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β-decay properties of nuclei are investigated within the relativistic nuclear energy density functional frame-
work by varying the temperature and density, conditions relevant to the final stages of stellar evolution. Both
thermal and nuclear pairing effects are taken into account in the description of nuclear properties and in
the finite-temperature proton-neutron relativistic quasiparticle random-phase approximation (FT-PNRQRPA)
to calculate the relevant allowed and first-forbidden transitions in the β decay. The temperature and density
effects are studied on the β-decay half-lives at temperatures T = 0–1.5MeV and at densities ρYe = 107 g/cm3

and 109 g/cm3. The relevant Gamow-Teller transitions are also investigated for Ti, Fe, Cd, and Sn isotopic
chains at finite-temperatures. We find that the β-decay half-lives increase with increasing density ρYe, whereas
half-lives generally decrease with increasing temperature. It is shown that the temperature effects decrease the
half-lives considerably in nuclei with longer half-lives at zero temperature, while only slight changes for nuclei
with short half-lives are obtained. We also show the importance of including the de-excitation transitions in
the calculation of the β-decay half-lives at finite-temperatures. Comparing the FT-PNQRPA results with the
shell-model calculations for p f -shell nuclei, a reasonable agreement is obtained for the temperature dependence
of β-decay rates. Finally, large-scale calculations of β-decay half-lives are performed at temperatures T9(K) = 5
and T9(K) = 10 and densities ρYe = 107 and 109 g/cm3 for even-even nuclei in the range 8 � Z � 82, relevant
for astrophysical nucleosynthesis mechanisms.
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I. INTRODUCTION

Nuclear β decay is a fundamental process in atomic nu-
clei, which plays decisive roles in nuclear astrophysics [1–3]
and particle physics [4–6] and in the properties and structure
of nuclei [7–9]. Within the context of nuclear astrophysics,
recent studies are mainly focused on understanding the syn-
thesis of elements heavier than iron via the rapid-neutron
capture process (r-process) [10–13]. Along with other nu-
clear properties (masses, separation energies, etc.), β-decay
half-lives are essential ingredients of the r-process calcula-
tions, determining the timescale of the process and the relative
abundances of the nuclear species [1,2]. It is also known that
uncertainties in β-decay rates can produce significant alter-
ations in the abundance distribution of nuclei [3]. Therefore,
accurate calculations of β-decay properties are of utmost im-
portance for r-process simulations. Since it is still not possible
to reach experimental data for the β-decay half-lives of all
relevant r-process nuclei, the simulations mainly rely on the-
oretical predictions.

The first tabulation of weak interaction rates for stellar
environments was done by Fuller, Fowler, and Newmann
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(FFN) [14–17]. Using the independent particle model, rate
tables were created for a broad range of temperatures and
stellar densities. The shell-model (SM) calculations were
also performed to study β-decay rates of the sd-shell nuclei
[18], and then extended to the p f -shell nuclei [19,20]. Al-
though significant progress has been accomplished over the
years, the calculations for heavy nuclei are still demanding
due to the huge configuration space of the SM calculations
[21–23]. Large-scale calculations were also performed with
the quasiparticle random phase approximation (QRPA) on
top of the finite range droplet model (FRDM) [24], which
are mostly used in r-process simulations today. Apart from
the microscopic-macroscopic models, self-consistent models
based on the nonrelativistic and relativistic energy density
functionals were also applied to study β-decay properties
of nuclei [25–27] and their impact on r-process calculations
[28,29]. Recently, the relativistic Hartree-Bogoliubov model
(RHB) plus relativistic QRPA with momentum-dependent
meson-nucleon couplings were used to calculate β-decay
half-lives of neutron-rich nuclei in the Z ≈ 28 and Z ≈ 50
regions [30]. Using a relativistic model with momentum-
dependent self-energies in the calculations, predictions for the
β-decay rates were improved. Later on, in Ref. [31], the same
model was employed to perform large-scale calculation of β-
decay half-lives and β-delayed neutron emission probabilities
of 5409 neutron-rich nuclei in the range 8 � Z � 124, includ-
ing both the allowed (GT) and first-forbidden (FF) transitions.
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In recent years, β-decay half-lives of nuclei were also studied
using the (quasi)particle-vibration coupling techniques to take
into account more complex configurations and obtain a better
agreement with the experimental data [32–38].

Investigation of the properties of highly excited (hot) nuclei
is one of the interests in the field of nuclear physics, to better
understand the behavior of nuclei under extreme conditions.
Over the years, many works have been devoted to studying the
temperature-driven changes in the nuclear properties as well
as the collective excitation properties of nuclei [38–43]. We
also note that β decays in nuclear astrophysics often occur
in various hot stellar environments [44,45], and thus they
have to be described by considering finite-temperature effects.
For instance, β decay can compete with the electron capture
in certain stages of the core-collapse supernovae evolution,
when the temperatures are in the range T = 1–10 GK and
product of stellar density (ρ) and electron-to-baryon ratio (Ye)
is ρYe � 107 g/cm3 [46,47]. At present, theoretical descrip-
tion is decisive to provide nuclear properties and processes
at finite temperature, necessary for astrophysical modeling.
However, temperature effects on β-decay rates have scarcely
been explored up to now. Some time ago, thermal effects on
both electron capture and β-decay rates were studied based
on the thermal QRPA (TQRPA) in Ref. [48]. Model calcu-
lations were performed for 56Fe in stellar environment (high
density and temperature). It was found that the GT strength is
redistributed at finite temperatures and a part of the strength
can be found below the thermal vacuum energy, leading to
an increase in the β-decay rates. In Ref. [49], the finite-
temperature QRPA (FT-QRPA) was applied on top of the
finite-temperature Skyrme-HF + Bardeen-Cooper-Schrieffer
(BCS) theory in order to determine β-decay half-lives of
N = 82 isotones. It was shown that the temperature effect
first leads to a decrease of the β-decay half-lives, whereas an
increase in the half-lives has been obtained for some open-
shell nuclei after T > 0.6MeV. However, Ref. [49] includes
only Gamow-Teller (GT) excitations in the calculation of
the total decay rate. Recently, temperature effects were also
studied within the finite-temperature relativistic time-blocking
approximation, including nucleon-phonon couplings [38]. It
was shown that the β-decay rate is quite sensitive to the
changes in temperature due to its impact on the low-energy
region of the spin-isospin excitations.

At finite temperatures, nuclei can be found in excited
states, and one has to take into account transitions between
individual excited states both in initial and final nuclei. Within
shell-model calculations, these transitions can be considered
explicitly, weighted by appropriate Boltzmann factors. On
the other hand, the FT-QRPA being formulated within a sta-
tistical ensemble contains this information in the form of
thermal averages. The importance of considering transitions
from highly excited initial states with negative transition en-
ergy (de-excitations) has been exemplified by Dzhioev et al.
in Refs. [50–55] in the framework of TQRPA. Shell-model
calculations also incorporate de-excitations from highly ex-
cited states in the parent nucleus. They are calculated from
the low-lying strength of the inverse process (so-called back-
resonance transitions) and corrected in excitation energy by
assuming the Brink hypothesis [19,20].

In this work, we present the first study of the evolution of
β-decay half-lives at finite temperature in stellar environment
characterized by a fixed density ρYe, including large-scale
calculation for even-even nuclei, based on the self-consistent
finite-temperature proton-neutron relativistic QRPA. Both
allowed and first-forbidden transitions are included in descrip-
tion of the β-decay half-lives at zero and finite temperatures.
We choose Ti, Fe, Cd, and Sn nuclei to demonstrate the differ-
ent effects of temperature on the spin-isospin excitations and
β-decay half-lives of open- and closed-shell nuclei. Our work
provides a theoretical framework capable for microscopic de-
scription of temperature-dependent β-decay rates across the
nuclide chart.

We establish a theoretical framework for the description of
β decay based on the relativistic nuclear energy density func-
tional (RNEDF) with momentum-dependent self-energies
[56]. The nucleons are treated as point particles that exchange
isoscalar-scalar σ mesons, isoscalar-vector ω mesons, and
isovector-vector ρ mesons (see Refs. [57,58]). In contrast to
the usual RNEDFs, additional couplings between nucleon and
meson fields are present, containing momentum-dependent
terms, thus producing momentum-dependent self-energies.
Derivative-coupling (DC) models are known to provide a
higher value of the effective nucleon mass m∗, giving a higher
density of the states around the Fermi level, while still having
good agreement with nuclear-matter and finite-nuclei prop-
erties [30]. In our work, we use the D3C∗ parametrization
from Ref. [30], which is known to produce a good agreement
with experimental values of β-decay half-lives in medium
and heavy nuclei. In order to assess the model dependence
of the results and compare them with the shell-model cal-
culations, we also employ the effective density-dependent
meson-exchange interaction DD-ME2 in the calculations [59].

This paper is organized as follows. In Sec. II, we sum-
marize the theoretical framework used in this work with
additional formalism supplemented in the Appendix. In
Sec. III, we study the temperature dependence of the β-decay
half-lives in Ti, Fe, Cd, and Sn nuclei. The importance of
including de-excitation transitions in calculations of the β-
decay half-lives is also analyzed. The results are presented
for the temperature evolution of β-decay half-lives of selected
nuclei in the stellar environment and compared to respective
shell-model calculations. Large-scale calculation of β-decay
half-lives is also presented for even-even nuclei in the range
8 � Z � 82 at selected stellar densities and temperatures. Fi-
nally, conclusions and an outlook are given in Sec. IV.

II. THEORETICAL FORMALISM

In this work, the finite-temperature Hartree-BCS theory
(FT-HBCS) is applied to calculate the nuclear properties of
nuclei, and spherical symmetry is assumed in the calcula-
tions [60,61]. In the present work, only isovector pairing
(T = 1, S = 0) contributes to the FT-HBCS calculations and
leads to the partial occupation of states. The isovector pairing
strength parameters Gn(p) are adjusted according to the five-
point mass formula for each nucleus [62].

The charge-exchange excitations are calculated
using the finite-temperature proton-neutron relativistic
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quasiparticle random-phase approximation (FT-PNRQRPA)
[see Refs. [41,62–64] for more details]. Both isovector
(T = 1, S = 0) and isoscalar pairing (T = 0, S = 1)
contribute in the particle-particle (pp) residual interaction
part of the FT-PNRQRPA [65,66]. For the isoscalar pairing,
we employ formulation with a short-range repulsive Gaussian
combined with a weaker longer range attractive Gaussian

V12 = V is
0

2∑
j=1

g je
−r212/μ

2
j

∏
S=1,T=0

, (1)

where
∏

S=1,T=0 denotes projector on T = 0, S = 1 states.
For the ranges we use μ1 = 1.2 fm and μ2 = 0.7 fm, and
strengths are set to g1 = 1 and g2 = −2 [66]. For the isovector
pairing in residual interaction, we employ pairing part of
the Gogny interaction [39]. Isoscalar pairing strength V is

0 is
considered as a free parameter that can be constrained by the
Gamow-Teller excitation or β-decay experimental data. In this
work, the functional form introduced in Ref. [29] is used,

V is
0 = VL + VD

1 + ea+b(N−Z )
, (2)

with values VL = 153.2(137.8)MeV, VD = 8.4(48.7) MeV,
a = 6.0(98.6), and b = −0.8(−3.1) for the D3C∗(DD-ME2)
interaction, adjusted to best reproduce all experimentally
available half-life data in the range 8 � Z � 82. In the
particle-hole channel (ph) of the PNRQRPA residual interac-
tion, only ρ-meson and π -meson terms are present [66]. Due
to the derivative nature of pion-nucleon coupling, the zero-
range Landau-Migdal term is also included, which accounts
for the contact part of the nucleon-nucleon interaction of the
form [66]

Vδπ = g′
(

fπ
mπ

)2

τ1τ2�1 · �2δ(r1 − r2), (3)

where for pion-nucleon coupling standard values are used
mπ = 138.0 MeV, f 2π /(4π ) = 0.08, and � = (σ 0

0 σ), with σ

being the Pauli spin matrix and τ isospin operator. Unless
otherwise stated, the strength parameter of the Landau-Migdal
term is taken as g′ = 0.76(0.55) for D3C∗(DD-ME2) in-
teraction, which is adjusted to reproduce the experimental
excitation energy of the Gamow-Teller resonance in 208Pb.

For the calculation of the β-decay half-lives, both al-
lowed (L = 0) and first-forbidden (L = 0, 1) transitions are
included. The general form of β-decay rate in stellar condi-
tions is given by [67]

λ = ln 2

K

∫ p0

0
p2e(W0 −W )2F (Z,W )C(W )[1 − f (W )]d pe,

(4)
where W is electron energy in the units of mec2, me denotes
the electron mass, and pe is electron momentum in units of
mec.W0 is the maximal electron energy given by the difference
of initial and final nuclear masses. The integration is per-
formed up to a maximal electron momentum p0. F (Z,W ) is
the Fermi function, taking into account distortion of electron
wave functions [68]. Maximal electron energy in β decay can

be approximated as

W0 ≈ λnp + 	np − EQRPA, (5)

where λnp = λn − λp is the difference between neutron and
proton chemical potentials, 	np = 1.293MeV is the neutron-
proton mass difference, and EQRPA is the FT-PNRQRPA
eigenvalue for the considered state. K is measured in super-
allowed β decay to be K = 6144 ± 2 s [69]. C(W ) is the
so-called shape factor. The outgoing electrons follow a Fermi-
Dirac distribution

f (W ) = 1

exp
(W−μe

kBT

) + 1
, (6)

where the electron chemical potential μe is determined by the
inversion of [67,70]

ρYe = 1

π2NA

(
mec

h̄

)3 ∫ ∞

0
( fe − fe+ )p2ed pe, (7)

where ρ is the baryon density, Ye is electron-to-baryon ratio,
NA is Avogadro’s number, and fe+ denotes Fermi-Dirac distri-
bution of positrons, for which μe+ = −μe− . For the allowed
GT transitions, C(W ) is equal to the reduced matrix element
of the GT− transition

B(GT−) = g2A
|〈 f ‖στ−‖i〉|2
(2Ji + 1)

, (8)

where τ− is the lowering isospin operator, while Ji is the
angular momentum of the initial state. Axial-vector cou-
pling constant gA is quenched from free-nucleon value of
gA = −1.26 to gA = −1.0 [31,71]. Shape factor for the first-
forbidden transitions has the functional form

C(W ) = k + kaW + kb/W + kcW 2. (9)

The details for the definitions of k, ka, kb, kc can be found in
Refs. [31,72]. Finally, β-decay rate λ is connected to half-lives
T1/2 via T1/2 = ln(2)/λ.

It is well known that individual low-energy GT states are
decisive in the determination of the β-decay half-lives of
nuclei at zero temperature. At finite-temperature transitions
between thermally excited states, both parent and daughter
nuclei start to play an important role in determining the total
decay rate. Apart from the usual transitions included within
the FT-(R)QRPA, namely transitions between ground state of
the parent nucleus to thermally excited states in the daughter
as well as transitions from thermally excited states in the par-
ent, in a stellar environment it is also important to include the
so-called de-excitations, i.e., transitions from highly excited
states in the parent nucleus, whose transitions are character-
ized by the negative Q value. The physical finite-temperature
strength function of an external field operator F̂ is defined as
[73,74]

S̃ =
∑
i f

pi|〈 f |F̂ |i〉|2δ(E − Ef + Ei ), (10)

where pi = e−βEi/
∑

j e
−βEj , β = 1/(kBT ), Ei( f ) are the

energies of initial (final) states. On the other hand, the FT-
(R)QRPA response function is given by (see the Appendix for
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the derivation)

RQRPA(E ) =
∑
n

|〈[
n, F̂ ]〉|2
E − En + iη

− |〈[F̂ †, 
n]〉|2
E + En + iη

, (11)

where n labels the FT-(R)QRPA eigenvalue En and the FT-
(R)QRPA creation operator 
n is defined in the Appendix.
Finite width around poles of the response function has been
added by including a small parameter η. For the crucial step, it
can be shown [75] that the physical strength at finite tempera-
ture can be obtained from the FT-(R)QRPA response function
as

S̃(E ) = − 1

π
Im

[
RQRPA(E )

1 − e−β(E−λnp)

]
. (12)

Using the definition of the GT external field operator as F̂ =
στ−, the physical strength is

S̃(E ) = 1

1 − e−β(E−λnp)
[S−(E ) + S+(E )], (13)

where S−(E ) = ∑
n |〈[
n, F̂ ]〉|2δ(E − En) and S+(E ) =

−∑
n |〈[F̂ †, 
n]〉|2δ(E + En). This means that excitations

of thermally averaged initial states are described by the
GT− strength function at positive transition energies, while
de-excitations are calculated using the GT+ strength (induced
by the F̂ † operator) at negative transition energies. We
note that negative transition energies mean E < λnp for
charge-changing transitions. Finally, by inserting the residues
of physical strength function S̃ in the expression for the total
β-decay rate [cf. Eq. (4)], it can be rewritten as

λβ = λ−
β + λ+

β , (14)

where λ−
β is the β-decay rate calculated using the thermally

averaged states with positive transition energy, and λ+
β repre-

sents the contribution of de-excitations.

III. RESULTS AND DISCUSSION

In this part, we study the changes in the β-decay proper-
ties of nuclei alongside the Gamow-Teller excitations at zero
and finite temperatures. To this aim, the FT-PNRQRPA with
D3C* functional is used in the calculations, which is known
to provide a good description of the β-decay properties of
nuclei. The effects of increasing the stellar densities on the β-
decay properties of nuclei are also discussed. In the last part,
large-scale calculations are performed for even-even nuclei in
the range 8 � Z � 82 for the selected stellar densities and
temperatures.

A. β-decay properties at zero and finite-temperature

As a benchmark for our study, we investigate the β-decay
half-lives in the zero-temperature limit for Ti, Fe, Cd, and Sn
isotopes, using the D3C* interaction with the Landau-Migdal
term strength parameter g′ = 0.76 and the isoscalar pairing
strength V is

0 as given in Eq. (2). The results shown in Fig. 1
appear in good agreement with the experimental data [76,77].
In the case of Sn isotopes, additional improvement of the half-
lives can be obtained by further adjustment of the g′ value,

FIG. 1. Comparison between β-decay half-lives calculated using
the FT-PNRQRPA with the D3C∗ interaction using g′ = 0.76 (black
full line) and the experimental data from Refs. [76,77] (red dashed
line) for Ti, Fe, Cd, and Sn isotopic chains. Additionaly, half-lives
for the Sn chain obtained by setting g′ = 0.5 are also shown (green
full line).

as shown in Fig. 1(d). It is a known issue that the (Q)RPA
consisting of a particle-hole (1p-1h) configuration may over-
estimate the half-lives of the doubly magic nuclei [28,31].
To improve the description of the half-lives, contributions
due to complex configurations should be taken into account,
resulting in lower predictions of half-life by increasing the
number of transitions in the low-energy region [36–38,78].
To compensate for the shortcomings of our model for the
Sn chain, we induce more strength in the low-energy region
by adjusting the strength parameter of the Landau-Migdal
term g′ in order to reproduce the experimental half-life of
132Sn, and the best fit is obtained for g′ = 0.5, as shown in
Fig. 1(d). The same value of g′ = 0.5 is used throughout the
whole Sn isotopic chain. The model with the D3C∗ functional
benchmarked in this way at T = 0MeV is employed in further
studies of the finite-temperature effects on β decay.

In this work, we first study the temperature evolution of
β-decay half-lives at fixed density (ρ) and electron-to-baryon
ratio (Ye). Temperature is known to affect both the proper-
ties and excitation spectrum of nuclei. Besides, the nucleus
goes under a phase transition from a superfluid to a normal
state at critical temperatures, and pairing properties vanish
completely [39,64]. Apart from the changes in the pairing
properties and single (quasi)particle levels of nuclei, tempera-
ture also gives rise to the opening of new excitation channels
due to the smearing of the Fermi surface and modifies the
residual ph and pp interactions of the FT-PNQRPA matrices
[41,62]. Eventually, the spin-isospin excitations and β-decay
half-lives of nuclei are affected, as we will discuss below.

In Figs. 2(a)–2(d), we display the total β-decay half-lives
T1/2 of the selected isotopic chains using the FT-PNRQRPA
with D3C* functional. Both λ−

β and de-excitation λ+
β contri-

butions of Eq. (14) are taken into account in the calculation of
the half-lives, i.e., T1/2 = ln(2)/(λ−

β + λ+
β ). The calculations

are performed for the range of temperatures between T =
0–1.5MeV and stellar density is fixed to ρYe = 107 g/cm3.
As a demonstration of the model, we consider Ti, Fe, Cd,
and Sn isotopic chains. In Figs. 2(a)–2(d), it is apparent that
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(a) (b) (c) (d)

(e) (f ) (g) (h)

FIG. 2. [(a)–(d)] Total β-decay half-lives T1/2 for Ti, Fe, Cd, and Sn isotopes as a function of temperature, including negative-energy
transitions (de-excitations). The calculations are performed using the FT-PNRQRPA and the D3C∗ functional. Red triangles denote results
of the FT-RTBA calculation for 132Sn from Ref. [38]. [(e)–(h)] Ratio between β-decay rate due to negative-energy transitions λ+

β and total
β-decay rate λβ . All calculations are performed at stellar density ρYe = 107 g/cm3.

temperature has a considerable impact on nuclei with long
β-decay half-lives at zero temperature, whereas its effect is
smaller in short-lived nuclei. For all considered nuclei, the
half-lives almost do not change up to T ≈ 0.3MeV, above
which they start to decrease or slightly increase and converge
to an almost constant value at higher temperatures. As men-
tioned above, influence of temperature is more pronounced
for nuclei with long half-lives at zero temperature, e.g., 52Ti,
62Fe, 120Cd, and 130,132Sn, where we first observe a sharp
decrease of half-lives with increasing temperature. As we
will discuss in Sec. III B, this sharp decrease in the β-decay
half-lives at low temperatures is related to the changes in the
pairing correlations as well as the changes in the low-energy
states and contribution of negative-energy transitions (de-
excitations) in the calculations, which eventually increase the
β-decay phase space and decrease the half-lives. It is also seen
that nuclei with shortest half-lives at the zero temperature,
like 60Ti and 70Fe, show almost no temperature dependence.
The conclusion by inspecting Figs. 2(a)–2(d) is that in gen-
eral temperature leads to a decrease of β-decay half-lives,
with the effect being larger (smaller) for nuclei with longer
(shorter) half-lives at zero temperature. In Fig. 2(d), we also
display the half-life of 132Sn (red triangles) calculated within
the FT-RTBA formalism from Ref. [38] at ρYe = 107 g/cm3.
The overall trend of the temperature dependence agrees well

between the FT-PNRQRPA and FT-RTBA calculations, that
is, the half-life decreases with increasing temperature. While
our calculation predicts the first significant temperature effect
at T ≈ 0.4MeV, the FT-RTBA predicts visible effects start-
ing from T ≈ 0.5MeV. At T = 1MeV, the results of both
approaches agree reasonably well. It should be noted that both
the framework of the compared models and the effective nu-
clear interactions used in the calculations are different, which
in turn results in different predictions for the single-particle
energies and transitions relevant for the β decay. Further-
more, within our model, the chemical potential of electrons at
lower-temperatures (μe ≈ 1MeV) is large enough to slightly
decrease the β-decay rate and thus increase the half-life.
Considering all of these reasons, the differences between the
FT-PNRQRPA and FT-RTBA calculations for the half-lives of
nuclei can be expected already at zero temperature.

To demonstrate the importance of including de-excitations
in the calculation of β-decay half-lives, in Figs. 2(e)–2(h), we
also display the temperature evolution of the ratio between
de-excitation rate λ+

β and total β-decay rate λβ for the same
isotopic chains [cf. Eq. (14)]. It is found that (i) negative
energy transitions (de-excitations) start to play a role already
at T ≈ 0.3 MeV, (ii) its contribution increases for all con-
sidered nuclei with increasing temperature, (iii) for p f -shell
52,54Ti and 62Fe nuclei, β-decay rates are fully determined
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FIG. 3. Temperature dependence of β-decay rates λβ for both allowed (1+) and first-forbidden transitions (0−, 1−, 2−) together with their
total sum (Total) for 54Ti, 62Fe, 120Cd, and 132Sn. Calculations are performed at stellar density ρYe = 107 g/cm3.

by de-excitation transitions around critical temperatures for
pairing correlations, and (iv) temperature evolution of λ+

β /λβ

depends on the shell structure of the particular nucleus under
consideration. For most nuclei in Ti and Fe chains and some in
Cd and Sn isotopic chains, a sharp decrease of the λ+

β contri-
bution occurs in the vicinity of critical temperature for pairing
phase transitions. As we will demonstrate later in the section,
this occurs due to redistribution of the GT strength function
when the pairing correlations vanish at critical temperatures. It
is shown that inclusion of the negative-energy transitions has
the most considerable effect on p f -shell nuclei with longer
half-lives and leads to a smooth decrease in the β-decay
half-lives with increasing temperature. Also, the contribution
of the negative-energy transitions increases with increasing
temperature for all nuclei considered in this work.

Apart from the Gamow-Teller states, the first-forbidden
transitions are also known to play a crucial role in the de-
termination of the β-decay half-lives in certain regions of
the nuclear chart [31]. Therefore, in the present analysis,
both allowed and first-forbidden transitions are considered
for a proper description of half-lives at finite temperatures.
In Fig. 3, we display the contribution of the GT (1+ transi-
tion) and first-forbidden (0−, 1−, 2−) transitions to the total
β-decay rate in 54Ti, 62Fe, 120Cd, and 132Sn with increas-
ing temperature. It is shown that for 54Ti and 62Fe the
β-decay rate is dominated by the allowed GT transition up
to T = 1.5MeV. The first-forbidden transitions also start to
contribute to the β-decay rate with increasing temperature,
whereas their contribution is quite less and can be neglected
up to T = 1.5MeV. Although their impact on the total β-
decay rate is rather small compared to the GT transitions up to
T ≈ 0.5 MeV, forbidden transitions start to contribute to the
β-decay rate of neutron-rich 120Cd after T ≈ 0.5 MeV. On
the other hand, at low temperatures (T < 0.3MeV), both GT
and 2− transitions are important for the β-decay rate in 132Sn.
By increasing the temperature further, the contribution of the
GT excitations increases considerably, while the contribution
of the 2− multipole to the total rate cannot compete with GT
and becomes less. At T ≈ 1.5MeV, contribution of the 1−

multipole has a non-negligible contribution to the β-decay
rates in 120Cd and 132Sn. Our results show that the contribu-
tion of the first-forbidden transitions increases with increasing
temperature.

Even though one drawback of our model is the inclu-
sion of only two quasiparticle (q.p.) configurations within the
R(Q)RPA, it includes both the pairing and temperature effects
and can be applied to calculations throughout the nuclide
chart, allowing large-scale calculations of relevance for astro-
physical models of stellar evolution and synthesis of chemical
elements. The deformation is another factor that can affect
the β-decay properties of nuclei. However, it is also known
that deformation of nuclei decreases with increasing temper-
ature, and a second-order phase transition from the deformed
state to the spherical state generally occurs after T > 1MeV
[79–81]. Therefore, our model applies well for the extreme
stellar environments where the temperature is high enough
(e.g., core-collapse supernovae).

B. Gamow-Teller excitations at zero and finite temperatures

To understand the temperature evolution of β-decay half-
lives, we need to investigate changes in the spin-isospin
excitations in nuclei with increasing temperature. To keep
the discussion simple, we fix the stellar density to ρYe =
107 g/cm3 and consider only the allowed Gamow-Teller tran-
sitions, whose strength is defined in Eq. (8). In this section, we
study the changes in the GT strength of two p f -shell nuclei
54Ti and 62Fe with increasing temperature. To start with, the
pairing gap values at zero temperature and the critical tem-
peratures T c

n(p) for neutrons (protons) of 54Ti and 62Fe are
given in Table I. Due to the grand-canonical treatment of
nuclei at finite temperatures, the pairing phase transition of
nuclei from superfluid state to normal state occurs at critical
temperatures, and pairing correlations disappear. Temperature
leads to a decrease in the excited state energies of nuclei due to
the vanishing of the isovector pairing properties and changes
in the single-(quasi)particle energies of nuclei as well as the
decrease in the residual ph and pp interactions. Besides, new
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TABLE I. The pairing gap values at zero temperature 	0
n(p) and

critical temperatures T c
n(p) for neutrons (protons) calculated using the

FT-HBCS theory and D3C∗ functional.

	0
n [MeV] 	0

p [MeV] T c
n [MeV] T c

p [MeV]

54Ti 1.03 1.76 0.59 0.91
62Fe 1.44 1.56 0.76 0.83

excitation channels become possible due to the smearing of
the Fermi surface at high temperatures [38,40,41,62,82,83].
However, the presence of the isoscalar pairing in the residual
interaction can slow down temperature-induced changes for
open-shell nuclei until the critical temperatures. As mentioned
before, both the isoscalar and isovector pairing correlations
are included in the calculations at zero and finite tempera-
tures. While the isovector pairing contributes to the FT-HBCS
calculations and leads to an increase in both the quasiparticle
energies of the states and excited state energies, the isoscalar
pairing contributes to the residual pairing interaction and de-
creases the excited state energies due to its attractive nature.
By increasing the temperature, pairing effects first decrease
and then vanish completely at critical temperatures. Under
the influence of both the isoscalar and isovector pairing, the
changes in the GT− excitations strongly depend on the in-
terplay between the increasing effect of temperature and the
decreasing impact of the pairing correlations for the consid-
ered nucleus (see Ref. [41] for more details).

In Figs. 4(a)–4(e), we show the temperature evolution of
the GT strength in 54Ti within the β-decay energy window
(i.e., Qβ window).

As mentioned above, thermally induced negative-energy
transitions have a considerable impact on the calculation of
the β-decay half-lives below the critical temperatures. To
explain the working mechanism of including de-excitations
in our model, we display the finite-temperature GT strength
in Figs. 4(a)–4(e). The negative-energy strength representing
de-excitations is located up to λnp [denoted by the black
dashed vertical line in Figs. 4(a)–4(e)]. In the same figure,
the positive-energy strength is also displayed between λnp

and 	nH . At finite temperature, both positive-energy strength,
determined by the GT− transitions for E > λnp, and negative-
energy strength, determined by the GT+ transitions for E <

λnp, contribute to the decay rate, where we have denoted the
corresponding rates with λ−

β and λ+
β (cf. Sec. II). Strength

functions corresponding to these rates are weighted by the
temperature factor (1 − e−β(E−λnp) )−1 [shown as thin colored
lines in Figs. 4(a)– 4(e).

At T = 0MeV, the main low-energy GT− peak within the
Qβ energy window is found at E = −4.83MeV with strength
B(GT−) = 0.22 [see Fig. 4(a)]. Although this is not the only
peak within the Qβ window, it is the only one allowed by the
phase-space factor in Eq. (4) at ρYe = 107 g/cm3. Most of the
GT− strength comes from the ν1 f5/2 → π1 f7/2 transition for
this state, where ν and π refer to neutron and proton, respec-
tively. At T = 0MeV, the weighting factor (1 − e−β(E−λnp) )−1

reduces to 1, which is multiplied by the GT− strength for
the calculation of the λ−

β rate. Besides, there is a peak for

FIG. 4. The temperature evolution of the Gamow-Teller strength,
located within the Qβ window, in 54Ti [(a)–(e)] and 62Fe [(g)–(k)]
at temperatures in the range T = 0–1.5MeV with respect to the
excitation energy of parent nucleus. The neutron-proton chemical
potential difference λnp = λn − λp is labeled by the black dashed
line and it separates the negative-energy transitions (determined by
GT+ strength located at E < λnp) from GT− strength (located at
E > λnp). Within the panels (a)–(e) [and (g)–(k)], thick lines de-
note the Gamow-Teller strength B(GT) while thin lines represent
the weighting prefactors (1 − e−β(E−λnp ) )−1. In panels (f) and (l), the
cumulative sum of half-lives is shown obtained by restricting the
summation in Eq. (4) for 54Ti and 62Fe, respectively.

E < λnp at E = −8.97MeV. However, this state does not
contribute to the β-decay rate since the weighting factor is
zero for the states below E < λnp. In Fig. 4(f), we also dis-
play the cumulative sum of the β-decay half-lives to follow
the changes on the GT excitations and β-decay properties
of nuclei with increasing temperature. At T = 0MeV, the
effect of the main low-energy peak at E = −4.83MeV can
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be seen clearly in reducing the half-life, while other peaks are
negligible. Already at T = 0.3MeV, temperature affects the
GT strength function. The main peak within the Qβ window
shifts by 0.05 MeV to lower energies and is obtained at E =
−4.88MeV. Since the weighting factor is greater than zero
for the states below E < λnp, the peak at E = −8.95MeV
with B(GT+) = 0.63 also contributes to the λ+

β part of the
total β-decay rate. It is a negative-energy transition originating
from π1 f7/2 → ν1 f5/2 two-quasiparticle (2 q.p.) excitation.
The impact of this transition in decreasing the half-life can be
seen in Fig. 4(f).

At T = 0.6MeV, pairing collapse occurs for neutron states
(cf. Table I), and considerably changes the GT strength func-
tion as can be seen from Fig. 4(c). The most important
GT− peaks for E > λnp are the peak at E = −6.48MeV
with B(GT−) = 0.08 with main contribution from ν1 f5/2 →
π1 f7/2 transition and another low-energy peak at E =
−1.15MeV with B(GT−) = 0.09 mainly formed with the
ν2p1/2 → π2p3/2 transition. Besides, the new peaks appear
with the opening of new excitation channels and the low-
energy strength fragments at higher energies (E > 0MeV).
These excited states do not play an important role in the
β-decay half-lives, as can be seen from Fig. 4(f). For E < λnp,
the main peak is located at E = −8.64MeV with B(GT+) =
0.70, again stemming from the π1 f7/2 → ν1 f5/2 transition.
Due to the growing impact of the weighting factor (1 −
e−β(E−λnp) )−1 for E < λnp, this peak gains considerable im-
portance by lowering the half-life, as can be seen in Fig. 4(f).
At T = 0.9MeV, the pairing gap of proton states reduces fur-
ther to 	p = 0.54MeV, while there is no pairing for neutron
states (see Table I). The GT− peaks for E > λnp are found at
higher excitation energies. The first important peak is obtained
at E = −1.08MeV with strength B(GT−) = 0.11, originat-
ing from ν2p1/2 → π2p3/2 transition. Another low-energy
peak is found at E = −0.57MeV with B(GT−) = 0.05,
having contributions from ν1 f5/2 → π1 f5/2 and ν1 f7/2 →
π1 f7/2 transitions. However, these peaks together with other
peaks located at E > 0MeV have almost no contribution to
the β-decay half-life. At T = 0.9MeV, the β-decay half-lives
are almost fully determined by de-excitations, located on the
E < λnp side. The first peak is obtained at E = −8.04MeV
with B(GT+) = 0.24 and the second one is found at E =
−7.29MeV with B(GT+) = 0.15, both stemming from the
π1 f7/2 → ν1 f5/2 negative-energy transition. Combined with
the increasing impact of the weighting factor, the inclusion
of de-excitations leads to a smooth decrease in the half-lives
with increasing temperature [see Fig. 2(a)]. At T = 1.5MeV,
pairing effects are washed out completely, and new transitions
appear because of the unblocking effect of the temperature.
The fragmentation of the states also increases around E ≈
0MeV. Although the overall strength increases with the open-
ing of the new excitation channels at finite temperatures,
the strength mostly lies in the higher energy region of the
Qβ window and its effect on the half-life is negligible. At
T = 1.5MeV, the most important contribution to the total β-
decay rate comes from the negative-energy transition at E =
−7.36MeV with B(GT+) = 0.24, which is mainly formed by
the π1 f7/2 → ν1 f5/2 transition. Notice that at T = 1.5MeV
half-life slightly decreases compared to T = 0.9MeV.

Temperature dependence of GT strength for 62Fe is also
shown in Figs. 4(g)–4(k). At zero temperature, the only con-
tribution to GT− strength comes from ν1 f5/2 → π1 f7/2 2 q.p.
excitation and we obtain an excited state at E = −3.04MeV
with B(GT−) = 0.45. By increasing the temperature, the
negative-energy π1 f7/2 → ν1 f5/2 transition becomes allowed
due to nonvanishing weighting factor multiplying the strength.
Similar to the findings in 54Ti, de-excitations start to have a
dominant contribution to the half-life with increasing temper-
ature [see Fig. 4(l)]. At T = 0.9MeV, pairing correlations
vanish for both proton and neutron states (check Table I).
After the pairing collapse, the GT− peak is obtained at E ≈
0MeV, which is formed with the ν2p1/2 → π2p3/2 transi-
tion and has almost no contribution to β-decay half-lives.
At the same time, the impact of the de-excitations increases,
which in turn leads to a smooth decrease in the half-lives.
At T = 1.5MeV, E < λnp strength is fragmented into two
peaks due to temperature unblocking, and both π1 f7/2 →
ν1 f5/2 and π1g9/2 → ν1g7/2 transitions contribute to the λ+

β

rate. In Table II, we also provided the most important peaks
for the β-decay half-lives alongside their excitation energy
E , strength B(GT), absolute value of weighting factor |(1 −
e−β(E−λnp) )−1|, and main 2 q.p. components for 62Fe. Evolu-
tion of β-decay half-lives in Figs. 2(a)–2(d) for 54Ti and 62Fe
precisely follows these trends of GT strength, mainly (i) at
low temperatures (T < 0.5MeV), the rate is determined only
by a few GT peaks in Qβ window yielding long half-lives,
(ii) once the temperature reaches T ≈ 0.6MeV half-lives are
dominated by the de-excitations, and (iii) due to inclusion
of higher number of states in GT strength at high tempera-
tures (T > 1MeV) rates are less dependent on temperature
effects.

C. Dependence of finite-temperature β-decay rates
on stellar density

It is also of interest for astrophysical applications to study
the dependence of β-decay rates on the density ρYe. There-
fore, we also consider the changes in the β-decay rates at
higher stellar densities with increasing temperature. In Fig. 5,
we compare our results (FT-PNRQRPA) for selected p f -shell
nuclei calculated using D3C∗ (black dashed line) and DD-
ME2 (blue dash-dotted line) interactions in the temperature
range T = 0–2MeV with the large scale shell-model results
(LSSM) from Ref. [20] and shell-model results based on pf-
GXPF1J interaction from Refs. [84,85] at ρYe = 107 g/cm3

(upper panels) and ρYe = 109 g/cm3 (lower panels). Since
the shell-model calculations do not include first-forbidden
transitions, we only use the allowed Gamow-Teller transitions
in the calculations for the comparison. Comparing the up-
per and lower panels of Fig. 5, it can be seen that β-decay
rates significantly decrease with increasing density. It is also
seen that the FT-PNRQRPA calculations using both D3C∗

and DD-ME2 interactions are in good agreement with both
shell-model results, and overall trends of increasing rates with
increasing temperature are well reproduced. In principle, with
increasing temperature at fixed ρYe, the electron chemical
potential μe slightly decreases, allowing more states in the β-
decay energy window. Again, due to increasing contribution
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TABLE II. The most dominant Gamow-Teller excitations contributing to β-decay half-lives of 62Fe in the temperature range T = 0–
1.5MeV. Displayed are both E > λnp (determined by GT−) and E < λnp (determined by GT+) excitations, together with their excitation
energy E (with regard to parent nucleus), strength B(GT±), absolute value of weighting factor |(1 − e−β(E−λnp ) )−1|, and two-quasiparticle
transitions having most relevant contributions.

T [MeV] E [MeV] B(GT) |(1 − e−β(E−λnp ) )−1| transitions

0.0 GT− −3.04 0.45 1.00 ν1 f5/2 → π1 f7/2
GT+ −6.39 0.36 0.00 π1 f7/2 → ν1 f5/2

0.3 GT− −3.05 0.44 1.00 ν1 f5/2 → π1 f7/2
GT+ −6.37 0.37 0.004 π1 f7/2 → ν1 f5/2

0.6 GT− −4.36 0.04 2.29 ν1 f5/2 → π1 f7/2
−3.33 0.22 1.11 ν1 f5/2 → π1 f7/2
−0.84 0.04 1.00 ν2p1/2 → π2p3/2

GT+ −5.05 0.05 1.29 π1 f7/2 → ν1 f5/2
−6.08 0.42 0.11 π1 f7/2 → ν1 f5/2

0.9 GT− 0.02 0.24 1.01 ν2p1/2 → π2p3/2
GT+ −5.38 0.51 0.86 π1 f7/2 → ν1 f5/2

1.5 GT− 0.21 0.25 1.05 ν2p1/2 → π2p3/2
GT+ −5.36 0.31 1.22 π1 f7/2 → ν1 f5/2

π1g9/2 → ν1g7/2
−5.38 0.18 1.17 π1 f7/2 → ν1 f5/2

π1g9/2 → ν1g7/2

of de-excitations, rates continue to increase with temperature
also at ρYe = 109 g/cm3, having good agreement with shell-
model results at finite temperatures (see the lower panels of
Fig. 5). The agreement is better at higher temperatures where
individual nuclear properties (e.g., shell structure and pairing)
become less important due to the larger number of excited
states. It should be noted that at high temperatures inclusion

of negative-energy transitions becomes very important in ob-
taining reasonable agreement with shell-model calculations.
The differences between the β-decay rate predictions stem
from the assumptions of the models, as expected. Note that in
contrast to shell-model calculations, which assume the Brink
hypothesis to treat transitions from highly excited states, our
model makes no such assumptions. Inclusion of de-excitations

FIG. 5. β-decay rates λβ for selected nuclei in the temperature range T = 0–2MeV for densities ρYe = 107 g/cm3 (upper panels) and
ρYe = 109 g/cm3 (lower panels). The FT-PNRQRPA calculations based on the D3C∗ interaction (black dashed line) and DD-ME2 interaction
(blue dash-dotted line) are shown together with the LSSM (red squares) [20] and shell-model calculations based on the pf-GXPF1J interaction
(green triangles) [84,85].
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FIG. 6. Left panel: the β-decay half-lives T1/2 of nuclei at zero temperature. Large-scale calculations are performed for even-even nuclei
in the range 8 � Z � 82, and the stellar density is fixed to ρYe = 107 g/cm3. The even-even nuclei are shown side-by-side for demonstration
purposes. Right panel: The same but the density is fixed to ρYe = 109 g/cm3.

follows from equating the FT-(R)QRPA strength function to
physical strength function as in Eq. (12).

Considering these findings, we conclude that the inclusion
of negative-energy transitions in the calculation of β-decay
half-lives is crucial to obtain a better understanding of the
temperature evolution of the half-lives. Especially at lower
temperatures, the inclusion of de-excitations in the β-decay
calculations counterbalances the sudden disappearance of the
GT− strength within the Qβ window due to the vanishing of
pairing properties around the critical temperature and leads to
a smooth decrease of the β-decay half-lives. Consequently, the
FT-PNRQRPA and shell-model results become compatible
with each other.

D. Large-scale calculations at zero and finite temperatures

After investigating the effects of temperature in β-decay
half-lives, we extend our investigation throughout the nu-
clide chart. In this work, we focus on β-decay half-lives of
even-even nuclei in the 8 � Z � 82 range. Following previ-
ous work from Ref. [31], we perform our calculations for
nuclei with half-lives below 104 s at zero temperature. Pair-
ing gaps for open-shell nuclei are calculated by adjusting
monopole pairing constants Gn(p) (see Refs. [41]) to pair-
ing gaps obtained from five-point formula [86]. Half-lives
of doubly magic 132Sn and 78Ni nuclei are adjusted to the
available experimental half-lives by modifying g′ coupling
of Landau-Migdal term in Eq. (3) as previously described
in Sec. III A. The same value of g′, as determined for
the doubly magic nucleus, is used throughout the rest of
Sn and Ni isotopic chain. This is done to compensate for
missing strength in doubly magic nuclei due to omission
of complex-configurations within the (Q)RPA. We present
only the results for the bound nuclei with negative chemical
potential λn(p) < 0 [87].

In Fig. 6, we first display the β-decay half-lives of 705
even-even nuclei at T9(K) = 0.01 (T9(K) denoting tempera-
ture in 109 K units) using (N,Z ) charts. This is essentially

zero-temperature result. However, due to ρYe dependence,
a nonvanishing temperature is usually introduced to keep
the calculations finite. In order to demonstrate the effects of
the stellar density on the β-decay half-lives, the calculations
are performed at ρYe = 107 g/cm3 [Fig. 6(a)] and ρYe =
109 g/cm3 [Fig. 6(b)]. It is shown that the β-decay half-lives
decrease with increasing neutron number in both panels, as
expected. Increasing the density to ρYe = 109 g/cm3, half-
lives are predicted to be longer for all nuclei compared to the
calculations with ρYe = 107 g/cm3. We also notice that the β-
decay half-lives increase considerably in the less neutron-rich
side of the (N,Z ) chart, and some nuclei become even stable at
high densities.

Let us explain the physical mechanism of the changes in
the β-decay rates of nuclei with increasing density. From the
rate equation (4), it can be easily deduced that with increasing
density (ρYe) β-decay rates decrease rapidly. Because of the
increased chemical potential of electrons μe at higher densi-
ties, the Fermi-Dirac factor in Eq. (6) increases. This factor
enters Eq. (4) as 1 − fe(W ), thus reducing (increasing) the
β-decay rate (half-life) by limiting the number of available
excitations in the β-decay energy window. This is exactly the
opposite case of the electron capture, where higher densities
excite a larger part of the strength function [70,88]. Although
densities considered within this work might be too high for
the r-process, they could be of significance for the evolution
of core-collapse supernovae, especially in the stage when the
collapse reaches A ≈ 60 where β-decay can compete with the
electron capture [46].

Similar calculations are also performed at finite temper-
atures, and the effect of the temperature is studied on the
β-decay half-lives of nuclei. To this aim, the calculations
are performed at T9(K) = 5 and 10, and densities are taken
as ρYe = 107 g/cm3 and ρYe = 109 g/cm3. In Fig. 7, we
display the percentage change in the β-decay half-lives of
nuclei at finite temperatures with respect to the T9(K) = 0.01
(zero temperature) case. Already at T9(K) = 5 for densities
ρYe = 107 g/cm3 [Fig. 7(a)] and ρYe = 109 g/cm3 [Fig. 7(c)]
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FIG. 7. [(a), (b)] The percentage change of the β-decay half-lives T1/2 at finite temperatures T9(K) = 5, T9(K) = 10 with respect to T9(K ) =
0.01 (zero-temperature) results. Large-scale calculations are performed for even-even nuclei in the range 8 � Z � 82, and the stellar density
is fixed to ρYe = 107 g/cm3. The even-even nuclei are shown side by side for demonstration purposes. [(c), (d)] The same but the density is
fixed to ρYe = 109 g/cm3.

temperature effects start to become visible. In the majority
of the nuclide map, a decrease in the β-decay half-lives is
obtained with increasing temperature, as expected from pre-
vious analysis. Also, some nuclei display a slight increase
in half-lives, being located in between the closed shells and
in the proximity of neutron drip line. As mentioned above,
a decrease in half-lives is mainly related to the changes in
the pairing and excitation properties of nuclei with increasing
temperature. By inspecting Figs. 7(a) and 7(c), the β-decay
half-lives of nuclei are generally impacted more by the tem-
perature effects for ρYe = 109 g/cm3, when compared to the
results with ρYe = 107 g/cm3. At T9(K) = 5, the percentage
change in the half-lives are found to be below 20% for both
densities near the neutron-drip lines. Going toward the valley
of β stability, the temperature leads to an important decrease
in the half-lives, and the obtained percentage decrease reaches
100% for the calculations using ρYe = 109 g/cm3. It is known
that high density leads to an increase in the half-lives of nuclei
by decreasing the Qβ window at zero temperature. Therefore,

the half-lives become more sensitive to the temperature-driven
changes in the excitation properties of nuclei.

At T9(K) = 10 [see Figs. 7(b) and 7(d)], half-lives are
significantly altered due to the increasing impact of the
temperature on the nuclear properties, and many nuclei are
showing much larger changes. Again, nuclei showing the
most change are those with initially long half-lives (magic,
semimagic, and close to the valley of stability). Similar to
the findings at T9(K) = 5, it can be seen that temperature
effects are more pronounced at ρYe = 109 g/cm3, changing
the half-lives of many nuclei in a considerable way. We con-
clude that the general effect of the temperature is to decrease
the half-life of nuclei, especially those in the vicinity of val-
ley of β stability. Although some nuclei display an increase
in their half-lives with increasing temperature, this effect is
mild compared to many other nuclei showing considerable
decrease of half-lives. In general, influence of temperature
on half-lives depends on the particular shell structure and the
pairing properties of nuclei, as discussed in Sec. III A.

054318-11
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IV. CONCLUSION

In this work, we have developed a microscopic framework
for the description of the temperature dependence of β-decay
half-lives, based on the relativistic nuclear energy density
functional with the momentum-dependent meson-nucleon
couplings (D3C∗ parametrization). The FT-PNRQRPA has
been implemented in the calculations of the allowed and
first forbidden transitions for β decay, by including both the
nuclear pairing and finite-temperature effects. The β-decay
properties have been studied by varying the temperature and
density, which are relevant for some astrophysical conditions.

After benchmarking the model to reproduce the measured
half-lives at zero temperature, it has been demonstrated that
temperature can have a considerable impact on nuclei with
longer half-lives, namely, for nuclei with magic numbers and
close to the valley of β stability. By increasing temperature,
the excited states start to shift downward and new states
appear in the low-energy region due to the unblocking mecha-
nism of the temperature, which in turn leads to an increase
in the β-decay phase space and decrease in the half-lives.
Furthermore, as the temperature increases, transitions from
highly excited states in the parent nucleus, i.e., de-excitations,
become important in shortening the half-lives around the
critical temperatures for pairing phase transition. Following
the example of nuclei in Ti, Fe, Cd, and Sn isotopic chains,
we have demonstrated that a significant decrease in half-life
occurs near the critical temperature for neutrons. Nuclei with
short half-lives at zero temperature display only a minor effect
of temperature. Although those nuclei can also exhibit an
increase of half-lives with temperature, on average this effect
remains within 10% of the relative difference with respect
to half-life at zero temperature. It has also been shown that
the impact of the forbidden transitions on the half-lives be-
comes more pronounced with increasing temperature due to
the thermal unblocking effect. Increasing the stellar density in
the calculations, the β-decay half-lives increase considerably
due to the decrease in the available phase space.

We have compared our β-decay rates for 52,54Ti and 60,62Fe
with shell-model calculations and obtained reasonable agree-
ment (considering the difference between the models) for
both D3C∗ and DD-ME2 interactions, especially at higher
temperatures (T > 1MeV), where β-decay rates become less
dependent on particular shell structure.

The presented model is most suitable for large-scale calcu-
lations of β-decay half-lives at finite temperature throughout
the nuclide chart, relevant for astrophysical nucleosynthesis
mechanisms. As an initial study toward this direction, the
half-lives of 705 even-even nuclei in the range between proton
numbers 8 to 82 have been calculated at temperatures T9(K) =
5 and T9(K) = 10 and stellar densities ρYe = 107 g/cm3

and ρYe = 109 g/cm3. The strong impact of the temperature
and density on the β-decay half-lives has also been demon-
strated over the nuclide map. Although temperatures where
half-lives change significantly appear higher than in some of
the nucleosynthesis mechanisms (e.g., r-process in Ref. [3]),
temperature-dependent β-decay half-lives could be important
in the initial stages of the r-process [89] or astrophysical
processes like rp-process [44], dense thermonuclear explo-

sions and supernovae simulations [45] where temperatures
are higher. More sophisticated finite-temperature RHB theory,
providing accurate scattering of quasiparticle pairs to nuclear
continuum, instead of the BCS for the calculation of nuclear
properties, is going to be developed and implemented in forth-
coming studies. Improved descriptions throughout the nuclide
chart by including the half-lives of odd-A nuclei and deforma-
tion effects, also necessary for a complete understanding of
temperature effects on the r-process, are going to be addressed
in our future studies.
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APPENDIX: DERIVATION OF THE FT-PNRQRPA
RESPONSE FUNCTION

In this Appendix, we present the derivation of Eq. (11), i.e.,
the FT-PNRQRPA response function RQRPA(E ). Our deriva-
tion extends the formalism presented in Ref. [90] to the
finite-temperature case using the notation of Ref. [64]. The
linear response equation can be written in the matrix form, at
excitation energy E (cf. Eq. (3.19) from Ref. [64]) as

[TW + E − EM]T δR = −TF, (A1)

where the above matrices are defined in the q.p. basis
as following: Tμμ′ = diag( fμ′ − fμ, 1 − fμ′ − fμ, 1 − fμ′ −
fμ, fμ′ − fμ) where the Fermi-Dirac factors are fμ = [1 +
exp(βEμ)]−1, Eμ being the q.p. energy. The norm matrix
isM = diag(1, 1,−1,−1), and Eμμ′ = diag(Eμ + Eμ′ ,Eμ −
Eμ′ ,−Eμ − Eμ′ ,−Eμ + Eμ′ ). These are diagonal matrices of
the total dimension 4Nph × 4Nph where Nph is the number of
q.p. pairs. We use a shorthand notation where each element
of presented matrices is a submatrix of dimension Nph × Nph.
The interaction matrixW has the form

Wμμ′νν ′ = δHμμ′

δRνν ′
=

⎛
⎜⎜⎝
C′ a b D
a† A′ B bT

b† B∗ A′∗ aT

D∗ b∗ a∗ C′∗

⎞
⎟⎟⎠, (A2)
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where Hμμ′ is the interaction Hamiltonian containing both
ph and pp correlations written in the q.p. basis and Rνν ′ is
the generalized density matrix as defined in Refs. [74,91].
Definition of submatrices a, aT , a†, b, bT , b†,A′,B,C′, and D
can be found in Ref. [64]. The charge-changing external field
operator F̂ has the following form in the q.p. basis:

Fμμ′ = (F 11 F 20 F 02 F 1̄1 )Tμμ′ . (A3)

If F̂ assumes the β− direction of isospin operator its compo-
nents in the q.p. basis are

F 11
πν = uπuν〈π |F̂ |ν〉, F 20

πν = uπvν〈π |F̂ |ν〉, (A4)

F 02
πν = vπuν〈π |F̂ |ν〉, F 1̄1

πν = vπvν〈π |F̂ |ν〉, (A5)

where 〈π |F̂ |ν〉 are the single-particle matrix elements and
uπ (ν ), vπ (ν ) are the quasiproton(neutron) FT-HBCS ampli-
tudes. The induced density δR in the q.p. basis is defined as

δRμμ′ (E ) = (P(E ) X (E ) Y (E ) Q(E ))T
μμ′ . (A6)

We define the transition density as ρμμ′ (E ) = [T δR(E )]μμ′

so that

ρμμ′ (E ) = −
∑
νν ′

RF (E )μμ′νν ′Fνν ′ , (A7)

where the response function RF (E ) = [T−1(E − EM) −
W ]−1. In order to calculate RF (E ), we employ the FT-
PNRQRPA eigenvalue problem

[E + TW ]TX = MTX
, (A8)

where X is the matrix whose columns consist of FT-
PNRQRPA eigenvectors as in Ref. [64],

X =

⎛
⎜⎜⎝

P1 . . .P2Nph Q∗
1 . . .Q∗

2Nph

X1 . . .X2Nph Y ∗
1 . . .Y ∗

2Nph

Y1 . . .Y2Nph X ∗
1 . . .X ∗

2Nph

Q1 . . .Q2Nph P∗
1 . . .P∗

2Nph

⎞
⎟⎟⎠, (A9)

while 
 = diag(E1 . . .E2Nph ,−E1 . . . − E2Nph ) contains the
FT-PNRQRPA eigenvalues. The normalization condition for
the FT-PNRQRPA eigenvectors can be written in the form

X †TMX = M, (A10)

satisfying the condition [X †TMX ,
] = 0 under the as-
sumption ofW = W †. The response RF (E ) can be calculated
by using Eqs. (A8) and (A10) as

RF (E ) = TXM(
 − E )−1X †T . (A11)

By explicitly calculating RF (E ), we have the following ex-
pressions for transition density in the q.p. basis:

ρ11
μμ′ (E ) = −

∑
n

(
( fμ′ − fμ)Pn

μμ′

En − E
〈[
n, F̂ ]〉

+ ( fμ′ − fμ)Qn∗
μμ′

En + E
〈[F̂ †, 
n]〉∗

)
, (A12)

ρ20
μμ′ (E ) = −

∑
n

(
(1 − fμ′ − fμ)Xn

μμ′

En − E
〈[
n, F̂ ]〉

+ (1 − fμ′ − fμ)Y n∗
μμ′

En + E
〈[F̂ †, 
n]〉∗

)
, (A13)

and similarly for ρ02
μμ′ by exchanging X → Y andY ∗ → X ∗ in

Eq. (A13), and ρ 1̄1
μμ′ by exchanging P → Q and Q∗ → P∗ in

Eq. (A12). We have used the following expressions in above
equations:

〈[
n, F̂ ]〉 =
∑
νν ′

Pn∗
νν ′F 11

νν ′ ( fν ′ − fν ) + Xn∗
νν ′F 20

νν ′ (1 − fν ′ − fν )

+ Y n∗
νν ′F 02

νν ′ (1 − fν ′ − fν ) + Qn∗
νν ′F 1̄1

νν ′ ( fν ′ − fν ),
(A14)

〈[F̂ †, 
n]〉 =
∑
νν ′

Pn∗
νν ′F 1̄1∗

νν ′ ( fν ′ − fν ) + Xn∗
νν ′F 02∗

νν ′ (1 − fν ′ − fν )

+ Y n∗
νν ′F 20∗

νν ′ (1 − fν ′ − fν ) + Qn∗
νν ′F 11∗

νν ′ ( fν ′ − fν ),
(A15)

where 〈·〉 denotes the thermal averages with respect to the
noninteracting generalized density matrixR0 [74]. The 2 q.p.
excitation operator is defined as [64]


n =
∑
νν ′

Pn∗
νν ′aνa

†
ν ′ − Xn∗

νν ′aνaν ′ + Y n∗
νν ′a†νa

†
ν ′ − Qn∗

νν ′a†νaν ′ ,

(A16)
for the charge-changing external field F̂ for which F̂ 
=
F̂ †, a†π (ν )(aπ (ν ) ) being creation (annihilation) quasipro-
ton(neutron) operators. Finally, the FT-PNRQRPA response
function is defined as

RQRPA(E ) = F̂ †ρ(E ) =
∑
μμ′

F∗
μμ′ρμμ′ (E ), (A17)

and using the expression given in Eq. (A3) and Eqs. (A12)–
(A15), the FT-PNRQRPA response function is obtained as

RQRPA(E ) =
∑
n

|〈[
n, F̂ ]〉|2
E − En

− |〈[F̂ †, 
n]〉|2
E + En

. (A18)

In our calculations, we add the finite width to the excitation
energy as E → E + iη, so that

RQRPA(E ) =
∑
n

|〈[
n, F̂ ]〉|2
E − En + iη

− |〈[F̂ †, 
n]〉|2
E + En + iη

. (A19)

The FT-PNRQRPA strength function is defined as

SQRPA(E ) = − 1

π
ImRQRPA(E ), (A20)

which yields

SQRPA(E ) =
∑
n

|〈[
n, F̂ ]〉|2δ(E − En)

− |〈[F̂ †, 
n]〉|2δ(E + En). (A21)
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