
1 

 

Voice-based Proactive Smart Home Assistants Nudging Occupants for HVAC 
Energy-Saving Behaviors: A Smart Speaker Case 

Tianzhi He1, Farrokh Jazizadeh2*, Laura Arpan3 
1Graduate Research Assistant, Department of Civil and Environmental Engineering, Virginia Tech, 315 
Patton Hall, 750 Drillfield, Blacksburg, VA, 24061; email: tianzhi@vt.edu 
2Associate Professor, Department of Civil and Environmental Engineering, Virginia Tech, 200 Patton Hall, 
750 Drillfield, Blacksburg, VA, 24061; email: jazizade@vt.edu *Corresponding author 
3Professor, School of Communication, Florida State University, UCC3100, Tallahassee, FL, 32306; email: 
laura.arpan@cci.fsu.edu  

Abstract 
AI-based virtual assistants integrated into the smart home ecosystems facilitate human-building interactions. 
We have envisioned that proactive virtual assistant capabilities could be designed to encourage energy 
conservation behaviors by relying on their nudging effect through conversational interactions and 
autonomous actuation. To this end, we investigated how proactive virtual assistants, in a simulated smart 
home ecosystem, influence occupants to take energy-saving, adaptive actions for HVAC operations and 
how participants’ personal characteristics affect their responses. Through an interactive online experiment, 
we collected data from 307 participants from diverse backgrounds across the United States. It was found 
that proactive communications with follow-up conversations can significantly increase the likelihood of 
accepting virtual assistance recommendations. This improvement was reflected in an increased number of 
participants (by 16%) who accepted energy-saving suggestions by comparing initial versus final responses 
during proactive conversations. Characterizing groups of participants based on their personal features and 
individual differences showed that user experience (with ~30% increase), pro-environmental values/beliefs 
(with ~24% to 35% increase), and forgiving thermal preferences (with ~12% increase) had a significant 
influence on participants’ stated likelihood to accept virtual assistants’ recommendations and their 
evaluation of the general concept of proactive communication from virtual assistants. 
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Introduction 
Buildings account for 28% of the total energy consumption in the United States (EIA, 2020). Studies have 
shown that building energy management using human-centered operations could result in considerable 
energy savings (Costa, Keane, Torrens, & Corry, 2013). With advances in the Internet of Things (IoT) 
technologies, smart homes provide the opportunity for occupants to conserve energy by accounting for their 
convenience and comfort (Alaa, Zaidan, Zaidan, Talal, & Kiah, 2017). Smart homes are IoT-enabled 
residences that link sensors, devices, appliances, and building systems (e.g., lighting and HVAC systems) 
to support occupants’ needs (Balta-Ozkan, Davidson, Bicket, & Whitmarsh, 2013; Darby, 2018). 
Traditionally, occupants interact with smart homes through display-based user interfaces, such as 
smartphones and dashboards. However, in the past five years, the rise of voice-based virtual assistants, such 
as Amazon Alexa and Google Assistant have brought new potentials to provide occupants with a convenient 
and intuitive interface for interactions through conversations (Gnewuch, Morana, Heckmann, & Maedche, 
2018). By leveraging IoT-enabled technologies, virtual assistants can control a broad range of connected 
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devices, such as thermostats, lighting systems, and security systems (Morris & Thompson, 2020). Through 
simple wake words (e.g., “Alexa” and “Hey Google”), occupants can easily control the home environment 
with voice commands. As carriers of voice-based virtual assistants, smart speakers play a significant role 
in smart home applications. In 2020, nearly 90 million adults, which is 34.4% of the U.S. adults, have 
owned at least one smart home device in their home and about 50% of these owners were daily active users 
(Bret & Ava, 2020). 24.5% of the smart speaker users utilize it to control smart home devices (Bret & Ava, 
2020). The prevalence of the smart home ecosystems and their learning capabilities facilitate human-
building cooperation with virtual assistants providing more personalized suggestions. 

Despite this potential, it has been shown that users might not know about all the supported features when 
interacting with virtual assistants (Bentley et al., 2018; Luger & Sellen, 2016), and learning to use smart 
home devices can be a very time-consuming task with little support available (Hargreaves, Wilson, & 
Hauxwell-Baldwin, 2018). In this case, users might limit their usage to simple daily tasks. Moreover, one-
way communication in the form of user commands for control of building systems might not result in an 
optimal outcome, for example, when it comes to energy management. Therefore, we have envisioned smart-
home-integrated virtual assistants that act proactively as a bridge to facilitate users to achieve energy and 
sustainability goals. Interactions initiated proactively by virtual assistants have been found to be effective 
and evaluated positively by users in previous studies (Miksik et al., 2020). In this study, we investigated 
whether proactive communication from virtual assistants could be leveraged to affect occupants’ adaptive 
behaviors for energy saving in thermal conditioning, which accounts for almost half of the energy use in 
the residential sector (Meir, 2013). To this end, we have studied how the adaptation and flexibility in 
intelligent communication with users according to their characteristics and responses could result in 
improved adaptive behavior for energy saving. In other words, with prompts initiated by virtual assistants, 
occupants might be more willing to take adaptive behaviors to conserve energy due to the nudging effect 
from smart home intelligent conversations and automation ecosystems. While examining this objective, we 
have investigated how occupants’ experiences with smart home devices, pro-environmental values, beliefs 
about environmental and economic effects of energy saving, and thermal preference range affected the 
likelihood of accepting energy-saving suggestions from proactive smart home assistants. We conducted this 
study through an online experiment with members of the general public across the US as detailed in the 
following sections.  

1. Background, Objectives, and Study Design 
1.1. Smart Building/Home Ecosystem 

Based on example smart home frameworks ((Guamán, Calvopiña, Orta, Tapia, & Yoo, 2018; Stojkoska & 
Trivodaliev, 2017)), we envisioned a smart home ecosystem framework that accounts for the role of virtual 
assistants as shown in Figure 1. A major direction of smart home research focuses on the design, 
architecture, and communication protocols of the IoT in ecosystems (Solaimani, Keijzer-Broers, & 
Bouwman, 2015). For example, local network communication technologies for third-party sensors and 
home appliances’ integration have been broadly explored (Almusaylim & Zaman, 2019). On the other hand, 
leveraging higher reliability and scalability of cloud computing, some studies investigated cloud services 
in smart home frameworks (Singh, Ra, Meng, Kaur, & Cho, 2019). 
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Figure 1. Smart home ecosystem centered around virtual assistants in smart home ecosystems (i.e., smart 
home assistants) 

Smart home central hubs represented by virtual assistants on smart speakers are at the center of our 
envisioned ecosystem. We refer to them as smart home assistants (SHA) hereafter. SHAs could build 
bridges between occupants, cloud computing platforms, and third-party home appliances (Figure 1). Prior 
studies have designed various platforms to implement voice-activated central hubs in smart home scenarios, 
including the systems built with Alexa Voice Services, Alexa Skill Sets (C. Z. Yue & Ping, 2017), and 
Google Assistant (Isyanto, Arifin, & Suryanegara, 2020). As an important aspect, the interactions between 
occupants and SHAs have also been widely investigated. Studies have evaluated the interactions between 
users and virtual assistants and identified the common user commands (e.g., weather checking, media 
control, and device control (Lopatovska et al., 2019)). Comparisons among different virtual assistants 
(Amazon Alexa, Google Assistants, Apple Siri, Microsoft Cortana) have also been made to examine various 
interactions between users and virtual assistants (Berdasco, López, Diaz, Quesada, & Guerrero, 2019).  
However, there is a lack of research on human interactions with SHAs when it comes to smart home 
operations (Bylieva, Bekirogullari, Lobatyuk, & Anosova, 2020). Upon receiving the commands from 
occupants, SHAs can operate various connected appliances simultaneously, reducing occupants’ effort to 
operate the devices separately (Jabbar et al., 2019). How the SHAs can interact with the occupants and help 
them make the best use of IoT-embedded smart homes needs to be further explored. 

Human-Building Interaction 

IoT technologies have improved sustainable performance in smart buildings. However, the optimization of 
mechanical systems cannot guarantee efficiency improvement. Occupants’ preferences and habits also have 
a major impact on building operational strategies (Heydarian et al., 2020). Human-Building Interaction 
(HBI) has been introduced to build an adaptive building control system to account for the complexities of 
occupants' behavior and reduce the inefficiency of traditional conservative operations (Alavi et al., 2019). 
Compared to Human-Computer Interaction concepts, in which users interact with a machine through a 
circumscribed modality, HBI considers occupants to be completely immersed in an interactive environment 
and aware of the outcome of their behaviors and building operations (Alavi et al., 2019). Nevertheless, 
occupants generally lack an awareness of their energy consumption and the ability to optimize it, so there 
is a need for building systems to assist and provide personalized feedback for energy efficiency (Hsu et al., 
2010).  



4 

 

Several studies have broadly investigated the efficacy of various content and forms of feedback and 
interventions to encourage energy-efficient behaviors. Some examples include historical comparison and 
incentives investigation (Jain, Taylor, & Peschiera, 2012), personalized eco-feedback (Fotopoulou et al., 
2017; Inyim et al., 2018), and building information model-based energy visualizations (Francisco, Truong, 
Khosrowpour, Taylor, & Mohammadi, 2018). Specifically, some studies investigated methods of offering 
occupants personalized recommendations or awareness services for energy efficiency with the data 
collected from IoT in the smart buildings (Fotopoulou et al., 2017; Sardianos et al., 2021). However, these 
traditional forms of eco-feedback have been found to have scalability limitations. Moreover, they have 
mainly focused on one-way interactions, which prevents building systems from further learning from the 
occupants’ responses to the feedback. The technological advances have paved the way for bi-directional 
communications, in which intelligent building agents (e.g., SHAs) and occupants can cooperate for a mutual 
adaptation to lead to overall better decisions. This new form of mutual interaction calls for the exploration 
of active forms of communication between SHAs and occupants. 

Choice Architecture and Nudge Theory 

In the context of two-way communication, choice architecture interventions could be a promising approach 
to encourage occupant’s adaptation at the intersection of energy efficiency and comfort. The concept of 
choice architecture relies on designing choice situations that ‘nudge’ decision-makers toward more 
beneficial options (Szaszi, Palinkas, Palfi, Szollosi, & Aczel, 2018). Nudge theory introduces generally 
inexpensive and less invasive solutions compared to traditional direct interventions (Thaler & Sunstein, 
2009). Through nudging, the choice architects such as policy makers or industry practitioners can arrange 
decision-making contexts to influence people’s daily choices and behaviors in a cheap and effective way 
(Hansen & Jespersen, 2013). Nudge theory has been applied in many domains (e.g., consumer choices, 
finance, health, and sustainability) in different intervention forms, such as changing choice defaults, 
providing reminders, and providing social reference points/social comparisons (Landais et al., 2020). In 
terms of energy efficiency applications, cost-effective nudges have been tested effective in voluntary energy 
efficiency adoption (Gillingham & Tsvetanov, 2018) and energy consumption reduction (Chang, Huh, & 
Lee, 2016). Four common nudge mechanisms used in interventions related to residential energy 
consumption include (Lehner, Mont, & Heiskanen, 2016): Simplification and framing of information (e.g., 
customized consumption feedback (Podgornik, Sucic, & Blazic, 2016), data visualization of energy 
consumption (Herrmann, Brumby, Oreszczyn, & Gilbert, 2018)); changes of the physical environment (e.g., 
design of home and appliances with intent (Bhamra, Lilley, & Tang, 2011)); changes to the default option 
(e.g., a required opt-out of green electricity offers (Ölander & Thøgersen, 2014)); and use of descriptive 
social norms (e.g., comparative energy feedback (Delmas, Fischlein, & Asensio, 2013)). SHAs have the 
potential to influence the choices occupants make. However, there is a lack of studies on nudging 
concerning the interaction between voice-based smart home assistants and residential occupants, so further 
exploration is called for.  

Influence of Individual Differences on Decision-Making  

Contemporary theories and models that predict environmental (and energy-related) behaviors suggest 
several influential, personal factors that could influence how people make decisions to energy-saving 
prompts. The value-belief-norm theory of environmentalism (Stern, Dietz, Abel, Guagnano, & Kalof, 1999) 
proposes that people’s personal values predict their beliefs about environmental issues and these beliefs 
predict their actions related to the environment. A primary driver of such behaviors in this and related 
models is biospheric values, or the extent to which people consider environmental protection as a guiding 
principle in their lives and decisions. Previous studies have also found a consistent association between 
beliefs about the positive and/or negative consequences of pro-environmental or energy-related actions and 
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engagement in related behaviors (Oreg & Katz-Gerro, 2006). For example, individuals’ awareness 
of/beliefs about environmental consequences of specific behaviors (e.g., a belief that the use of fossil fuels 
contributes to global warming; a belief that reducing energy use can help mitigate climate change) can be 
predicted by biospheric values and can, in turn, predict motivation to practice the given behaviors. The 
comprehensive action determination model (CADM) of ecological behavior also identified the impact of 
habitual influences on environmentally friendly behavior (Klöckner, 2013). Based on the model, prior 
actions or habits, such as previous heating or cooling behaviors, predict future actions along with one’s 
sense of whether or not s/he has the ability to take action (perceived behavioral control (Klöckner, 2013)). 

Another individual difference that has an important effect on the energy efficiency related decision-making 
is the use of adoption of new technology. When it comes to use or adoption of new technology, such as 
smart home technology, diffusion of innovation theory (Parthasarathy & Bhattacherjee, 1998) predicts that 
prior experience with the given technology tends to predict future and/or expanded use of the technology 
(Hou et al., 2020). For instance, previous research indicates that the command frequency in user interactions 
with smart home assistants was associated with the ownership period and the number of smart home devices 
a user has (Sciuto, Saini, Forlizzi, & Hong, 2018). Additionally, the expanded unified technology 
acceptance model (UTAUT2) also indicates that past use of a technology (habit) is one of the strongest 
predictors of motivation to use a technology in the future (Venkatesh, Thong, & Xu, 2012). Based on 
previous studies about the influence of individual differences on energy efficiency related decision-making 
process, various individual’s characteristics can be investigated to explore the influence of these features 
on the interactive communications between proactive SHAs and the occupants.  

On the basis of previous studies in smart home ecosystem, human-building interaction, choice architecture 
and nudge theory, and influence of individual differences on decision-making, we tried to explore how the 
adaptation and flexibility in proactive SHAs and their interactive communication with users could result in 
improved adaptive behavior for energy saving. Example scenarios of SHAs communicating with occupants 
for smart control are as follows. When an occupant wakes up in the morning with the SHA alarm, the agent 
would also give a suggestion according to occupants’ comfort and energy-saving - “Good Morning, John! 
It’s rather cool outside now, would you like me to adjust the thermostat and help you open the window to 
let some fresh air in”? Occupant(s) are at home, and the thermostat is on its default setpoint, the SHA tries 
to provide tips for adaptive behavior for the occupant(s): “Hey, Jessica, would you like me to set the 
thermostat setpoint higher? We will save on our energy expenses. Meanwhile, I can turn the fan on to help 
you stay cool”. Considering similar scenarios and existing theories that explain energy-related behaviors, 
with the goal of moving toward proactive SHAs, we posed one research question and three hypotheses as 
described below.  

Study Objectives and Design 

Given the paucity of existing research on the influence of SHAs on residential occupants’ energy use, we 
first posed and tested a research question to examine general, potential effects of nudging by proactive 
SHAs on participants’ likelihood of accepting energy-saving suggestions from SHAs:  

- RQ1: How does nudging via bi-directional communication from proactive SHAs affect participants’ stated 
likelihood of responding positively to energy-saving suggestions? 

Based on existing literature on technology use and personal characteristics of those who engage in pro-
environmental behaviors and energy-saving, we proposed and tested the following hypotheses related to 
how personal characteristics of occupants/research participants would influence their responses to adaptive 
behavior suggestions from SHAs. 
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- H1: (Based on Diffusion of Innovation theory (Parthasarathy & Bhattacherjee, 1998) and the extended 
Unified Technology Acceptance Model (Venkatesh et al., 2012)) Occupants with more experience and 
familiarity using smart home ecosystems will be more receptive to SHA adaptation suggestions and have a 
more positive perception of proactive SHA modality. 

- H2: (Based on Value-Belief-Norm theory (Oreg & Katz-Gerro, 2006) and the Comprehensive Action 
Determination Model (Klöckner, 2013) of pro-environmental behavior) Occupants’ beliefs related to 
energy use, their pro-environmental values, and energy-related habits will be associated with their responses 
to SHA adaptation suggestions and their general perceptions of proactive SHA modality. 

- H3: (Based on personal thermal comfort models (Jung & Jazizadeh, 2020)) Occupants’ thermal 
preferences and sensitivities will be associated with their responses to SHA adaptation suggestions for 
energy-saving. 

Methodology 
To answer the research question and test the hypotheses, we used an online experiment to collect end users’ 
responses to simulated proactive communications from SHAs for energy-saving objectives. The online data 
collection approach enabled us to reach a wide range of respondents across the US and to collect data from 
members of the general public with varied backgrounds and personal characteristics. Interactive online 
platforms for data collection support different multimedia and questionnaire elements that are well-suited 
for the intended simulation, as well as gathering objective feedback and data on personal characteristics for 
a large group of participants (Kelley, Clark, Brown, & Sitzia, 2003). Therefore, for communication with 
users, we used Qualtrics to design an interactive interface (the questionnaire hereafter) with two 
components addressing different objectives of the study: (i) An interactive process that simulated smart and 
bi-directional communications between a user and an SHA, and (ii) questions regarding the influence of 
participants’ personal characteristics on responses (Figure 2).  

 
Figure 2. The structure of the online interactive interface/questionnaire  

Response to Proactive Communications 

The first component of the questionnaire was designed to collect participants’ initial and subsequent/final 
responses in the conversational flow from SHAs. In the simulated interactions between users and SHAs, 
participants were presented with a scenario, in which energy-saving suggestions related to an automatic 
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& Types, Connected Devices/Systems)
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Interactive Interface Simulating SHA Interactions Questions on User Characteristics

Proactive Energy- saving
Suggestions

Initial & Final Responses

Interactive Conversations
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Likelihood of Accepting Energy- saving Suggestions
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change of the thermostat setpoint during a cooling season were provided by “Alexa” on an Amazon Echo. 
As shown in Figure 3, this scenario was presented through videos showing “Alexa” initiating conversations 
- using the Alexa Text to Voice Skill.  

 
Figure 3. Example of the designed video and audio message from smart home assistant 

The information flow for the suggestions was evaluated through an empirical assessment in a pilot study of 
60 participants on the university campus. Participants’ comments from the pilot study helped us modify the 
content to facilitate the flow of information. In the first step of the full study, participants were provided 
with a context-based scenario, in which imagined they were at home during a summer day (i.e., cooling 
mode), the indoor temperature was set as they preferred, and there was a smart home assistant with 
automatic control of thermostat that could give suggestions for energy-saving. The design goal for this 
component was to emphasize the characteristics of SHAs’ conversational and interactive communication. 
The initial energy-saving suggestion message from “Alexa” was worded as “Hey, would you let me set the 
thermostat higher to save energy?” and participants’ responses to this question were recorded as their initial 
responses. 

 
Figure 4. The flow of the suggestions (conversation) from smart home assistant 

Following the proactive communication concept, the next steps of interactions included a conversational 
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suggestion flow from “Alexa” as illustrated in Figure 4. If participants responded positively (“probably yes,” 
or “definitely yes”) to the initial suggestion, they were asked about how much they would be willing to 
raise the thermostat setpoint. However, if they indicated a neutral (“might yes/might no”) or negative 
response (“probably not”) to the initial suggestion (not willing to accept), “Alexa” followed up with 
additional information about savings on energy expenses and tips for alternative operations to preserve 
comfort (e.g., turning on a fan). Participants’ responses to follow-up suggestions were recorded as their 
final responses. Participants who responded “definitely not” to the initial suggestion were not asked a 
follow-up question about changing the thermostat nor were they asked to reconsider their response.  
Participants’ responses to these questions were utilized to analyze the nudging effect of bi-directional 
communication from SHAs and the impact of personal characteristics on participants’ stated likelihood of 
accepting proactive communications and adaptive behavior suggestions. In addition to measuring 
participants’ direct responses to SHA suggestions in the simulated scenario, we also asked a separate set of 
questions for participants to indicate the extent to which they would generally accept proactive forms of 
interactions from SHAs for energy management - proactive SHA modality (Figure 2).  

Participant’s Characteristics and Profile 

As shown in Figure 2, the questions in the participant’s profile/characteristics component focused on the 
background and personal characteristics. We collected demographic information, information about 
previous experience with smart home ecosystems, participants’ environmental/energy-related values and 
beliefs, and their thermal preference range and sensitivities. The following rationales were used in 
identifying the collection of different data attributes. 

The demographic information included gender, age, level of education, residence type, and employment 
status. Previous studies have shown that these socio-demographic characteristics are determinants of 
differences in energy-saving behavior (T. Yue, Long, & Chen, 2013). Therefore, the demographic 
information was used to ensure that the participants’ diversity was preserved during the data collection. 
According to the diffusion of innovation theory (Parthasarathy & Bhattacherjee, 1998) and the expanded 
unified technology acceptance (Venkatesh et al., 2012), the past experience with/prior use of a technology 
can also play an important role. Considering the significant effect of this feature, we collected data on 
various indicators of participants’ previous experience with smart home devices (e.g., Amazon Echo, 
Google Home), and examined the role of prior use of SHAs in influencing responses to SHA suggestions 
and evaluations of SHAs in general. Given the focus of the study on energy-saving for thermal conditioning, 
the thermal preference range questions focused on two attributes: occupants’ thermal preference range and 
sensitivity (Jung & Jazizadeh, 2019). Participants were required to provide their thermostat preferred 
setpoint (normal setpoint), their acceptable upper limit, and their acceptable lower limit on a typical summer 
day (cooling season), within the range between 60°F and 86°F using integer scales. Respondents’ thermal 
preference range and sensitivity can be computed based on the collected data. As an example, a heat-
sensitive user should have a relatively small acceptable upper limit and a larger acceptable lower limit, and 
may feel uncomfortable due to a slight to moderate increase in temperature while accepting a wider range 
of temperature reduction. 
Based on existing theories of pro-environmental behavior (described above) that suggest the importance of 
individual differences/personal traits that predict behaviors, we included question items measuring 
participants’ on biospheric values (including unity with nature, respecting the earth, protecting the 
environment, and preventing pollution with an importance level scale from “Opposed to my values” to “Of 
supreme importance”) (Steg, Perlaviciute, Van der Werff, & Lurvink, 2014). In order not to bias 
participants toward offering positive responses, we also asked participants about their other core values 
(such as benevolence and self-enhancement values) as a distraction. These other core value items were 
mixed in with items measuring biospheric values. Items measuring participants’ beliefs about 
environmental protection consequences of energy use, financial consequences of energy-saving, their habit 
of using energy to enhance personal comfort, and perceived behavioral control (measured as perceived 
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capacity to save energy) were also included with Likert-type response options ranging from “Strongly 
Disagree” to “Strongly Agree,” with higher scores indicating greater agreement. The specific question items 
for each category/variable are shown in Table 1. These questions were presented in a random sequence to 
avoid the potential biasing of question order. 

Table 1. Individual beliefs and values with potential impact on energy-related behavior 

Beliefs and Values Survey Items 

Environmental Protection 

• Home energy use has an impact on global energy-saving. 
• If I reduce my own home energy use it will have a positive impact on the 

environment. a 
• I believe it is my personal responsibility to take action to reduce problems 

related to energy-saving. 

Energy Expenses 

• Changing home energy use considerably affects individuals’ expenses. 
• If I reduce my own home energy use, I can save money. a 
• I pay close attention to how much money is spent on energy for my home 

every month. 
• I don't think that changing the thermostat temperature settings at home affects 

my energy bills much. 
Personal Comfort Habit • I pay more attention to my personal comfort than how much energy I use. a 

Perceived Behavioral 
Control b 

• I think I need more guidance on how to adapt my daily behavior in order to 
use less energy in my home. a 

• I am interested in adapting my daily behavior in order to save money on 
energy if proper guidance is provided. 

Biospheric Values 

• Unity with nature. 
• Respecting the earth. 
• Protecting the environment. 
• Preventing pollution. 

a These options were selected as clustering variables for participants segmentation based on an internal 
consistency test further described in the following sections. 
b Note: because of the way the question item for perceived behavioral control/capacity was worded, a high 
score indicates a greater perceived need for assistance to take actions (low perceived control/capacity) 

Data Collection and Analysis 

The data collection was conducted through Qualtrics upon approval from Virginia Tech’s Institutional 
Review Board (IRB#20-297). The platform enables to recruit and monitor the progress of data collection 
by using different constraining factors, such as the geographical location, education level, age, type of 
device used for responding to the questions, time for completing the study, etc. Before the full data 
collection, we conducted a pilot study with 60 participants involved to estimate the minimum sample size 
through a priori power analysis with G*Power 3 software (Faul, Erdfelder, Lang, & Buchner, 2007). The 
priori power test can utilize the estimated effect size, significance criterion, and prospective (before-the-
fact) power to compute the required sample size that can fulfill the specific significance criterion (e.g., 0.95) 
and power with the same effect size (O'Keefe, 2007). Based on the pilot study results with effect size of 
0.38, we estimated the representative sample size to be 300 under the pre-settings (effect size = 0.4, p < .05, 
Power > 0.90). Furthermore, we used the pilot study data to identify the constraints for data collection and 
ensure a high-quality dataset. The study questionnaire also included validating questions to ensure that 
participants were paying attention to the questions. For the full data collection, to secure a group of 
participants from diverse backgrounds and data with sufficient reliability and validity, six quotas and 
constraints were set: (1) even gender distribution of participants; (2) balanced age distribution of 
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participants - 18-29 (30%),  30-39 (30%), 40+ (40%); (3) uniform geographic distribution of participants 
among all states; (4) matching the educational background of participants with the distribution of the U.S. 
population; (5) requiring participants to respond using a desktop computer only; (6) requiring at least 8 
minutes for completing the questionnaire. Through the pilot study, we found that participants who 
completed the questionnaire using mobile devices or who completed the questionnaire in less than 8 minutes 
typically did not provide complete and accurate responses. From August to September (thermostat cooling 
seasons) in 2020, the Qualtrics team invited the volunteers on the platform to participate in the online 
experiment and provided monetary compensation for qualified responses based on the quotas and 
constraints. We recorded the state-level location of the respondents and identified that the participants were 
uniformly distributed across the nation. After data cleaning and excluding unfinished responses, 307 valid 
responses were included in the statistical analyses.  

In addition to basic descriptive statistics and visualizations such as bar charts and box plots, Chi-square 
tests, t-tests and Analysis of Variance (ANOVA) tests were used for evaluation of the research question 
and hypotheses. K-means clustering, coupled with feature analysis, was implemented in order to segment 
participants into groups with regard to their individual differences and personal characteristics. 

Results and Findings 
Sample Characteristics 

Table 2 shows the general sample characteristics with a sample size of 307 in total. The gender, age, and 
education level of the respondents were uniformly distributed due to specified constraints during the data 
collection. The sample of 144 male (47%) and 161 female (52%) respondents shows almost equal 
distribution with 2 participants (1%) identifying themselves as non-binary, which is in parallel with the U.S. 
population distribution by gender (49.2% Male and 50.8% Female) (Bureau, 2019). Given the online 
distribution of the study questionnaire, the percentage of younger (18-29) and middle-aged (30-49) 
individuals was comparatively higher than the senior individuals (50+).  The distribution of education level 
was similar to that in the U.S. population in 2015, with 33% reporting completion of bachelor’s degree or 
more and 12% with an advanced degree (Ryan & Bauman, 2016). Half of the participants were full-time 
employees, and the rest included students (7%), part-time employees (13%), retirees (12%), and 
unemployed (13%). The residential status of the participants is also shown in Table 2. 

Table 2. Sample characteristics and feedback to designed messages 

Demographic Category Total Sample 
Num. Perc. 

Gender 
Male 144 47% 
Female 161 52% 
Non-binary 2 1% 

Age 

18-29 103 34% 
30-39 102 33% 
40-49 52 17% 
50 + 50 16% 

Education Level 

Less than high school 16 5% 
High school graduate 72 23% 
Some college 31 10% 
Bachelor's degree 121 39% 
Master's degree 48 16% 
Other advanced degree  6 2% 
Doctorate Degree 13 4% 

Employment 
Student 22 7% 
Part-time employee 39 13% 
Full-time employee 157 51% 
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Demographic Category Total Sample 
Num. Perc. 

Self-employed 13 4% 
Retired 37 12% 
Unemployed 39 13% 

Residence Type 

Single-Family Home 184 60% 
Apartment 98 32% 
Townhouse 21 7% 
Studio 4 1% 

Residence 
Occupancy 

Live by oneself 50 16% 
Live with roommate/friends 89 29% 
Live with family (including 
children/parents) 168 55% 

Efficacy of Smart Home Assistants with Conversational Flow 

RQ1 asked if the medium of a voice-based, humanlike virtual assistant and the bi-directional conversational 
flow would have a positive effect on participants’ acceptance of the energy-saving suggestions. Participants’ 
responses to the energy-saving suggestions from SHAs were grouped into positive, neutral, and negative 
responses. About one-third of the participants (110 out of 307) provided neutral (specified on the 
questionnaire as might yes and might no) or negative (probably no) responses in their initial feedback and 
were further nudged with interactive conversations (Figure 4), after which they provided their final 
responses (negative or positive). We compared the participants’ initial and final responses and found a 16% 
increase in positive responses – i.e., 4% increase for those with “Probably No” initial responses and 12% 
increase for those with neutral initial responses.  

 
Figure 5. Comparison of participants’ responses to energy-saving suggestions from SHAs 

In order to compare the effect of SHA interactive conversations on participants with different initial 
responses (i.e., to investigate if participants’ with different initial responses would react differently in their 
final responses after interactive conversations), a Chi-square test were conducted. The results (χ2 =3.61, p 
< .05) identified that there is a statistically significant difference in participants’ final responses between 
the initial neutral response group and the initial negative response group (Table 3). More participants who 
initially held a neutral attitude towards energy-saving suggestions agreed to change their idea after 
interactive conversations compared with the participants who initially held a negative attitude. This 
observation indicates that the proactive SHAs seem to be more effective among occupants with an initially 
neutral predisposition toward energy-saving behavior. However, a change for those with an initial negative 
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predisposition could still be possible but less likely. These observations could be referenced in designing 
proactive communications by leveraging an initial screening of the users’ intention toward energy-saving 
efforts. 

Table 3. Chi-square test results for the nudging effect of SHA interactive conversation 

Initial Response to SHA 
Suggestions 

Number of 
Initial 

Responses 

Final Responses  
After SHA Interactive Conversations χ2  Refused to change Agreed to change  

Num. Perc. Num. Perc. 
 

Probably No (Negative) 
  

46 34 73.91% 12 26.09% 
3.61* 

Maybe/Might Yes or Might Not 
(Neutral) 64 28 43.75% 36 56.25% 

* One-tailed significant level < .05 

Influence of Participants’ Individual Differences 
  

Experience with Smart Home Systems 

H1 predicted that occupants’ previous experience with smart home devices (e.g., Amazon Echo, Google 
Nest) would have a positive effect on accepting the suggestions offered by the SHAs and on their 
perceptions of proactive SHAs in general (Hou et al., 2020; Parthasarathy & Bhattacherjee, 1998). To test 
the hypothesis, we first converted the Likert-type final responses to SHAs energy-saving suggestions into 
numeric values: “Definitely No” (=1) to “Definitely Yes” (=5). Then we evaluated five factors including 
the number of smart home devices that a participant has used before (Number), the duration that a 
participant has owned the smart home devices (Ownership Period), the frequency of giving commands to 
virtual assistants (Command Frequency), the number of frequently used command types (Command Types 
Count) with a total of five types, and the number of connected devices/systems to the smart home central 
hubs (Connected Devices/Systems Count). 

Upon normalizing these factors with z-score standardization, through k-means clustering, we segmented 
the participants into three groups: No/Limited Experience, Some Experience, and Rich Experience, as 
shown in Figure 6. In the first group, the majority (134 out of 140) didn’t have any former experience with 
the smart home devices, and the remaining ones (7) had only used the devices for a short period of time 
with limited interactions. Between the other two groups, participants with rich experience reported that they 
had interacted with more than one type of smart home device, including voice-based (e.g., Amazon Echo, 
Apple Home pod) and display-based (e.g., Google Nest Hub, Facebook Portal) forms, which resulted in 
much higher normalized score for the number feature. Although participants in some experience group 
showed slightly higher score in ownership period feature, they had much less normalized score for other 
features. Participants with rich experience have used their devices more frequently (higher command 
frequency) and more broadly (more command types and connected devices/systems).  
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Figure 6. Clusters of participants with different levels of experience with smart home devices and virtual 

assistants 

 
Figure 7. Impact of participants' experience with smart home devices on their responses to proactive 

smart home assistants (SHAs) for energy management 

Figure 7 shows the box plots of participants’ responses across different groups. Red lines show the median 
value and the markers with numbers are the average scores for participants in each group. The general 
ANOVA tests indicate that the participants’ experience with smart home devices has a significant impact 
on their likelihood of accepting SHA suggestions with F-statistics of 30.31 (p < .05, df = 306) and their 
acceptance of proactive SHA modality in general with F-statistics of 26.89 (p < .05, df = 306). The ANOVA 
Tukey HSD post-hoc test results, shown in Table 4, indicate differences in behavioral intention and 
acceptance levels across the groups. It can be seen from Figure 7 that those with at least some previous 
experience with smart home systems (either some experience or rich experience) had significantly greater 
likelihood of accepting the suggestions than those with no or limited experience, while there was not a 
significant difference in likelihood between the some-experience and rich-experience groups. The same 
pattern emerged for general acceptance of proactive SHA modality, users with some or rich experience 
reported higher acceptance levels than those with no experience. Again, there was not a significant 
difference between those with some experience or rich experience. These findings indicate that users with 
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more experience will likely be more receptive to suggestions from virtual assistants for energy management 
of thermal conditioning. 

Table 4. ANOVA Tukey Post-hoc test results on the impact of experience with smart home devices 

Comparison Cases Likelihood 
Mean (Std. Dev.) 

Acceptance 
Mean (Std. Dev.) 

No/Limited Experience 3.18(1.21)a,* 3.06(1.25) a 
Some Experience 4.06(.76)b 3.95(.92) b 
Rich Experience 4.13(.88) b 4.05(1.04) b 

* Means with differing superscripts within each column differ at p < .05. 

Value and Beliefs 

In H2, we predicted that users with greater pro-environmental values and with stronger beliefs regarding 
positive consequences of energy-saving would be more receptive to suggestions from smart home assistants 
for energy management and have a more positive perception of proactive SHA modality in general. In 
testing this hypothesis, we also included the measure of perceived behavioral control, because prior research 
indicates those with less perceived capacity to take action might be less likely to do so, even if they have 
strong, conducive values and other beliefs. In testing this hypothesis, we used k-means clustering to group 
participants according to their beliefs and values. This method was used because examining and contrasting 
the preferences of individuals in different clusters can help SHAs as a machine learning approach to perform 
initial screening of the users’ intention toward energy-saving efforts. For responses to the four items 
intended to measure biospheric values, Cronbach’s Alpha, a measure of scale reliability, was 0.89, 
indicating a good internal consistency (>0.7) of the scale. Thus, we used mean values for participants’ 
responses to those four items. However, for the belief groups in Table 1, the responses did not pass the 
internal consistency tests for two items (energy expenses and perceived behavioral control), and therefore, 
we extracted the most representative option from each of the four belief items which were marked in Table 
1. The clustering on the normalized variables of beliefs and values showed that two clusters were effective 
in distinguishing participants with a positive disposition to save energy/take recommended actions (Positive 
Group) and those with a negative disposition to save energy/take action (Negative Group) as illustrated in 
Figure 8.  

Compared to the Negative Group, the Positive Group included participants with stronger biospheric values, 
more positive beliefs about the environmental and economic consequences of saving energy, lower 
perceived control/capacity (indicating a greater perceived need for additional assistance in saving energy) 
and a weaker habit of preferencing personal comfort over energy-saving. An independent samples t-test, as 
shown in Table 5, indicated those in the Positive Group had significantly higher mean values both with 
respect to accepting SHA’s suggestions and perceptions of proactive SHA modality in general as shown in 
Figure 9. 
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Figure 8. Groups of participants with different values, beliefs, and habits (Note: low perceived behavioral 

control indicates high perceived need for assistance) 

Table 5. T-tests for two groups with different values and beliefs 

 Groups Numbers Mean Std. 
Deviation t values 

Likelihood of Accepting 
Suggestions 

Negative 118 3.08 1.04 34.41** Positive 189 3.81 1.06 
     General Acceptance of 

Proactive SHA Modality 
Negative 118 2.92 1.11 63.44** Positive 189 3.95 1.05 

* One-tailed significance level < .05.    ** One-tailed significance level < .01. 

 

Figure 9. Impact of participants' value and beliefs on their responses to proactive smart home assistants 
(SHAs) for energy management 

Thermal Preference and Sensitivity 

To test H3, we also collected participants’ self-reported preferred thermostat setpoints and their preferred 
range with upper and lower limits. As shown in Figure 10, the mean and median value of the participants’ 
preferred thermostat setpoint is 73°F, with a mean upper limit of 75°F and a mean lower limit of 70°F. 
Participants’ preferred setpoint mainly lies in the range between 69°F and 75°F.  
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Figure 10. Participants’ thermal comfort range distribution (lower limit, preferred setpoint, upper limit) 

We divided these participants into different groups based on thermal preference range and sensitivities in 
our investigations. The acceptable thermal comfort region for occupants is ± 1.5°C for residential buildings 
(Peeters, De Dear, Hensen, & D’haeseleer, 2009). Through the Fahrenheit degree to Celsius degree 
conversion, we estimated ± 2.5°F to be the thermal comfort range for occupants. For example, if someone’s 
preferred thermostat setpoint is 24°C (75.2°F) and have a ± 1.5°C of comfort range, then his/her comfort 
range would be 22.5°C (72.5°F) to 25.5°C (77.9°F). As such, we set 5°F (± 2.5°F) as a boundary to divide 
participants’ preference ranges into large and small ranges. The independent samples t-test results in Table 
6 show that the two groups were significantly different in accepting the SHA’s suggestions. The box plots 
of the responses from the two groups, in Figure 10, show that those with forgiving thermal preferences were 
more receptive to the suggestions and indicated tolerance for higher temperature increases (2.61°F versus 
1.83°F).  

Table 6. T-Test for different thermal comfort ranges 

Participants’ 
Responses 

Thermal Comfort 
Range Number Mean Std. Deviation t-value 

Likelihood of 
Accepting Suggestions 

Large (> 5°F) 89 3.74 0.99 2.321*   Small (<= 5°F) 114 3.37 1.24 
Temperature Setpoint 

Change 
Large (> 5°F) 89 2.61 1.74 3.086**   Small (<= 5°F) 114 1.83 1.79 

* One-tailed significance level < .05.    ** One-tailed significance level < .01. 
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Figure 11. Effects of thermal preference range on participants' responses to adaptive behavior suggestions 

(left) and changing temperature setpoints (right) 

Occupants’ sensitivity to temperature change (i.e., thermal sensitivity) has been shown to affect their 
preferred shift in thermostat setpoint for HVAC operations (Jung & Jazizadeh, 2019). To investigate its 
impact, we grouped participants accordingly. If their preference upper range (Upper limit – Preferred 
setpoint) was smaller than their lower range (Preferred setpoint – Lower limit), they were classified as less 
tolerant of warmer conditions and more receptive to cooler conditions and vice versa.  

We utilized t-test to identify the difference of responses from two varied thermal sensitivity groups (heat 
sensitive and heat tolerant group). The results indicated that two groups of respondents are significantly 
different from each other in the likelihood of accepting suggestions (Table 7). The box plot (Figure 11) also 
shows that the heat tolerant group respondents have higher likelihood to accept the energy-saving 
suggestions raised by SHA. However, in terms of temperature change setpoint, although the box plot shows 
that the heat tolerant group have higher mean value and more respondents willing to raise their thermostat 
setpoint for 2°F to 3°F, the t-test results (Table 7) indicates that the two different thermal sensitivity groups 
do not significantly different from each other. 

Table 7. T-tests for different thermal sensitivities 
Participants’ 
Responses 

Thermal  
Sensitivity 

Number of 
participants Mean Std. Deviation T values 

(Sig.) 
Likelihood of 

Accepting Suggestions 
Heat Sensitive 81 3.56 1.06 1.91* Heat Tolerant 54 3.91 1.03 

Temperature Change 
Setpoint 

Heat Sensitive 81 2.25 1.90 1.11 Heat Tolerant  54 2.59 1.56 
 * One-tailed significance level < .05.     
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Figure 12. Impact of participants' thermal preference sensitivity on their responses to adaptive behavior 

suggestions (left) and changing temperature setpoints (right) 

Discussion 
Implementation of AI-based virtual assistants in the smart home ecosystem has introduced occupants with 
a more interactive interface to enjoy the comfort, convenience, and energy efficiency brought by the IoT-
based home automation. However, the one-way passive communication between the users and the smart 
home virtual assistants has limited its usage, despite its great application potentials. This study provides 
empirical evidence that a proactive smart-home-integrated virtual assistant can facilitate users to achieve 
energy-saving and sustainability goals. The online experiments also investigated individuals’ different 
characteristics that could affect users’ receptiveness to the SHA suggestions and the proactive SHA 
modality for energy management. Factors such as experience with smart home ecosystems, pro-
environmental values, and beliefs about environmental and economic consequences of saving energy, as 
well as thermal preferences have been identified to have a statistically significant effect on the individual’s 
energy efficiency-related decision-making, which is in line with theories and models in previous studies, 
including the diffusion of innovation theory (Parthasarathy & Bhattacherjee, 1998), the value-belief-norm 
theory (Oreg & Katz-Gerro, 2006), and the personal thermal comfort model (Jung & Jazizadeh, 2020). 

Various stakeholders can benefit from the findings in this study. Developers of smart home ecosystems 
should consider implementing the proactive modality of the AI virtual assistants and utilize it to improve 
the human-building interaction in smart homes. Future researchers should refer to the identified influence 
of individual differences on the energy-saving decision-making process in the future development of 
efficient personalized proactive communications between the smart home assistants and the 
occupants/users. Last but not least, smart home occupants and smart speaker users can also learn about the 
energy-saving potentials that can be brought from mutual interactions between them and the virtual 
assistants.  

This study is not free of limitations. There are several aspects of this study that should be addressed in 
future efforts. The online experiment examined participants’ subjective perceptions of and views toward 
the concept of SHAs. Online experiments and surveys are helpful for reaching a large segment of a 
population in a short period of time for a reasonable cost and for collecting a rich set of information about 
a diverse group of research participants (Dandurand, Shultz, & Onishi, 2008; Nayak & Narayan, 2019). 
However, they can be sometimes limited by participant inattentiveness and social desirability of 
answers/responses and have less external validity (compared to natural or field studies) due to the research 
setting (Clifford & Jerit, 2014; Keyton, 2014). We attempted to address potential inattentiveness by 
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screening responses based on the amount of time to complete the study/answer the questions and 
eliminating data from participants who completed the study too quickly, thus indicating lack of 
attentiveness. We minimized social desirability effects by including distractor items, randomizing the order 
of some items, and by keeping the survey respondents’ identities anonymous to the research team. The 
online experiment described here measures responses to a hypothetical situation. Such approaches are 
common in online or lab-based experiments, especially for more exploratory work such as that reported 
here. However, replication of work in natural or field settings is encouraged to examine the extent to which 
the predictive models are consistent across research settings and data-gathering approaches.  

Another limitation that requires further investigation in the future is that the climate zones of the participants 
were not considered in terms of the energy-saving potentials of raising thermostat setpoints. With the 
incorporation of the local weather data and the energy consumption estimation, proactive SHAs can provide 
users with more accurate information of energy-saving potential through suggested behaviors, and thus 
initiate more efficient interactive conversation. In addition, privacy concerns associated with voice-based 
smart speakers is also a potential factor that may affect user’s attitude and usage of the smart home assistants, 
while this factor was not specifically addressed in this study. Finally, although previous studies have shown 
that voice-based virtual assistants can be incorporated into households’ lives with long-term stability, the 
long-term efficacy of the proactive SHAs requires further investigation. As such, an in-house long-term 
user study is needed in the future to observe the interactions between the proactive smart home assistants 
and the occupants in daily usage and the long run. 

Conclusion 
In this study, we investigated the impact of smart home assistants (SHAs) – proactive voice-based virtual 
assistants integrated into the smart home ecosystems – on user adaptation for energy-saving with a focus 
on thermal conditioning. In our envisioned system, SHAs could proactively give adaptive behavior 
suggestions to occupants toward changing their energy-related behaviors. This online experiment included 
307 responses from participants with diverse backgrounds experiencing proactive/interactive conversation 
from Alexa (AI virtual intelligence) on a smart speaker. Through the statistical analysis, it was found that 
conversational interactions have a significantly positive effect on the stated likelihood of accepting 
suggestions. Compared with the participants’ initial responses to the energy-saving suggestions, in their 
final responses after the conversational flow and further interactions with Alexa, the number of participants 
who accepted SHAs’ energy-saving suggestion of adjusting thermostat setpoint increased by 16%. This 
study also revealed the significant impact of three individual’s characteristics on their receptiveness to the 
SHA suggestions and the proactive SHA modality for energy management, including experience with smart 
home ecosystems, pro-environmental values and beliefs, as well as thermal preferences. Future researchers 
and developers are encouraged to implement the proactive modality and nudge theory in the development 
of smart home virtual assistants to promote human-building interaction and improved energy efficiency of 
the smart home ecosystem. 
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