π ∈ Π and, accordingly, P is level-1 lex-age-optimal.
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2) Necessity: In this part, we prove that every level-1 lex-
age-optimal policy satisfies these 4 scheduling rules for class 1.
We do so by contradiction. Specifically, we consider a level-1
lex-age-optimal policy π ∈ Π1

lex-opt. We show that if π violates
any of these 4 rules for class 1, then it cannot be level-1
lex-age-optimal.

- Violation of Rule 1: Let us consider that π is not
work-conserving for the informative packets of class 1. Due
to the memoryless property of the exponential distribution of
the service time and its independence across streams and time,
letting the server idle before a transmission will lead to unnec-
essary staleness of the available informative packets. This can
be shown by a stochastic ordering argument but the details are
omitted for the sake of space. Accordingly, π cannot be level-1
lex-age-optimal.

- Violation of Rule 2 − 4: As shown in the proof of neces-
sity of Rule 1, we can affirm that π has to be work-conserving
for the informative packets of class 1. Note that when there
are no informative packets for class 1 in the system, the per-
formance of class 1’s streams is not affected by the scheduling
rules adopted. Accordingly, and without loss of generality, let
us consider that π is work-conserving. In other words, we have
π ∈ Πwc ∩ Π1

lex-opt. By Definition 5 and (15), we have

E[φ({pt ◦ Δ1
π(t), t ≥ 0})|I ]

= min
π�∈Π

E[φ({pt ◦ Δ1
π�(t), t ≥ 0})|I ], (23)

for all I , pt ∈ Psym and non-decreasing functional
φ : V �→ R, provided that the expectations in (23) exist.
We show by contradiction that if π violates any of the rules
2 − 4 for class 1, then there exists a policy P , a symmetrical
non-decreasing penalty function p�, and a non-decreasing
functional φ1 such that

E[φ1({p� ◦ Δ1
P (t), t ≥ 0})|I ]

< E[φ1({p� ◦ Δ1
π(t), t ≥ 0})|I ]. (24)

To that end, let us consider a work-conserving policy P that
satisfies these 4 rules for class 1. Note that P and π are both
work-conserving. Accordingly, we consider the two coupled
policies P1 and π1 that are defined on the same probability
space and originate from Lemma 1. From the sufficiency
proof, (20) holds for our case. In other words,

Δ1,[j]
P1

(t) ≤ Δ1,[j]
π1

(t), j = 1, . . . , J1, t ≥ 0. (25)

Accordingly, for any symmetrical non-decreasing function
pt ∈ Psym, and for t ≥ 0

pt ◦ Δ1
P1

(t) ≤ pt ◦ Δ1
π1

(t). (26)

Next, let us consider a delivery time ts such that (i) the
age of streams of class 1 are not all equal to one another,2

and (ii) there exist informative packets for l1 > 0 and
l2 > 0 streams of class 1 in the system just before ts for
policy π1 and P1, respectively. As P1 follows the 4 rules of
the proposition for class 1, we have l2 ≤ l1. We recall that,
according to Lemma 1, if a packet is delivered in policy π1 at

2We avoid this scenario since, in the case where all streams have the same
age, all streams of class 1 are considered to have the highest age.

time t, then with probability 1, a packet is delivered in policy
P1 at time t. Hence, we describe the evolution of the age vector
of class 1 upon a packet delivery by both policies π1 and P1 at
time ts.

Lemma 3 (Packet Delivery): Suppose that a packet is
delivered at time ts by both policies π1 and P1. The age
vector changes at time ts from ΔP1 and Δπ1 to Δ�

P1
and

Δ�
π1

, respectively. If π1 breaks any of the scheduling rules
2 − 4 for class 1 at time ts, then there exists a stream j of
class 1 such that

(Δ1,[j]
P1

)� < (Δ1,[j]
π1

)�. (27)

Proof: The proof can be found in Appendix C.
Next, to prove (24), let us consider the symmetrical

non-decreasing penalty function p� = psum ∈ Psym and the
non-decreasing age penalty functional φ1 = φavg . By taking
Lemma 3 into account, along with (25), and the fact that the
service rate μ is finite, we can affirm that there exists a time
interval T ⊆ [0,∞) such that

p� ◦ Δ1
P1

(t) < p� ◦ Δ1
π1

(t) ∀t ∈ T. (28)

By Lemma 1, we have that the processes {ΔP1(t), t ≥ 0} and
{ΔP (t), t ≥ 0} (respectively the processes {Δπ1(t), t ≥ 0}
and {Δπ(t), t ≥ 0}) have the same distribution. By taking
this into account, and by using (26) and (28), we obtain:

E[φ1({p� ◦ Δ1
P (t), t≥0}|I )]<E[φ1({p� ◦ Δ1

π(t), t≥0}|I )]
(29)

Therefore, π is not level-1 lex-age-optimal if it breaks any of
the 4 scheduling rules of the proposition for class 1.

This concludes our proof that this set of rules for class 1 are
sufficient and necessary to have level-1 lex-age-optimality.
• Step 2: Next, we will prove the induction step: Assume

that this set of rules for the first k classes are necessary and
sufficient for level-k lex-age-optimality. In other words, every
policy π ∈ Πk

lex-opt follows these scheduling rules for the first
k classes. Our goal is to use this assumption to prove that
a policy P is level-(k + 1) lex-age-optimal if, and only if,
it follows these rules for the first k + 1 classes.

1) Sufficiency: Let us consider a work-conserving policy P
that satisfies the depicted set of rules for the first k+1 classes.
We compare its performance to any work-conserving policy
π ∈ Πwc ∩ Πk

lex-opt. As both policies are work-conserving,
we consider the two policies P1 and π1 that are defined on
the same probability space and originate from Lemma 1. Next,
we provide the following Lemma that describes the evolution
of the age vector of classes i = 1, . . . , k + 1 upon a packet
delivery by both π1 and P1.

Lemma 4 (Packet Delivery): Suppose that a packet is deliv-
ered at time t by both policies π1 and P1. The age vector
changes at time t from ΔP1 and Δπ1 to Δ�

P1
and Δ�

π1
,

respectively. If

Δi,[j]
P1

= Δi,[j]
π1

, i = 1, . . . , k, j = 1, . . . , Ji, (30)

Δk+1,[j]
P1

≤ Δk+1,[j]
π1

, j = 1, . . . , Jk+1, (31)
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then

(Δi,[j]
P1

)� = (Δi,[j]
π1

)�, i = 1, . . . , k, j = 1, . . . , Ji, (32)

(Δk+1,[j]
P1

)� ≤ (Δk+1,[j]
π1

)�, j = 1, . . . , Jk+1. (33)

Proof: The proof can be found in Appendix D.
We can now show that P is level-(k + 1) lex-age-optimal.

To do so, we compare the age vector Δi for i = 1, . . . , k+1 on
a sample-path of the policies P1 and π1. We note that for any
sample-path, ΔP1(0−) = Δπ1(0−). To that end, we consider
two cases:

Case 1: When there are no packets deliveries by any of
the policies, the age of each stream of the first k + 1 classes
increases at a unit rate.

Case 2: When a packet is delivered by π1, the evolution of
the age vector of the first k+1 classes is dictated by Lemma 4.
By induction over time, we obtain for all t ≥ 0:

Δi,[j]
P1

(t) = Δi,[j]
π1

(t), i = 1, . . . , k, j = 1, . . . , Ji, (34)

Δk+1,[j]
P1

(t) ≤ Δk+1,[j]
π1

(t), j = 1, . . . , Jk+1. (35)

For any symmetric non-decreasing function pt, and for t ≥ 0,
it holds from (34) and (35)

pt ◦ Δi
P1

(t) = pt ◦ Δi
π1

(t), i = 1, . . . , k, t ≥ 0, (36)

pt ◦ Δk+1
P1

(t) ≤ pt ◦ Δk+1
π1

(t), t ≥ 0. (37)

By Lemma 1, the processes {ΔP1(t), t ≥ 0} and {ΔP (t), t ≥
0} (respectively the processes {Δπ1(t), t ≥ 0} and
{Δπ(t), t ≥ 0}) have the same distribution. Accordingly,
using (36)-(37) and Theorem 6.B.30 in [35], we can deduce
that

[{pt ◦ Δi
P (t), t ≥ 0}|I ]

=st [{pt ◦ Δi
π(t), t ≥ 0}|I ], i = 1, . . . , k, (38)

and

[{pt ◦ Δk+1
P (t), t ≥ 0}|I ]

≤st [{pt ◦ Δk+1
π (t), t ≥ 0}|I ], (39)

for all I , pt ∈ Psym and π ∈ Πwc ∩ Πk
lex-opt. The extension

of (38)-(39) to the case where π ∈ Πk
lex-opt but is not necessar-

ily work-conserving is straightforward due to the exponential
distribution of the service time and its independence across
streams and time. As it was previously explained, due to the
memoryless property offered by the exponential distribution,
letting the server to idle before a transmission will lead to
unnecessary staleness of the packets. This can be shown by
a stochastic ordering argument but the details are omitted
for the sake of space. Consequently, (38)-(39) hold for any
π ∈ Πk

lex-opt and, therefore, P is level-(k +1) lex-age-optimal.
2) Necessity: In this part, we leverage our inductive assump-

tion for level-k lex-age-optimality and prove that every level-
(k+1) lex-age-optimal policy follow these 4 scheduling rules
for the first k + 1 classes. We prove this by contradiction.
Specifically, let us consider a level-k lex-age-optimal policy
π ∈ Πk

lex-opt. We know by our inductive assumption that π has
to follow this set of rules for the first k classes. We show that
if π violates any of the 4 rules for class k + 1, then it cannot
be level-(k + 1) lex-age-optimal.

- Violation of Rule 1: Let us consider that π is not
work-conserving for the informative packets of class k + 1.
Due to the memoryless property of the exponential distribution
of the service time and its independence across streams and
time, letting the server idle before a transmission will lead
to unnecessary staleness of the available packets. This can be
shown by a stochastic ordering argument but the details are
omitted for the sake of space. Accordingly, π cannot be level-
(k + 1) lex-age-optimal.

- Violation of Rule 2 − 4: The proof follows the same line
of work done in the necessity proof of Step 1. Specifically,
and as it was previously explained, we can consider that
π ∈ Πwc ∩ Πk

lex-opt. Next, we consider a work-conserving
policy P that satisfies the 4 scheduling rules for the first
k + 1 classes. Note that P and π are both work-conserving.
Accordingly, we consider the two coupled policies P1 and
π1 that are defined on the same probability space and originate
from Lemma 1. From the sufficiency proof for level-(k + 1)
lex-age-optimality, we have that for all t ≥ 0:

Δi,[j]
P1

(t) = Δi,[j]
π1

(t), i = 1, . . . , k, j = 1, . . . , Ji, (40)

Δk+1,[j]
P1

(t) ≤ Δk+1,[j]
π1

(t), j = 1, . . . , Jk+1. (41)

Accordingly, for any symmetric non-decreasing function pt:

pt ◦ Δi
P1

(t) = pt ◦ Δi
π1

(t), i = 1, . . . , k, t ≥ 0, (42)

pt ◦Δk+1
P1

(t) ≤ pt ◦ Δk+1
π1

(t), t ≥ 0. (43)

Next, as per our inductive assumption, we have that π1 and
P1 follow the same scheduling discipline for the first k classes.
Accordingly, the streams of the first k classes will have
no informative updates at the same time in both policies
π1 and P1. This allows us to consider a delivery time ts
such that (i) there are no informative packets for the first k
classes, (ii) the age of streams of class k + 1 are not all equal
to one another, and (iii) there exist informative packets for
l1 > 0 and l2 > 0 streams of class k + 1 in the system just
before ts for policy π1 and P1, respectively. As P1 follows the
4 scheduling rules of the proposition for the first k+1 classes,
we have l2 ≤ l1. By proceeding similarly to Lemma 3,
we can show that if π1 breaks any of the scheduling rules
2 − 4 for class k + 1 at time ts, then there exists a stream j
of class k + 1 such that

Δk+1,[j]
P1

(t+s ) < Δk+1,[j]
π1

(t+s ). (44)

Afterward, we consider the symmetric non-decreasing penalty
function p� = psum ∈ Psym and the non-decreasing age penalty
functional φ1 = φavg . By taking (44) into account, along with
(40)-(41), and the fact that the service rate μ is finite, we can
affirm that there exists a time interval T ⊆ [0,∞) such that

p� ◦ Δk+1
P1

(t) < p� ◦ Δk+1
π1

(t), ∀t ∈ T. (45)

By Lemma 1, we have that the processes {ΔP1(t), t ≥ 0} and
{ΔP (t), t ≥ 0} (respectively the processes {Δπ1(t), t ≥ 0}
and {Δπ(t), t ≥ 0}) have the same distribution. By taking
this into consideration, and by using (42), (43), and (45),
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we obtain:

[{pt ◦ Δi
P (t), t ≥ 0}|I ]

=st [{pt ◦ Δi
π(t), t ≥ 0}|I ], i = 1, . . . , k, (46)

and

E[φ1({p� ◦ Δk+1
P (t), t ≥ 0}|I )]

< E[φ1({p� ◦ Δk+1
π (t), t ≥ 0}|I )]. (47)

Therefore, π is not level-(k + 1) lex-age-optimal if it
breaks any of the 4 scheduling rules of the proposition for
class k + 1.

By Definition 10, the PP-MAF-LGFS policy is the only
policy that satisfies the scheduling rules depicted in this
proposition for the first k classes simultaneously for any
k = 1, . . . , I . Accordingly, the PP-MAF-LGFS policy is lex-
age-optimal, which concludes the proof of the theorem.

APPENDIX B
PROOF OF LEMMA 2

Let us denote by W 1
j (t) = max{S1,j

n : A1,j
n ≤ t} the

time-stamp of the freshest packet that has arrived to the queue
of stream j of class 1 at time t. Since the generation/arrival
sequences are synchronized across streams within each class,
there exists a W 1(t) such that W 1

j (t) = W 1(t) for j =
1, . . . , J1. We distinguish between three cases that can happen
at time t. The proof of Case 3 is adopted from the proof of
Lemma 2 of [17]. For the sake of completeness, we provide
a proof of all 3 cases.

1) Case 1: There was no transmission of packets for
class 1 by policy P1, or a non-informative packet of class 1 has
just finished transmission. In other words, prior to time t,
policy P1 has already finished the transmission of all class 1’s
informative packets. To that end:

(Δ1,[j]
P1

)� = Δ1,[j]
P1

= t − W 1(t), j = 1, . . . , J1. (48)

On the other hand, in policy π1, the delivered packet can be
any packet from any information stream. Consequently, we can
conclude:

Δ1,[j]
π1

≥ (Δ1,[j]
π1

)� ≥ t − W 1(t), j = 1, . . . , J1. (49)

Therefore, (19) holds for this case.
2) Case 2: An informative packet belonging to a stream of

class 1 finishes transmission by policy P1 at time t. On the
other hand, policy π1 delivers a non-informative packet of
class 1 or a packet belonging to one of the I − 1 remaining
classes at time t. Consequently, (Δ1

π1
)� = Δ1

π1
and (19) holds

trivially in this scenario.
3) Case 3: An informative packet belonging to a stream of

class 1 finishes transmission by both policies P1 and π1 at
time t. By definition, the following always holds:

Δ1,j
P1

≥ (Δ1,j
P1

)� ≥ t − W 1(t), j = 1, . . . , J1, (50)

Δ1,j
π1

≥ (Δ1,j
π1

)� ≥ t − W 1(t), j = 1, . . . , J1. (51)

We recall that P1 schedules the stream of class 1 with the
highest age. Consequently, the stream of class 1 having the

age Δ1,[1]
P1

is the one that finishes transmission at time t by P1.

Since the transmitted packet has W 1(t) as time-stamp, the
age of this stream becomes the smallest among the streams of
class 1. To that end,

(Δ1,[J1]
P1

)� = t − W 1(t). (52)

As there is only one server, the age of the remaining
J1 − 1 streams of class 1 stay the same. By taking this into
account, along with (52), we get:

(Δ1,[j]
P1

)� = Δ1,[j+1]
P1

, j = 1, . . . , J1 − 1. (53)

On the other hand, since the packet delivered by π1 can belong
to any stream of class 1, the following always holds:

(Δ1,[j]
π1

)� ≥ Δ1,[j+1]
π1

, j = 1, . . . , J1 − 1. (54)

Combining (18), (53) and (54), we obtain:

(Δ1,[j]
π1

)� ≥ Δ1,[j+1]
π1

≥ Δ1,[j+1]
P1

= (Δ1,[j]
P1

)�,
j = 1, . . . , J1 − 1. (55)

Also, using (51) and (52), we can deduce that (Δ1,[Ji]
π1 )� ≥

t − W 1(t) = (Δ1,[Ji]
P1

)� which concludes the proof.

APPENDIX C
PROOF OF LEMMA 3

To prove this lemma, we recall that (25) always holds from
our sufficiency results on P . Next, we distinguish between
3 cases.

Case 1: Suppose that π1 breaks Rule 2 and delivers at
time ts a packet that does not belong to class 1. We know
that P1 will deliver at time ts an informative packet for one
of the l2 streams belonging to class 1. Consequently, (27) holds
trivially in this case.

Case 2: Suppose that π1 delivers a packet from class 1.
However, at time ts, π1 breaks Rule 3 for class 1 and delivers
a packet that does not belong to the stream of class 1 with
the highest age. To tackle this case, we define the rank of a
stream within a class.

Definition 12 (Rank of a Stream): The rank of a stream
(i, j) within the class i is defined as its position in the ordered
age vector [Δi]. In other words, if stream (i, j) has a rank
1 ≤ r ≤ Ji, then:

• There exist Ji − r streams in the same class having an
age that is smaller or equal to Δi,j .

• There exist r−1 streams in the same class having an age
that is larger or equal to Δi,j .

We know that P1 delivers the freshest packet from the
stream of class 1 with the highest age at time ts (i.e., the stream
with rank 1). Therefore, after delivery, the served stream will
have the smallest age among all streams of class 1. Moreover,
the age of the remaining J1−1 streams of class 1 is not altered
at the delivery time. Accordingly, these J1 − 1 streams gain
a single rank in the sorted age vector [Δ1

P1
]. On the other

hand, let us suppose that the served stream by π1 has a rank
r > 1 in the sorted age vector [Δ1

π1
]. After being served, this

stream will have a rank r� ≤ r. Consequently, r� − r streams
will gain a rank at time ts and the rank of all the remaining
streams stays the same. Therefore, we can assert that (27)
holds. We provide in the following an example to showcase
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this. Suppose that the ordered age vector of class 1 just before
ts is:

[Δ1
π1

](t−s ) = (10, 9, 8, 1),

[Δ1
P1

](t−s ) = (10, 9, 8, 1). (56)

Suppose that the age of the available informative packets of
class 1 is equal to 1 at time ts. If we consider that π1 delivers
a packet from stream (1, [3]), and knowing that P1 will deliver
a packet from stream (1, [1]), we get:

[Δ1
π�
1
](t+s ) = (10, 9, 1, 1)

[Δ1
π1

](t+s ) = (9, 8, 1, 1) (57)

Accordingly, we can easily see that j = 1 or j = 2.
Case 3: Suppose that π1 delivers a packet from the stream

of class 1 with the highest age at time ts. However, suppose
that π1 breaks Rule 4 for class 1 and does not deliver the
freshest available informative packet. Accordingly, at time ts,
the served stream by P1 will have a strictly smaller age when
compared to the stream served by π1. Consequently, (27)
holds.

APPENDIX D
PROOF OF LEMMA 4

We proceed with our proof by distinguishing between two
possible scenarios at time t:

• The served packet by π1 is an informative packet belong-
ing to any of the first k classes: We recall that, as per our
inductive assumption till level-k, policy π1 and P1 follow
the same set of scheduling rules for the first k classes.
Accordingly, when an informative packet from one of
these classes is delivered by π1, the same packet (or
an informative packet of another stream of the same
class that has the same age) is delivered by P1. Con-
sequently, we can affirm the validity of (32). Moreover,
as the age vector of class k + 1 remains unchanged for
both policies in this case, (33) holds naturally.

• The served packet by π1 is not an informative packet
belonging to the k first classes: As π1 and P1 follow
the same set of scheduling rules for the first k classes,
this case can only occur when the buffers of streams
belonging to the first k classes are either empty or contain
non-informative packets for both policies. Therefore, (32)
holds naturally. Next, to obtain (33), we can proceed
similarly to Lemma 2 for class k + 1. The details are
therefore omitted for the sake of space.
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